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Abstract—Trusted execution environments (TEEs), such as
Intel SGX, have become a popular security primitive with
minimum trusted computing base (TCB) and attack surface.
However, the existing CPU-based TEEs do not support FPGAs,
even though FPGA-based cloud computing services have been
rapidly deployed with security vulnerabilities that are expected
to be eliminated by TEEs. To fill the gap, we present SGX-
FPGA, a trusted hardware isolation path enabling the first FPGA
TEE by bridging SGX enclaves and FPGAs in the heterogeneous
CPU-FPGA architecture. Our experiments on real CPU-FPGA
hardware justify the high security and low performance overhead
achieved by SGX-FPGA.

I. INTRODUCTION

The heterogeneous CPU-FPGA architecture has been de-

ployed recently to incorporate the high computation capability

of FPGAs into the traditional CPU-based architecture. For

examples, hardware vendors such as Xilinx and Intel have

released various CPU-FPGA systems, such as the CPU-FPGA

system on chips (e.g., Xilinx Zynq SoC) [1] and hybrid

CPU-FPGA processors [2]. More recently, FPGAs have been

deployed in commercial cloud computing systems (e.g., Ama-

zon AWS [3] and Microsoft Azure [4]) to accelerate the

computation-intensive tasks.

Despite the performance benefits, the CPU-FPGA architec-

ture faces unattended challenges in security [5]. For example,

CPU-side adversaries may attempt to breach the confidentiality

and integrity of the data on the FPGA side, and vice versa.

Although the community has developed a variety of security

mechanisms to secure CPU [6] and FPGA [7] separately,

little attention has been paid on the interactions between these

two heterogeneous components. As a result, there is a gap

between the security of the CPU-FPGA system and its rapid

deployment in publicly accessible platforms.

To address the system security challenges, trusted exe-

cution environments (TEEs), such as Intel SGX [8], have

been developed to provide hardware-enabled “sandboxes” (i.e.,

enclaves), which are capable of excluding the operating system

from the trusted computing base (TCB) and thus gaining

significantly enhanced security. However, these techniques

cannot be directly applied to heterogeneous architectures,

especially those involving peripheral devices (e.g., the CPU-

FPGA architecture). The lack of TEEs covering the FPGA

component prevents the CPU-FPGA heterogeneous architec-

ture from leveraging and benefiting from the state-of-the-art

security mechanism. Recently, there have been several research

efforts that aim to extend SGX to I/O devices [9], [10] or

GPUs [11], [12]. However, none of these efforts take FPGA

into consideration and thus cannot support the CPU-FPGA

heterogeneous architecture.

In particular, the recently developed GPU TEEs [11], [12],

although targeting a similar heterogeneous accelerator, involve

completely different security objectives due to the fundamental

difference between GPU and FPGA in terms of the attack

surfaces. That is, the GPU card is tightly controlled by the

CPU and considered as trusted in the GPU TEE works, while

FPGA is a special hardware accelerator independent of CPU

with potentially malicious IP cores to generate spontaneous

attacks against the CPU-FPGA system. In addition, most of

the existing accelerator TEE solutions require sophisticated

hardware modifications and have not been implemented or

evaluated on real hardware, nor can they be deployed to defend

against zero-day attacks.

In this paper, we fill the security gap in the CPU-FPGA ar-

chitecture by developing SGX-FPGA, an FPGA TEE to enable

the CPU-based SGX primitive to support the heterogeneous

FPGA component. In a nutshell, SGX-FPGA builds a secure

hardware isolation path between CPU and FPGA to protect the

sensitive data stored in both components and in transmission.

Specifically, we design a security protocol to authenticate both

parties of communication and protect the data in transmission

between CPU and FPGA, which extends the security of the

original CPU SGX enclave to a counterpart FPGA enclave

while leveraging the physical unclonable function (PUF) on

the FPGA to build the hardware root-of-trust. SGX-FPGA

addresses the aforementioned limitations of the state-of-the-

art approaches, in that (1) it is the first FPGA TEE developed

in the community to the best of our knowledge; (2) it tackles

the unique threat model of untrusted FPGA IP cores, which

may compromise the existing root-of-trust on the CPU side;

and (3) it is non-intrusive and immediately deployable to

commodity hardware systems, and we present real hardware

implementation and evaluation to justify its high security and

low cost.

II. BACKGROUND AND RELATED WORK

Intel SGX is a new set of x86 instructions providing

hardware-supported security enhancement through the isolated
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virtual containers called enclaves [13]. The enclaves isolate

the trusted code and data from untrusted applications, and the

confidentiality and integrity of the data in the enclaves would

remain intact even if the operating system is compromised by

the attackers. Despite the significant security enhancement, the

scope of the original SGX by design is only targeting the CPU-

based system without the support for heterogeneous hardware

accelerators, such as GPUs and FPGAs.

Several research works have focused on building TEEs

for heterogeneous devices. (1) TEEs for peripheral devices:

Bastion-SGX [10] and SGXIO [9] proposed to extend the

capability of SGX to peripheral devices, such as Bluetooth and

I/O devices; however, they do not support FPGAs targeted by

this work. (2) Standalone heterogeneous TEEs: HETEE [14]

and CURE [15] proposed heterogeneous TEE frameworks

to secure various heterogeneous components in the system,

including the accelerators; however, they require building new

standalone TEEs with non-trivial hardware/software complexi-

ties and thus deployment challenges to defend against zero-day

attacks. Different from the heterogeneous TEEs, SGX-FPGA

extends the security of the widely deployed SGX mechanism

to FPGAs, which does not require hardware modifications

and is immediately deployable on off-the-shelf CPU-FPGA

systems. (3) GPU TEEs: Recently, several research efforts

have focused on developing GPU TEEs [11], [12], [16].

Although sharing the similar high-level principle of extending

the CPU TEE to heterogeneous accelerators, SGX-FPGA

is significantly different from the GPU TEEs due to the

fundamental differences between GPU and FPGA in terms of

security. GPU is controlled by CPU for parallel code execution

and considered as trusted in the GPU TEE works [11], [12];

however, FPGA relies on third party IPs independent and

transparent to the CPU, which is considered as untrusted

[17]. In the new CPU-FPGA architecture, FPGA IP becomes

a new attack surface, leading to the FPGA-to-CPU attack

in our target threat model, which cannot be addressed by a

direct extension from the CPU TEE (e.g., in the GPU TEE

approaches [11], [12]).

III. THREAT MODELS

The CPU-FPGA heterogeneous architecture targeted by this

work is an emerging new system architecture, which does not

have a commonly adopted threat model definition in the com-

munity. We adopt 3 principles in defining the threat models.

First, we aim to target consistent threat models with those of

the CPU TEEs (e.g., TrustZone [18] and SGX [13]), which

only assumes the CPU hardware and the enclave as trusted

and all other hardware and software components as untrusted.

As a major difference and unique challenge compared to the

GPU TEEs [11], [12], we consider the FPGA and the PCIe

bus as part of the attack surface, given the possibility of

untrusted third party IPs [17] and bus spoofing attacks [19].

Second, as the pilot work for FPGA TEE, we do not intend

to have SGX-FPGA exceed the anticipated security guarantee

and design objective of a new TEE first proposed for a new

hardware system architecture. Therefore, side channel attacks

(e.g., cache timing attack) and hardware physical attacks (e.g.,

rowhammer attack and fault injection attack), which are not the

threat models considered for the original CPU TEEs [13], [18])

and GPU TEEs [11], [12] are out of the scope for this work. On

the other hand, the new advancements in strengthening TEEs

against these attacks can be seamlessly integrated into SGX-

FPGA, similar to the integration into other CPU TEEs [20] and

GPU TEEs [16]. Third, following the literature on CPU-FPGA

security [5], we divide the threats in CPU-FPGA systems into

4 categories:

• CPU-to-CPU attack: The attacker can manipulate the soft-

ware stack on the CPU side to attack the victim user

applications. For example, the attacker could be a privileged

user on the host machine who can access or modify user data

by compromising the OS kernel [21].

• CPU-to-FPGA attack: The CPU-side attacker can tamper

with the data in the FPGA global memory accessible by

both CPU and FPGA, invoke an FPGA kernel without

authorization to trigger fault injection attacks, or probe the

data transmitted on the PCIe bus.

• FPGA-to-CPU attack: The attacker can inject a malicious

IP into FPGA, trigger it, and then access or tamper with the

software data on the CPU side or the PCIe bus [17].

• FPGA-to-FPGA attack: Within the FPGA, the attacker can

issue hardware physical attacks targeting the FPGA [22].

We consider this threat model as addressed by the FPGA

security research in the hardware security community [23]

and thus out of the scope for this work.

IV. PROPOSED SOLUTION: SGX-FPGA

Fig. 1 shows the proposed SGX-FPGA framework aiming

to extend SGX to the heterogeneous FPGA component. In a

nutshell, SGX-FPGA is composed of four major components:

The user app in enclave is the software entity on the CPU

side to communicate with the FPGA; The CPU controller is

a software agent running in the CPU enclave that examines

the connection events and encrypts/decrypts data transmission

flow to and from the FPGA; The FPGA secure monitor is the

counterpart FPGA agent that works with the CPU controller

to secure data transmission between CPU and FPGA; and the

PUF connects with the FPGA secure monitor to provide the

FPGA identity and generate the data encryption keys. Note that

the user app and the CPU controller are capable of processing

sensitive plain-text data in their own enclaves. The FPGA

secure monitor receives the encrypted data from the CPU, and

decrypts and transfers it to the FPGA kernels using pipes. In

this way, the data transmitted through the PCIe bus and the

global memory is always encrypted. Hence, no adversary can

access the plain-text data even if the host machine OS or the

PCIe bus is compromised.

When the user app communicates with the FPGA, it creates

an isolation path to the FPGA through the untrusted drivers,

OS, hypervisor, and PCIe bus. To build the isolation path,

the user app first proves to the CPU controller that it is a

trusted entity in a legitimate enclave. Then, it negotiates an

302

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore.  Restrictions apply. 







V. EXPERIMENTAL RESULTS

We implement a prototype system for the proposed SGX-

FPGA framework on an HP Z2 workstation with an Intel i7-

8700 CPU and an ADM-PCIE-7V3 FPGA accelerator card

(i.e., Virtex-7 FPGA). The FPGA is connected to the work-

station via an 8-land PCIe interface. We use SDAccel XOCC

v2018.2 (64-bit) as the FPGA synthesis tool. Based on the

prototype system, we conduct two types of experiments to

fully evaluate the effectiveness and performance of SGX-

FPGA: (1) security evaluation, in which we analyze the re-

silience of SGX-FPGA against the threat models discussed in

Section III; (2) performance evaluation, in which we evaluate

the timing overhead caused by SGX-FPGA by comparing

it with the baseline system with no security protection; and

(3) resource overhead evaluation, in which we evaluate the

resource overhead on the FPGA side caused by PUF and

FPGA secure monitor. We adopt 4 CPU-FPGA benchmark

applications in our experiments, including K-Means, Smith-

Waterman, CNN, and Huffman Coding [28], [29].

TABLE I
SECURITY EVALUATION OF SGX-FPGA, ONLY SGX, AND NO

PROTECTION UNDER THE THREE THREAT MODELS.

Attack Model SGX-FPGA SGX Original

CPU-to-CPU Attack
√ √

×

CPU-to-FPGA Attack
√

× ×

FPGA-to-CPU Attack
√

× ×

A. Security Evaluation

1) CPU-to-CPU Attack: SGX provides the capability to

defend against software attacks by creating an enclave and

isolating the sensitive data from untrusted components [13].

Therefore, the CPU-to-CPU attack can be prevented by both

the original SGX and the SGX-FPGA framework.

2) CPU-to-FPGA Attack: Since SGX-FPGA sends en-

crypted data through the PCIe bus to the global memory, and

the encryption key is only shared between the CPU controller

and the FPGA secure monitor, only the FPGA secure monitor

can decrypt the data and transfer it to the FPGA kernel. During

the entire process, there is no data in the clear in the FPGA

global memory. Furthermore, the protected FPGA kernels can

only be accessed through the FPGA secure monitor, which

eliminates the possibility of a compromised user app from

the CPU side attacking the FPGA kernels.

3) FPGA-to-CPU Attack: SGX-FPGA is able to defend

FPGA-to-CPU attacks, as the user app only stores sensitive

data in the enclave and always encrypts it before exporting it to

the untrusted environment. Also, the CPU controller processes

the sensitive data in the enclave and only sends it to the FPGA

side in the encrypted form. Therefore, the malicious IP has no

access to the sensitive data.

To summarize, we compare the security of SGX-FPGA,

the original SGX, and the original system without protection

against the three threat models in Table I. The original SGX

can only defend the CPU-to-CPU attack, while SGX-FPGA

can successfully defend all three threat models.

TABLE II
SGX-FPGA INITIALIZATION TIME FOR LOCAL ATTESTATION (MS).

Initialization Task SGX-FPGA SGX

Local Attestation 1064.71 1063.24

Controller-FPGA Authentication 185.73 N/A

Total Time 1250.44 1063.24

TABLE III
SGX-FPGA INITIALIZATION TIME FOR REMOTE ATTESTATION (MS).

Initialization Task SGX-FPGA SGX

Remote Attestation 426.58 375.93

App-Controller Key Exchange 1024.75 N/A

Controller-FPGA Authentication 184.90 N/A

Total Time 1636.23 375.93

B. Performance Evaluation

1) Isolation Path Establishment.: We evaluate the time

needed to initialize an isolation path in SGX-FPGA in both

local and remote attestation modes. In the local attestation

mode shown in Table II, we split the process into local

attestation (between user app and CPU controller) and key

exchange (between the CPU controller and the FPGA). The

total initialization time for SGX-FPGA is 1.250 seconds

compared to 1.063 seconds for the original SGX.

Table III reports the timing cost to build an isolation path in

the remote attestation mode. In our experiment, the user app,

the CPU controller and the FPGA are deployed on the same

machine, and the CPU controller pre-enrolls the PUF CRPs

into the enclave. SGX-FPGA under the remote attestation

mode requires extra steps to build a secure path between the

user app and the CPU controller compared to the original

SGX remote attestation, including certificate generation and

exchange, which raises the total initialization time to 1.636

seconds. Such timing overhead is acceptable since the isolation

path is only initialized once for the CPU-FPGA application.

2) Runtime Timing Evaluation: We adopt the 4 CPU-FPGA

benchmark applications to evaluate the runtime performance

of SGX-FPGA with 100 kb to 500 kb of input data. Table IV

shows the results comparing SGX-FPGA with the baseline

where there is no security protection for the CPU-FPGA

application. We observe that the additional timing overhead

posed by SGX-FPGA increases approximately linearly with

the data size. It is because the encryption/decryption operations

and the data transmission between the kernels constitute the

major portion of the overhead, which are dependent on the data

size. In particular, with the increase of 1 kb data (both the input

and the output) in size, the extra overhead in SGX-FPGA is

on average 0.06 ms for all the applications. For computation-

intensive applications such as Smith-Waterman and the CNN,

the additional SGX-FPGA overhead is negligible. Since empir-

ical CPU-FPGA applications that require FPGAs to accelerate

are even more computation-intensive than the benchmarks we

adopted, the timing overhead of SGX-FPGA is acceptable in

real-world settings given its significant security benefits.
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TABLE IV
TIMING EVALUATION USING THE FOUR BENCHMARK APPLICATIONS (MS), WHERE THE BASELINE CASE IS THE ORIGINAL CPU-FPGA

APPLICATION WITHOUT THE SECURITY PROTECTION OF SGX-FPGA.

100 kb 200 kb 300 kb 400 kb 500 kb
Benchmarks

Baseline SGX-FPGA Baseline SGX-FPGA Baseline SGX-FPGA Baseline SGX-FPGA Baseline SGX-FPGA

K-Means 3.36 10.04 7.69 16.33 9.75 23.93 13.81 32.85 16.21 38.47

SmithWaterman 54.57 60.61 85.17 96.42 174.56 190.94 306.24 327.85 536.51 564.64

CNN 29.37 36.86 51.73 65.31 78.92 94.74 119.41 141.27 158.35 183.12

HuffmanCoding 7.07 15.09 12.32 25.66 17.36 34.30 22.46 45.35 28.24 54.47

TABLE V
RESOURCE USAGE OF PUF AND FPGA Secure Monitor ON

ADM-PCIE-7V3 FPGA.

Component FF LUTs DSP BRAM

PUF
9783 6190 0 5

1.13% 1.43% 0% < 1%

FPGA Secure 81766 169664 84 334

Monitor 9.23% 24.48% 2.8% 11.13%

C. Resource Overhead Evaluation

We further evaluate the resource overhead of SGX-FPGA

by considering PUF and FPGA secure monitor as the two

major components. Table V shows the footprint of the PUF and

FPGA secure monitor implementations in terms of flip-flops

(FFs), lookup tables (LUTs), digital signal processor (DSP),

and block RAMs (BRAMs), as reported by Xilinx SDAccel.

These results indicate that SGX-FPGA is lightweight, which

consumes no more than 1% (for PUF) and 25% (for FPGA

secure monitor) of the hardware resources on the ADM-PCIE-

7V3 FPGA. Note that the FPGAs in real cloud infrastructures

(e.g., Amazon AWS [3] or Microsoft Azure [4]) have much

more hardware resources than the ADM-PCIE-7V3 FPGA

in our experiments. Therefore, considering that the proposed

SGX-FPGA framework has a constant footprint across differ-

ent FPGAs, its overall resource usage (in percentage) would

become even lower in commercial clouds.

VI. CONCLUSION

We developed SGX-FPGA, an FPGA TEE achieved by

a trusted hardware isolation path from the CPU TEE (i.e.,

SGX), which ensures the confidentiality and integrity of the

heterogeneous CPU-FPGA system. SGX-FPGA achieves the

security objectives via a CPU controller and an FPGA secure

monitor embedded in the CPU-FPGA architecture, which is

capable of bridging and authenticating both the CPU and

FPGA components, as well as conducting data encryption

using pre-established keys. Our implementation and evalu-

ation on real hardware demonstrate the high security and

low overhead achieved by SGX-FPGA. SGX-FPGA is non-

intrusive and immediately deployable to commodity hardware

and SGX systems. The project repository of SGX-FPGA is at

https://github.com/hwsel/SGX-FPGA.
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