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Abstract—This paper investigates the problem of global
regulation for a class of planar systems with uncertain mea-
surements in the presence of control input saturation. By taking
into account the saturation nonlinearity at the outset of the
controller design, a saturated integral controller is proposed
in a very simple form to regulate the planar system with
uncertain measurements. Moreover, the problem of tracking
a ramp signal with unknown slope and the extension of the
case for measurement function with a generalized unknown
form are also presented. A novel Lyapunov based stability
proof is provided and the simulation studies demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

This paper considers the global regulation problem for a
class of planar systems under control input saturation. The
planar system with uncertain measurements is described as
follows.

il = T2,
.i‘g = u,
: o, ey
y1 = sign(z1)|z1[™,
Y2 = T2 + b2,
where = [z1, x2]7 € R? and u € R are the system

state vector and control input respectively. y; is the uncertain
measurement with unknown power 6; € R* and y, is the
uncertain measurement with unknown bias drift 65 € R.
Our objective is to design a controller under control input
saturation which globally regulates the planar system (1).
Planar systems are of great importance and widely used
to describe dynamics of different physical systems, such
as circuit analysis, mechanical systems, and angular mo-
tion systems, etc. [1], [2], [3] [4]. In the case where the
relationship between the measurement and the state. i.e.,
y = h(xz1), is explicitly clear, it is very easy to design
state feedback controllers to stabilize system (1). In this
situation, output feedback controllers can also be easily de-
signed by utilizing different observer/estimator technologies.
However, the explicit structures of h(-) are difficult to obtain
or the actual values of the output function could deviate
from the real values in industrial applications due to the
limitations of measurement sensors and noises [5], [6], [7],
[8]. To deal with the uncertain measurements, [9] proposed
an output feedback design for nonlinear systems with an
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uncertain output function y = h(z;) by using the homo-
geneous domination approach [10]. A critical assumption
in [9] is that h(z;) is differentiable and bounded by two
linear functions. The work [11] proposed an output feedback
controller for a class of nonlinear systems with uncertain
measurement sensitivity (i.e., y = 6(t)z1, 6(t) is bounded
by two positive constants), where the sensor sensitivity is
a bounded unknown continuous function of time, and a
dual-domination approach is proposed. By employing the
idea of K-filter proposed in [12], the problem of adaptive
output feedback control of nonlinear systems with output
parametric uncertainty (i.e., y = 6fx; with an unknown
constant 6) is studied in [13]. However, some sensors in the
real world might not have the linear relationship between
the measurement and the real state. For instance, as shown
in [14], the voltage output from an infrared distance sensor
is a nonlinear function. A typical infrared sensor for the real
distance d will only output d” where the constant p is around
0.8 but its precise value is varying from product to product.
In the situation where the uncertain sensor measurement has
a form of unknown power, the aforementioned approaches
are not able to handle the problem, even just for the double
integrator system. In systems and control theory, the double
integrator system is of great importance as it describes the
dynamics of many different physical systems. There are
countless results for the double integrator system, however,
the problem as described in equation (1) is still unsolved
yet very interesting. Therefore, it is meaningful to design a
saturated controller to regulate the double integrator system
subject to uncertain measurements as described in (1).

In control theory, designing a controller normally has
no constrains on the value of the controller. However, in
practical applications the magnitude of the control signal
is always limited by the inherent physical input saturation
on the hardware actuator. Saturation from the actuator is a
hidden problem which severely limits system performance,
increases undesirable inaccuracy and even leads to instability
[15]. Saturation nonlinearities are inevitable in engineer-
ing systems since all the physical actuators are subject to
saturation owing to their maximum and minimum limits.
Moreover, sometimes saturation nonlinearities are introduced
into engineering systems on purpose such as PWM-based
control systems and neural network systems [16]. No matter
how saturation arises, the analysis and design of a system that
contains saturation nonlinearities is challenging yet of great
importance. There are, in general, two main approaches to
deal with the actuator saturation. The first strategy is known
as anti-windup schemes, which neglecting the saturation in
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the first stage of controller design then adding some schemes
to handle the adverse effects caused by saturation. For
example, in [17] the authors proposed a saturation controller
in the framework of anti-windup compensation for unstable
linear time-invariant system. Other results can also be found
in [18], [19], [20], [21], [22]. Most of these schemes are
able to enhance performance but not good at improving
stability. The second strategy takes into account the satura-
tion nonlinearities at the outset of the control design, which
analyzes the closed-loop system under actuator saturation
systematically. Compared to the first one, the second strategy
poses difficulties but improves stability while retaining the
performance (see, for example, [23] [24] and the references
therein). A saturated linear state feedback controller always
works for the double integrator system if the states are
known, however, it might fail when the measurements are
uncertain as described in (1).

In this note, we will adopt the second strategy of taking
saturation into account to design an integral controller for
system (1). By proposing a novel Lyapunov function, we will
give an rigours stability analysis. Moreover, the problem of
tracking a ramp signal with unknown slope and an extension
of the case for measurement function with a generalized
unknown form will also be studied.

The rest of the paper is organized as follows. In section
II, we give three subsections: The first part gives the main
theorem and the stability analysis. The second part addresses
the problem of tracking a ramp signal with unknown slope.
And the last part is dedicated to a planar system with
uncertain measurements in a more generalized form. Some
examples and related numerical simulations are given to
verify the effectiveness of the proposed saturated integral
controller. Finally, section III draws the conclusion.

II. MAIN RESULTS

A. Global regulation of system (1) under control input sat-
uration

In this subsection, we propose a saturated integral con-
troller for system (1). The saturation function used in this
note is defined as sat(z) = sign(x)min{M, |z|}, where
constant M 1is the saturation level. We first give the main
theorem, then provide the Lyapunov stability analysis.

Theorem 1: The system (1) is globally regulated by the
following controller

Zo = sat(y1),

2
u = —ax*sat(xg + y2) — b* sat(y1), @

where a and b are positive constants satisfying b > 1.
Proof: Substituting the controller (2) into (1), then we
have the closed-loop system

i = sat(sign(z1)|z "),
.1'?1 = T2, (3)

iy = —a* sat(zo + To + 02) — b sat(sign(xy)|z|").

. Y1
u X1 = X3 >
> . V2
X, =u >
+ M, i+ 1 Xo | M,
a < - <
+ _/ O S —
Zple
Fig. 1. Block diagram of the closed-loop system.

Fig. 1 shows the block diagram of the closed-loop system.
With the following coordinate transformation

21 =x0 + ba, 22 = w1, 23 = T2,
system (3) can be rewritten as
21 = sat(sign(z2)|22|%),
2o = 23, )
33 = —a* sat(z) + 23) — b* sat(sign(z2)|z|).

Construct the following Lyapunov function

V(z1,292,23) = b(b— 1)/ sat(sign(s)|s|?)ds
0 &)

1 2 1 2

+ §(bzl +23)° + §(b —1)z3,

which is positive definite and radically unbounded since
b > 1. The derivative of V' (21, 22, z3) along the closed-loop
system (4) can be calculated as follows

V(zl, z9,23) = b(b— 1)sat(sign(22)|zQ|91)z‘2
= —ab(z1 + z3)sat(z1 + 23), (6)

which is semi-negative definite. Define S = {z €
R3|V (21, 22, 23) = 0} as the LaSalle’s invariant set. Notice
that

V(z1,22,23) =0= 21 + 23 = 0,
which implies S = {z € R3|z; = —23}. In this set we have
0=2%+423=01- b)sign(22)|22|91 — ax sat(z + z3).
Thus it can be concluded that zo = 0 in S. Moreover, by
0=29 =23

it can be obtained that z3 = 0 and then z; = 0 consequently
in S. Therefore, the trivial solution z = 0 is the only
solution in S. By LaSalle’s invariance principle, the origin of
the closed-loop system (4) is globally asymptotically stable,
which implies that 1 = 0 and 22 = 0. Thus, system (1) is
globally regulated by the controller (2). This completes the
proof. [ ]
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D

Fig. 2. Rotational motion of a wheel.

Example 1: As Fig. 2 shows, the ideal angular motion of
a wheel is based on Newton’s second law of motion:

d?e dw
T_JW_JE’ @)

where T is the net torque, J is the moment of inertia, ©
is the angular of rotation and w is the angular velocity of
rotation. Assume the wheel is moving toward a target and
needs to stop at some distance before it.

Denote 1 = O and x5 = w, then the mathematical model
can be written as

:tl = T2, (8)

igiu,

where u = % is the control input. The horizontal displace-

ment of the wheel can be expressed as rx; where r is the
radius of the wheel. When using an infrared distance sensor
described in [14] to measure the horizontal displacement,
and a gyro sensor whose drift model is represented as
Wgyro = W + & (Where wgyr, is the gyro output data from
the actual measurements, w is the real angular velocity and
0 is the gyro drift [25]) to measure the angular velocity, the
measurements can be expressed as y; = rPz! (note that r is
a known positive constant) and 75 = x5 + J, where p € RT,
6 € R are unknown constants. Based on the Theorem 1,
system (8) is globally regulated by the saturated integral
controller (2).

For simulation studies of Example 1, the related param-
eters are selected as J = 1, r = 1, p = 13/11, § =
1/2, a = 2, b = 3, and the initial conditions are
[20(0), 21(0), 22(0)] = [1, 2, 3]. Constants M and My are
the saturation levels of sat(xo+y2) and sat(y;) respectively
in controller (2). In the simulation, different combinations of
M; and M are selected to verify the effectiveness of the
proposed controller. The simulation results are shown in Fig.
3 - 5. It can be seen that the states x; and x5 converge to
the origin for different saturation levels, only with different
performances. It’s worth mentioning that xo converges to —9
since in this example z; = xg + ¢.

Remark 1: In controller (2), the saturation level of
sat(ro+y2) and sat(y;) can be the same or be different. The
saturation levels are related to the limitation of the actuator
and the control gains a, b. The proposed controller (2) gives
more flexibility to tune the parameters.

p=13/11, 6=1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 3. Trajectories of (8) under controller (2) with saturation level M7 =1
and Mo = 9.

p=13/11, 6=1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 4. Trajectories of (8) under controller (2) with saturation level M1 = 5
and Mo = 5.

B. Tracking a ramp signal with unknown slope under control
input saturation

In this subsection, we consider the tracking problem under
control input saturation for the following system

i‘l = T2,
l"g = u,
; o ©))
y1 = sign (z1 — r(t)) |21 = r()|%,
Y2 = T2,
where * = [r1, 72]7 € R? and u € R are the system

state and control input respectively. The tracking objective
r(t) = Bt is a ramp signal with unknown slope 3 € R, and
the measurement y; has an unknown power o € R,
Theorem 2: The system (9) is globally regulated by the
saturated integral controller (2).
Proof: Denote the tracking error e; = x1 —r(¢), then it
is easy to obtain é; = x5 — (3. Substituting the controller (2)
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p=13/11, §=1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 5. Trajectories of (8) under controller (2) with saturation level M7 = 8
and Mo = 2.

into (9), and together with the derivative of tracking error é;
we have the closed-loop system

Zo = sat(sign(er)|er]”),
é1 = T2 — 67

&9 = —a * sat(zg + y2) — b * sat(y1).

(10)

Define the following coordinate transformation
21 =e1,23 =12 — 3,

then we have the new dynamic system along with the new
outputs gi, 92 as

21 = 2o,

2’2 = u,

~ . (11)
o1 = sign(z1)|z1]%,

Yo = 22 + B.

Based on Theorem 1, system (11) is globally regulated by
controller (2) with the new outputs ¢; and . 21 = 0 implies
the tracking error e; = 0, thus x; tracks the reference signal

r(t). This completes the proof. [ |
Force | 1 X 1 x 1 X
- Z - "
m s s

Fig. 6. A rigid body system.

Example 2: Consider a rigid body plant driven by a force
actuator on a smooth surface (Fig. 6). Assume the tracking
objective r(t) = (Bt and the position sensor gives output
y1 = sign(xy — r(t))|z1 — r(t)|* for unknown constants «
and (.

Denote x; as the position displacement, o = &7 and
u = £oree where m is the mass of the plant. Then the
mathematical model can be written as (9). The numerical

simulation results for (9) under controller (2) is shown
in Figure 7 - 9. In the simulation, system parameters are
selected as m =1, a = %, b= %, a =2, b= 3 and initial
conditions [z0(0), x1(0), x2(0))] = [1, 2, 3]. Constants
M; and M are the saturation levels of sat(xg + y2) and
sat(yy) respectively in controller (2). Here z;1 converges to
the reference ramp signal because all the states of system (11)
converge to zero, which implies 0 = z; = e¢; = z1 — r(¢).
T converges to the value of slope [ since 0 = z5 = x2 — .
In the simulation, different combinations of M; and M,y
are selected to verify the effectiveness of the proposed
controller. Different saturation levels gives different tracking
performance, but all of them solved the tracking problem.

a=7/5, =1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 7. Trajectories of (9) under controller (2) with saturation level M; = 1
and Mo = 9.

a=7/5, =1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 8. Trajectories of (9) under controller (2) with saturation level M1 = 5
and Mo = 5.

5413

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 24,2022 at 19:30:07 UTC from IEEE Xplore. Restrictions apply.



a=7/5, =1/2, a=2, b=3

0 5 10 15 20 25 30
Time(s)

Fig. 9. Trajectories of (9) under controller (2) with saturation level M7 = 8
and Mo = 2.

C. Extension: Global regulation of system (1) with a gener-
alized form of the unknown measurement function

In this subsection, we extend Theorem 1 to the regulation
problem of system (1) with uncertain measurement y; in a
more generalized form

T1 = T2,
i’Q = u,
(12)
Y1 = h(xl)a
Yo = T + 02,

where 65 is an unknown constant and the output function of
the measurement h(s) is unknown but satisfies Assumption
1.
Assumption 1: The function h(s) with h(0) = 0 satisfies
the following
(i) h(s) # 0 when s # 0,
(i) fy h(s)ds > 0 when x # 0, and
(iii) ~lim [ h(s)ds = +oc.
|z|—+o00
Corollary 1: Under Assumption 1, system (12) is globally
regulated by controller (2).
Proof: Substituting (2) into (12), we have the following
closed-loop system

zo = sat(h(zr1)),
«/1.71 = T2,
&9 = —a* sat(xo + x2 + 02) — b * sat(h(z1)).

13)

Define the coordinate transformation z; = xg + 03, 2o =
r1, 23 = T9. Then we can rewrite the closed-loop system
(13) as

21 = sat(h(z2)),

Construct the following Lyapunov function

V(o1 2, 25) = b(b— 1) /O sat(h(s))ds .

1 1
+ 5(1)21 + 23)2 + a(b — 1)2:3?,

which is positive definite and radically unbounded under
Assumption 1 and together with b > 1. Taking the derivative
of Lyapunov function (15) along the closed-loop system (14),
we have

V(z1,29,23) = b(b— 1)sat(h(z2))22
+ (bz1 + Zg)(bé’l +23)+ (b— 1)2:323

= —ab(z1 + z3)sat(z1 + z3). (16)

It is straightforward that V(zl, z2,23) in (16) is semi-
negative definite. Similar to the analysis of (6), the origin of
the closed-loop system (14) is globally asymptotically stable
by LaSalle’s invariance principle, which implies that z; =0
and x5 = 0. Thus, system (12) is globally regulated by the
controller (2). This completes the proof. [ ]

III. CONCLUSION

In this paper we proposed a novel integral controller for
the double integrator system with uncertain measurements
under control input saturation. The saturation nonlinearity
was considered at the stage of controller design, which
improves the closed-loop stability. For the uncertain mea-
surements, both a special case and the general case are
studied. In addition, the problem of tracking a ramp signal
with unknown slope is also studied. The proposed method
has solved the regulation problem of a class of planar systems
with uncertain measurements, however, extending this idea
to systems with higher degree is still unsolved and it will be
studied in our future work.
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