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a b s t r a c t

This paper employs the direct method to design sampled-data state/output feedback controller for
a class of uncertain nonlinear systems under a general linear growth condition. Both state feedback
controller and observer are constructed directly in the discrete-time domain for the difference-integral
systems equivalent to the continuous-time systems. To dominate the influence of the uncertain
nonlinearities, a co-design process is used to determine the sampling period and scaling gain together.
Compared to the emulation method, the direct co-design method can handle a broader class of
nonlinear systems and has more flexibility in choosing the sampling period that is less restrictive
for digital implementation.

© 2021 Published by Elsevier B.V.
1. Introduction

Recently, the problem of designing sampled-data controllers
or nonlinear continuous-time systems has received a lot of atten-
ion as more and more controllers are being implemented using
igital computers [1]. Many design methods have been developed
nd reported in classical textbooks or some of tutorial papers
1–4].

In the linear case, design of discrete-time controllers, either
n state feedback form or output feedback form, can be per-
ectly solved as there is a discrete-time system equivalent to
he sampled continuous-time system. However, in the nonlin-
ar case, it is impossible to find a discrete-time system that is
ompletely equivalent to the sampled nonlinear continuous-time
ystem. Therefore, the emulation method has been used to derive
egional or global stabilizers for nonlinear systems in [5] where
he possible interval of sampling period is very small. Similar
onditions are also assumed in [6] where fast enough sampling is
equired to guarantee global asymptotic stability. Designing con-
rollers in the discrete-time domain based on an approximated
ystem has also been conducted in [7] and lately extended in [8]
o system modeled by differential inclusions plus controller in

✩ The authors would like to thank the support by U.S. National Science
Foundation (Grant No. 1826086), National Natural Science Foundation of China
(Grant No. 61973178, 61973139, Key Program:u2066203), The Key Project of
Philosophy and Social Science Research in Colleges and Universities in Jiangsu
Province, China (Grant No. 2020SJZDA098), Key University Science Research
Project of Jiangsu Province, China (Grant No. 17KJA120003).

∗ Corresponding author.
E-mail address: caokecai@gmail.com (K. Cao).
ttps://doi.org/10.1016/j.sysconle.2021.105000
167-6911/© 2021 Published by Elsevier B.V.
terms of difference inclusions. However, only local or semi-global
stabilization was obtained due to the inevitable approximating
error between the approximated linear discrete-time system and
the original nonlinear continuous-time system.

Another challenge caused by the presence of nonlinearities
is that the well-known separation principle in output feedback
controller design does not work for nonlinear system [9], and a
hybrid version of the separation principle has been recently pro-
posed in [10] for globally sampled-data stabilization of nonlinear
systems. The situation is even worse when the nonlinearities in
controlled system are not known. Although global output feed-
back stabilization has been proved to be solvable in [11] using
technique of input saturation, the nonlinear systems considered
in [11] are restricted to those having stable-free dynamics. For
a lower-triangular nonlinear system satisfying the linear growth
condition, globally exponentially stabilization has also been suc-
cessfully solved in [12] where the observer was first designed
without considering nonlinearities and then a scaling gain was
employed to dominate the nonlinearities. The work [13] used an
emulation method and introduced a linear domination approach
to achieve global output feedback stabilization using sampled-
data control for the same system under the same condition. The
approach in [13] has a two-step design process: (i) a scaling gain
is firstly injected into the continuous-time controller to dominate
the influence of the nonlinearities in the continuous-time domain,
and (ii) the sampling period for the discretized controller is tuned
to make sure that the difference between the continuous-time
controller and discretized controller is sufficiently small. The
drawbacks of this method are that the nonlinearities are indepen-
dent of the control input and only very small sampling periods are

allowed in the end. Even in the linear case, the emulation method
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http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2021.105000&domain=pdf
mailto:caokecai@gmail.com
https://doi.org/10.1016/j.sysconle.2021.105000


K. Cao, C. Qian and J. Gu Systems & Control Letters 155 (2021) 105000

s
t
b
i
n

p
b
o
a
i
p
m
s
a
f
o
b

m
a
b
o
d
m
t
t
t
C
e
t
l
u
i
t
i

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
i
f

s

A

s{

f

z

T
w

I
T

till requires that the sampling period should be very small due
o the presence of approximation error. The independent design
etween control gain and sampling period can also be observed
n recent results [14] on semi-global asymptotic stabilization of
on-affine systems using sampled-data output feedback.
Selection of appropriate sampling periods is a fundamental

roblem in designing digital controller [1] and many results have
een achieved from different aspects, such as controllability and
bservability of discrete-time system in [15], maximally allow-
ble sampling/transmission interval in [16], system performance
n [17,18], or even optimization problem in [19]. In [20], com-
arisons under different sampling periods and different design
ethods have been studied for linear discrete-time stochastic
ystem which shows that common control strategies, frequently
pplied in the control literature, often give poor results especially
or shorter sampling periods. Similarly, high sampling rates are
ften seen when the sampled-data output feedback controller has
een constructed based on high-gain observers in [13,21,22].
In this paper, to handle more general nonlinearities and for

ore flexibility in selecting the sampling period, we introduce
new method where the scaling gain and sampling period will
e co-designed. Both sampled-data state feedback controller and
utput feedback controller are constructed directly in the
iscrete-time domain. Then the sampled-data control is imple-
ented to a difference-integral system which is equivalent to

he sampled continuous-time nonlinear system. Depending on
he nonlinearities, an appropriate sampling period can be selected
o render the closed-loop system globally asymptotically stable.
ompared to the emulation method, the direct co-design method
nables us to use a less restrictive sampling period. Especially for
he nominal linear system, the sampling period can be arbitrarily
arge which is impossible in the emulation case. In addition, by
tilizing the discrete-time controller to dominate the nonlinear-
ties in the difference-integral system, our direct method is able
o handle more general nonlinearities dependent of the control
nput.

. Problem statement and preliminaries

Considering the following nonlinear system

ẋ1 = x2 + f1(x, u),
ẋ2 = x3 + f2(x, u),

...

ẋn = u + fn(x, u),
y = x1

(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))⊺ is the system state, u(t) ∈ R
is the control input, y ∈ R is the system output and fi(x, u), i =

, 2, . . . , n are unknown functions. We are interested in design-
ng sampled-data controllers using state feedback and output
eedback to globally stabilize the nonlinear system (1).

To solve the aforementioned problems, in this paper we as-
ume the following condition for the nonlinearities.

ssumption 2.1. For i = 1, 2, . . . , n, there exists a constant ci
such that⏐⏐fi(z1, Nz2, · · · ,Nn−1zn, Nnv)

⏐⏐
≤ ciN i−1(|z1| + · · · + |zn| + |v|), ∀N ≥ 1. (2)

Remark 1. The growth condition (2) is a more general form of
the linear growth condition, specifically,

|f (x, u)| ≤ c (|x | + · · · + |u|), i = 1, . . . , n. (3)
i i 1

2

which has been a commonly used condition for global output
feedback stabilization of (1) via continuous-time control [12]
and sampled-data control [13]. In fact, this linear growth condi-
tion (3) is somehow necessary for global sampled-data stabiliza-
tion of a nonlinear system. For example, for an unknown constant
θ ∈ [0.5, 1], system ẋ = u + θx2 can be globally stabilized
by a continuous-time controller u(x) = −x − x3 satisfying (i)
u(x)x < 0 and (ii) limx→−∞ u(x) = ∞. However, there is no any
sampled-data state feedback controller with the properties (i)-(ii)
to globally stabilize the above system.

3. Sampled-data state feedback stabilization

In this section, a sampled-data state feedback controller will
be designed directly in the discrete-time domain.

First, through the following coordinate transformation

z1 = x1, z2 =
x2
N

, · · · , zn =
xn

Nn−1 , v =
u
Nn (4)

for a constant N ≥ 1 to be determined later, system (1) can be
written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = Nz2 + f̄1(z, v),

ż2 = Nz3 + f̄2(z, v),
...

żn = Nv + f̄n(z, v),
y = z1,

(5)

where f̄i(z, v) =
fi(x,u)
N i−1 , i = 1, . . . , n. By Assumption 2.1, it is clear

that⏐⏐f̄i(z, v)⏐⏐ ≤ ci(|z1| + · · · + |zn| + |v|). (6)

Defining

A =

⎡⎢⎢⎣
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
...

0
1

⎤⎥⎥⎦ , C =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦
⊺

,

ystem (5) can be written as the following compact form

ż(t) = NAz(t) + NBv(t) + f̄ (z(t), v(t))
y(t) = Cz(t).

(7)

For a given constant T0 > 0, denote T := T0/N in the
ollowings sections. The nominal part of system (7) is

˙(t) = NAz(t) + NBv(t). (8)

he system (8) under a sampler and a sampled-data controller
ith a zero-order-hold, i.e., v(t) = v(kT ), t ∈ [kT , (k + 1)T ), is

equivalent to the following discrete-time system

z((k + 1)T ) = Φz(kT ) + Γ v(kT ) (9)

where Φ = eNAT = eAT0 and Γ =
∫ T
0 eNAsNBds =

∫ T0
0 eAsBds, or ,

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 T0
T20
2! · · ·

Tn−1
0

(n−1)!

0 1 T0
. . .

...

. . .
. . .

T20
2!

0 0 · · · 1 T0
0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tn0
n!

Tn−1
0

(n−1)!
...
T20
2!
T0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

t is obvious that (Φ, Γ ) is a controllable pair for any constant
0 > 0. Therefore, there exists appropriate K = (k1, . . . , kn) such

that under the following sampled-data state feedback controller

v = −k z (kT ) − k z (kT ) − · · · − k z (kT ), (11)
1 1 2 2 n n
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he following closed-loop system

((k + 1)T ) = Ωz(kT ), (12)

here Ω is defined as

1 −
k1Tn

0
n! T0 −

k2Tn
0

n!
T2
0
2! −

k3Tn
0

n! · · ·
Tn−1
0

(n−1)! −
knTn

0
n!

−k1T
n−1
0

(n−1)! 1 −
−k2T

n−1
0

(n−1)! T0 −
−k3T

n−1
0

(n−1)!

. . .
.
.
.

. . .
. . .

−k1T2
0

(2)!
−k2T2

0
(2)! · · · 1 −

kn−1T2
0

(2)! T0 −
knT2

0
(2)!

−k1T0 −k2T0 · · · −kn−1T0 1 − knT0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s globally asymptotically stable.

emma 1. Under the sampled-data controller (11), the continuous-
ime system (7) is equivalent to the following difference-integral
ystem at t = kT , k = 0, 1, 2, . . .,

((k + 1)T ) = Φz(kT ) + Γ v(kT ) +
1
N

Ψ (kT ) (13)

here Ψ (kT ) =
∫ T0
0 eAτ f̄

(
z((k + 1)T −

τ
N ), v(kT )

)
dτ and T0 = NT .

Proof. The solution of system (7) is described by

z(t) = eNAtz(t0) +

∫ t

t0

eNA(t−s) [NBv(s) + f̄ (z(s), v(s))
]
ds.

Letting t = (k + 1)T and t0 = kT , we can obtain the following
equation with the sampled-data controller (11)

z((k + 1)T ) = eNAT z(kT ) +

∫ (k+1)T

kT
eNA((k+1)T−s)NBv(kT )ds

+

∫ (k+1)T

kT
eNA((k+1)T−s) f̄ (z(s), v(kT )) ds.

Denoting τ = N((k+1)T−s), the above equation can be rewritten
as

z((k + 1)T ) = eAT0
Φ

z(kT ) +

∫ NT

0
eAτBdτ  
Γ

v(kT )

+
1
N

∫ NT

0
eAτ f̄

(
z((k + 1)T −

τ

N
), v(kT )

)
dτ

hich is the difference-integral system (13) corresponding to
7). □

heorem 1. Under Assumption 2.1, there exist a scaling gain N > 1
and a sampling period T such that the sampled-data state feedback
controller (11) globally asymptotically stabilizes system (1), where

> 2 (2 ∥Ω∥ + ρ0) ∥P∥ ρ0 with ρ0 = ρ1
[
(1 + T0γ2) eT0γ1 + ∥K∥

]∫ T0
0

eAτ
 dτ , γ1 = ∥A∥ +

√
c21 + · · · + c2n , γ2 = ∥BK∥√

c21 + · · · + c2n∥K∥ and T0 = NT is selected such that Ω is
Schur-stable.

Proof. First, integrating both sides of (7) on [kT , t] yields

(t) − z(kT ) =

tw
(NAz(s) + f̄ (z, v(s)) + NBv(s))ds.
kT

3

Substituting (11) and (6) into the above equation yields

∥z(t)∥

≤ ∥z(kT )∥ +

tw

kT

[
N∥A∥∥z(s)∥ + ∥f̄ (z, v)∥ + N∥BK∥ ∥z(kT )∥

]
ds

≤ ∥z(kT )∥ +

tw

kT

Nγ1 ∥z(s)∥ ds + NTγ2 ∥z(kT )∥

here γ1 = ∥A∥ +

√
c21 + · · · + c2n and γ2 = ∥BK∥√

c21 + · · · + c2n∥K∥. Thus on the kth sampling interval [kT , t],
e have

z(t)∥ ≤ (1 + T0γ2) ∥z(kT )∥ +

tw

kT

Nγ1 ∥z(s)∥ ds.

pplying Gronwall inequality, one gets

z(t)∥ ≤ (1 + T0γ2) eT0γ1 · ∥z(kT )∥ (14)

or t ∈ [kT , (k+ 1)T ). Then with the help of (6), Ψ (kT ) defined in
emma 1 can be estimated as

∥Ψ (kT )∥ ≤

∫ T0

0

eAτ
 f̄ (

z((k + 1)T −
τ

N
), v(kT )

) dτ

≤

∫ T0

0

eAτ
 ρ1

(z((k + 1)T −
τ

N
)
 + |v(kT )|

)
dτ (15)

or a constant ρ1 =

√
c21 + · · · + c2n . After substituting v(kT ) using

(11) and replacing z((k+1)T −
τ
N ) with the upper bound obtained

in (14), (15) can be further estimated as

∥Ψ (kT )∥ ≤ ρ1
[
(1 + T0γ2) eT0γ1 + ∥K∥

] ∫ T0

0

eAτ
 dτ  

ρ0

∥z(kT )∥ .

In what follows, we will show that the sampled-data state
feedback controller (11) can globally asymptotically stabilize the
uncertain nonlinear system (1) using the linear domination ap-
proach (LDA). Since the system (9) without perturbations is glob-
ally asymptotically stable under the sampled-data state feedback
controller (11), there exists a positive definite P = P⊺ such that
Ω⊺PΩ − P = −I .

Construct V (z(k)) = z⊺(k)Pz(k) for the closed-loop system (13),
then we have
V (z((k + 1)T )) − V (z(kT ))

=

[
Ωz(kT ) +

Ψ (kT )
N

]⊺

P
[
Ωz(kT ) +

Ψ (kT )
N

]
− z⊺(kT )Pz(kT )

= − ∥z(kT )∥2
+ 2z⊺(kT )Ω⊺P

Ψ (kT )
N

+
1
N2 Ψ ⊺(kT )PΨ (kT )

≤ −∥z(kT )∥2
+

2ρ0

N
∥Ω∥ ∥P∥ ∥z(kT )∥2

+
ρ2
0 ∥P∥

N2
∥z(kT )∥2

≤ −∥z(kT )∥2
+

(2 ∥Ω∥ + ρ0) ∥P∥ ρ0

N
∥z(kT )∥ 2.

Thus if we select a large enough N such that (2∥Ω∥+ρ0)∥P∥ρ0
N ≤ 1/2,

e will have

V (z((k + 1)T )) − V (z(kT )) ≤ −
1
2

∥z(kT )∥2 (16)

which implies that the closed-loop system (13) is globally asymp-
totically stable i.e. z(kT ) −→ 0 (k −→ ∞). Then z(t) → 0 (t →

∞) is ensured based on (14). Thus with the help of coordinate
transformation (4), x(t) −→ 0 (t −→ ∞) can be guaranteed,
and system (1) is globally stabilized by the sampled-data state
feedback controller (11). □
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emark 2. The controller (11) is directly designed for the discrete
quivalent system (9) of the nominal system (8) and then is
pplied to the difference-integral system (13). This method is
ifferent to the emulation method (also called indirect method)
here the controller is firstly designed as a continuous-time one

or (8) and then is discretized as a sampled-data controller. One of
he disadvantages of the emulation method is that the sampling
eriod has to be very small to maintain stability even for the
inear case, due to its approximation nature. However, the direct
ethod will not have this restriction. In the linear case when

i = 0, ∀i, it is clear that ρ0 = 0 since ρ1 = 0. By (16), it is
ossible to choose any N > 0 which means T = T0 for any given
0. Even in the presence of nonlinearities, it is still possible to
hoose a smaller N (consequently a larger sampling period T ) to
chieve global asymptotic stability if the growth rate is small.

. Sampled-data output feedback stabilization

To start with, the following discrete-time state observer for
ystem (7) will be firstly constructed

ˆ((k + 1)T ) = Φ ẑ(kT ) + Γ v(kT ) + H(y(kT ) − Cẑ(kT )),

ˆ = [ẑ1, ẑ2, . . . , ẑn]⊺, C = [1, 0, . . . , 0] (17)

here Φ = eAT0 , Γ =
∫ T0
0 eAsBds and H is designed such that the

igenvalues of Φ − HC are inside of the unit circle.
Since z2, . . . , zn are not measurable, we design

v(kT ) = −K ẑ(kT ), (18)

ith the same K = [k1, k2, . . . , kn] used in (11) to ensure that all
igenvalues of Φ − Γ K lie inside of the unit circle. Substituting
18) into (17) yields

ˆ((k + 1)T ) = (Φ − Γ K − HC)ẑ(kT ) + Hy(kT ) (19)

Putting the difference-integral system (13) together with the
ampled-data output feedback controller (18)–(19) leads to the
ollowing closed-loop system in [tk, tk+1)

z((k + 1)T )
ẑ((k + 1)T )

]
= Ξ

[
z(kT )
ẑ(kT )

]
+

[
1
N Ψ (kT )

0

]
, (20)

Ξ =

(
Φ −Γ K
HC Φ − Γ K − HC

)
. (21)

With the following similar transformation of matrix(
I −I
0 I

)
Ξ

(
I I
0 I

)
=

(
Φ − HC 0

HC Φ − Γ K

)
,

we can conclude that the eigenvalues of Ξ are composed of
eigenvalues of Φ − HC and eigenvalues of Φ − Γ K . With the
previously selected K and H , all eigenvalues of system matrix
Ξ lie inside of the unit circle. Hence, there is a positive definite
matrix P̄ = P̄⊺

∈ R2n×2n > 0 such that Ξ ⊺P̄Ξ − P̄ = −I .

Theorem 2. Under Assumption 2.1, there exist appropriate scaling
gain N and sampling period T such that the uncertain system (1)
is globally asymptotically stable under the sampled-data output
feedback controller (18)–(19), where N > 4ρ̂0∥Ξ ⊺P̄∥ + 2ρ̂2

0

P̄1
ith ρ̂0 = ρ1

(
T0γ2eT0γ1 + ∥K∥ + eT0γ1

)
·
∫ T0
0

eAτ
 dτ and T0 = NT

is selected such that Ξ is Schur-stable.

Proof. Integrating both sides of (7) on [kT , t] with the output-
feedback controller (18) will yield

∥z(t)∥

≤ ∥z(kT )∥ +

tw [
N∥A∥∥z(s)∥ + ∥f̄ (z, v)∥ + N∥BK∥ ∥̂z(kT )∥

]
ds.
kT t

4

Similar to the proof in Theorem 1, the upper bound of ∥z(t)∥ on
the kth sampling interval is

∥z(t)∥ ≤ ∥z(kT )∥ + NTγ2
ẑ(kT ) +

tw

kT

Nγ1 ∥z(s)∥ ds. (22)

Applying Gronwall inequality for t ∈ [kT , (k + 1)T ), we have

z(t)∥ ≤

(
∥z(kT )∥ + NTγ2

ẑ(kT ))
eT0γ1 . (23)

imilar to (15), with the help of (18) and (23), we have

∥Ψ (kT )∥

≤

∫ T0

0

eAτ
 ρ1

(z((k + 1)T −
τ

N
)
 + ∥K∥

ẑ(kT ))
dτ

≤ ρ1
[(
T0γ2eT0γ1 + ∥K∥

) ẑ(kT ) + eT0γ1 ∥z(kT )∥
]

×

∫ T0

0

eAτ
 dτ ≤ ρ̂0 ∥Z(kT )∥ (24)

here ρ̂0 = ρ1
(
T0γ2eT0γ1 + ∥K∥ + eT0γ1

)
·
∫ T0
0

eAτ
 dτ .

For the stability analysis of (20), select

¯ (Z(kT )) = Z⊺(kT )P̄Z(kT ), Z(kT ) =

[
z(kT )
ẑ(kT )

]
s the Lyapunov function. Then we have

V̄ (Z((k + 1)T )) − V̄ (Z(kT ))

=

[
ΞZ(kT ) +

1
N

[
Ψ (kT )

0

]]⊺

P̄
[
ΞZ(kT ) +

1
N

[
Ψ (kT )

0

]]
− Z⊺(kT )P̄Z(kT )

= − ∥Z(kT )∥2
+ 2Z⊺(kT )Ξ ⊺P̄

[
Ψ (kT )

L
0

]
+

Ψ ⊺(kT )
N

P̄1
Ψ (kT )

N

≤ −∥Z(kT )∥2
+ 2 ∥Z(kT )∥

Ξ ⊺P̄
 ∥Ψ (kT )∥

N
+

P̄1
N2

∥Ψ (kT )∥2

where P̄1 is the first n × n block of P̄ .
Based on the upper bound of perturbations obtained in (24),

the above difference of Lyapunov function V̄ (Z(k)) can be further
estimated as

V̄ (Z((k + 1)T )) − V̄ (Z(kT ))

= −∥Z(kT )∥2
+

2ρ̂0∥Ξ ⊺P̄∥ + ρ̂2
0

P̄1
N

∥Z(kT )∥2 . (25)

y selecting a large enough N satisfying 2ρ̂0∥Ξ⊺ P̄∥+ρ̂2
0∥P̄1∥

N ≤ 1/2,
25) becomes

V̄ (Z((k + 1)T )) − V̄ (Z(kT )) ≤ −
1
2

∥Z(kT )∥2.

Thus, asymptotic stability of the closed-loop system (20) can be
guaranteed i.e. z(kT ) −→ 0 and ẑ(kT ) −→ z(kT ), as k −→ ∞.
Then z(t) → 0 (t → ∞) is ensured based on (23). Thus with the
help of coordinate transformation (4), x(t) −→ 0 (t −→ ∞) can
also be guaranteed, and system (1) is globally stabilized by the
sampled-data output feedback controller (18)–(19). □

Remark 3. Selections of N in the proof of Theorems 1 and 2 are
based on the decrease of Lyapunov function V (z(k)) or V̄ (Z(k)) on
each sampling interval where 1

2 has been selected for simplicity
of proof. Any other positive number that is smaller than 1 can be
used to guarantee decreasing of the Lyapunov function. The larger
of N is selected, the faster decrease of Lyapunov function can be
obtained.

Remark 4. For any given control gain of K = [k1, k2, . . . , kn]
hat can continuously stabilizes the nominal linear system in
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Fig. 1. Interplay among T0 , ρ0 , N and T .

continuous-time, the process for deriving the co-designed samp-
led-data controller for the nonlinear system (1) has been summa-
rized in Fig. 1 where the interplay among different parameters are
explicitly shown.

Example 1. Consider the following system⎧⎪⎨⎪⎩
ẋ1 = x2,

ẋ2 = u + a sin(x21u
2),

y = x1,
(26)

where a is a constant. It is obviously that the nonlinearity fi(·) in
(26) satisfies Assumption 2.1 with c1 = 0 and c2 = a since

|a sin(x21u
2)| ≤ a

√
|x1u| = a

√
|z1N2v| ≤ aN(|z1| + |v|).

ence, by Theorem 2, we can construct the following sampled-
ata output feedback controller[
ẑ1((k + 1)T )
ẑ2((k + 1)T )

]
=

[
1 1
0 1

][
ẑ1(kT )
ẑ2(kT )

]
+

[
0.5
1

]
v(kT ) + H(z1(k) − ẑ1(k)) (27)

(t) = −k1ẑ1(kT ) − k2ẑ2(kT ), ∀t ∈ [kT , (k + 1)T ), (28)

ith K = [0.9702 1.4849] and H = [1.7 0.72]⊺.

Under the above selection of control gain K , the system matrix
defined in (12) is

1 −
0.9702

2 T 2
0 T0 −

1.4849
2 T 2

0

−0.9702T0 1 − 1.4849T0

]
here the possible interval of T0 = NT ∈ (0, 1.3) can be
umerically obtained such that all eigenvalues of the above Ω

ie inside of the unit circle. For simplicity, we have selected T0 =

T = 1 in the following studies.
Firstly, we consider the sampled-data stabilization of system

26) without nonlinearity using the co-designed controller (27)–
28). Simulation results under large sampling period (T = 1) have
een shown in Figs. 2 and 3, and the sampling period can be
rbitrary large due to the compensation of scaling gain in this
ase.
5

Fig. 2. States and estimated states of (26) without nonlinearities (x(0) =

1, 1]⊺, z(0) = [0.5, −0.5]⊺).

Fig. 3. Control input of (26) without nonlinearities (x(0) = [1, 1]⊺, z(0) =

[0.5, −0.5]⊺).

Fig. 4. States and estimated states of (26) (x(0) = [1, 1]⊺, z(0) = [0.5, −0.5]⊺).

Fig. 5. Control input of (26) (x(0) = [1, 1]⊺, z(0) = [0.5, −0.5]⊺).

Secondly, global stabilization of system (26) with a = 1 is
further considered using the co-designed controller (27)–(28).
Due to the presence of perturbation, N = 1.5 has been selected
to dominate the effects of perturbations, and then the allowable
sampling period is 0 < T ≤ 0.86 ≈ 1.3

1.5 . Simulation results
shown in Figs. 4 and 5 with N = 1.5, T = 0.67 have shown the
effectiveness of our co-designed controller (27)–(28).
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emark 5. The emulation method for sampled-data output con-
rol in [13] first designs a continuous-time output feedback con-
roller and then discretizes it as a sampled-data controller. The
mulation method in [13] works well by contracting the differ-
nce between the discretized and continuous-time controllers,
ut it has two drawbacks: (i) the nonlinearities are independent
f the control input, and (ii) the approximation error is small
nly for a very small sampling period. Within the framework of

direct design in discrete-time domain, these two drawbacks can
be avoided. As seen in (26), f2(·) = a sin(x21u

2) not only contains
u but also is not Lipschitz in u, which now can be handled by
the direct method. In addition, less restrictive sampling periods
can be selected, which is an important implementation issue in
computer-controlled systems.

Example 2. For comparisons with the emulated controllers pro-
posed in [13], global state feedback stabilization and global out-
put feedback stabilization of the following system are considered
in this example⎧⎪⎪⎨⎪⎪⎩

ẋ1 = x2,
ẋ2 = x3 + sin(x1) ln(1 + |x2|),
ẋ3 = u + sin(x2) ln(1 + |x3|),
y = x1.

(29)

Comparisons between the emulated controller of [13] and the
co-designed controllers (11) have been conducted with the same
control gain K =

[
1 2 2

]
where Tmax = 0.4 if the emulated

controller of [13] is used. Similar to the previous example, the
system matrix Ω defined in (12) becomes⎡⎢⎣1 −

1
6T

3
0 T0 −

1
3T

3
0

T20
2 −

1
3T

3
0

−
1
2T

2
0 1 − T 2

0 T0 − T 2
0

−T0 −2T0 1 − 2T0

⎤⎥⎦
rom which the allowable selection of T0 lies in (0, 1.03) can be
umerically obtained. For simplicity, LT = 1 has been used in the
ollowing simulation studies. Based on the fact that
|sin(z1) ln(1 + |x2|)| < (|z1| + |z2|), Assumption 2.1 is satisfied
ith ci = 1. Then we select N = 1.1 to dominate the nonlin-
arities, and Tmax = 0.9 can be obtained due to the compensation
etween the scaling gain N and the sampling period T . Simulation
esults presented in Figs. 6 and 7 with T = 0.8,N = 1.25 and
(0) = [3, 2, −3]⊺ have shown that the allowable sampling period
as been enlarged if our co-designed controller (11) is used.
Sampled-data output stabilization of system (29) using (18)–

19) is further considered in the following. With results obtained
n Theorem 2, the allowable selection of NT lies in (0, 0.65) for
he output stabilization of system (29) under the co-designed
ontroller (18)–(19). Under the selection of control gain K =

1 2 2
]
and observer gain H =

[
2.4 3.3 1.8

]⊺, the max-
mum sampling period for the emulated controller of [13] is
max = 0.28 while Tmax = 0.45 for the co-designed controller
18)–(19). Simulation results obtained in Figs. 8 and 9 with z(0) =

−1, −5, −5]⊺ have illustrated the effectiveness of Theorem 2
nder T = 0.3 which is larger than the maximum sampling
eriod obtained by [13] using emulation method.

. Conclusion

In this paper, global stabilization of a class of uncertain non-
inear systems has been considered using sampled-data control.
oth sampled-data state feedback controller and sampled-data
utput feedback controller have been constructed directly in the
iscrete-time domain without resorting to the method of em-

lation. The direct method has enlarged the class of nonlinear

6

Fig. 6. States of (29) under state-feedback controller (11).

Fig. 7. Control input of (29) under state-feedback controller (11).

Fig. 8. States and estimated states of (29) under controller (18)–(19).

Fig. 9. Control input of (29) under controller (18)–(19).

systems which are globally stabilized by sampled-data control.
Moreover, as the sampling period and scaling gain have been
co-designed in the construction process, the sampling period
can be selected in a less conservative way for relaxed hardware
requirements to implement our sampled-data controllers.

With the flexibility provided by the co-designed sampled-data
controller, results of this paper are much preferred for con-
trol problems with sparse sampling where event-triggered and
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elf-triggered strategies maybe not applicable due to hardware
r physical restrictions. Thus an interesting extension will in-
olve the possibility of finding a minimal dwell-time to prevent
he Zeno phenomenon through combining the co-designed time-
egularizing controller with those event-triggered strategies. Be-
ause work of this paper are mainly based on Assumption 2.1
here the nonlinearities are vanishing at the equilibrium, the
alidation of obtained results for system with much stronger
onlinearities will also be considered in the future.
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