2021 58th ACM/IEEE Design Automation Conference (DAC) | 978-1-6654-3274-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/DAC18074.2021.9586207

SGX-FPGA: Trusted Execution Environment for
CPU-FPGA Heterogeneous Architecture

Ke Xia', Yukui Luo?, Xiaolin Xu?, and Sheng Wei'

'Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
’Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
Email: {ke.xia, sheng.wei}@rutgers.edu, {luo.yuk, x.xu}@northeastern.edu

Abstract—Trusted execution environments (TEEs), such as
Intel SGX, have become a popular security primitive with
minimum trusted computing base (TCB) and attack surface.
However, the existing CPU-based TEEs do not support FPGAs,
even though FPGA-based cloud computing services have been
rapidly deployed with security vulnerabilities that are expected
to be eliminated by TEEs. To fill the gap, we present SGX-
FPGA, a trusted hardware isolation path enabling the first FPGA
TEE by bridging SGX enclaves and FPGAs in the heterogeneous
CPU-FPGA architecture. Our experiments on real CPU-FPGA
hardware justify the high security and low performance overhead
achieved by SGX-FPGA.

I. INTRODUCTION

The heterogeneous CPU-FPGA architecture has been de-
ployed recently to incorporate the high computation capability
of FPGAs into the traditional CPU-based architecture. For
examples, hardware vendors such as Xilinx and Intel have
released various CPU-FPGA systems, such as the CPU-FPGA
system on chips (e.g., Xilinx Zynq SoC) [1] and hybrid
CPU-FPGA processors [2]. More recently, FPGAs have been
deployed in commercial cloud computing systems (e.g., Ama-
zon AWS [3] and Microsoft Azure [4]) to accelerate the
computation-intensive tasks.

Despite the performance benefits, the CPU-FPGA architec-
ture faces unattended challenges in security [5]. For example,
CPU-side adversaries may attempt to breach the confidentiality
and integrity of the data on the FPGA side, and vice versa.
Although the community has developed a variety of security
mechanisms to secure CPU [6] and FPGA [7] separately,
little attention has been paid on the interactions between these
two heterogeneous components. As a result, there is a gap
between the security of the CPU-FPGA system and its rapid
deployment in publicly accessible platforms.

To address the system security challenges, trusted exe-
cution environments (TEEs), such as Intel SGX [8], have
been developed to provide hardware-enabled “sandboxes” (i.e.,
enclaves), which are capable of excluding the operating system
from the trusted computing base (TCB) and thus gaining
significantly enhanced security. However, these techniques
cannot be directly applied to heterogeneous architectures,
especially those involving peripheral devices (e.g., the CPU-
FPGA architecture). The lack of TEEs covering the FPGA
component prevents the CPU-FPGA heterogeneous architec-
ture from leveraging and benefiting from the state-of-the-art

security mechanism. Recently, there have been several research
efforts that aim to extend SGX to I/O devices [9], [10] or
GPUs [11], [12]. However, none of these efforts take FPGA
into consideration and thus cannot support the CPU-FPGA
heterogeneous architecture.

In particular, the recently developed GPU TEEs [11], [12],
although targeting a similar heterogeneous accelerator, involve
completely different security objectives due to the fundamental
difference between GPU and FPGA in terms of the attack
surfaces. That is, the GPU card is tightly controlled by the
CPU and considered as trusted in the GPU TEE works, while
FPGA is a special hardware accelerator independent of CPU
with potentially malicious IP cores to generate spontaneous
attacks against the CPU-FPGA system. In addition, most of
the existing accelerator TEE solutions require sophisticated
hardware modifications and have not been implemented or
evaluated on real hardware, nor can they be deployed to defend
against zero-day attacks.

In this paper, we fill the security gap in the CPU-FPGA ar-
chitecture by developing SGX-FPGA, an FPGA TEE to enable
the CPU-based SGX primitive to support the heterogeneous
FPGA component. In a nutshell, SGX-FPGA builds a secure
hardware isolation path between CPU and FPGA to protect the
sensitive data stored in both components and in transmission.
Specifically, we design a security protocol to authenticate both
parties of communication and protect the data in transmission
between CPU and FPGA, which extends the security of the
original CPU SGX enclave to a counterpart FPGA enclave
while leveraging the physical unclonable function (PUF) on
the FPGA to build the hardware root-of-trust. SGX-FPGA
addresses the aforementioned limitations of the state-of-the-
art approaches, in that (1) it is the first FPGA TEE developed
in the community to the best of our knowledge; (2) it tackles
the unique threat model of untrusted FPGA IP cores, which
may compromise the existing root-of-trust on the CPU side;
and (3) it is non-intrusive and immediately deployable to
commodity hardware systems, and we present real hardware
implementation and evaluation to justify its high security and
low cost.

II. BACKGROUND AND RELATED WORK

Intel SGX is a new set of x86 instructions providing
hardware-supported security enhancement through the isolated

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 301

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

virtual containers called enclaves [13]. The enclaves isolate
the trusted code and data from untrusted applications, and the
confidentiality and integrity of the data in the enclaves would
remain intact even if the operating system is compromised by
the attackers. Despite the significant security enhancement, the
scope of the original SGX by design is only targeting the CPU-
based system without the support for heterogeneous hardware
accelerators, such as GPUs and FPGAs.

Several research works have focused on building TEEs
for heterogeneous devices. (1) TEEs for peripheral devices:
Bastion-SGX [10] and SGXIO [9] proposed to extend the
capability of SGX to peripheral devices, such as Bluetooth and
I/O devices; however, they do not support FPGAs targeted by
this work. (2) Standalone heterogeneous TEEs: HETEE [14]
and CURE [15] proposed heterogeneous TEE frameworks
to secure various heterogeneous components in the system,
including the accelerators; however, they require building new
standalone TEEs with non-trivial hardware/software complexi-
ties and thus deployment challenges to defend against zero-day
attacks. Different from the heterogeneous TEEs, SGX-FPGA
extends the security of the widely deployed SGX mechanism
to FPGAs, which does not require hardware modifications
and is immediately deployable on off-the-shelf CPU-FPGA
systems. (3) GPU TEEs: Recently, several research efforts
have focused on developing GPU TEEs [11], [12], [16].
Although sharing the similar high-level principle of extending
the CPU TEE to heterogeneous accelerators, SGX-FPGA
is significantly different from the GPU TEEs due to the
fundamental differences between GPU and FPGA in terms of
security. GPU is controlled by CPU for parallel code execution
and considered as trusted in the GPU TEE works [11], [12];
however, FPGA relies on third party IPs independent and
transparent to the CPU, which is considered as untrusted
[17]. In the new CPU-FPGA architecture, FPGA IP becomes
a new attack surface, leading to the FPGA-to-CPU attack
in our target threat model, which cannot be addressed by a
direct extension from the CPU TEE (e.g., in the GPU TEE
approaches [11], [12]).

III. THREAT MODELS

The CPU-FPGA heterogeneous architecture targeted by this
work is an emerging new system architecture, which does not
have a commonly adopted threat model definition in the com-
munity. We adopt 3 principles in defining the threat models.
First, we aim to target consistent threat models with those of
the CPU TEEs (e.g., TrustZone [18] and SGX [13]), which
only assumes the CPU hardware and the enclave as trusted
and all other hardware and software components as untrusted.
As a major difference and unique challenge compared to the
GPU TEEs [11], [12], we consider the FPGA and the PCle
bus as part of the attack surface, given the possibility of
untrusted third party IPs [17] and bus spoofing attacks [19].
Second, as the pilot work for FPGA TEE, we do not intend
to have SGX-FPGA exceed the anticipated security guarantee
and design objective of a new TEE first proposed for a new
hardware system architecture. Therefore, side channel attacks

(e.g., cache timing attack) and hardware physical attacks (e.g.,
rowhammer attack and fault injection attack), which are not the
threat models considered for the original CPU TEEs [13], [18])
and GPU TEEs [11], [12] are out of the scope for this work. On
the other hand, the new advancements in strengthening TEEs
against these attacks can be seamlessly integrated into SGX-
FPGA, similar to the integration into other CPU TEEs [20] and
GPU TEEs [16]. Third, following the literature on CPU-FPGA
security [5], we divide the threats in CPU-FPGA systems into
4 categories:

e CPU-to-CPU attack: The attacker can manipulate the soft-
ware stack on the CPU side to attack the victim user
applications. For example, the attacker could be a privileged
user on the host machine who can access or modify user data
by compromising the OS kernel [21].

e CPU-to-FPGA attack: The CPU-side attacker can tamper
with the data in the FPGA global memory accessible by
both CPU and FPGA, invoke an FPGA kernel without
authorization to trigger fault injection attacks, or probe the
data transmitted on the PCle bus.

e FPGA-to-CPU attack: The attacker can inject a malicious
IP into FPGA, trigger it, and then access or tamper with the
software data on the CPU side or the PCle bus [17].

o FPGA-to-FPGA attack: Within the FPGA, the attacker can
issue hardware physical attacks targeting the FPGA [22].
We consider this threat model as addressed by the FPGA
security research in the hardware security community [23]
and thus out of the scope for this work.

IV. PROPOSED SOLUTION: SGX-FPGA

Fig. 1 shows the proposed SGX-FPGA framework aiming
to extend SGX to the heterogeneous FPGA component. In a
nutshell, SGX-FPGA is composed of four major components:
The user app in enclave is the software entity on the CPU
side to communicate with the FPGA; The CPU controller is
a software agent running in the CPU enclave that examines
the connection events and encrypts/decrypts data transmission
flow to and from the FPGA; The FPGA secure monitor is the
counterpart FPGA agent that works with the CPU controller
to secure data transmission between CPU and FPGA; and the
PUF connects with the FPGA secure monitor to provide the
FPGA identity and generate the data encryption keys. Note that
the user app and the CPU controller are capable of processing
sensitive plain-text data in their own enclaves. The FPGA
secure monitor receives the encrypted data from the CPU, and
decrypts and transfers it to the FPGA kernels using pipes. In
this way, the data transmitted through the PCle bus and the
global memory is always encrypted. Hence, no adversary can
access the plain-text data even if the host machine OS or the
PCle bus is compromised.

When the user app communicates with the FPGA, it creates
an isolation path to the FPGA through the untrusted drivers,
OS, hypervisor, and PCle bus. To build the isolation path,
the user app first proves to the CPU controller that it is a
trusted entity in a legitimate enclave. Then, it negotiates an

302

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

m m [Kernel] [Kernel] [PUF]
App App 3 T T
PU [

c FPGA Secure Monitor]

PCle H v
[CPU Controller Global memory FPGA
() Trusted «<— Securedataflow [__) Untrusted «<— Insecure data flow

Fig. 1. The overall framework of SGX-FPGA.

encryption key with the CPU controller using the Elliptic-
Curve Diffie-Hellman (ECDH) algorithm [13] and encrypts
the data to prevent the access from untrusted parties. Next, the
CPU controller verifies the identity of the FPGA by sending
pre-selected challenges to the PUF and verifying its responses
with the pre-enrolled challenge-response pair (CRP) database.
Once the verification is accomplished, the CPU controller
initiates another round of communication with the PUF, which
generates the second encryption key, shared between the CPU
controller and the FPGA secure monitor, to secure the bi-
directional data communication between CPU and FPGA.

A. CPU-FPGA Isolation Path Establishment

Fig. 2 shows the overall workflow of establishing a secure
isolation path between CPU and FPGA, in which SGX-FPGA
accomplishes two important tasks: (1) establishing the trust
relationship between CPU and FPGA via local or remote
attestation; and (2) generating the two encryption keys required
for the secure communication between CPU and FPGA. The
combination of these two steps essentially extends the security
properties of the CPU enclave to the FPGA, enabling the
creation of FPGA enclave.

CPU

User App _Controller o

FPGA Secure

Enclave I Enclave || | Monitor
3 Kl ®
o RO
L - () Untrusted
. ® Intel
Attestation <, Attestation """ Enclave
SRy Service () External Service

(D Step 1: Trust Establishment () Step 2: Key Generation and Exchange
< >

Fig. 2. CPU-FPGA isolation path establishment, including (1) Trust
establishment; and (2) Key generation and exchange.

1) Trust Establishment between CPU and FPGA: SGX-
FPGA adopts an attestation mechanism to build the mutual
trust between CPU and FPGA. The goal of the trust establish-
ment is to assure that one party (i.e., either the CPU or the
FPGA) is communicating with a genuine version of the other
party and thus preventing the attackers from issuing CPU-
to-FPGA or FPGA-to-CPU attacks by placing a malicious
copy of the CPU application or FPGA IP. Depending on
whether the CPU and FPGA enclaves are residing on the
same physical platform, SGX-FPGA employs two modes of

attestations, namely local attestation and remote attestation,
similar to the original SGX [13].

Local Attestation. SGX provides the local attestation mech-
anism which allows an enclave to prove its identity to another
enclave on the same platform [13], which is the feature that
we intend to extend to the FPGA in order to address the threat
models defined in Section IIl. In SGX-FPGA, both user app
and CPU controller have enclaves, and they can attest each
other by using the original SGX local attestation mechanism.
Next, the CPU controller starts to build the secure path to
FPGA. It adopts a PUF-based CRP authentication protocol
to verify the authenticity of the FPGA device. In particular,
the CPU controller maintains a pre-enrolled CRPs database
as the basis for authenticating the PUF and thus the FPGA
component. During the attestation process, the CPU controller
randomly picks a challenge from the database and sends it to
the FPGA secure monitor via the PCle bus. The FPGA secure
monitor then forwards the challenge to the PUF and transfers
the PUF response back to the CPU controller. By comparing
the PUF response with the entry in the challenge/response
database, the CPU controller can determine whether the FPGA
can be trusted or not. In summary, with local attestation,
the CPU controller and the FPGA secure monitor jointly
bridge the CPU and FPGA enclaves on the same platform
and establish the mutual trust.

Remote Attestation. In the scenario where the user app
and the CPU controller residing on different physical plat-
forms, which is common in the scenario of CPU-FPGA cloud
computing such as AWS [3], the local attestation mechanism
is not applicable since now the two enclaves are not on the
same physical machine. In this case, SGX-FPGA adopts a
remote attestation mechanism to establish the mutual trust
between user app and CPU controller, as shown in Fig. 2.
Both parties attest themselves to the trusted remote attestation
server, which holds the necessary information for attestation
(i.e., the registered enclave IDs). Once they have passed
the attestation, the attestation server will generate certificates
individually and return them to the corresponding enclaves.
Then, the user app and the CPU controller can build the
mutual trust by exchanging and verifying their certificates
obtained from the remote attestation.

2) Key Generation and Exchange: Upon establishing the
mutual trust, the CPU and FPGA enclaves begin the process of
generating and exchanging the cryptographic keys required for
the secure data communication over the PCle bus. To secure
the system against the three threat models (see Section III),
SGX-FPGA requires two keys: (1) a key used to protect
the data communication between the user app and the CPU
controller (internally in the CPU), namely Key,.; and (2) a
key used to secure the inter CPU and FPGA communication,
namely Key.r. Note that since FPGA-to-FPGA attack is not
in the scope of this paper, there is no key required for intra-
FPGA communications.

The Key,. is a shared key between the user app and the
CPU controller. During attestation, the two enclaves exchange
reports to verify the identities of each other and, meanwhile,

303

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

the reports also include key exchange data based on the ECDH
algorithm [13] to negotiate the Key,.. Key,. is always stored
in the enclaves and never exposed to untrusted applications.

The Key.y is a shared key between the CPU controller and
the FPGA secure monitor. It is generated by the PUF on the
FPGA side based on a random PUF challenge (discussed in
Section IV-C). Then, it is exchanged with the CPU controller
using the same ECDH algorithm as for the aforementioned
exchange of Key,.. The security of Key.r is ensured by
the randomness and uniqueness of the PUF responses. Also,
leveraging the intrinsic PUF hardware helps with reducing
the required overhead for key storage and generation, as a
strong PUF is capable of generating a large CRP dataset. In
our current design, the shared secret generated by the ECDH
algorithm is directly used as the Key,. or Key.r, which
has a high randomness benefiting from the high entropy of
the secrets generated by the PUF (FPGA side) and the SGX
random number generator (CPU side). Of course, a hash-based
key derivation function can be adopted to further increase the
entropy with the price of increased timing overhead.

B. Secure CPU-FPGA Communication

Upon building the isolation path, the CPU can communicate
with the FPGA securely leveraging the established mutual
trust. First, all sensitive data in the user app is stored in
the CPU enclave and never exposed to the attackers. Second,
before transferring data to FPGA, the user app encrypts
the data using Key,. and delivers it to the CPU controller
enclave, which holds the same Key,. for data decryption.
Third, the CPU controller re-encrypts the data with the Key.s
and forwards it to the FPGA global memory through the PCle
bus. Finally, the FPGA secure monitor retrieves the encrypted
data from the global memory, decrypts it, and transfers it
to the FPGA kernel. Once the FPGA kernel has completed
the computation task, it sends the results back to the CPU
following the same isolation path in the reverse direction,
where Key.r and Key,. are used to decrypt/encrypt the
data across the PCle bus and between the CPU enclaves,
respectively.

From the security perspective, the data encryption between
the user app and the CPU controller defends the system
against CPU-to-CPU attacks that attempt to compromise the
confidentiality of the data communication between the two
CPU enclaves. Also, the data encryption between the CPU
controller and the FPGA secure monitor prevents the CPU-
to-FPGA and FPGA-to-CPU attacks.

C. PUF-based Hardware Root of Trust

In the proposed SGX-FPGA, we use PUF to generate the
Key.y for the isolation path [24]. In particular, this work
adopts Arbiter PUF in the SGX-FPGA to maximize the
number of keys [25]. An Arbiter PUF is composed of two
delay-chains, and each of them consists of several cascaded
MUXes. The select signals of these MUXes are used as the
PUF input, which is called challenge and the corresponding

output is called response. For an Arbiter PUF with N-bit
challenge, in total 2"V responses can be generated.

1) PUF Design and Implementation: The schematic of
Arbiter PUF-based key generation is illustrated in Fig. 3, M
challenge vectors (IN-bit) are used to derive M-bit key. Note
that the used challenge-response pairs (CRPs) are pre-stored in
the enclave for security concerns. These CRPs can be utilized
for FPGA authentication and key generation. To facilitate
the PUF reuse with modern FPGA design, we designed and
implemented the Arbiter PUF as a software IP core that can
be directly called by OpenCL or Vivado.

| N-bit challenge | }
M

M Arbiter | .
J M-bit response
— I

I
I
: P —
I
1

Pulse O1TTT1]

generator

1
1
| SGX-FPGA PUF soft IP core 1

Fig. 3. Key generation with PUF soft IP core.

The basic programmable component in our used 7-serial
FPGA is a look-up-table with 6 inputs (i.e., LUT6), and each
MUX of the Arbiter PUF is instantiated with a LUT6. Unlike
ASIC design, the delay-chain in the FPGA can be biased and
incurring all-1 or all-0 responses [26]. To mitigate this problem
and reduce the routing bias, we instantiate each MUX with a
LUT®6 with all input pins utilized. In detail, three out of the six
input pins are used for the challenge bit (C;) and two inputs
of MUX (I;), and the other three input pins are all used for
fine-tuning (FT), i.e., the MUX is designed as a programmable
delay line [27]. In practical use, these FT bits are dynamically
reconfigured until the uniformity of 1 or 0 is 50%.

2) Key Enrollment: As the key generator, the PUF RTL
kernel consists of the location information of hardware com-
ponents and auxiliary communication interface. Leveraging
the microscopic process variations from CMOS transistors,
the hardware components location of a PUF determines its
features like uniqueness. In practice, each FPGA chip may
have multiple PUF instances, and each one has its unique CRP
dataset. Based on these features, we propose two enrollment
methods for cloud service provider and FPGA vendor: (1)
Enrollment by cloud service provider: The cloud service
provider can adopt a trusted certificate authority to issue a
public/private key pair between the CPU and FPGA. Only
the trusted users with valid private keys will be assigned the
PUF kernel and generate CRP-based keys from the FPGA
PUFs. (2) Enrollment by trusted device vendor: To verify the
identity of an FPGA, the trusted FPGA vendor can build a CRP
model for any specific FPGA PUF and enroll this model in
the CPU SGX. With the lightweight CRP model, the CPU can
authenticate the CRPs from the FPGA side. Only the verified
FPGAs could be privileged, and the CPU SGX will create a
specific isolation path to communicate with these FPGAs.

304

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL RESULTS

We implement a prototype system for the proposed SGX-
FPGA framework on an HP Z2 workstation with an Intel i7-
8700 CPU and an ADM-PCIE-7V3 FPGA accelerator card
(i.e., Virtex-7 FPGA). The FPGA is connected to the work-
station via an 8-land PCle interface. We use SDAccel XOCC
v2018.2 (64-bit) as the FPGA synthesis tool. Based on the
prototype system, we conduct two types of experiments to
fully evaluate the effectiveness and performance of SGX-
FPGA: (1) security evaluation, in which we analyze the re-
silience of SGX-FPGA against the threat models discussed in
Section III; (2) performance evaluation, in which we evaluate
the timing overhead caused by SGX-FPGA by comparing
it with the baseline system with no security protection; and
(3) resource overhead evaluation, in which we evaluate the
resource overhead on the FPGA side caused by PUF and
FPGA secure monitor. We adopt 4 CPU-FPGA benchmark
applications in our experiments, including K-Means, Smith-
Waterman, CNN, and Huffman Coding [28], [29].

TABLE I

SECURITY EVALUATION OF SGX-FPGA, ONLY SGX, AND NO
PROTECTION UNDER THE THREE THREAT MODELS.

Attack Model SGX-FPGA SGX Original

CPU-to-CPU Attack Vv Vv X
CPU-to-FPGA Attack v X X
FPGA-to-CPU Attack Vv X X

A. Security Evaluation

1) CPU-to-CPU Attack: SGX provides the capability to
defend against software attacks by creating an enclave and
isolating the sensitive data from untrusted components [13].
Therefore, the CPU-to-CPU attack can be prevented by both
the original SGX and the SGX-FPGA framework.

2) CPU-to-FPGA Attack: Since SGX-FPGA sends en-
crypted data through the PCle bus to the global memory, and
the encryption key is only shared between the CPU controller
and the FPGA secure monitor, only the FPGA secure monitor
can decrypt the data and transfer it to the FPGA kernel. During
the entire process, there is no data in the clear in the FPGA
global memory. Furthermore, the protected FPGA kernels can
only be accessed through the FPGA secure monitor, which
eliminates the possibility of a compromised user app from
the CPU side attacking the FPGA kernels.

3) FPGA-to-CPU Attack: SGX-FPGA is able to defend
FPGA-to-CPU attacks, as the user app only stores sensitive
data in the enclave and always encrypts it before exporting it to
the untrusted environment. Also, the CPU controller processes
the sensitive data in the enclave and only sends it to the FPGA
side in the encrypted form. Therefore, the malicious IP has no
access to the sensitive data.

To summarize, we compare the security of SGX-FPGA,
the original SGX, and the original system without protection
against the three threat models in Table I. The original SGX
can only defend the CPU-to-CPU attack, while SGX-FPGA
can successfully defend all three threat models.

TABLE II
SGX-FPGA INITIALIZATION TIME FOR LOCAL ATTESTATION (MS).

Initialization Task SGX-FPGA SGX

Local Attestation 1064.71 1063.24
Controller-FPGA Authentication 185.73 N/A
Total Time 1250.44 1063.24
TABLE III

SGX-FPGA INITIALIZATION TIME FOR REMOTE ATTESTATION (MS).

Initialization Task SGX-FPGA SGX

Remote Attestation 426.58 37593
App-Controller Key Exchange 1024.75 N/A
Controller-FPGA Authentication 18490 N/A

Total Time 1636.23 375.93

B. Performance Evaluation

1) Isolation Path Establishment.: We evaluate the time
needed to initialize an isolation path in SGX-FPGA in both
local and remote attestation modes. In the local attestation
mode shown in Table II, we split the process into local
attestation (between user app and CPU controller) and key
exchange (between the CPU controller and the FPGA). The
total initialization time for SGX-FPGA is 1.250 seconds
compared to 1.063 seconds for the original SGX.

Table III reports the timing cost to build an isolation path in
the remote attestation mode. In our experiment, the user app,
the CPU controller and the FPGA are deployed on the same
machine, and the CPU controller pre-enrolls the PUF CRPs
into the enclave. SGX-FPGA under the remote attestation
mode requires extra steps to build a secure path between the
user app and the CPU controller compared to the original
SGX remote attestation, including certificate generation and
exchange, which raises the total initialization time to 1.636
seconds. Such timing overhead is acceptable since the isolation
path is only initialized once for the CPU-FPGA application.

2) Runtime Timing Evaluation: We adopt the 4 CPU-FPGA
benchmark applications to evaluate the runtime performance
of SGX-FPGA with 100 kb to 500 kb of input data. Table IV
shows the results comparing SGX-FPGA with the baseline
where there is no security protection for the CPU-FPGA
application. We observe that the additional timing overhead
posed by SGX-FPGA increases approximately linearly with
the data size. It is because the encryption/decryption operations
and the data transmission between the kernels constitute the
major portion of the overhead, which are dependent on the data
size. In particular, with the increase of 1 kb data (both the input
and the output) in size, the extra overhead in SGX-FPGA is
on average 0.06 ms for all the applications. For computation-
intensive applications such as Smith-Waterman and the CNN,
the additional SGX-FPGA overhead is negligible. Since empir-
ical CPU-FPGA applications that require FPGAs to accelerate
are even more computation-intensive than the benchmarks we
adopted, the timing overhead of SGX-FPGA is acceptable in
real-world settings given its significant security benefits.

305

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
TIMING EVALUATION USING THE FOUR BENCHMARK APPLICATIONS (MS), WHERE THE BASELINE CASE IS THE ORIGINAL CPU-FPGA
APPLICATION WITHOUT THE SECURITY PROTECTION OF SGX-FPGA.

Benchmarks 100 kb 200 kb 300 kb 400 kb 500 kb
Baseline | SGX-FPGA | Baseline | SGX-FPGA | Baseline | SGX-FPGA | Baseline | SGX-FPGA | Baseline | SGX-FPGA
K-Means 3.36 10.04 7.69 16.33 9.75 23.93 13.81 32.85 16.21 38.47
SmithWaterman | 54.57 60.61 85.17 96.42 174.56 190.94 306.24 327.85 536.51 564.64
CNN 29.37 36.86 51.73 65.31 78.92 94.74 119.41 141.27 158.35 183.12
HuffmanCoding | 7.07 15.09 12.32 25.66 17.36 34.30 22.46 45.35 28.24 54.47
TABLE V
RESOURCE USAGE OF PUF AND FPGA Secure Monitor ON REFERENCES
ADM-PCIE-7V3 FPGA. .- L. .
[1]1 Zyng-7000 SoC, 2017, https://www.xilinx.com/products/silicon-devices/
soc/zyng-7000.html.
Component FF LUTs DSP BRAM [2] T. Mann, “Intel goes all in on AI with latest Xeon scalable FPGA,”
https://www.sdxcentral.com, 2020.
PUF 9783 6190 0 5 [3] “Amazon EC2 F1 instances: Enable faster FPGA accelerator develop-
1.13% 1.43% 0% <1% ment and deployment in the cloud,” 2019, https://aws.amazon.com/ec2/
instance-types/f1/.
FPGA Secure 81766 169664 84 334 [4] “Deploy ML models to field-programmable gate arrays (FPGAs)
Monitor 9.23% 24.48% 2.8% 11.13% with Azure machine learning,” https://docs.microsoft.com/en-us/azure/
5 ﬁacﬁl{ine—lea;rninﬁitslko—ltlo-geploy—fp%a—wel;)—ser(\llice, 2019. .]
. . Ye et al., . hardware isolation-based secure architecture for
C. Resource Overhead Evaluation CPU-FPGA embedded systems.” in ICCAD, 2018, pp. 1-8.
We further evaluate the resource overhead of SGX-FPGA [6] A. M. Azab et al., “SKEE: A lightweight secure kernel-level execution
. . . environment for ARM,” in NDSS, 2016.
by ,COHSldermg PUF and FPGA secure mo_mtor as the two [7]1 T. Huffmire et al., “Moats and drawbridges: An isolation primitive for
major components. Table V shows the footprint of the PUF and reconfigurable hardware based systems,” in S&P, 2007, pp. 281-295.
FPGA secure monitor implementations in terms of flip-flops [8] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptol. ePrint
. . . Arch., no. 86, pp. 1-118, 2016.
(FFs), IOOkup tables (LUTS), dlgltal Slgnal p I‘(.)C.CSSOI‘ (DSP), [9] S. Weiser and M. Werner, “SGXIO: Generic trusted I/O path for intel
and block RAMs (BRAMs), as reported by Xilinx SDAccel. SGX,” CODASPY, pp. 261-268, 2017.
These results indicate that SGX-FPGA is lightweight, which [10] T. Peters et al., “BASTION-SGX: Bluetooth and architectural support
for trusted I/O on SGX,” in HASP, 2018, p. 1-9.
consumes n.O more than 1% (for PUF) and 25% (for FPGA [11] S. Volos et al., “Graviton: trusted execution environments on GPUs,” in
secure monitor) of the hardware resources on the ADM-PCIE- 0SDI, 2018, pp. 681-696.
7V3 FPGA. Note that the FPGAs in real cloud infrastructures [12] L Jang et al., “Heterogeneous isolated execution for commodity GPUs,”
. in ASPLOS, 2019, p. 455-468.
(e'g" Amazon AWS [3] or Microsoft Azure [4]) have much [13] “Intel software guard extensions (SGX),” 2020, https://software.intel.
more hardware resources than the ADM-PCIE-7V3 FPGA com/content/www/us/en/develop/topics/software- guard-extensions.html.
in our experiments. Therefore, considering that the proposed [14] J. Zhu et al., “Enabling privacy-preserving, compute-and data-intensive
SGX-FPGA framework has a constant footprint across differ- computing using heterogeneous trusted execution environment,” arXiv
i K preprint arXiv:1904.04782, 2019.
ent FPGAs, its overall resource usage (in percentage) would [15] R. Bahmani et al., “CURE: A security architecture with customizable
become even lower in commercial clouds. and resilient enclaves,” arXiv preprint arXiv:2010.15866, 2020.
[16] T. Hunt et al., “Telekine: Secure computing with cloud GPUs,” in OSDI,
VI. CONCLUSION 2020, pp. 817-833.
. [17] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
We developed SGX-FPGA, an FPGA TEE achieved by taxonomy and detection,” I[EEE D & T, vol. 27, no. 1, pp. 10-25, 2010.
a trusted hardware isolation path from the CPU TEE (i.e., [18] “ARM security technology: Building a secure system using trustzone
. P . . technology,” 2005.
SGX), which ensures the Conﬁdentlahty and 1ntegr1Fy of the [19] “Exploring the nuances of PCI and PCle,” 2017, https://medium.com/
heterogeneous CPU-FPGA system. SGX-FPGA achieves the google-cloud/exploring-the-nuances-of-pci-and-pcie-7edf44acef94.
security objectives via a CPU controller and an FPGA secure 201 O. Oleksenko et al., “Varys: Protecting SGX enclaves from practical
. . ~ . . . side-channel attacks,” in ATC, 2018, pp. 227-240.
monitor embeqde.d in the CPU FPGA architecture, which is [21] A. Markuze et al., “True IOMMU protection from DMA attacks: When
capable of bridging and authenticating both the CPU and copy is faster than zero copy.” ACM SIGARCH Computer Architecture
FPGA components, as well as conducting data encryption News, vol. 44, no. 2, pp. 249-262, 2016.
using pre—established keys Our implementation and evalu- [22] C. Ramesh et al., “FPGA side channel attacks without physical access,”
: : ¢ i in FCCM, 2018, pp. 45-52.
ation on real hardware demonstrate the high security and [23] Y. Luo and X. Xu, “HILL: A hardware isolation framework against
low overhead achieved by SGX-FPGA. SGX-FPGA is non- informatio(ljl leaklage 0;1 multil—ltenanlt FPS:A l(;ng—wires,” in FPT, 2019.
. [24] B. Gassend et al., “Silicon physical random functions,” in CCS, 2002.
intrusive and 1mmed1ately erloyabl§ to CommOdlty hardware [25] J. Delvaux et al., “Helper data algorithms for PUF-based key generation:
and SGX systems. The project repository of SGX-FPGA is at Overview and analysis.” TCAD, vol. 34, no. 6, pp. 889-902, 2014.
https://github.com/hwsel/SGX-FPG A. [26] D. P. Sahoo et al., “Towards ideal arbiter PUF design on Xilinx FPGA:
A practitioner’s perspective,” in DSD, 2015, pp. 559-562.
ACKNOWLEDGMENT [27] M. Majzoobi et al., “FPGA PUF using programmable delay lines,” in
. . . . WIFS, 2010, pp. 1-6.
This work was partially supported by the National Science [28] “SDAccel examples,” https://github.com/Xilinx/SDAccel_Examples.
Foundation under awards 1912593 and 2043183. [29] “CNN using HLS,” https://github.com/amig-consulting/cnn-using-hls.
306

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:26:09 UTC from IEEE Xplore. Restrictions apply.

