
Runtime Fault Injection Detection for FPGA-based

DNN Execution Using Siamese Path Verification

Xianglong Feng, Mengmei Ye, Ke Xia, and Sheng Wei

Department of Electrical and Computer Engineering

Rutgers University, Piscataway, NJ, USA

Email: {xianglong.feng, mengmei.ye, ke.xia, sheng.wei}@rutgers.edu

Abstract—Deep neural networks (DNNs) have been deployed on
FPGAs to achieve improved performance, power efficiency, and
design flexibility. However, the FPGA-based DNNs are vulnerable
to fault injection attacks that aim to compromise the original
functionality. The existing defense methods either duplicate the
models and check the consistency of the results at runtime, or
strengthen the robustness of the models by adding additional
neurons. However, these existing methods could introduce huge
overhead or require retraining the models. In this paper, we
develop a runtime verification method, namely Siamese path
verification (SPV), to detect fault injection attacks for FPGA-
based DNN execution. By leveraging the computing features of
the DNN and designing the weight parameters, SPV adds neurons
to check the integrity of the model without impacting the original
functionality and, therefore, model retraining is not required. We
evaluate the proposed SPV approach on Xilinx Virtex-7 FPGA
using the MNIST dataset. The evaluation results show that SPV
achieves the security goal with low overhead.

I. INTRODUCTION

Deep neural networks (DNNs) have been widely employed

for a variety of artificial intelligence applications. Due to the

heavy computation demands of DNNs, it has become a common

practice to offload the DNN models to cloud platforms, which

are equipped with rich computing resources and hardware

accelerators (e.g., GPUs and FPGAs) [1]. In particular, FPGAs

can achieve high performance, power efficiency, and design

flexibility and thus become a powerful platform for DNNs [2].

However, FPGAs are also subject to a variety of security

attacks and, given the importance of adopting FPGA for DNN

acceleration, protecting the integrity of the FPGA-based DNNs

have attracted researchers’ attentions [3]. One of the vulnerabil-

ities in FPGA is its sensitivity to fault injection attacks [4]–[7],

which could flip certain bits in memory, and the flipped bits

may alter the critical parameters of the DNN model and result

in incorrect inference results.

There have been research works that target on defending

against the fault injection attacks. For FPGAs, He et al. [8]

check abnormal physical signals at runtime to detect injected

faults. However, this approach only applies to specific devices

and requires sophisticated sensors. D’Angelo et al. [9] employ

the triple modular redundancy-based fault-tolerance technique

to minimize the impact of injected faults, but the approach

requires to triplicate the resource usage. To defend against fault

injection attacks on DNNs, Li et al. [10] develop a dual modular

redundancy framework (referred to as the “Two-Track" method

in our discussion), which conducts runtime fault detection by

introducing and comparing with a duplicated model. Libano et

al. [7] and Clemente et al. [11] enhance the DNN robustness

by adding a small set of neurons to the original model. These

DNN defense methods typically require retraining the model.

In this paper, we aim to address the aforementioned limita-

tions in the existing methods and develop an effective defense

approach against fault injections on FPGA-based DNN models,

with the following design principles and requirements. (1) No

retraining. In the real-world settings, FPGA-based accelerators

are typically deployed in the cloud server, and the client (e.g.,

a mobile device) has limited storage and computing resources.

Therefore, after adding the verification structure in FPGA, the

client should not be required to retrain or fine tune the DNN

model. (2) Runtime verification. When the model and input

data are uploaded to the cloud sever, the client loses control

over how the cloud executes the model and produces the results.

Therefore, it is important for the client to verify the correctness

of the results at runtime. (3) Easy deployment. Different DNN

implementations are dependent on different machine learning

libraries. The verification method should be easily deployable

to the original DNN model without causing library dependency

or hardware compatibility issues. (4) Controllable verification

overhead. With varying runtime constraints, the client should

be able to dynamically select different strengths of verification

and thus control the tradeoff between security and overhead.

We develop a Siamese Path Verification (SPV) method to

check the integrity of the FPGA-based DNN at runtime. SPV

leverages the computing features of the fully-connected layers

in the DNN model to conduct runtime verification, and it does

not rely on any specific devices or libraries. In SPV, new

neurons are added to the trained model, and the output vector

contains not only the original inference results but also the

verification results that check the correctness of the inference

results. It is worth noting that, by carefully designing the

weights for the neurons in different layers, we ensure that

the added neurons do not impact the original functionality of

the DNN model and, therefore, SPV does not require model

retraining. Also, we could control the verification overhead by

configuring the number of neurons to construct SPV.

II. THREAT MODEL

We target on the FPGA fault injection attacks that can

compromise FPGA-based DNN execution, which could be

786978-3-9819263-5-4/DATE21/ c©2021 EDAA

20
21

 D
es

ig
n,

 A
ut

om
at

io
n

&
 T

es
t i

n
Eu

ro
pe

 C
on

fe
re

nc
e

&
 E

xh
ib

iti
on

 (D
AT

E)
 |

 9
78

-3
-9

81
92

63
-5

-4
/2

1/
$3

1.
00

 ©
20

21
10

.2
39

19
/D

AT
E5

13
98

.2
02

1.
94

73
94

1

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:32:33 UTC from IEEE Xplore. Restrictions apply.

carried out by many methods, such as FPGAhammer [4],

RAM-Jam [5], rowhammer [6], radiation [7], and power/clock

glitches [12], with different characteristics in the causes and

effectiveness of the injected faults. In our current work, we

adopt an abstract and generic fault injection model, which does

not differentiate the technical and physical differences of the

various fault injection methods but considers the overall fault

injection rate on DNNs (i.e., the percentage of the weights

modified by the attack) as its main property for configuration.

In the future work, we will extend the scope of our exploration

from the generic/abstract model to the physical fault injection

models that are specifically applicable to the remote cloud

environment, such as FPGAhammer [4] and RAM-Jam [5].

The injected fault, such as flipped bits in sensitive weights or

parameters, could be leveraged by the attacker to compromise

the original functionality of the DNN model, resulting in wrong

inference results [13], [14].

III. VERIFICATION WITH SIAMESE PATH

We develop a new defense approach targeting on address-

ing the following two Research Questions (RQs): (1) RQ-1:

From the technical perspective, how could we add neurons to

verify the integrity of the DNN at runtime based on existing

machine learning libraries and hardware platforms? (2) RQ-

2: From the perspective of the client, how could it verify the

FPGA security without retraining the model and with flexible

verification options to control the tradeoff between security and

performance overhead? To address the two RQs, we employ a

Siamese path verification (SPV) method for the verification of

key weights. By carefully designing the weights, SPV leverages

the existing features of the fully connected layers to retain

the original functionality of the neural network and pass the

verification results to the final output, which provides us with

the advantage of runtime verification without retraining.

A. SPV Design

To address RQ-1, we construct the SPV by adding a set of

neurons at different layers and weights to automatically check

the integrity of the neural network and pass the verification

results to the output along with the inference results. The

detailed design of SPV is shown in Fig. 1, where the nodes

represent the neurons and the lines represent the weights of

the neural network. Specifically, the green nodes represent the

target neurons for verification. The red nodes represent the

intermediate probe nodes, which share the same weights (i.e.,

Siamese path) and are supposed to obtain the same values as

that of the target neurons (i.e., the green nodes). The orange

nodes are the probe nodes, which use a non-zero value to

represent the case where fault injection is found in a Siamese

path. The blue lines represent the target weights for verification,

and the red lines are the copies of the target weights. The green

lines appear in pairs, where one is “-1" and the other is “1"

for one node. The orange lines are “1"s, which propagate the

probe node’s value to the final output layer.

To describe how SPV works in detail, we define that the blue

lines (i.e., the original weight w) and the red lines (i.e., the new

weight w̃) are the same weights (i.e., w = w̃) but connected

Fig. 1. The proposed Siamese path verification (SPV) design.

to two different nodes, where one is the original neuron (i.e.,

the green node y) in the neural network and the other is the

intermediate probe node (i.e., the red node ỹ). We treat the two

sets of weights as Siamese paths since they share exactly the

same value (i.e., w = w̃). Here we set the function of the fully

connected layer as fc and the calculation with the input x is

y = fc(x). Given that ỹ = fc(w̃) and w = w̃, the values in

the green node y should be equal to the red node ỹ.

The intermediate probe node is the base of the SPV node.

Based on the layer where the nodes reside, there are three cases,

as shown in Fig. 1. In different cases we need to design different

weights and the probe nodes for passing the verification results

to the output.

• Case 1. The target node (i.e., green node) and the inter-

mediate probe node (i.e., red node) are in the next-to-last

layer, which will be forwarded to the output layer via the

Softmax layer. In this case, we just need to collect the

output and compare the values of the green node and the

red node as shown in Case 1 of Fig. 1. If the values are

different, it indicates that the model is compromised by the

fault injections.

• Case 2. The target node (i.e., green node) and the intermedi-

ate probe node (i.e., red node) are located prior to the next-

to-last layer. In this case, we cannot directly compare the two

values and thus we design a special weight w′ along with the

probe node y′ in the next-to-last layer to compare the results

and pass them to the output layer. The intuitive idea is to

set the comparing weight as w′ = [−1, 1]. Accordingly, the

consecutive probe node is y′ = −1 · y + 1 · ỹ, and we can

tell that the weights are modified once y′ �= 0. However, the

ReLU layer (i.e., max(0, y′)) will set the negative values of

y′ to 0 and, as a result, we still obtain 0 when y′ < 0. Here,

we add one pair of probe nodes for one pair of Siamese paths

(i.e., one green node and one red node) as shown in Case 2

of Fig. 1. More specifically, we set one probe node y′
1

with

the weight w′

1
= [−1, 1] and set the other pair of node y′

2

with the weight w′

2
= [1,−1]. Then, the two probe nodes

are y′
1
= −1 · y + 1 · ỹ and y′

2
= 1 · y − 1 · ỹ. Between y′

1

and y′
2
, there is at least one node that is higher than 0 if the

weight is modified. Therefore, the comparison result of the

Design, Automation and Test in Europe Conference (DATE 2021) 787

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:32:33 UTC from IEEE Xplore. Restrictions apply.

target node and the intermediate probe node will not be lost

after the ReLU layer.

• Case 3. When there are probe nodes in previous layers, we

need to pass the values of those nodes to the output layer.

In this case, all the probe nodes could be passed to one

probe node in the consecutive layer as shown in Case 3

of Fig. 1. Given the n probe nodes (i.e., y′
1
. . . y′n) in the

previous layers, we set the corresponding new weights as all

1s (i.e., w′′ = [1, . . . , 1]), namely transporting weights. The

probe node in the consecutive layer is y′′ =
∑n

y
′ y′i. Thus,

the probe node is non-zero if there is fault injection detected.

Furthermore, we propose two strategies to minimize the

resource usage and meet the flexible verification overhead

requirement in RQ-2. The first strategy is to randomly select

the nodes to design the Siamese path and, every time we upload

the weights of the model, we use different sets of nodes that are

randomly selected. In this way, we could verify more weights.

The second strategy is that we analyze the weights first and then

select the nodes that contain the largest number of weights with

high absolute value to set the Siamese path for verification. In

this paper, our implementation and evaluation are based on the

second strategy.

B. Maintaining the Original Functionality

In this section, we will introduce the method of designing the

remaining weights that are not covered in Section III-A. Fig. 2

shows the diagram of adding weights for new neurons without

impacting the original functionality, where the matrix represents

the weights, and the vector represents the neurons in one layer.

More specifically, the blue matrix represents the original weight

and the blue vector represents the original neurons. Given the

input vector a, the first and second weight matrix A,A′, the

neurons in the third layer should be a
⊗

A
⊗

A′.

Fig. 2. Weight matrix and neuron vector in the DNN.

To add more neurons to one layer while meeting the no

retraining requirement in RQ-2, we leverage the features of

fully-connected layer to enlarge the weight matrix. Following

Equation (1), we extend the original weight matrix A with

the additional weight matrix B, written as [AB]. The new

second layer with additional neurons is [a
⊗

A, a
⊗

B], in

which a
⊗

B, represented as b, is the additional neurons (i.e.,

the intermediate probe nodes and the probe nodes).

a
⊗[

A B
]
=

[
a
⊗

A, a
⊗

B
]

(1)

To further add neurons to the third layer, we enlarge the

second weight matrix following Equation (2), where the new

second weight matrix is

[
A′ 0

0 C

]
with the original second

weight matrix A′, the additional weight matrix C and the zero

padding matrix 0.

[
a
⊗

A, b
]⊗[

A′ 0

0 C

]
=

[
a
⊗

A
⊗

A′, b
⊗

C
]

(2)

The total neurons in the third layer contain two parts, namely

the a
⊗

A
⊗

A′, which is the original neurons for the third

layer, and the b
⊗

C, which is the added neurons. For more

layers, the rest of the propagation flow will follow Equation (2)

to meet the no retraining requirement in RQ-2. In this way, we

could add new neurons to the network without compromising

its original functionality and, therefore, model retraining is no

longer required.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In our system implementation and evaluation, we use a

PC (Intel i7, 16GB) with Xilinx Virtex-7 acceleration card

as the server. We adopt a DNN for handwriting recognition

as the target DNN and implement it on the FPGA using

Xilinx SDAccel 2018.2. Fig. 3 shows the structure of the DNN

model. The input is a gray-scale image, which will be pre-

processed and reshaped into a vector with the length of 784.

The neural network consists of three layers with 200, 50 and

10 neurons. The 10 nodes in the last layer represent the 10

digits from 0 to 9. There is one ReLU layer between each pair

of consecutive layers. Based on this DNN model, we evaluate

the impact of fault injection on the recognition accuracy with

and without SPV applied using the MNIST dataset [15]. Also,

we evaluate the overhead of SPV, in comparison with the Two-

Track method [10], in terms of the model size increase and the

model execution time.

Fig. 3. Structure of the DNN adopted in the evaluation of SPV.

B. Fault Injection Attack

We generate the fault injection samples in the DNN model

by following the method introduced in [16]. Also, based on

the work from [13], [14], we notice that some key weights

are sensitive to the fault injection attacks. Therefore, in our

evaluation, we assume that the attacker will conduct fault

injection to the key weights (i.e., those that contain high

absolute values). The results of the fault injection attacks are

shown in Fig. 4(a), with the consideration that the top 1% to

9% of the weights (based on their absolute values) are modified

by the injected fault. We observe that, without the protection

of SPV, the accuracy could be reduced to lower than 50% by

modifying only 7% of the weights, indicating the effectiveness

of the fault injection attack on the target DNN model.

788 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:32:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Handwriting recognition accuracy with fault injection. I1, I2, and I3 represent the model with fault injection on high absolute weights of layers 1, 2
and 3, respectively. "BL" represents the original model. Y-axis represents the recognition accuracy, and X-axis represents the portion of the modified weights.

C. SPV-based Defense

We evaluate the performance of SPV by assuming that it

protects P% of the model weights, with the following test

cases. (1) Static SPV, where we set a static P value for each

layer (i.e., P = 30). The results are shown in Fig. 4 (b),

where we observe that layer 3 is the most sensitive to the fault

injection attack and layer 1 is the least sensitive. (2) Dynamic

SPV, where we set a dynamic P value for each layer and,

in particular, P = 20, 20, and 60 for layers 1 to 3 in our

experiments. Fig. 4 (c) shows the recognition accuracy results

when Dynamic SPV is applied, where the overall recognition

accuracy is significantly higher than the Static SPV method.

Fig. 5. Comparison of model size increase caused by Two-Track, Static SPV
and Dynamic SPV.

Fig. 5 compares the size of the model when using the Two-

Track method, Static SPV and Dynamic SPV. The blue bar

shows the original size of the model, and the orange bar

shows the size increase after applying the defense mechanisms.

We observe that Dynamic SPV introduces significantly lower

overhead in model size than Two-Track and Static SPV. Further-

more, we evaluate the total execution time of the original model

and the three defense methods for handwriting recognition of

10,000 test images from the MNIST dataset, which are shown

in Fig. 6. We observe that Dynamic SPV achieves more than

60% of timing reduction compared to the Two-Track method.

V. CONCLUSION

We developed a runtime fault injection detection method for

DNNs on FPGAs, namely SPV, by designing a Siamese path

verification framework. SPV inserts verification neurons into

the DNN model without compromising the original function-

ality or retraining the original model. The evaluation results

showed that SPV achieves high effectiveness and efficiency

defending against fault injection attacks on FPGA-based DNN.

Fig. 6. Comparison of model execution time (seconds) for handwriting
recognition of 1000 test images with the original neural network, Two-Track,
Static SPV and Dynamic SPV.

ACKNOWLEDGEMENT

We appreciate the constructive reviews provided by the

anonymous reviewers. This work was supported in part by the

National Science Foundation under Award CNS-1912593.

REFERENCES

[1] “Amazon EC2 F1 instances,” aws.amazon.com/ec2/instance-types/f1/.
[2] Y. Guan et al., “FP-DNN: An automated framework for mapping deep

neural networks onto FPGAs with RTL-HLS hybrid templates,” in FCCM,
2017, pp. 152–159.

[3] X. Xu et al., “Rethinking FPGA security in the new era of artificial
intelligence,” in ISQED, 2020, pp. 46–51.

[4] J. Krautter et al., “FPGAhammer: Remote voltage fault attacks on shared
FPGAs, suitable for DFA on AES,” TCHES, pp. 44–68, 2018.

[5] M. M. Alam et al., “RAM-Jam: Remote temperature and voltage fault
attack on FPGAs using memory collisions,” in FDTC, 2019, pp. 48–55.

[6] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in ISCA, 2014, pp.
361–372.

[7] F. Libano et al., “Selective hardening for neural networks in FPGAs,”
IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 216–222, 2018.

[8] W. He et al., “An FPGA-compatible PLL-based sensor against fault
injection attack,” in ASP-DAC, 2017, pp. 39–40.

[9] S. D’Angelo et al., “Fault-tolerant voting mechanism and recovery
scheme for TMR FPGA-based systems,” in DFT, 1998, pp. 233–240.

[10] Y. Li et al., “D2NN: a fine-grained dual modular redundancy framework
for deep neural networks,” in ACSAC, 2019, pp. 138–147.

[11] J. A. Clemente et al., “Hardware implementation of a fault-tolerant
hopfield neural network on FPGAs,” Neurocomputing, vol. 171, pp. 1606–
1609, 2016.

[12] L. Zussa et al., “Power supply glitch induced faults on FPGA: An in-depth
analysis of the injection mechanism,” in IOLTS, 2013, pp. 110–115.

[13] P. Zhao et al., “Fault sneaking attack: A stealthy framework for mislead-
ing deep neural networks,” in DAC, 2019, pp. 1–6.

[14] Y. Liu et al., “Fault injection attack on deep neural network,” in ICCAD,
2017, pp. 131–138.

[15] “MNIST database,” 2020, http://yann.lecun.com/exdb/mnist/.
[16] J. Tonfat et al., “Method to analyze the susceptibility of HLS designs in

SRAM-based FPGAs under soft errors,” in ARC, 2016, pp. 132–143.

Design, Automation and Test in Europe Conference (DATE 2021) 789

Authorized licensed use limited to: Rutgers University. Downloaded on March 24,2022 at 19:32:33 UTC from IEEE Xplore. Restrictions apply.

