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ABSTRACT

Deep neural networks (DNNs) have demonstrated phenomenal suc-
cess in image classification applications and are widely adopted in
multimedia internet of things (IoT) use cases, such as smart home
systems. To compensate for the limited resources on the IoT devices,
the computation-intensive image classification tasks are often of-
floaded to remote cloud services. However, the offloading-based
image classification could pose significant security and privacy
concerns to the user data and the DNN model, leading to effective
adversarial attacks that compromise the classification accuracy. The
existing defense methods either impact the original functionality or
result in high computation or model re-training overhead. In this
paper, we develop a novel defense approach, namely Fake Gradient,
to protect the privacy of the data and defend against adversarial
attacks based on encryption of the output. Fake Gradient can hide
the real output information by generating fake classes and fur-
ther mislead the adversarial perturbation generation based on fake
gradient knowledge, which helps maintain a high classification
accuracy on the perturbed data. Our evaluations using ImageNet
and 7 popular DNN models indicate that Fake Gradient is effective
in protecting the privacy and defending against adversarial attacks
targeting image classification applications.
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1 INTRODUCTION

Deep neural networks (DNNs) have been widely adopted in many
multimedia applications, such as image classification [30], natural
language processing [15], and medical image analysis [3], and have
demonstrated great success in the multimedia community in the
recent years. Among them, DNN-based image classification [30] has
become one of the most popular and fundamental building blocks
to support many advanced use cases, with a new trend of being
rapidly adopted by mobile and internet of things (IoT) platforms. For
example, IoT-based smart home devices have utilized DNN-based
image classification and face recognition to enable the important
intruder detection feature [20, 24].

The major challenge in deploying and executing DNN-based
image classification on IoT platforms is the big gap between the
computation-intensive DNN operations and the limited computa-
tion and power resources on the battery-driven mobile devices.
To address this challenge, the IoT-based image classification appli-
cations often offload the computation-intensive DNN execution
to a cloud or edge server [35], which has abundant computation
resources to complete the classification task with high efficiency.

However, such offloading-based DNN execution could pose sig-
nificant security and privacy concerns to the user data and the DNN
model which, if exposed to adversaries, could lead to breach of con-
fidentiality/integrity in the input data and/or the inference output.
One notable example is the adversarial attacks [9] against DNN
models, which intend to add small, human-imperceptible perturba-
tions to the user input image to compromise the correctness of the
inference results. Many recent studies have demonstrated that such
adversarial attacks can be effectively achieved by adversaries who
gained access to the user data and DNN model [9, 16, 19, 29, 36], a
feasible scenario in the case of untrusted DNN offloading.

To address the aforementioned security and privacy issues, we
aim to develop an effective defense mechanism achieving the fol-
lowing goals of privacy and security protections:
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G1 (Privacy): Hiding classification results. Although the cloud
service providers can execute the DNN model based on the stan-
dard machine learning computing rules and gain access to the

output vectors, they should not be able to decode the correct

classification results from the output vector.

G2 (Security): Resilient to the adversarial attack. If the at-
tacker adopts the adversarial attacks and attempts to mislead the

DNN-based classification, such an attempt should fail in that the

perturbed image should still be classified into the correct class

by the DNN model.

Also, considering the system and application requirements of the
image classification operations, the defense mechanism should
satisfy the following functionality and cost requirements:

e R1 (Functionality): Maintaining the original functionality
of image classification. The defense mechanism, if requiring
enhancement to the DNN model or the input data, should not
worsen the original classification accuracy of the DNN model.

e R2 (Cost): Minimal processing overhead. The defense mecha-
nism should minimize its processing overhead to avoid impacting
the original efficiency (e.g., real-time) requirement of the image
classification application.

Targeting G1, researchers proposed to use encryption for privacy
protection [4, 6, 33]. However, the encryption-based approaches
have two limitations. First, the encrypted data does not directly
work with the original weights of the model and, therefore, they
often require training a new DNN model based on the encrypted
data. Also, the classification accuracy by the re-trained model may
not be as high as that of the original model, which does not meet R1.
Second, these methods require the IoT devices to encrypt the data
for offloading, which introduces nontrivial processing overhead
and would violate R2.

Other works focusing on G2 aim to defend against the adver-
sarial attacks, which can be categorized into two types, namely
adversarial training [8, 14, 17, 26, 28] and perturbation removal
[27, 34]. The adversarial training method modifies the model and
requires re-training with adversarial samples and, consequently, it
may impact the original functionality of image classification. The
perturbation removal method could achieve better defense effective-
ness, however, it could also compromise the original functionality
of the DNN model. As a result, it is challenging for both approaches
to fulfill R1.

Focusing on both G1 and G2, we propose an efficient protection
framework, namely Fake Gradient, which can hide the real classifi-
cation results by misleading the attacker to access the fake outputs
(i-e., G1) and defend against the adversarial attacks with fake gradi-
ent in the DNN model (i.e., G2). To achieve this goal, we add new
output nodes (i.e., the fake outputs) to the original output layer (i.e.,
the last fully connected layer) of the DNN model. The new nodes
are designed to have higher values to ensure that the calculations in
the DNN would mislead the attacker to the fake outputs. Also, they
are designed to generate a fake gradient for each fake output to
make the adversarial attack generate less effective perturbations. In
addition, we design a random key-based encryption method, with
which the IoT device could deeply mix the real and fake outputs
and recover the correct outputs in a secure manner.
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We evaluate the proposed Fake Gradient approach using the Im-
ageNet dataset [7] with 7 popular convolutional neural networks
(CNNSs). The results reveal that the inference intended by the at-
tacker would fall in the fake outputs. Also, input images that belong
to the same class can be inferred as different classes based on the
fake outputs. Furthermore, the intermediate results show that the
fake gradient of each fake output can mislead the adversarial at-
tack to generate less effective perturbations and thus defeat the
attacker’s attempts.

To summarize, our proposed Fake Gradient framework presents
novel contributions with several advantages in meeting the afore-
mentioned security/privacy goals (G1 and G2) and requirements
(R1 and R2) for IoT-based image classification tasks. First, the pro-
posed encryption approach is based on the standard deep learning
computing process, which can be seamlessly integrated with arbi-
trary platforms and DNN libraries. Second, the fake outputs with
fake gradients could effectively protect the user privacy and defend
against the adversarial attacks. Last but not least, to the best of
our knowledge, this is the first work to encrypt the DNN models
based on the fully connected layer. The modifications to the model
introduce little computation overhead to the inference process, as
the majority of the DNN is the convolution layers. The proposed
approach does not compromise the original functionality of the
model and thus does not require re-training, which successfully
meets the R1 and R2 requirements while achieving the G1 and G2
goals in the image classification applications.

2 BACKGROUND: ATTACKS ON DNN-BASED
IMAGE CLASSIFICATION

In this work, we focus on the multimedia security and privacy
issues in the IoT-based smart home systems, such as the image
classification-based intruder detection. In this application, as shown
in Figure 1, the smart home device (e.g., a smart camera) intends
to run a DNN-based face image classification to inspect if a visitor
to the house is an unrecognized intruder. To avoid deploying and
executing the large DNN-based image classification model on the
resource constrained IoT device, the system is designed to offload
the model and the collected input images to the cloud for image
classification.
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Figure 1: Attack scenario in DNN-based image classification.

However, the cloud is typically untrusted due to security and
privacy considerations from the user’s perspective. In this work,
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we mainly target two types of attacks, which can be issued by
attackers who gain access to the images and models. In the first
attack method, the attacker attempts to gain access to and thus
breach the privacy of the input image (e.g., the face image of the
home owner) by interpreting the classification results, which can
be further leveraged to bypass the access control module in the
smart home system, namely direct attack [1, 13]. The second attack,
namely adversarial attack [9, 16, 19, 29, 36], is to add perturbations
to the input image, which are less noticeable to humans but would
lead the original DNN model to generate erroneous classification
results (e.g., misidentify the intruder as the home owner).

3 RELATED WORK

DNN security has drawn a great deal of attention in the community
recently, and there have been many research efforts on addressing
the aforementioned attacks. Several works [4, 6, 33] propose to use
encryption to protect the user privacy and thus defend against the
direct attacks. Other works [8, 14, 17, 21, 22, 26-28, 34] focus on the
resilience of the DNN models to the adversarial attacks. However,
none of the existing approaches can effectively address the privacy
and security goals and requirements targeted by this paper (i.e., the
G1/G2 goals and the R1/R2 requirements).

3.1 Defense against Direct Attack

Targeting the direct attack, several works have been conducted to
encrypt the offloaded input data. In [33], the proposed approach
transforms the real-valued features into complex-valued ones, in
which the input is hidden in a randomized phase of the transformed
features. The knowledge of the phase acts like a key, which is re-
quired to recover the output from the processing results. Several
other works [4, 6] leverage homomorphic encryption to encrypt the
input data, which, although demonstrating good effectiveness of
protection, have several limitations. First, they introduce significant
processing overhead to the IoT device due to the required encryp-
tion. Second, the encrypted data cannot directly work with the
original DNN model, and thus they require retraining the model.

3.2 Defense against Adversarial Attack

Many research works [8, 14, 17, 21, 22, 26-28, 34] have targeted the
adversarial attacks, which can be divided into two categories. (1)
Improving the DNN model: Following the idea of "learning”, some
works propose to let the model learn from the perturbed data and
still yield correct classification results under adversarial pertur-
bations [8, 14, 17, 26, 28], which are also known as “adversarial
training". Others [21, 22] exploit the notion of "distillation" [11]
to make DNNs resilient to adversarial attacks by transferring the
knowledge of a more complex network to a smaller network. These
methods all require re-training the model, which introduce signifi-
cant processing and deployment overhead. (2) Perturbation removal:
The other line of work focuses on removing the adversarial per-
turbations from the input images. Xu et al. [34] propose to reduce
the complexity of the data representation so that the adversarial
perturbations would disappear due to low sensitivity. Shaham et al.
[27] investigate various defense mechanisms, such as PCA, JPEG
compression and soft thresholding, which are conducted before
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feeding the image into the model. The results show that JPEG com-
pression performs better than the other defence mechanisms in
most of the scenarios. Although these techniques work well in
preventing adversarial attacks, they have the collateral effect of
worsening the accuracy of the model on true examples.

4 PROPOSED APPROACH: FAKE GRADIENT

4.1 Challenges

In the deployment of DNN frameworks, the model is typically
visible to the computing platform. On one hand, to use the platform,
the user needs to provide the weights and the structure of the model.
Therefore, the platform knows the value of the model parameters.
On the other hand, the computation of the DNN model is very
standard for each layer (e.g., convolution, fully connected, and
dropout) and is supported by the standard libraries from third
parties (e.g., TensorFlow [2] and PyTorch [23]). All of these make
the original DNN model parameters known by the cloud, which
poses significant challenges for the security/privacy protection
mechanisms. Also, since the DNN model is trained based on finding
the gradient to minimize the loss, the adversarial attack, which
is also based on the gradient, is often effective to fool the neural
network [5, 32].

To overcome the limitations of the existing methods, we propose
a Fake Gradient method, which encrypts the target DNN model
in the last fully connected layer based on the standard neural net-
work computation. As a result, the attacker would be misled to the
fake output and would obtain the fake gradient, which eventually
achieves the security and privacy goals.

Fake Gradient Framework
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Figure 2: Fake Gradient system architecture.
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4.2 Fake Gradient Architecture

Figure 2 shows the system architecture and workflow of the pro-
posed Fake Gradient approach in the image classification system.
Fake Gradient modifies the fully connected layer of the original
DNN model and deploys it to the cloud for execution. At runtime,
the IoT device captures and offloads the input images to the cloud
for real-time image classification, and the cloud returns the output
vectors of the DNN model to the IoT device. Given the modified
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DNN model, the returned output vectors are encrypted and, there-
fore, the attackers who do not possess the key would obtain the
fake inference results with fake gradient information. As a result,
the attackers cannot uncover the sensitive input image or generate
effective adversarial perturbations to mislead the DNN model. How-
ever, the legitimate users can first decrypt the output vectors using
the key and, eventually, obtain the correct classification results.

4.3 Design Principles of Fake Gradient

Based on the previous discussions, the core of the Fake Gradient
framework is the design of the new weight connections in the
enhanced DNN model. In particular, we define three concrete design
principles for Fake Gradient following the goals and requirements
discussed in Section 1.

o Adding fake output without compromising the original func-
tionality of the DNN model: Adding new neurons to the DNN
model would change the structure of the model and introduce
new weights, which would eventually change the original infer-
ence results. As discussed in R1, we must maintain the original
DNN inference accuracy. Otherwise, we need to retrain the model
to maintain its original functionality, which would introduce addi-
tional computation overhead and conflict with R2. Therefore, the
first design principle of introducing new weights in Fake Gradient
is to maintain the model’s functionality without re-training.

e Misleading the direct and adversarial attacks: To defend
against the direct attack, we aim to mislead the final prediction
results by ensuring that the forward propagation in the DNN
model would fall into the fake output classes with high prob-
ability. Also, to defend against the adversarial attack, we must
further minimize the impact of the generated perturbations and
make them insensitive to the DNN model, as they would degrade
the classification accuracy even if being generated based on the
fake classes.

o Key-based encryption/decryption of the outputs: For the de-
ployment of Fake Gradient, we aim to design a key-based encryp-
tion and decryption mechanism to generate and recover from the
Fake Gradient-based outputs in the offloading-based image clas-
sification workflow, which can be customized to individual users
and applications to further enhance the security and privacy.

Considering all the above design principles, we divide the model
modification process of Fake Gradient into two components, namely
the design of the new weights and the output encryption, as shown
in the upper diagram of Figure 3 and discussed in details in Section
4.4.1 and Section 4.5, respectively. The model modification process
is then integrated into the end-to-end workflow of Fake Gradient,
as shown in the bottom diagram of Figure 3, followed by the output
decryption step for the legitimate user to recover the real outputs.

4.4 Design of the New Weights

4.4.1 Fake output. At the very first step of our Fake Gradient,
we only consider how to generate the fake output without degrad-
ing the performance of the DNN model. Here we define x as the
input image and y as the corresponding true label. The DNN model
contains several convolution layers Con(-), followed by the last
fully connected layer Fc(-). The computation of the target model
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¢(x) can be represented as follows:

¢ (x) = Fe(Con(x)) (1)

Assuming the outputs from the convolution layers Con(-) are V,,
the original weight matrix of the fully connected layer is W, and
the original bias of the fully connected layer is b,, the original
output vector can be calculated as f, = Ve (X) W, + bo. Then, the
final output Y can be formulated as follows:.

Y = argmax(f,) = argmax(V; ® W, + bo) (2)

To add new neurons to the output layer, we increase the number of
weights and the bias of the original fully connected layer. Here we
set the new weights as [W,, Wr] and the bias as [b,, br]. Therefore,
the new output vector based on the modified fully connected layer
is Ve (X) [Wo, Wr] + [bo, br]. This result can be further written as
[Ve @ Wo + bo, Ve (R) Wr + br |, where Ve () W,+b, is the original
output Y, and V. (X) W +bp is the fake output y. Therefore, the new
output vector contains both the original and fake classes, which
meets the first design principle discussed in Section 4.3.

By now the two variables we need to address are the new weight
Wr and the new bias br. We note that in the DNN calculation, as
shown in Equation (2), the bias is fixed and unrelated to the input
images. This means that we cannot modify the bias to generate the
fake gradient. Therefore, we first set by «<— bg. Then, the next step is
to fulfill the second design principle (discussed in Section 4.3) by de-
vising the new weight matrix to make the inference result fall into
the new output nodes. Based on the computation rules of neural
networks, the inference result is the output node with the high-
est value. Given the modified output (i.e., [VC &R Wo, Ve @ WF],
ignoring the bias b since br = bg) based on the new weight ma-
trix [Wp, Wr] of the modified fully connected layer, the goal is to
achieve max (Ve Q) Wo) < max(Ve (X) Wr) so that Y # y. Here we
can set a scaling factor S, > 1 and set Wg = S, - W,. Therefore,
the new weights are [W,, S, - W, ], based on which we ensure that
the inference output would fall into the new output nodes, since
max (Ve Q) Wo) < max (Ve Q) Sa - Wo).

4.4.2 Fake gradient. Setting the new weights as [W,, Sg - W]
ensures that the inference result would fall into the new output
nodes. However, the new inference result is still based on original
weights W, and can be used by the adversarial attack to generate
effective perturbations. Considering the G2 goal, our next step is
to design a fake gradient to mislead the adversarial attack.

The intuitive idea is to generate the new weight Wr randomly so
that, based on the output, the adversarial attack would fail to obtain
the true gradient. However, the adversarial attack algorithm would
still be able to generate the perturbations to the images, and the
perturbations could still impact the original classification accuracy
to some extent. Note that the goal of the adversarial attack is to
generate the minimum perturbation r that can greatly change the
inference result of x + r [19], as described by Equation (3):

minimize ||r||y, such that ¢(x) # ¢(x +r) (3)

To achieve effective adversarial perturbations, the adversarial attack
algorithm first calculates the gradient V¢(x), based on which it
further generates the minimum r to change the final inference
result, i.e., p(x) # P(x +7).
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Figure 4: Generating new weights based on Fake Gradient.

To defeat the adversarial attack, our proposed Fake Gradient
would perform the opposite, which aims to lead the adversarial at-
tack to generate more perturbations but barely change the inference
result. The flow of generating the new weights with misleading
gradient is shown in Figure 4, where the vertical axis represents
the output of the convolution layer (i.e., V), and the horizontal axis
represents the values of the weights connected to the node A in
the next layer (i.e., the output vector f). In Figure 4(a), we label the
areas with red and green, which represent the weights with high
and low absolute values, respectively. In other words, the nodes of
Ve with weights in the green zone have less influence on obtaining
the inference result of A than the nodes with weights in the red
zone. Assuming that A’ is the fake output, we aim to design the
new weights for A’ with fake gradient. In other words, the nodes
that have weights in the green zone for A should have weights in
the red zone for A’, as shown in Figure 4(c).

The details of how to generate the weights for the new nodes
are described in Algorithm 1. Once we have the DNN model M,
we can abstract the fully connected layer Ly, with its original
weights and bias (i.e., Wy, by). Then, we enlarge the fully connected
layer by doubling the weights and bias (i.e., [Wo, WF], [bo, br]). For
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Algorithm 1: Fake Gradient: New outputs & new weights

1 Input: The original DNN model M, scaling factor Sg.
Output: The modified DNN model M’.

Get the fully connected layer Lpe < W, bo, fo > «— M;

2
3

4 Construct the new fully connected layer

Ly, < [Wo, Wl, [bo, bl [fo, fi] >

bF — bo;
Winax < Max(Wo);
for Index of row and column i,j in W, do
| Weli[J] = Watax — (Wo il [j11) - Sa - sign(Wo [i][j]);
end

®

Generate the new model M’ « L’ ;

f 5

=

0

the bias, we just directly copy the original bias to the new bias.
For the weights, we first obtain the the maximum value of the
weights Wj4y and, then, subtract the absolute value for one weight
Wo [i] [j] from Wiy, which is shown in Figure 4(b). The obtained
value is modified by the scaling factor S, and applied the same
sign as the original weight. Finally, it is assigned to the fake weight
WE[i] [j]. We follow this procedure to complete the entire Wr.

4.5 Output Encryption

The current method of generating the new weight W’ combines
the original weight W, and the generated fake weight Wr directly,
which is easy to be recognized by the space pattern. To improve it,
the advanced method should mix the two weight matrices deeply
so that it becomes difficult for the attacker to uncover the original
outputs and the original weights. As shown in Figure 5, we change
the order of the rows and columns of the weight matrices to mix
them deeply. Based on the computation rule of the fully connected
layer, we notice that we can change the output by changing the
order of the rows; similarly, we can change the order of the input
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vector to change the order of the columns in the matrix without
compromising its original inference accuracy. However, since the
order of the input vector is determined by the previous layers
(i.e., the convolution layers), we only mix the weight matrices by
changing the order of the rows.

—~—
f\®

A
Input vector

Output vector

Weight matrix

Figure 5: Rearrangement of the input/output vector by
changing the row/column of the weight matrix.

4.5.1
the i*" column of the new weight matrix W’ for the fully connected
layer, b; to represent the i h bias, and fej to represent the i h output
of the fully connected layer f’. Based on Equation (2), we can further
calculate each output of the fully connected layer fc;, as follows:

fei=Ve-wi+b; (4)

As shown in Equation (4) and Figure 5, we can change the order
of the output nodes and that of the rows in the weight matrix
following the same pattern (i.e., the order of i), which not only mixes
the weight matrices but also encrypts the output. The modification
pattern can be defined by a random key (i.e., K), which is a vector
with the same length as the output vector of the modified DNN
model. When generating K, we assign the index of each item and
randomly permute all the items in K. Now each item in K contains
a unique number indicating the new position of the output node.

Encryption with random key. Here we use w; to represent

Algorithm 2: Fake Gradient: Output encryption

1 Input: The modified DNN model M’
2 Output: The encrypted DNN model M,,, random key K.

3 Get the fully connected layer
Lt. < [Wo, WFL, [bo, bF], [ fo, fr] > & M;
4 Generate the random key K;
5 W [W,, Wr];
6 b [bo, brl;
7 e o fil:
s for Column index i in W’ do
9 Wen[K[i]] < W'[il;
ben[K[i]] < b'[i];
end
Generate the new model M, «— Lpe < Wen, ben, Fen >;

=
1Y

Algorithm 2 shows the details of how we use K to encrypt the
model. To generate the encrypted weight W, based on the modified
weight W’ and the key K, we check the corresponding value in
K[i] and assign the it" row of the weight matrix W’ to the K[i] th
row of the weight matrix W, Following this procedure, we further
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modify the bias b, by assigning the value of the i h jtem in the bias
b’ to the K[i]*" item in the new bias be,. This encryption approach
also enables the user to adopt customized keys and thus generate
different protected inference results for different cloud services
and application scenarios, which further enhances the security and
privacy.

4.5.2  Decryption with random key. As shown in the output de-
cryption block of Figure 3, the user can decrypt and recover the
original output vector using the key K upon receiving the encrypted
results from the cloud. Algorithm 3 describes the output decryption
algorithm. To obtain the i* h output value of the modified output
layer f’, we check the value of the K[i]!" output value of the en-
crypted output vector Fe,. In the end, we find the highest score
from the first half of f’, which is the original output vector fp, to
obtain the correct inference result.

Algorithm 3: Fake Gradient: Output decryption

1 Input: Returned output vector fe,, random key K.
2 Output: Decrypted output vector f,.

3 for Item index i in fpn, do

o | flil « fenlKTiN;

5 end

s [fo. fr] — f7

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup

We evaluate our Fake Gradient approach using ImageNet [7] on
7 DNN models, including ResNet18, ResNet34 [10], DenseNet121
[12], VGG11, VGG19 [30], MobileNet [25], and GoogLeNet [31]. To
maintain the generality, we obtain these models from the torchvi-
sion library [18] with pre-trained weights. The hardware platform
is a Dell workstation T7910 with two Intel Xeon E5-2623 CPUs,
32GB RAM and an Nvidia GTX TITAN X GPU with CUDA 10.0.

The evaluations mainly focus on the security/privacy goals (G1
and G2) and the requirements (R1 and R2) for image classification
tasks, which are achieved by evaluating the encryption of the out-
put, the efficiency of defense against adversarial attacks, and the
overhead. Considering that the other related works cannot address
the same goals and requirements targeted by this work, we compare
the defense performance with a random weight approach, in which
the new weight in line 8, Algorithm 1 is generated by a Gaussian
function fitting the distribution of the original weights.

5.2 Output Encryption

We first evaluate the effectiveness of output encryption in hiding
the real output. We compare the model output from Fake Gradi-
ent (without decryption) with the original DNN output, checking
whether the inference result would fall into the fake outputs. As
shown in the first two rows of Table 1, all the test images with Fake
Gradient are inferred as fake outputs, while the random weight
approach can only generate fake outputs for very few test images.

Also, we evaluate whether Fake Gradient would compromise
the original functionality of the DNN model. In this evaluation,
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Table 1: The evaluation results over the four evaluation metrics comparing the Fake Gradient and Random Weight approaches.

Evaluation Metrics Methods ResNet34 ResNet1l8 DenseNet121 VGG19 VGG11 MobileNet GoogLeNet
Fake Output Random Weight 1 1 0 0 0 0 6
(%) Fake Gradient 100 100 100 100 100 100 100
Original Functionality Random Weight 100 100 100 100 100 100 100
(%) Fake Gradient 100 100 100 100 100 100 100
Defence Success Rate Random Weight 1.2 11.4 0 0 0 0 22.5
(%) Fake Gradient 90.5 92.1 94.9 79.8 82.9 87.1 84.8
Perturbation Random Weight 0.0019 0.0016 0.0017 0.0017 0.0020 0.0012 0.0017
(L2 norm) Fake Gradient 0.0010 0.0009 0.0008 0.0015 0.0015 0.0012 0.0015
Original Model 0.0018 0.0016 0.0017 0.0017 0.0020 0.0012 0.0018

Table 2: The random outputs for the same input image using
Fake Gradient without the random key-based encryption.

Classification Results for Images of Class 814

Image ID 198 611 921 2021 2037
Inference Result 1977 1356 1693 1693 1733
Original Classification Results
For Images Classified as Class 1733

Image ID 1753 1869 2032 2114 2220
Original Class 645 702 814 724 416

we compare the inference results generated by the original model
and the modified model (after decryption), as shown in the third
and fourth rows of Table 1. The results indicate that Fake Gradient
achieves the same inference results as the original model for all the
test images, which indicates that Fake Gradient can maintain the
model’s original functionality without re-training.

Furthermore, Table 2 shows the random output from Fake Gra-
dient without the random key-based encryption. We observe that,
in this case, even the images that belong to the same class could be
classified into different fake classes, and the images that are inferred
as the same fake output could originally belong to different classes.
These results demonstrate the randomness of Fake Gradient, which
is effective in misleading the attacker and protect the privacy.

5.3 Defense Against Adversarial Attacks

Figure 6 demonstrates the intermediate results of Fake Gradient
from the sample test images based on ResNet34. The first column
shows the original images. The second and third columns show
the perturbations generated by Fake Gradient and on the original
gradient, respectively, in the form of heatmap. The fourth column
demonstrates the difference between the two types of gradients.
The green dots represent the gradients based on the model mod-
ified by Fake Gradient, the blue dots represent those of the the
original model, and the cyan dots represent their overlaps. In the
first row, we label a classification-relevant area (e.g., the neck of the
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bird) using red circles. Within the red circle in the second-column
image, the heatmap is more smooth, while in the third-column im-
age, there are two obvious heat spots. In the fourth-column image,
we notice that the original gradient would lead the adversarial at-
tack to add more perturbations on this classification-relevant area,
while the Fake Gradient would not. In the second row, we label the
classification-irrelevant area (e.g., grassland) using red circles. We
notice that the second-column image has less smooth heatmap than
that in the third column. The fourth-column image shows that the
fake gradient would result in perturbations added to the irrelevant
area. In summary, by observing both of the two fourth-column
images, the cyan dots are rare, which means that Fake Gradient can
successfully mislead the adversarial attack to add perturbations to
the areas irrelevant to the classification task.

We further evaluate the overall defense performance of Fake
Gradient in terms of the defense success rate, as compared to the
random weight approach. Instead of evaluating the classification
accuracy based on the original perturbations, we use Fake Gradient
to modify the 7 DNN models and employ DeepFool [19] to directly
attack the modified models. The results are shown in Table 1. We
observe that the defense success rate is very high (>79.8%) by using
Fake Gradient while the random weight approach achieves very low
success rate (i.e., < 22.5%), because it cannot cause the adversarial
attack algorithm to generate insensitive perturbations.

We also evaluate the L2 Norm of the adversarial samples to exam-
ine the detail of how Fake Gradient defends against the adversarial
attack. We collect all the L2 Norm values for each test image and
calculate the average, which are shown in Table 1. We observe
that Fake Gradient causes the adversarial attack to generate fewer
perturbations than the original and the random weight approaches.

5.4 Overhead

One of the advantages of Fake Gradient is the low protection over-
head. First, comparing with the data encryption [4, 6, 33], distillation
[21, 22], and adversarial training [8, 14, 26] approaches, Fake Gra-
dient reduces huge protection overhead by eliminating the need of
re-training. Second, comparing with the data encryption and data
filtering methods, Fake Gradient only introduces little processing
overhead in the model inference, since it only doubles the weights



Poster Session 6

Perturbation based on
Faked Gradient

Original Image

Perturbation based on

MM 21, October 20-24, 2021, Virtual Event, China

paddepang | Jusipein axed I jusipero jeuibuo i

Gradient Comparison

Original Gradient

Figure 6: The intermediate results of the experiment with ResNet34.

of the last fully connected layer. Considering the huge portion of
the convolution layers in the DNN models, the portion of the model
size increased by Fake Gradient is small. Figure 7 compares the
model size of the original model and the new model generated by
Fake Gradient. We observe that size of the new model is almost the
same as the original model, with only small increase. Furthermore,
Figure 8 shows the average processing time for the 7 DNN models
with and without Fake Gradient. We observe that Fake Gradient
only increases less than 5% of the original inference time.

2

M Original Model ® New Model

Figure 7: The comparison of model size.

6 CONCLUSION

Targeting the privacy and security issues in the DNN-based image
classification applications, we have developed the Fake Gradient
framework, which can mislead the attacker to fake outputs and
further use the fake gradient to prevent adversarial attacks. In
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Figure 8: The comparison of processing overhead.

particular, Fake Gradient adds new nodes and weights in the output
layer (i.e., the last fully connected layer) of the DNN model, which
cause the adversarial attack algorithm to generate significantly
less effective perturbations. We evaluate Fake Gradient using the
ImageNet dataset on 7 popular DNN models. The results show
that Fake Gradient is effective in protecting privacy and defending
against adversarial attacks in image classification applications. The
project repository of Fake Gradient is located at https://github.com/
hwsel/FakeGradient.
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