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ABSTRACT

Deep neural networks (DNNs) have demonstrated phenomenal suc-

cess in image classification applications and are widely adopted in

multimedia internet of things (IoT) use cases, such as smart home

systems. To compensate for the limited resources on the IoT devices,

the computation-intensive image classification tasks are often of-

floaded to remote cloud services. However, the offloading-based

image classification could pose significant security and privacy

concerns to the user data and the DNN model, leading to effective

adversarial attacks that compromise the classification accuracy. The

existing defense methods either impact the original functionality or

result in high computation or model re-training overhead. In this

paper, we develop a novel defense approach, namely Fake Gradient,

to protect the privacy of the data and defend against adversarial

attacks based on encryption of the output. Fake Gradient can hide

the real output information by generating fake classes and fur-

ther mislead the adversarial perturbation generation based on fake

gradient knowledge, which helps maintain a high classification

accuracy on the perturbed data. Our evaluations using ImageNet

and 7 popular DNN models indicate that Fake Gradient is effective

in protecting the privacy and defending against adversarial attacks

targeting image classification applications.

CCS CONCEPTS

· Information systems → Multimedia information systems;

· Security and privacy → Domain-specific security and pri-

vacy architectures;
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1 INTRODUCTION

Deep neural networks (DNNs) have been widely adopted in many

multimedia applications, such as image classification [30], natural

language processing [15], and medical image analysis [3], and have

demonstrated great success in the multimedia community in the

recent years. Among them, DNN-based image classification [30] has

become one of the most popular and fundamental building blocks

to support many advanced use cases, with a new trend of being

rapidly adopted bymobile and internet of things (IoT) platforms. For

example, IoT-based smart home devices have utilized DNN-based

image classification and face recognition to enable the important

intruder detection feature [20, 24].

The major challenge in deploying and executing DNN-based

image classification on IoT platforms is the big gap between the

computation-intensive DNN operations and the limited computa-

tion and power resources on the battery-driven mobile devices.

To address this challenge, the IoT-based image classification appli-

cations often offload the computation-intensive DNN execution

to a cloud or edge server [35], which has abundant computation

resources to complete the classification task with high efficiency.

However, such offloading-based DNN execution could pose sig-

nificant security and privacy concerns to the user data and the DNN

model which, if exposed to adversaries, could lead to breach of con-

fidentiality/integrity in the input data and/or the inference output.

One notable example is the adversarial attacks [9] against DNN

models, which intend to add small, human-imperceptible perturba-

tions to the user input image to compromise the correctness of the

inference results. Many recent studies have demonstrated that such

adversarial attacks can be effectively achieved by adversaries who

gained access to the user data and DNN model [9, 16, 19, 29, 36], a

feasible scenario in the case of untrusted DNN offloading.

To address the aforementioned security and privacy issues, we

aim to develop an effective defense mechanism achieving the fol-

lowing goals of privacy and security protections:
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DNN model, the returned output vectors are encrypted and, there-

fore, the attackers who do not possess the key would obtain the

fake inference results with fake gradient information. As a result,

the attackers cannot uncover the sensitive input image or generate

effective adversarial perturbations to mislead the DNNmodel. How-

ever, the legitimate users can first decrypt the output vectors using

the key and, eventually, obtain the correct classification results.

4.3 Design Principles of Fake Gradient

Based on the previous discussions, the core of the Fake Gradient

framework is the design of the new weight connections in the

enhanced DNNmodel. In particular, we define three concrete design

principles for Fake Gradient following the goals and requirements

discussed in Section 1.

• Adding fake outputwithout compromising the original func-

tionality of the DNN model: Adding new neurons to the DNN

model would change the structure of the model and introduce

new weights, which would eventually change the original infer-

ence results. As discussed in R1, we must maintain the original

DNN inference accuracy. Otherwise, we need to retrain the model

tomaintain its original functionality, whichwould introduce addi-

tional computation overhead and conflict with R2. Therefore, the

first design principle of introducing newweights in Fake Gradient

is to maintain the model’s functionality without re-training.

• Misleading the direct and adversarial attacks: To defend

against the direct attack, we aim to mislead the final prediction

results by ensuring that the forward propagation in the DNN

model would fall into the fake output classes with high prob-

ability. Also, to defend against the adversarial attack, we must

further minimize the impact of the generated perturbations and

make them insensitive to the DNN model, as they would degrade

the classification accuracy even if being generated based on the

fake classes.

• Key-based encryption/decryption of the outputs: For the de-

ployment of Fake Gradient, we aim to design a key-based encryp-

tion and decryption mechanism to generate and recover from the

Fake Gradient-based outputs in the offloading-based image clas-

sification workflow, which can be customized to individual users

and applications to further enhance the security and privacy.

Considering all the above design principles, we divide the model

modification process of Fake Gradient into two components, namely

the design of the new weights and the output encryption, as shown

in the upper diagram of Figure 3 and discussed in details in Section

4.4.1 and Section 4.5, respectively. The model modification process

is then integrated into the end-to-end workflow of Fake Gradient,

as shown in the bottom diagram of Figure 3, followed by the output

decryption step for the legitimate user to recover the real outputs.

4.4 Design of the NewWeights

4.4.1 Fake output. At the very first step of our Fake Gradient,

we only consider how to generate the fake output without degrad-

ing the performance of the DNN model. Here we define 𝑥 as the

input image and 𝑦 as the corresponding true label. The DNN model

contains several convolution layers 𝐶𝑜𝑛(·), followed by the last

fully connected layer 𝐹𝑐 (·). The computation of the target model

𝜙 (𝑥) can be represented as follows:

𝜙 (𝑥) = 𝐹𝑐 (𝐶𝑜𝑛(𝑥)) (1)

Assuming the outputs from the convolution layers 𝐶𝑜𝑛(·) are 𝑉𝑐 ,

the original weight matrix of the fully connected layer is𝑊𝑜 , and

the original bias of the fully connected layer is 𝑏𝑜 , the original

output vector can be calculated as 𝑓𝑜 = 𝑉𝑐
⊗

𝑊𝑜 + 𝑏𝑜 . Then, the

final output 𝑌 can be formulated as follows:.

𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓𝑜 ) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑉𝑐

⊗

𝑊𝑜 + 𝑏𝑜 ) (2)

To add new neurons to the output layer, we increase the number of

weights and the bias of the original fully connected layer. Here we

set the new weights as [𝑊𝑜 ,𝑊𝐹 ] and the bias as [𝑏𝑜 , 𝑏𝐹 ]. Therefore,

the new output vector based on the modified fully connected layer

is 𝑉𝑐
⊗

[𝑊𝑜 ,𝑊𝐹 ] + [𝑏𝑜 , 𝑏𝐹 ]. This result can be further written as
[

𝑉𝑐
⊗

𝑊𝑜 + 𝑏𝑜 ,𝑉𝑐
⊗

𝑊𝐹 + 𝑏𝐹
]

, where𝑉𝑐
⊗

𝑊𝑜+𝑏𝑜 is the original

output𝑌 , and𝑉𝑐
⊗

𝑊𝐹 +𝑏𝐹 is the fake output𝑦. Therefore, the new

output vector contains both the original and fake classes, which

meets the first design principle discussed in Section 4.3.

By now the two variables we need to address are the new weight

𝑊𝐹 and the new bias 𝑏𝐹 . We note that in the DNN calculation, as

shown in Equation (2), the bias is fixed and unrelated to the input

images. This means that we cannot modify the bias to generate the

fake gradient. Therefore, we first set 𝑏𝐹 ← 𝑏0. Then, the next step is

to fulfill the second design principle (discussed in Section 4.3) by de-

vising the new weight matrix to make the inference result fall into

the new output nodes. Based on the computation rules of neural

networks, the inference result is the output node with the high-

est value. Given the modified output (i.e.,
[

𝑉𝑐
⊗

𝑊𝑜 ,𝑉𝑐
⊗

𝑊𝐹

]

,

ignoring the bias 𝑏 since 𝑏𝐹 = 𝑏0) based on the new weight ma-

trix [𝑊𝑜 ,𝑊𝐹 ] of the modified fully connected layer, the goal is to

achieve𝑚𝑎𝑥 (𝑉𝑐
⊗

𝑊𝑜 ) < 𝑚𝑎𝑥 (𝑉𝑐
⊗

𝑊𝐹 ) so that 𝑌 ≠ 𝑦. Here we

can set a scaling factor 𝑆𝑎 > 1 and set𝑊𝐹 = 𝑆𝑎 ·𝑊𝑜 . Therefore,

the new weights are [𝑊𝑜 , 𝑆𝑎 ·𝑊𝑜 ], based on which we ensure that

the inference output would fall into the new output nodes, since

𝑚𝑎𝑥 (𝑉𝑐
⊗

𝑊𝑜 ) < 𝑚𝑎𝑥 (𝑉𝑐
⊗

𝑆𝑎 ·𝑊𝑜 ).

4.4.2 Fake gradient. Setting the new weights as [𝑊𝑜 , 𝑆𝑎 ·𝑊𝑜 ]

ensures that the inference result would fall into the new output

nodes. However, the new inference result is still based on original

weights𝑊𝑜 and can be used by the adversarial attack to generate

effective perturbations. Considering the G2 goal, our next step is

to design a fake gradient to mislead the adversarial attack.

The intuitive idea is to generate the new weight𝑊𝐹 randomly so

that, based on the output, the adversarial attack would fail to obtain

the true gradient. However, the adversarial attack algorithm would

still be able to generate the perturbations to the images, and the

perturbations could still impact the original classification accuracy

to some extent. Note that the goal of the adversarial attack is to

generate the minimum perturbation 𝑟 that can greatly change the

inference result of 𝑥 + 𝑟 [19], as described by Equation (3):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∥𝑟 ∥2 , such that 𝜙 (𝑥) ≠ 𝜙 (𝑥 + 𝑟 ) (3)

To achieve effective adversarial perturbations, the adversarial attack

algorithm first calculates the gradient ▽𝜙 (𝑥), based on which it

further generates the minimum 𝑟 to change the final inference

result, i.e., 𝜙 (𝑥) ≠ 𝜙 (𝑥 + 𝑟 ).
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Table 1: The evaluation results over the four evaluationmetrics comparing the Fake Gradient andRandomWeight approaches.

Evaluation Metrics Methods ResNet34 ResNet18 DenseNet121 VGG19 VGG11 MobileNet GoogLeNet

Fake Output

(%)

Random Weight 1 1 0 0 0 0 6

Fake Gradient 100 100 100 100 100 100 100

Original Functionality

(%)

Random Weight 100 100 100 100 100 100 100

Fake Gradient 100 100 100 100 100 100 100

Defence Success Rate

(%)

Random Weight 1.2 11.4 0 0 0 0 22.5

Fake Gradient 90.5 92.1 94.9 79.8 82.9 87.1 84.8

Perturbation

(L2 norm)

Random Weight 0.0019 0.0016 0.0017 0.0017 0.0020 0.0012 0.0017

Fake Gradient 0.0010 0.0009 0.0008 0.0015 0.0015 0.0012 0.0015

Original Model 0.0018 0.0016 0.0017 0.0017 0.0020 0.0012 0.0018

Table 2: The random outputs for the same input image using

Fake Gradient without the random key-based encryption.

Classification Results for Images of Class 814

Image ID 198 611 921 2021 2037

Inference Result 1977 1356 1693 1693 1733

Original Classification Results

For Images Classified as Class 1733

Image ID 1753 1869 2032 2114 2220

Original Class 645 702 814 724 416

we compare the inference results generated by the original model

and the modified model (after decryption), as shown in the third

and fourth rows of Table 1. The results indicate that Fake Gradient

achieves the same inference results as the original model for all the

test images, which indicates that Fake Gradient can maintain the

model’s original functionality without re-training.

Furthermore, Table 2 shows the random output from Fake Gra-

dient without the random key-based encryption. We observe that,

in this case, even the images that belong to the same class could be

classified into different fake classes, and the images that are inferred

as the same fake output could originally belong to different classes.

These results demonstrate the randomness of Fake Gradient, which

is effective in misleading the attacker and protect the privacy.

5.3 Defense Against Adversarial Attacks

Figure 6 demonstrates the intermediate results of Fake Gradient

from the sample test images based on ResNet34. The first column

shows the original images. The second and third columns show

the perturbations generated by Fake Gradient and on the original

gradient, respectively, in the form of heatmap. The fourth column

demonstrates the difference between the two types of gradients.

The green dots represent the gradients based on the model mod-

ified by Fake Gradient, the blue dots represent those of the the

original model, and the cyan dots represent their overlaps. In the

first row, we label a classification-relevant area (e.g., the neck of the

bird) using red circles. Within the red circle in the second-column

image, the heatmap is more smooth, while in the third-column im-

age, there are two obvious heat spots. In the fourth-column image,

we notice that the original gradient would lead the adversarial at-

tack to add more perturbations on this classification-relevant area,

while the Fake Gradient would not. In the second row, we label the

classification-irrelevant area (e.g., grassland) using red circles. We

notice that the second-column image has less smooth heatmap than

that in the third column. The fourth-column image shows that the

fake gradient would result in perturbations added to the irrelevant

area. In summary, by observing both of the two fourth-column

images, the cyan dots are rare, which means that Fake Gradient can

successfully mislead the adversarial attack to add perturbations to

the areas irrelevant to the classification task.

We further evaluate the overall defense performance of Fake

Gradient in terms of the defense success rate, as compared to the

random weight approach. Instead of evaluating the classification

accuracy based on the original perturbations, we use Fake Gradient

to modify the 7 DNN models and employ DeepFool [19] to directly

attack the modified models. The results are shown in Table 1. We

observe that the defense success rate is very high (≥79.8%) by using

Fake Gradient while the randomweight approach achieves very low

success rate (i.e., ≤ 22.5%), because it cannot cause the adversarial

attack algorithm to generate insensitive perturbations.

We also evaluate the L2 Norm of the adversarial samples to exam-

ine the detail of how Fake Gradient defends against the adversarial

attack. We collect all the L2 Norm values for each test image and

calculate the average, which are shown in Table 1. We observe

that Fake Gradient causes the adversarial attack to generate fewer

perturbations than the original and the random weight approaches.

5.4 Overhead

One of the advantages of Fake Gradient is the low protection over-

head. First, comparingwith the data encryption [4, 6, 33], distillation

[21, 22], and adversarial training [8, 14, 26] approaches, Fake Gra-

dient reduces huge protection overhead by eliminating the need of

re-training. Second, comparing with the data encryption and data

filtering methods, Fake Gradient only introduces little processing

overhead in the model inference, since it only doubles the weights
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