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We study the long run implications of workplace automation induced by capital accumula-
tion. We describe a minimal set of sufficient conditions for sustained growth, along 
with a declining labor share of income in the long run: (i) a basic asymmetry between 
physical and human capital; (ii) the technical possibility of automation in each sector; (ii) 
a self-replication condition on the production function for robot services; (iv) asymptotic 
homotheticity (more generally neutrality) of demand, and (v) a minimal degree of patience 
or intergenerational altruism among a fraction of households. However, the displacement of 
human labor is gradual, and absolute real wages could rise indefinitely. The results obtain 
in the absence of any technical progress; they extend to endogenous technical progress 
even if such progress is not biased ex ante in favor of automation.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

This paper describes a theory of automation and its implications for growth and labor income share in the long run. 
Our framework is considerably more general than existing models, and generates a number of distinctive predictions. The 
model features a countable infinity of final goods, and three intermediate goods: machine capital, robots and education (or 
more accurately, services produced by each of these intermediate goods). In each of these sectors, production takes place by 
combining machine capital with tasks performed by a combination of human labor and robot services. We impose minimal 
restrictions on the technology, except that capital and tasks are both essential inputs, and that it is technologically feasible 
— though not necessarily economically viable — for humans to be dispensed with in every task.1 The model permits human 
capital accumulation that allows workers to shift occupations in response to the threat of automation.2
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1 The distinction between these notions is important, and we return to it in Section 2.2 when we develop the theory.
2 Apart from constant returns to scale, no substantive restrictions are placed on technology, not even convexity. Production functions can vary across 

sectors. Human labor could be sector-specific, or migrate across sectors via education or training. Households can accumulate financial wealth can purchase 
education to move across occupations, and they are permitted to be heterogeneous in their tastes, discount factors and initial endowments.
https://doi.org/10.1016/j.red.2021.09.003
1094-2025/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.red.2021.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/red
mailto:dilipm@bu.edu
https://doi.org/10.1016/j.red.2021.09.003


JID:YREDY AID:1110 /FLA [m3G; v1.310] P.2 (1-26)

D. Ray r© D. Mookherjee Review of Economic Dynamics ••• (••••) •••–•••
We show that under some conditions, sustained declines in labor share can be a consequence of progressive capital-
deepening resulting from capital accumulation alone (rather than technical progress or rising markups). This result, in line 
with the evidence in Karabarbounis and Neiman (2014), can happen despite arbitrarily inelastic capital-labor substitution 
in individual sectors. At the same time, the environment that drives the decline in labor share is also closely connected 
with sustained economic growth per capita, so absolute wages can grow unboundedly at the same time that the labor share
converges to zero. We describe the conditions, and explain how the limiting share of labor can be positive when any one of 
them is violated.

The baseline model deliberately abstracts from technical progress, though we later incorporate endogenously directed 
technical change. It exhibits the following phenomena:

(a) Endogenous accumulation of both physical and human capital, but with the relative deepening of physical capital;
(b) Ongoing decline in the prices of capital goods relative to human wages, driven by the deepening in (a);
(c) Progressive automation driven by the relative price decline in (b).

Features (a) and (b) are the implications of a fundamental asymmetry between physical and human capital. While indi-
vidual claims to physical capital in any sector can be replicated and scaled indefinitely, the same is not true for ownership 
of labor. Humans cannot be bought and sold the same way machines are. Instead, human capital accumulation takes the 
form of acquiring embodied skills for a specific task or occupation, a capacity always contained in one physical self. So 
workers can invest in human capital to an unbounded degree, but are subject to diminishing returns in the acquisition of 
skill within any one task, and to the possibility that new skills may be needed to switch occupations or tasks. Consequently, 
the returns to human capital acquisition are determined endogenously, and the pattern of household demand across goods 
produced by different sectors plays a central role in this determination.

In this setting, we first provide conditions for positive long run growth in per capita income: a self-replication property in 
the technology for producing “robots” or digital services, and a minimal threshold for patience or intergenerational altruism 
in preferences. The self-replication property, which we discuss in detail below, implies that the production of robots will be 
fully automated if the capital rental price falls sufficiently relative to the unit cost of tasks. It isn’t a universal condition, but 
does holds automatically in familiar settings such as Cobb-Douglas production. Self-replication bounds the price of robots 
relative to capital rentals, and we show that this condition, along with patience, generates long run growth as the economy 
is progressively freed from the constraint of a given endowment of human labor.

But endogenous growth is not the only implication. Because robot prices are bounded by self-replication, they must 
decline relative to human wages in a growing economy, for that growth must arise precisely from the accumulation of 
physical capital relative to human labor, inclusive of human capital accumulation. Therefore, if automation is technically 
feasible in any sector, it will also be a long run economic outcome, as long as that sector expands with the economy. By itself, 
this does not erode labor share, as humans could move from sector to sector. If, however, preferences are asymptotically 
homothetic, then we prove that this intersectoral movement cannot prevent a sustained decline in the labor share. Making 
transparent these conditions for the declining labor share is a central goal of our paper.

The share decline must perforce be gradual if there exist occupations where humans are sufficiently productive relative 
to robots: for then there are always sectors that are yet to be automated. But labor movement across sectors only attenuates 
the decline, without negating it. If preferences are asymptotically homothetic, there is just not enough demand to sustain the 
persistent scaling of human capital needed to ward off the decline. Section 3.8 argues that other conditions on preferences 
also deliver a similar result. We emphasize “preference neutrality” in particular: a condition stating that preferences do not 
particularly favor human-friendly sectors — nor do they necessarily disfavor them.

Thus automation is a double-edged sword. It is an engine of income growth. And yet that same engine causes the labor 
income share to asymptotically vanish. This dichotomy explains why a vanishing labor share can co-exist with sustained 
growth in absolute human wages. Proposition 2 formalizes this intuition by providing conditions for some human wages to 
grow without bound: the existence of essential sectors and occupations in which humans have sufficiently high marginal 
productivity relative to robots even as they are close to full displacement. If additionally the costs of occupation-switching 
are bounded, all human wages grow without bound. Automation can raise all boats — only not all at the same rate, with 
wage incomes growing slower than capital incomes.

Sections 3.5–3.8 explain why each of these conditions is required for the results, by dropping them one by one. This 
helps identify various pathways for the share of labor to remain positive in the long run: (a) a failure of the self-replication 
condition in the robot sector, (b) the impossibility of fully automating some sectors, (c) the possibility of unbounded human 
capital acquisition within occupations, and (d) the failure of asymptotic homotheticity in preferences.

The analysis so far abstracts entirely from technical progress, relying entirely on changes in prices of capital goods 
relative to human wages. Certainly, the labor share could remain positive if technical progress is biased in favor of humans. 
For instance, Acemoglu and Restrepo (2018) restrict technical progress to enlarge only the productive capacities of human 
labor. The asymmetry is then built in by assumption, rather than endogenously explained — giving rise to the question 
of the kind of bias that might emerge when the opportunities for technical progress are more evenly distributed between 
human labor, robots and capital services. To explore this question, Section 4 extends our model to permit directed technical 
progress in machine, human and robot productivities, but we explicitly assume no technological bias, either in favor of 
humans or against them. Such a model could also be reinterpreted (with a hedonic reinterpretation of the commodity 
2
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space) as one in which new goods are created. In such a symmetric setting, with technical progress equally sensitive to 
the prices of machines, robots and humans, we show that our long run distributional implications continue to be robust. 
Progressive capital deepening ensures that in equilibrium the derived demand for innovations in capital productivity cannot 
be surpassed by those for innovations in human productivity. Hence technical progress cannot be biased in favor of humans.

While our motivation is primarily conceptual and intended to guide largely speculative thoughts about the future, our 
theory provides a potential explanation for the recent decline in labor shares documented by Karabarbounis and Neiman 
(2014). As Section 5 clarifies, such a theory can be distinguished from explanations based on capital-augmenting technical 
progress, human capital accumulation, rising markups and market concentration or declining bargaining power of labor 
unions. Its relevance lies in the evidence provided by Karabarbounis and Neiman (2014), that a substantial fraction of the 
decline in labor share worldwide is explained by falling capital prices, even after controlling for capital-augmenting technical 
progress, markup rates and the skill composition of labor. Their theoretical explanation for this result is based on elastic capital-
labor substitution, an assumption which runs contrary to evidence provided in industry panel studies; see, e.g., Chirinko 
and Mallick (2014). Our model shows that a declining labor share can result from capital deepening even in the presence 
of inelastic capital-labor substitution in most sectors.

It is important to clarify that we do not address the question of inequality in the personal distribution of incomes. Nor 
do we argue that a growing functional divergence between capital and labor incomes must imply growing inequality in 
personal incomes. These issues require analyses of the composition of household investment between financial wealth and 
human capital, and in inequality of labor incomes. Suitable applications and extensions of our model are needed to study 
these questions, as elaborated in the concluding section.

Section 2 presents the baseline model. The main results are in Section 3, with related lines of discussion. Section 4
studies technical progress. Section 5 discusses the connections to existing literature in detail, while Section 6 concludes. 
Proofs are collected in Appendix A.

2. Baseline model with no technical progress

2.1. Production

There is a countable collection I of consumption goods, indexed by i. In addition, there are three intermediate good 
sectors producing education, robot services, and machine capital. The index j serves as generic notation for any of these 
(consumption or intermediate good) sectors. Everything is producible, with the exception of raw human labor. That en-
dowment is fixed (or normalized if population is growing), but human capital evolves as individuals make educational 
investment decisions, thereby moving across occupations.

A good is produced by combining machine capital with a set of tasks performed by a combination of robot and human 
services. For a human, Any specific task in a given sector constitutes an occupation. We shall use the terms “task” and 
“occupation” interchangeably. The set O j comprises the set of tasks or occupations in sector j, and O  ≡ ∪ j O j denotes 
the set of all occupations in the economy. In sector j, let k j denote machine capital and λ j = {λo} a finite vector of task 
quantities (indexed by o ∈ O j). These combine to produce output y j according to a production function:

y j = f j(k j,λ j), (1)

where f j is increasing, smooth, and linearly homogeneous, with unbounded steepness at zero in each input, and f j(k, λ) = 0
when any input is 0.3 No curvature restrictions are imposed.

The quantity λo of task o ∈ O j performed in turn depends on robot and human services employed in that task, according 
to:

λo = λo(ho, ro), (2)

where ho is human input, ro is robot services, and λo is increasing, smooth and linearly homogeneous with λo(0, 0) = 0
(again, with no assumption on curvature).

Nothing of substance is lost by presuming that machine capital and robot services are homogeneous and can move freely 
across tasks and sectors, so we assume this.4 In contrast, such considerations are important for humans. To enter a given 
occupation, an individual may require a suitable skill which can be acquired via education. Individuals will be born with 
some innate distribution of human capital, represented by occupations that they can work in without any formal education, 
and they can decide to augment the set of occupations they are eligible to work in by acquiring necessary education. Specific 
assumptions regarding educational requirements are given below.

3 This condition bounds substitution across inputs near the “axes,” not necessarily elsewhere.
4 This assumption is inessential, in the sense that similar results will apply if we extend the technological assumptions below to the production of 

different sector-specific capital goods and robots. The growth result requires both the feasibility of automation and self-replication to hold for at least one 
capital good in an essential sector and the corresponding robots needed both directly and indirectly to produce this capital good. The distributional results 
will additionally require self-replication to apply to the production technology for every type of robot.
3
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2.2. The feasibility of automation

We presume that it is feasible to automate every task; that is, for each o, λo(0, r) > 0 for some r > 0. It should be noted 
that this presumed technological feasibility of automation does not imply its economic viability. For instance, if λo(h, r) =
νr + μh + rαh1−α for ν > 0, μ > 0, and α ∈ (0, 1), then humans would be perennially employed in every task, no matter 
what factor prices are.

More generally, economic viability depends on prices. If a burger chain is not automated, does it mean that it is funda-
mentally impossible at the current state of knowledge to automate hamburger production, or is it because wage conditions 
dictate that automation is not currently economically viable? We would submit that it is the latter. But the technical feasi-
bility of automation goes far beyond routine tasks. Scott Santens (2016) has argued that

“All work can be divided into four types: routine and nonroutine, cognitive and manual . . . Machines that can learn 
mean nothing humans do as a job is uniquely safe anymore. From hamburgers to healthcare, machines can be created to 
successfully perform such tasks with no need or less need for humans, and at lower costs than humans . . . A world with 
Amelia and Viv — and the countless other AI counterparts coming online soon — in combination with robots like Boston 
Dynamics’ next generation Atlas portends, is a world where machines can do all four types of jobs and that means 
serious societal reconsiderations . . . These exponential advances, most notably in forms of artificial intelligence limited to 
specific tasks, we are entirely unprepared for as long as we continue to insist upon employment as our primary source 
of income.”

Thus the view we adopt here is this: the technology is already upon us. The question is one of the economic implementation 
of that technology. That said, in Section 3.7 we discuss how our results are modified if full automation is not technologically 
feasible in some tasks or sectors.

2.3. Prices

Within any date, machine capital services serve as numeraire: the rental price of k is set to 1. The collection w = {wo}
for o ∈ ∪ j O j is the wage system. Output prices are (p, pr, pe, pk) for final goods, robot services, education, and capital. By 
constant returns to scale and the assumption of a competitive economy, all prices will equal unit costs of production for 
any sector with strictly positive output:

p j ≤ c j(1,q j), with equality if y j > 0, (3)

where 1 is the return to machine capital, q j is the price vector of occupations in sector j, and c j is the unit cost function, 
dual to the function f j .5 The prices of occupations, in turn, come from a second collection of unit cost functions {co} for 
each occupation in that sector:

qo = co(wo, pr). (4)

2.4. Factor demands and automation

In each sector, machine capital and task levels are chosen to maximize profits, satisfying familiar first-order necessary 
conditions when an input is positive. The mapping from prices to human and robot demand then flows through the aggre-
gators λ j . Consider the sub-problem where for any task o, the human-robot input mix is chosen to minimize the unit cost 
of producing the aggregator λo . By the linear homogeneity of λo , these depend only on the ratio of wages to price of robot 
services ζ o ≡ wo/pr . (Machine capital is not used in task creation and does not enter the picture here.) The automation 
index ao tracks the vulnerability of occupation o to the robot threat, and is given by

ao(ζ ) ≡ min
(ro,ho)

{
ro

hoζ + ro
∣∣(ro,ho) minimizes unit cost under factor price ratio ζ o = ζ

}
,

taking values between 0 and 1. We can extend this definition to the sector as a whole. For any wage vector w and robot 
price pr , the above unit cost problems generate an input vector q j for the aggregators in that sector. With these, solve the 
unit cost problem for the output of sector j. We can then define the automation index of sector j by

a j(w, pr) ≡ min
∑
o∈O j

qoλo∑
o′∈O j

qo′
λo′ a

o (
wo/pr

)
,

5 Our results easily extend to monopolistic competition with CES preferences, which generates a constant profit markup in all sectors. Profits would 
appear in that setting, so national income would be the sum of returns to capital, to workers and profits. Our distributional results would continue to 
apply.
4
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where the minimum is taken over all aggregator vectors λ j that solve the unit cost problem. These aggregator vectors 
depend on all factor prices, including the rental rate of capital, but this last term has been normalized to 1 and so does not 
appear explicitly here.

2.5. Accumulation

The aggregate stock of capital K (t) evolves according to

K (t + 1) = (1− δ)K (t) + yk(t), (5)

where δ ∈ [0, 1] is a constant, sector-independent depreciation rate for physical capital.6 Only machine capital is formally 
durable, but durable robots are implicitly included by embedding them in physical capital in the robot sector, where they 
produce services under the robot production function fr (along with other occupational inputs such as maintenance).

The stock of raw human labor is given (or normalized if population grows exogenously). But human capital can change 
endogenously with education. There is some initial allocation of humans across occupations. There could be a “null oc-
cupation” where individuals without initial skill can be placed, or can freely “drop out” to. An individual can move from 
occupation o to occupation o′ (both in ∪ j O j but perhaps in the same or different sectors) at an educational cost of e(o, o′)
times pe , the endogenous unit cost of education. Human capital might depreciate; i.e., eoo might be positive for some or all 
o. We place no restriction on the education needed to switch occupations, so the model captures both inflexible occupational 
specificity, or complete flexibility (with zero switching costs), or anything in between. All skill premia will be endogenously 
determined. In the baseline model we do not allow humans to augment their skill within any given occupation. Section 3.6
below will discuss how the analysis can be extended when we do allow within-occupation training, provided such training 
is subject to increasing marginal costs.

2.6. Preferences

A continuum of infinitely lived individuals, indexed by ι, is divided into a finite set of types, indexed by m. Each m has 
a one-period increasing, continuous,7 strictly concave utility um on vectors of final goods, and a discount factor βm ∈ (0, 1). 
Infinite lives can also be seen as a sequence of generations bound together by altruism. For any pre-determined current 
expenditure z on final goods and price vector p, her chosen bundle maximizes um(x), subject to px ≤ z. That generates a 
demand function xm(p, z). Denote by vm(z, p) the corresponding indirect utility function. We assume um is such that for 
every p, the indirect function vm is increasing, concave and differentiable, with unbounded steepness in z at zero.

Say that preferences satisfy asymptotic homotheticity if for every m:

lim
z→∞

xm(p, z)

z
= dm(p) for some function dm (6)

for every p � 0, where: (i) dm is continuous on any bounded sequence of price vectors with strictly positive pointwise limit, 
and (ii) if there is a sequence {pn} with some pni converging to zero, then lim infn dmi(pn) > 0 for at least one such i.

2.7. Household optimization

At the start of any date, an individual has some financial wealth (representing her existing claims on capital or debt), 
and one unit of human labor along with a starting occupation. At date 0, her financial assets are nonnegative, and she 
can also work in a subsistence activity at any date to earn some small, exogenous, strictly positive income w . We ignore 
the subsistence activity as it will get swamped in a growing economy: it is an expedient device to ensure a positive lower 
bound to human wages in all occupations.

At each date, individuals inelastically supply labor, make occupational choices (possibly with educational requirements), 
and implement consumption and savings decisions at endogenous prices, all within an infinite-horizon setting with perfect 
foresight. Given a dated price-wage system for goods, capital, and occupations, an individual of type m with initial (date-0) 
endowments of financial wealth F (0) ≥ 0 and human capital (in occupation o(−1)) maximizes8

∞∑
t=0

βt
mvm(z(t),p(t)), (7)

by choosing a path of financial wealths F (t) and occupations o(t) at educational cost

6 The model can be extended to incorporate sector specificity of capital services and depreciation rates.
7 The continuity of preferences or demand, here and everywhere else, will be taken relative to the pointwise or product topology on sequences of goods 

or price vectors.
8 We allow for heterogeneous endowments and behavior within m, but drop the index ι here for ease in writing.
5
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E(t) ≡ e(o(t − 1),o(t)), (8)

along with current expenditure z(t), subject to the date t budget constraint:

F (t) + wo(t)(t) = z(t) + pe(t)E(t) + F (t + 1)

γ (t)
, (9)

and the no-Ponzi condition lim inft F (t) ≥ 0. To accommodate imperfect capital markets, we impose F (t) ≥ Bm for all t , a 
borrowing limit that can be set arbitrarily high. Note that γ (t) is the “return factor” on financial wealth at date t , and that:

γ (t) = 1+ (1 − δ)pk(t + 1)

pk(t)
. (10)

To understand (10), note that one unit of wealth can purchase claims to 1
pk(t)

units of physical capital at t . Each such unit 
generates a rental income of 1, then depreciates to yield (1 − δ) units of physical capital worth (1 − δ)pk(t + 1) at the next 
date.

A sufficient condition for the household optimization problem to be well-defined is that all utility functions are bounded. 
But well-known weaker conditions can be imposed; for instance, when utility functions have a well-defined tail elasticity.

2.8. Equilibrium

Given initial K (0), an allocation of financial claims {F ι(0)}, and initial human capital {oι(−1)} (varying across or within 
types), an equilibrium is a sequence of wages {w(t)}, prices {p(t), pr(t), pe(t), pk(t)} and quantities {F ι(t), zι(t), Eι(t), jι(t),
k j(t), r j(t), h j(t), y j(t)}, all non-negative and finite, such that:

A. Individuals maximize utility as described in (7)–(10), with F ι(0) = pk(0)kι(0) for all ι, and firms maximize per-period 
profits at every date, with (3) holding.

B. The final goods markets clear: at every date, and for every final good i:

∑
m

∫
ι∈m

xi(zι(t),p(t)) = yi(t), (11)

C. The robot market clears; for each t:

yr(t) =
∑
i

ri(t) + rr(t) + re(t) + rk(t). (12)

D. The labor market clears; for each t and each occupation o in sector j:

ho(t) = Measure of ι such that oι(t) = o, with wo(t) ≥ w whenever ho(t) > 0. (13)

E. The capital market clears; for each t , K (t) evolves as in (5), with:

K (t) =
∑
i

ki(t) + kr(t) + ke(t) + kk(t), (14)

and the undepreciated capital stock plus rental income on it is willingly absorbed:

[1 + (1− δ)pk(t)]K (t) =
∑
m

∫
ι∈m

F ι(t). (15)

F. Finally, the education market clears; that is, for every t:

ye(t) =
∑
m

∫
ι∈m

Eι(t), where {Eι(t)} satisfies (8). (16)

Per-capita national income (gross) is given by the expenditure on all final goods, plus investment in new capital goods 
and education:

Y (t) =
∑
i

pi(t)yi(t) + pe(t)ye(t) + pk(t)yk(t). (17)

In this paper, we do not go into the technicalities of equilibrium existence.
6
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3. Long run growth, automation and the declining labor share

3.1. An illustrative example

There is a single occupation in each sector, so we use j to index these. There is one final good with production function 
y1 = k1/21 λ

1/2
1 , a capital goods sector with yk = k1/2k λ

1/2
k , and a robot sector that has a CES production function with elasticity 

1/2:

yr =
[
1

2
k−1
r + 1

2
λ−1
r

]−1

.

Humans and robots are substitutable at a constant rate ν everywhere: λ j = h j + νr j for all j. Humans move freely across 
sectors, so there is no education and just a single wage w . Then the occupational price q is w if there is no automation, 
and ν−1pr if there is (partial or full) automation. In the final good and machine sectors, the unit cost function is c1(1, q) =
ck(1, q) = √

q, while in the robot sector it is cr(1, q) = 1
2

[
1+ √

q
]2
. Everyone has the same one-period utility u(x) = ln(x), 

with discount factor β ∈ (0, 1).
To track equilibrium paths, notice that at any date, robot prices must satisfy

pr(t) ≤ cr(1,qr(t)) = 1

2

[
1+ √

q(t)
]2

. (18)

with equality if the robot sector is active.

Case 1: ν ≤ 1/2. Then automation cannot ever occur. For if it did at any date t , then q(t) = ν−1pr(t). Substituting this into 
(18) which now holds with equality, we see that

pr(t) = 1

2

[
1+

√
ν−1pr(t)

]2
>

1

2
ν−1pr(t),

which contradicts ν ≤ 1/2. So at every date the robot sector shuts down. The economy effectively reduces to a standard 
neoclassical growth model with a single consumption and capital good with aggregate Cobb-Douglas production, so there is 
no long run growth, while the share of labor in national income is 50% at every date.

Case 2: ν > 1/2. Then, if the economy exhibits sustained growth of per-capita income — as it will if some household types 
are patient enough — all sectors j that grow must be “asymptotically automated”: a j(t) = a j(w(t), pr(t)) → 1 as t → ∞. For 
suppose not; then a j(τ ) must be bounded away from 1 in at least one growing sector j along a subsequence {τ } of dates. 
Since the total amount of human labor in the economy is bounded, so must be the overall occupational input in that sector. 
Then sustained growth implies that machine capital used in j — and hence the ratio of machine capital to occupational 
inputs — grows without bound, implying w(τ ) → ∞. In the absence of full automation, unit occupational labor cost q j(τ )

will equal w(τ ), and also converge to ∞. By (18),

pr(τ ) ≤ 1

2

[
1 + √

q(τ )
]2 = 1

2

[
1+ √

w(τ )
]2

,

so that along the same subsequence,

ν−1pr(τ )

w(τ )
≤ 1

2ν

[
1√
w(τ )

+ 1

]2

→ 1

2ν
< 1 as t → ∞,

but that would imply q j(τ ) ≤ ν−1pr(τ ) < w(τ ) for large τ , a contradiction.
To provide some intuition, note that if ν > 1/2, it is possible to dispense with humans altogether, and still produce robots 

at a finite unit cost (using machines and robots). More precisely, there exists p∗
r < ∞ satisfying p∗

r = 1
2

[
1+ √

ν−1p∗
r

]2
, if 

and only if ν > 1/2. Then p∗
r is an upper bound to the price of robots, which places a limit on human wages in this 

example. It follows that in any growing economy, the share of wages in national income must converge to 0 in the long run. 
Of course, in a more general setting, human wages will not necessarily be bounded even if robot prices are, and one will 
need to explore conditions under which growth will occur. Most crucially, we need to understand the underlying production 
conditions that generate the two cases described above. Our first task for the general model is to investigate this question.

3.2. Self-replication

By the assumed feasibility of automation for every task, we know in particular that for every o ∈ Or , λo(0, r) > 0 for some 
r > 0. By linear homogeneity, λo(0, r)/r is independent of r for r > 0. Call this ratio νo . It represents the unit productivity
7
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Fig. 1. Replication and the bound on robot price.

of robots in the hypothetical event that the task in question is fully automated. Notice too that in that event, the unit cost 
of task o would equal (νo)−1pr .

In order to interpret the condition below, temporarily switch the numeraire to robot services (pr ≡ 1) rather than capital 
services. Consider unit cost minimization in the robot sector, with each task o in Or priced at (νo)−1 per unit, and the 
capital rental rate is η. Consider the limit unit cost when the capital rental rate converges to zero:

lim
η→0

cr
(
η, {(νo)−1}) .

Observe that this limit depends only on the technology of the robot sector.

Proposition 1. Suppose the robot sector satisfies the following self-replication condition:

lim
η→0

cr
(
η, {(νo)−1}) < 1. (19)

Then there is a nonempty compact set P∗ of strictly positive solutions to the equation

pr = cr
(
1, {(νo)−1pr}

)
, (20)

and in equilibrium, pr(t) ≤ sup P∗ < ∞ for all t: the robot price is bounded relative to the rental on capital. If at any t, the robot sector 
is automated, then pr(t) ∈ P∗ .

We illustrate the argument graphically. Revert to using capital rental services as the numeraire. Because νo units of 
occupational input in o can be produced by a single robot unit, it must be that qo ≤ (νo)−1pr . This option imposes an upper 
bound to the price of robot services:

pr = cr
(
1, {qo}) ≤ cr

(
1, {(νo)−1pr}

)
. (21)

Fig. 1 depicts cr(1, {(νo)−1pr}). Because fr has unbounded steepness in machine capital at zero, cr lies above the 450 line for 
all strictly positive pr sufficiently close to zero. At the same time, the self-replication condition (19) plus linear homogeneity 
guarantees that cr ultimately dips and stays below the 450 line; see Panel A. Then P∗ is the set of intersections with the 
450 line, as described by (20). It is nonempty and compact,9 and (21) is equivalent to the assertion that pr(t) ≤ sup P∗ for 
all t in any equilibrium. So the price of robot services (relative to machines) is bounded above if self-replication holds. If the 
robot sector is automated, then that price must be one of the solutions in P∗ , a result which can be viewed as a variant of 
the Nonsubstitution Theorem (Arrow, 1951; Samuelson, 1951). Of course, automation may never be full but only asymptotic, 
in which case the robot price converges to some element of P∗ .

Conversely if self-replication fails, a non-zero solution to (20) could fail to exist, as shown in Panel B, and this will 
necessarily happen if fr is quasi-concave. Then the robot producing sector can never be automated, and the price of robot 
prices is unbounded; see Proposition 3.

9 If fr is quasi-concave, then P∗ is a singleton — there is a unique positive solution to (20).
8
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The self-replication condition (19) can be illustrated in the special CES class, assuming just one task in the robot sector. 
We have:

fr(k, λ) =
[
αk

σ−1
σ + (1− α)λ

σ−1
σ

] σ
σ−1

,

with α ∈ (0, 1) and the elasticity of substitution σ ≥ 0. The unit cost function is

cr(η, {νr}−1) = [
ασ η1−σ + (1 − α)σ {νr}σ−1]1/(1−σ )

.

where η denotes the capital rental rate and νr denotes the productivity of robots in the production of robots when it is 
fully automated. So our limit equals zero when σ ≥ 1, which includes the Cobb-Douglas case (i.e., “enough” substitution 
is available). But it is positive when σ < 1. For instance, if the production function is “almost” Leontief, labor costs will 
matter for unit cost no matter how cheap machines are. In this latter case, (19) does restrict the value of νr . Specifically, 
self-replication reduces to the capital-labor substitution elasticity exceeding some lower bound smaller than one:

Either σ ≥ 1, or σ ∈ (0,1) and νr > (1 − α)σ/1−σ . (22)

3.3. Automation and the declining labor share under long run growth

We now present our main result: under sufficient household patience, the self-replication condition in the robot sector 
has strong implications for long run growth, automation and income distribution.

Assume that self-replication holds. Define the patience condition as follows:

βm

[
(1 − δ) + 1

ck
(
1, {(νo)−1 sup P∗})

]
> 1. (23)

for some type m, where o ranges over Ok and P∗ is defined as in Proposition 1.

Theorem 1. Assume the robot self-replication condition (19) holds, as well as the patience condition (23). Then:

(i) Per-capita national income grows without bound: Y (t) → ∞.
(ii) Every sector j that grows exhibits asymptotic full automation:

a j(w(t), pr(t)) → 1 as t → ∞. (24)

(iii) If in addition household preferences are asymptotically homothetic, the share of human labor in national income converges to zero 
as t → ∞, and that of physical capital converges to 1.

We sketch the underlying argument; a formal proof is in Appendix A. Part (i) states that per capita income grows (with-
out bound) if self-replication and patience hold. The first difficulty is to account for moving capital prices. While bounds 
can be placed on these prices, there will in general be capital gains (or losses). To sidestep the spikes of accumulation 
and decumulation that could arise from these anticipated gains and losses, we cumulate the relevant Euler equations for 
financial wealth. Recalling the indirect utilities vm and γ (t), the equilibrium rate of return on financial assets, we have:

v ′
m(zm(t),p(t)) ≥ βmγ (t)v ′

m(zm(t + 1),p(t + 1)), (25)

with equality holding if financial wealth is actively accumulated. From (10),

γ (t) = 1+ (1 − δ)pk(t + 1)

pk(t)
=

[
pk(t + 1)

pk(t)

][
(1− δ) + 1

pk(t + 1)

]
,

where the second equality decomposes the return into the product of capital gains and the rental income (augmented by 
any undepreciated capital) on a unit of wealth. If we compound the Euler inequality in (25) over dates 0, . . . , t , where t ≥ 2, 
then we have

v ′
m(zm(0),p(0)) ≥ βt−1

m
(1− δ)pk(t) + 1

pk(0)

{
t−1∏
τ=1

[
(1− δ) + 1

pk(τ )

]}
v ′
m(zm(t),p(t)),

which eliminates temporary spikes and dips in capital gains. The key observation is that the self-replication condi-
tion implies a finite upper bound to the price of machines, given the option to automate their production: pk(τ ) ≤
9
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ck(1, {(νo)−1pr(τ )}) ≤ ck(1, {(νo)−1 sup P∗}). In turn this limits the extent to which the value of capital goods can depreci-
ate, implying a positive lower bound to the return to capital: 

[
(1− δ) + 1

pk(τ )

]
≥

[
(1− δ) + 1

ck
(
1,{(νo)−1 sup P∗})

]
≡ (1 + r), say. 

The patience condition (23) then implies βm(1 + r) > 1. Hence:

v ′
m(zm(0),p(0)) ≥ βm [βm(1+ r)]t−2

ck
(
1, {(νo)−1 sup P∗}) v ′

m(zm(t),p(t)). (26)

which implies that v ′
m(zm(t), p(t)) → 0 as t → ∞. Further bounds on equilibrium prices {p(t)} (see Appendix A) then imply 

that the consumption of type-m households must grow. With bounded debt, the same is true a fortiori for overall per-capita 
consumption and income.

Part (ii) asserts that any sector that grows exhibits asymptotic full automation in the sense of (24). If a sector grows, at 
least one of its task levels must grow with it — a consequence of unbounded steepness with respect to at least one task, in 
conjunction with self-replication (so the price of occupations is bounded relative to capital). But the total available supply 
of raw human labor is bounded. Therefore each growing task or occupation o within the sector must either have human 
labor equal to zero, or wo/pr → ∞. In either case Lemma 3 in Appendix A implies that its automation index must converge 
to 1. Because all bounded occupations become insignificant relative to the growing ones, the result follows.

Part (iii) uses a more subtle argument. It is possible that there is no uniform threshold for automation — at any human 
wage, there could always be productive sectors where humans continue to be a desirable presence. In fact, humans may 
well be persistently present in every occupation, asymptotically automated or not,10 but with asymptotic automation their 
income share cannot be preserved. However, non-uniform automation thresholds open the possibility of “human shelters” 
that provide opportunities for humans to stay ahead of automation waves. To do so, they must perennially accumulate 
human capital and move into occupations where human employment and wages are less threatened by automation. Indeed, 
in these relatively protected sectors, the human wage could be very high. In Proposition 2 below, we provide conditions 
under which in any equilibrium with growth, the highest human wage across all sectors grows unboundedly over time. If 
humans acquire the skills to enter these yet-to-be-automated sectors, their wages might conceivably grow in step with per 
capita income.

At this point, the endogeneity of prices and wages takes center stage. The willing absorption of humans into sectors 
requires that there be adequate demand for their outputs. Under the usual efficiency-units approach, this demand question 
is eliminated by construction: relative wages cannot change over sectors that are thus aggregated with brute force. With an 
endogenous wage structure, this is no longer the case. Part (iii) shows that if demand is asymptotically homothetic, then 
the economy runs out of steam in its ability to shelter labor. For the human wage share to stay positive in the long run, 
household expenditures shares on yet-to-be automated sectors must remain sizable. Under asymptotic homotheticity, this 
cannot happen: wage incentives do not climb at the required pace.

3.4. Long-run wages

The discussion in Section 3.3 suggests that a vanishing share of labor income could co-exist with unbounded growth 
in human wages. When Theorem 1 applies, universal automation ensures that prices of all consumer goods are bounded. 
Hence real wages relative to any consumer price index are unbounded if and only if wages (as defined here) are unbounded. 
In this section we study conditions for this outcome.

Two forces could make for growing human wages even as their relative share declines. The first has to do with the rate 
of robot-substitution for humans in some given occupation. The second has to do with human movement across occupations 
as automation becomes more pervasive. Both are summarized in a single sequence of numbers. Consider a more general 
version of our example in Section 2.1 for the production of the input in occupation o:

λo = λo(h, r) = νor + μoh + go(h, r),

where νo > 0, μo ≥ 0, and go is a standard production function with go(0, r) = go(h, 0) = 0. Such an occupation could 
become automated, but if go has unbounded steepness in h at 0, only asymptotically so: human labor can never be fully 
dispensed with at any (finite) wage. More generally, let θo denote the limiting marginal rate of substitution of humans for 
robots as the ratio of human labor to robot services in occupation o converges to zero:

θo ≡ lim
h/r→0

∂λo/∂r

∂λo/∂h
.

This measures the “local relative efficiency” of robots relative to humans in occupation o as human labor vanishes. In the 
example, if go has unbounded steepness in h, θo = 0. Otherwise, θo is determined by the slopes of the two functions 
λo(0, r) = νor and λo(h, 0) = μoh, and the limiting marginal rate of substitution from go . Our sequence of interest is {θo}, 
where o ranges over all occupations in a subset to be described precisely below.

10 To see why, consider the example of an λ j function provided just after equation (2).
10
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To highlight these forces, we place additional restrictions on education and preferences. Specifically, we assume that the 
education function is uniformly bounded: supo,o′ e(o, o′) < ∞. In addition to asymptotic homotheticity of preferences, we 
presume that limiting demand has full support: for each type m and each price p � 0, dmi(p) > 0 for i ∈ I . Finally, define 
O−e ≡ O  − Oe to be the set of all occupations except those that pertain to the education sector.

Proposition 2. Suppose that the conditions of Theorem 1 hold, including asymptotic homotheticity of preferences. In addition suppose 
limiting demand has full support and that the education function is uniformly bounded on O  × O . For every individual ι, let wι(t) =
woι(t)(t) be the human wage she receives at date t.

(a) If info∈O−e θo > 0, every human wage is bounded.
(b) If info∈O−e θo = 0, every human wage must grow without bound.

Under the additional restriction of full support on preferences and uniformly bounded educational requirements, Propo-
sition 2 provides a complete characterization of when all human wages can grow in an unbounded fashion. The limit 
condition on info∈O−e θo captures both the possibility that the marginal product of human labor can climb in a particular 
occupation (even as that occupation progressively succumbs to automation), as well as the possibility that there is human 
“protection” available across occupations. When this term is strictly positive, neither the occupation-specific nor the cross-
occupation protection is available, and limiting human wages are bounded. (While the education sector is exempt from this 
condition, we show that it can do nothing to overturn this result.)

On the other hand, when info∈O−e θo = 0, there is protection either from occupation-specific steepness in the marginal 
product of human labor, or relative cross-occupational proclivities to automation. In this second case, wages can grow in 
some occupations — or over some sequence of occupations — and then the boundedness of educational costs allows all 
individuals to participate in that growth.11

A bounded education function is used in these arguments. Significant progress can be made without it. It is possi-
ble to characterize sustained growth in occupational human wages, rather than personal wages, by dropping the uniform 
boundedness assumption. We stick to the present formulation as it is stronger and cleaner. In defense of the boundedness 
assumption, it should be noted that while we work with an infinity of final goods sectors, there is no need to suppose that 
the corresponding occupations will be dramatically different. For instance, two managerial roles in very different sectors 
could be very similar. The following mental picture may be useful. Think of occupations as belonging to some compact set 
in an abstract space C of characteristics, with the education function continuous on C × C . Each sector draws a finite set of 
points from this space for its associated set of occupations. This formulation allows for fine distinctions across sector-specific 
occupations, as it should, while still retaining the uniform boundedness of educational in moving from one occupation to 
another. “Distant” goods need not be produced by “distant” sets of skills.

As a final remark: part (b) of Proposition 2 illustrates the fact that ubiquitous automation need not result in stagnation 
of real wages. On the contrary, automation could be the engine of long-run growth in wages. Observe that in the absence 
of robots, the patience condition would not hold; it is easy to write down examples where per capita income and wages 
would be bounded. Hence automation can boost the living standards of workers, though the growth in wages would be 
outstripped by growth in capital incomes when Theorem 1 holds.

3.5. Failure of self-replication

A failure of self-replication means that robot prices cannot be severed from human wages. Human workers are indis-
pensable in the production of robot services, so the price of the latter climbs with wages as labor scarcity grows. The 
scope for automation is then limited. The robot self-replication property is formally necessary for Theorem 1. The example 
in Section 3.1 already illustrates this point, but we elaborate on the distributional consequences when self-replication is 
violated.

To develop this argument, we place some restrictions on our general environment. Once again, without any real loss of 
generality, we assume just one occupation per sector, indexing occupations by their sector index. The first restriction is a 
general version of the condition that the production function f j defined on capital and tasks has an elasticity of substitution 
smaller than 1 in every sector j. For any sector j, and any effective price of task q, consider the set � j(q) of ratios of task 
service to machine capital ξ = λ/k that minimize unit cost of production, and let

� j(q) ≡ min
ξ∈� j(q)

qξ(q)

1+ qξ(q)

11 Certainly, including education in part (a) of the proposition would still give us a sufficient condition for bounded wages. But that condition would not 
have been necessary. That is, if education is included as one of the sectors in the condition of part (b), that condition would not be sufficient for unbounded 
wage growth.
11
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be the lowest ratio of the payment to sector j’s task to the total sectoral cost outlay. Temporarily think of the production 
function f j in this sector as CES with elasticity of substitution lower than 1. Then we know that � j(q) is increasing in q, 
with � j(0) = 0 and � j(∞) = 1. In particular, given any lower bound q− > 0, we have

inf
q≥q−

� j(q) > 0.

In our more general setting without constant elasticity (or indeed concavity), we impose the above condition, and uniformly 
so across sectors:

inf
j

inf
q≥q−

� j(q) > 0. (27)

Next, we make additional assumptions on the production function for robots. We assume that it is strictly quasiconcave, 
in addition to being linearly homogeneous. We assume further that λr(h, 0) > 0 for some h > 0, so that the occupational 
aggregate in the robot sector can be produced by humans alone. This restriction is analogous to the feasibility of automation, 
though assuming it or not makes no difference to Theorem 1. Call such a technology regular.

Proposition 3. Suppose that (27) holds and the robot production function is regular. Then, if the self-replication condition fails, in any 
equilibrium the share of human labor in national income is bounded away from zero.

Proposition 3 shows that both the asymmetry of human and physical capital accumulation and the self-replication condi-
tion are needed for our results. Indeed, the latter condition is logically necessary in a broad class of environments. Without 
it, robot prices cannot be divorced from the wages of human labor. As labor becomes more expensive, so do robots, and the 
forces of automation are attenuated — sufficiently attenuated, as it turns out, under the conditions of Proposition 3 so that 
the share of human labor does not decline in a sustained way over time.

3.6. Within-occupation human capital

We now discuss the asymmetry between the accumulation of physical and human capital in the preceding analysis, and 
extend the theory to incorporate the acquisition of intra-occupational skill. First note that the device of several occupations 
within a sector can be interpreted to mean that these are different skill levels within the same job. As long as there is a 
finite (or even compact) set of such skill levels, the theory already accommodates such cases, by redefining different levels 
of skill as different occupations. However, that is still in contrast to the unbounded scope for accumulation of physical 
capital within any sector. Could our model be extended to similarly accommodate the unbounded accumulation of skill 
within a sector?

We already know that the answer cannot be an unqualified yes: there are macroeconomic models which generate bal-
anced labor income shares once human capital can be accumulated to an unbounded degree in efficiency units, with no 
changes in relative prices. So studying this extension will help identify the precise nature of the asymmetry needed between 
physical and human capital accumulation in our model.

For expositional clarity, we revert to the common-sense notion of an occupation, and do not interpret varying levels of 
skill as constituting distinct occupations. We extend our model to allow workers to acquire varying levels of skill within 
any given occupation, and place no upper bound on the amount of such skill that can be accumulated. We model skill in 
the conventional manner, as a certain number of efficiency units. Let the production function for task o in some sector be 
λo(μoho, ro), where μo is the productivity of a human in that occupation. Wages are paid per unit of productivity, just as 
in the standard model based on efficiency units, so the income of a person with productivity μo is woμo , where wo is the 
occupation-specific “efficiency unit human wage.”

Everything else in the model is kept unchanged, but we now need to specify the technology of productivity acquisition. 
To this end, we extend the education function as follows: let e(μ, μ′, o, o′) denote the units of education needed to move 
from “starting productivity” μ in occupation o to “destination productivity” μ′ in sector o′ , where o could be equal to o′ . In 
particular, one can both invest within an occupation and across occupations, generally with heterogeneous cost implications. 
Moreover, continued on-the-job education can depend on baseline levels of productivity already acquired in that sector.

Assume that e is smooth in its first two arguments with partial derivatives e1 (typically negative) and e2 (typically 
positive). We place the following substantive restrictions on e:

(H.1) For any o and S > 0, there is M < ∞ such that e2(μ, μ, o, o) ≥ S for all μ ≥ M .
(H.2) For any o, there is Lo ≥ 0 with e1(μ, μ′, o, o′) ∈ [−Lo, 0] for all (μ, μ′) and o′ .
(H.3) For each occupation o′ , there is a bound μ̂o′

such that for every starting o �= o′ and productivity μ, e(μ, μ′, o, o′) = ∞
for μ′ ≥ μ̂o′

.

(H.1) states that within any occupation, the marginal cost of skill acquisition becomes very high as baseline productivity 
increases. (H.2) states that while a higher starting productivity may bring down the cost of achieving any destination 
12
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productivity in the same or different occupation, the marginal savings are bounded. (H.3) states if an individual is switching 
occupations, there is some upper bound to the productivity with which she can immediately start in the new occupation. 
Of these three, the one that matters the most is (H.1). This condition does not automatically seal off unbounded skill 
accumulation, because the price and wage structure also matters: the returns to skill may grow fast enough to outpace the 
rising marginal cost. But as we shall now see, the self-replication condition prevents such an outcome.

Proposition 4. Suppose that within- and cross-sector human capital are accumulated via an education function satisfying H.1–H.3. 
Suppose, moreover, that the self-replication condition (19) is satisfied, and preferences are asymptotically homothetic. Then, if (23)
holds, there is sustained per-capita income growth, and the income share of labor goes to zero.

Appendix A contains a detailed proof; we describe the main step here. Under self-replication, each sectoral price is 
bounded below and above over time by strictly positive, finite numbers, just as before; see Lemma 2. But wages will not 
generally be bounded. We separate two cases.

In the first, the unit cost of some task grows; see the formal proof for precise statements regarding subsequences, etc. 
But then, the feasibility of automation allows us to prove that the share of human labor income in total factor bill for 
that task must converge to zero; see Lemma 3. The second possibility is that the unit cost of some task is bounded. Then 
(H.1) chokes off the incentive to acquire within-occupation productivity, given that the price of education is bounded below. 
The gains from such acquisition include direct wage benefits from the associated occupation, as well as cost savings on 
future investments, but these are all bounded, by our conditions on the education function. At the same time, the cost 
of incremental productivity climbs without bound. These observations ensure that when the task unit cost is bounded, so 
is productivity per person. With this boundedness result in hand, we can essentially follow the existing line of proof in 
Theorem 1 to obtain our previous result.

3.7. Sectors where full automation is infeasible

Our distributional analysis so far assumed that full automation is technically feasible in every sector. Certainly, our results 
could have been stated in weaker fashion, in the sense that automation occurs in every growing sector for which automation 
is technically feasible, provided the self-replication condition. But we are also interested in the macroeconomic distributional 
consequences when some sectors or occupations are “protected;” that is, λ(0, r) = 0. Examples might include “live music” or 
“hand-made pottery,” with a human element in production by the very nature of the good. Of course, it is still possible that 
the ratio of human labor to robot services could become vanishingly small over time. In the live-music example, it might 
be possible to increase the size of the audience without bound for any live concert, and “hand-made pottery” could be 
judiciously redefined to include minimal human intervention. The debate is philosophical and possibly endless, as anyone 
who’s seen Blade Runner or familiar with the Turing test will know.

For expositional simplicity, assume there is just a single task/occupation in each sector, and so use j to index occupations 
as well. Say that sector (or occupation) j is unprotected if λ j(0, r) > 0 for r > 0, as assumed so far, and protected if λ j(0, r) =
0 for all r ≥ 0. When preferences are asymptotically homothetic, say that the asymptotic demand system dm(p) is elastic if 
for any subset Q of sectors, 

∑
i∈Q pni di(p

n) → 0 along any sequence of prices {pn} for which pni → ∞ for every i ∈ Q , while 
prices of all goods not in Q are bounded above.

Proposition 5. Suppose that all intermediate goods sectors and some final goods sectors are unprotected, and that the self-replication 
and patience conditions hold. Then:

(i) Per-capita national income grows without bound.
(ii) For every unprotected sector on which expenditure grows, there is asymptotic automation and the output price is bounded.
(iii) For every protected sector on which expenditure grows, there is asymptotic automation and the output price is unbounded.
(iv) Suppose that preferences are asymptotically homothetic, and that the expenditure shares of all sectors converge to a limit ex-

penditure share vector. Then the limit share of human labor in national income is bounded above by the asymptotic share of 
expenditure on protected sectors. Moreover, if the demand system for every type is elastic, the share of human labor in national 
income converges to zero.

We omit a formal proof; much of it follows ground already covered. Part (i) follows from exactly the same argument as 
Theorem 1(i), which relies only on capital and robot sectors being unprotected in conjunction with the patience condition. 
Part (ii) is a special case of Theorem 1(ii), noting that the growth of output value is the same as the growth of physical
output — prices must be bounded. Part (iii) is new. There are two cases: either the price of the protected good grows 
(without bound), or its physical output does. Under the former, the sectoral unit cost of the corresponding task must grow 
— and so too must human wages, given that robot prices are bounded (by self-replication). Asymptotic automation then 
follows from Lemma 3 in Appendix A.

In the latter case, with output growing, there are two possibilities: (a) The level of tasks also grows in that sector, but 
then we have asymptotic automation, given that the stock of raw labor is bounded. Moreover, since the sector is protected, 
13
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the unit cost of the task must grow, and so must the price of final output. (b) The volume of tasks in the sector is bounded, 
but then capital must grow, but this can only be a consequence of an over-increasing task price. The latter in turn can only 
happen if the human wage grows, and once again we obtain asymptotic automation. Moreover, the price of the final output 
must grow without bound.

Exactly the same argument as in Theorem 1(iii) shows that the labor share of income generated from all unprotected 
sectors converges to zero. Therefore the overall labor share in national income must be asymptotically bounded above by 
the asymptotic share of expenditure on protected sectors. Finally, observe that prices in all unprotected sectors are bounded 
(Lemma 2(ii)) and all prices in growing protected sectors are unbounded. Moreover, by assumption, all protected goods 
are final goods. Then, with an elastic demand system, the expenditure share on all protected goods must fall to zero, 
and by the upper bound just established, so must the share of human labor in national income, establishing part (iv). 
Intuitively, protected goods are subject to “Baumol’s cost disease” and become infinitely expensive relative to unprotected 
goods. Because the share of household expenditures on protected goods disappears over time, the wage shelter afforded by 
these sectors evaporates in the long run.

3.8. Non-homothetic preferences

Return now to the benchmark case without protected sectors. Recall that in this case, the asymptotic homotheticity of 
preferences precludes a shift in demand composition that’s strong enough to adequately absorb humans into “relatively 
protected” occupations; that is, strong enough so that the limiting income share of labor is positive. To what degree can 
these implications of homotheticity be extended to more general preference profiles?

Suppose that preferences are non-homothetic, and demand persistently shifts over the space of goods with rising income. 
If those shifts occur precisely in favor of goods where humans are harder to displace (e.g., where θi defined in Section 3.4
is large), then it is possible for the long run labor share to be bounded away from zero.12 Here is a heuristic description of 
the forces at play. As in the proof of Theorem 1 (see Appendix A), define the share of human labor income generated in any 
active sector j at any date t by

� j(t) =
∑

o∈O j
wo(t)ho(t)

p j(t)y j(t)
.

If �(t) denotes the overall share of human labor in national income, it follows that

�(t) =
∞∑
i=1

�i(t)si(t) +
∑

j=e,r,k � j(t)p j(t)y j(t)

Y (t)
(28)

at every date t , where si(t) is the aggregate share of final goods expenditures at date t on good i, and it is understood that 
the sum is taken only over active sectors. Part (ii) of Theorem 1 speaks to growing automation in any active sector, and 
indeed we show in Appendix A that if y j(t) → ∞ in any sector, the corresponding human share � j(t) converges to zero. 
So we can ignore the last three terms in (28): either � j(t) → 0 or the sectors become insignificant as a share of (growing) 
national income. Everything therefore hangs on the question of whether

�(t) �
∞∑
i=1

�i(t)si(t) (29)

converges to zero or not. Because �i(t) → 0 for every growing sector i, and si(t) → 0 for every non-growing sector (national 
income is growing), we have pointwise convergence to zero for each term in the series above, but not necessarily uniform
convergence. The overall tension is summarized in the possibility that over time, the shares {si(t)} will assign progressively 
greater weight to the protected sectors, leading to an asymptotically positive infinite sum even though each term in it 
converges to zero. Homotheticity eliminates this possibility: under it, the sequence of share vectors {si(t)} has a limit which 
is also a share vector. Then the infinite sum must converge to zero; see Lemma 4. This is why homothetic preferences 
cannot allow a positive asymptotic labor share. But it also raises the question of whether some property different from or 
weaker than homotheticity will also suffice for the same result.

Certainly, some conditions on demand will be needed, otherwise, the following dynamic process could form an equilib-
rium (accompanying restrictions on primitives can be provided to generate such an outcome). Suppose that all individuals 
are identical in type and initial conditions, with “modified Cobb-Douglas” preferences, so that for income y, expenditures 

12 Hubmer (2018) and Jaimovich et al. (2019) provide evidence that higher incomes are associated with a shift of spending in favor of more labor intensive 
goods. Calibrating a neoclassical model to data from the US since the 1950s, the former argues that secular trends in the labor share can be explained 
by the tradeoff between a rising share owing to non-homothetic preferences and a falling share owing to capital-labor substitution. Comin et al. (2019)
describe non-homotheticities in demand which raise the share of services and lower that of agriculture, and are associated with rising wage polarization. 
They do not investigate the implications for the decline in overall labor income share. Karabarbounis and Neiman (2014) on the other hand argue that this 
decline is mainly intrasectoral, and not driven by changing intersectoral composition.
14
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at income y are equally divided over sectors 1, . . . , n(y), where n(y) is some nondecreasing step function that expands the 
relevant set of consumption goods as y increases. Suppose, moreover, that the common discount factor satisfies the pa-
tience condition (23). Then any equilibrium induces an aggregate expenditure share vector uniform over sectors 1, . . . , n∗(t), 
for some nondecreasing, unbounded step function n∗(t) = n(y(t)). Suppose that the technology is such that �i(t) = 0 for 
i <

⌊√
n∗(t)

⌋
, but �i(t) = a ∈ (0, 1) for i ≥ ⌊√

n∗(t)
⌋
, and for some constant a (think of this as 1 minus the share of machine 

capital in a Cobb-Douglas production technology). That is, higher-index goods are automated later, while at the same time 
the consumption basket leans towards such goods. Then

�(t) �
∞∑
i=1

�i(t)si(t) ≥ a[n∗(t) − √
n∗(t)]

n∗(t)
= a − a√

n∗(t)
→ a as t → ∞.

Notice how expenditures spread out over goods linearly in n∗(t), while automation proceeds “at the rate of 
√
n∗(t).” So the 

expenditure share effect neutralizes the automation effect.
That said, the example clearly indicates that it takes quite a bit for this particular escape hatch to be pried open. If 

the demand share of yet-to-be-automated goods is persistent and per-capita income is growing, such sectors must also 
experience growing revenue. As these sectors are not yet automated, the prices of their outputs will generally rise without 
bound.13 If as in Proposition 5(iv), demand is price-elastic, consumer expenditure will shares will progressively shift away 
from those sectors. But there is no need to go that far: even if expenditure shares are generally uncorrelated with automation 
patterns — rather than negatively correlated as just discussed — it will become impossible to prevent a vanishing labor share 
in the economy as a whole. It is in this sense that “preference neutrality” towards protected and unprotected sectors implies 
an overall inability to ward off the decline in human labor share.

Phrased in the light of (29), our results might appear to be a mathematically arcane implication of the relative speeds of 
convergence across double infinities (in goods and time), but actually involves an important economic issue. The potential 
space of goods is infinite, in the sense that the future can always bring new commodities into being where humans are (at 
least temporarily) not displaced by robots. And time is also infinite, resulting in an open-ended horizon where every sector 
is exposed to possible automation in the future. The relative speeds of the two processes determine the asymptotic labor 
share in the economy.

4. Technical progress

We extend the theory to incorporate directed technical progress. “Directedness” means that technical progress is geared 
to input scarcity. The key assumption we make is that the opportunities for such progress are symmetric across all inputs 
and sectors. This is not to deny the possibility that the very nature of science and technology might generate exogenous 
biases in certain directions. But studying the effect of such predetermined biases would not need a theory. If they were to 
favor unbridled automation, our earlier results would be a foregone conclusion. If they favored the augmentation of human 
quality over robots, that would raise the share of humans in national income instead.

Directed change generally points to a “balanced-growth” view of technical progress; see Acemoglu and Restrepo (2018, 
2019), with antecedents that include Hicks (1932), Salter (1966), Galor and Maov (2000), and Acemoglu (1998, 2002), among 
many others. Acemoglu and Restrepo (2018) generate balanced growth by assuming that new tasks lie entirely in the human 
domain, providing temporary protection from the robot invasion. But the robots are also hard at work, automating existing 
tasks and perennially chasing the moving human frontier. In equilibrium, balance is achieved between these two forces. 
This approach, while genuinely insightful, raises many questions. Why can’t new tasks that favor robots also appear on the 
frontier? Or (the flip side): why cannot technical progress allow humans to recover their edge in old tasks? And what if 
there is technical progress in machine capital?

In this section, we enlarge the range of possible directions of technical progress to incorporate changes in all inputs, and 
presume that R&D has symmetric potential in each direction. Actual progress will be determined by endogenous factor price 
dynamics. To simplify the exposition, we assume (a) a finite number of final consumer goods; (b) one task per sector, and 
(d) linear substitution between humans and robots within each category. Moreover, we restrict attention to equilibria with 
long run per-capita capital accumulation in natural units, without deriving this from underlying rates of time preference of 
households, and we suppose that the self-replication condition holds.14

Under these conditions, Theorem 2 reasserts the finding of a vanishing labor income share.

13 The only exception to this will occur if, fortuitously along the very same sequence, the productivity of the occupational aggregates in final goods 
production also rises without bound.
14 More precisely, we assume the self-replication condition holds at the initial date.
15
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4.1. Framework

Let π F (t) denote the economy-wide productivity (or efficiency units per natural unit) of factor F = k, r, h at date t .15
With one occupation per sector, j indexes both occupation and sector, and the sector j production function at date t can 
be written as

y j(t) = f j(π
k(t)k j,π

h(t)ν jh j + π r(t)r j),

incorporating our assumption of linear substitution across humans and robots in each sector: ν j captures the comparative 
productivity of humans relative to robots in sector j (this is not subsumed in the common π -terms). The same assumptions 
are made on f j as before. Assume that the self-replication property for the robot sector holds at date 0; that is,

π r(0) > lim
η→0

cr(η,1). (30)

All our results extend to any competitive equilibrium in which (30) holds at some t along the equilibrium path, but we 
avoid an assumption on the endogenous variable π r(t).

4.2. R&D

At each date, R&D in each principal factor F is conducted by a short-lived F -specific inventor whose activities and returns 
are external to the economy in question.16 This inventor may be the winner of a prior technological competition or race 
among potential inventors for factor F improvements at that date. As will become evident, our results extend to a setting 
where there is a single inventor who simultaneously carries out R&D across multiple factors — i.e., the ability to coordinate 
R&D across different directions makes no difference.

The F -specific inventor can raise the productivity of F by a factor (1 +ρ) across dates t and t+1, at cost κ(ρ). Therefore

π F (t + 1) = (1+ ρ F (t + 1))π F (t) (31)

where ρ F (t + 1) is the rate of productivity improvement of factor F at t + 1. It is endogenous and lies in some compact 
interval [0, ρ̄] where ρ̄ < ∞. The cost function is strictly increasing, differentiable and convex, with κ(0) = 0 and κ ′(ρ)

bounded on [0, ρ̄]. Under our already-discussed symmetry postulate, the same cost function applies to all three inputs.
Each short-lived inventor owns property rights over the improvement, and so earns a license fee levied on all firms that 

make use of the improved process at t + 1. The fee is levied per (natural) unit of the factor employed by the firm at t + 1. 
Rights expire at the end of t + 1 and is freely available to all producers from t + 2 onwards.

Each inventor takes factor prices as given, as in the competitive innovation models of Grossman and Hart (1979) and 
Makowski (1980). Denote the price of factor F in sector j at t + 1 by ωF

j (t + 1) and its corresponding employment in j by 
xFj (t + 1). The maximum unit license fee LFj,t+1 at date t + 1 that the inventor can charge to producers in sector j is then:

LFj (t + 1) = ωF
j,t+1ρ

F (t + 1) (32)

Intuitively, the “effective factor price” for licensees must rise by exactly the same rate as the proprietary productivity ad-
vance,17 so the total fee from sector j equals LFj (t + 1)xFj (t + 1) = ρ F (t + 1)E F

j (t + 1), where E F
j,t+1 ≡ ωF

j (t + 1)xFj (t + 1)
denotes the factor bill for F in sector j. Consequently, the net return to our inventor equals

ρ F (t + 1)
∑
j

E F
j (t + 1) − κ(ρ F (t + 1)),

implying that optimal R&D generates an improvement rate satisfying the first order condition∑
j

E F
j (t + 1) = κ ′(ρ F (t + 1)) (33)

The same first-order condition holds even when the same inventor controls R&D in more than one factor, since the overall 
payoff is just the aggregate of payoffs from each factor.

15 This common productivity can be relaxed to allow sector-specific productivity improvements in each input, with positive cross-sector spillovers.
16 We can integrate these inventors into our economy by providing them with a technology that depends on machine capital and human/robot labor. We 
avoid that recursive extension here. (One difference: this sector will not be perfectly competitive, with profits constituting a positive fraction of national 
income.) The extent to which humans can be replaced by robots in R&D is then a determinant of the labor income share, as in other sectors.
17 One efficiency unit of the factor costs ωF

j (t + 1)/π F (t) for someone without access to the improved process, and ωF
j (t + 1)/[(1 + ρ F (t + 1))π F (t)] for 

someone with access. The difference in unit cost is [ωF
j (t + 1)ρ F (t + 1)]/[π F (t)(1 + ρ F (t + 1)))], so this can be sucked out as a license fee per efficiency 

unit. Multiplying by the number of efficiency units π F (t)(1 + ρ F (t + 1)) made possible by the advance, we obtain expression (32).
16
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4.3. Equilibrium

An equilibrium extends the definition of competitive equilibrium in Section 2.8. Because licensees transfer all surplus 
to the inventor, current production decisions are the same as they would have been in the absence of license purchases, 
but based on the technology in the public domain at the previous date. We eschew the straightforward details of this 
definition. Informally, an equilibrium is a sequence of wages {w(t), wr(t), we(t), wk(t)}, prices {p(t), pr(t), pe(t), pk(t)}, 
quantities {Fm(t), zm(t), em(t), jm(t), k j(t), r j(t), h j(t), y j(t)} for every person and every sector, and productivities {π F (t)}
for factor F = k, r, h, such that:

(a) Given the sequence of productivities, the remaining sequence of outcomes constitutes a competitive equilibrium (i.e., 
all factor and product markets clear); and

(b) At every date, given equilibrium prices, all productivity changes and fees are the outcome of optimal R&D activities, 
as described above.18

4.4. Automation and the vanishing labor share with technical progress

We now arrive at the main result of this section.

Theorem 2. Assume the self-replication condition (30), and all other conditions stated above in this section. Then in any equilibrium 
which exhibits unbounded accumulation of machine capital, the income share of human labor in the economy must converge to zero 
as t → ∞.

Theorem 2 resurrects our earlier prediction, and continues to highlight the effects of asymmetry across human and 
physical capital accumulation. The theorem now makes a stronger assumption on growth, asking that capital be accumulated 
in equilibrium. It is stronger, because technical progress induces a downward drift on prices (relative to incomes), which 
is an “automatic” — albeit endogenous — source of real income growth. For machine capital to be willingly accumulated 
despite this drift, the degree of patience must clear a higher threshold (a sufficient condition will depend on the maximal 
rate ρ̄ of technical progress).

The proof of Theorem 2 is intuitive enough to be provided in the main text. First observe that under market-clearing, 
aggregate expenditure on capital services Ek(t) equals aggregate supply of machine capital K (t) in natural units (since 
machine capital is the numeraire). Hence K (t) → ∞ implies the factor bill for capital services grows without bound, and 
therefore the rate of productivity improvement of capital services attains the upper bound ρ̄ after some date. Therefore 
πh(t)
πk(t)

, the productivity of human relative to capital services, is bounded. The asymmetric growth in endowments in natural 
units between machine capital and human labor generates a bias (at least weakly) in technical progress in favor of capital.

Next, the price of robot services relative to capital services in efficiency units is bounded:

Lemma 1. In any equilibrium, there exists B < ∞ such that for all t:

πk(t)

π r(t)
pr(t) < B (34)

The lemma is a consequence of the self-replication condition, which implies an upper bound to the equilibrium price of 
robots at each date, relative to the capital; this is the analogue of Proposition 1. The bound p∗

r (t) satisfies

p∗
r (t) = cr

(
1

πk(t)
,
p∗
r (t)

π r(t)

)
(35)

It is easily checked that πk(t)
π r(t) p

∗
r (t) is decreasing in π r(t).19 Since the productivity of robots can only increase over time, the 

upper bound is non-increasing across dates. Hence πk(0)
π r(0) p

∗
r (0) is an upper bound on the price of robots in efficiency units 

at every date.
Combining these two observations, we infer that the wage rate earned by humans must be bounded in every sector, 

owing to the threat of automation. In any sector j that employs human labor at any date t , humans must be cost-effective 
relative to robots:

18 In particular, they satisfy the first-order condition (33) with equilibrium factor bills corresponding to market clearing relative to the production functions 
based on public domain technology at the previous date.
19 (35) is equivalent to p∗

r (t)π
k(t) = cr(1, p

∗
r (t)πk(t)
π r (t) ), so p∗

r (t)π
k(t) = ψ(π r(t)) where ψ(y) solves for p in the equation 1 = cr(

1
p , 1y ). Clearly ψ is non-

increasing. Therefore πk(t)
π r (t) p

∗
r (t) = ψ(π r (t))

π r (t) is decreasing in π r(t).
17
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w j(t)

ν jπh(t)
≤ pr(t)

π r
j (t)

<
B

πk(t)
,

where the second inequality follows from Lemma 1. It follows that

w j(t) ≤ πh(t)

πk(t)
ν j B < ∞. (36)

With finitely many sectors, ν j is bounded,20 and so, by (36), are human wages. So the national share of human labor income 
must converge to 0 in the long run, as K (t) → ∞.

Now, while it is true that human wages are bounded, this is only relative to our chosen numeraire, which is the rental 
rate on machine capital in natural units. Because technical progress occurs in all sectors, machine capital becomes highly 
productive over time, which leads to a progressive decline in the prices of final goods, relative to the same numeraire. While 
human wages are bounded above in that numeraire, as just shown, they are also bounded below, and so by any measure of 
the cost-of-living — that is, relative to any index number defined on the basket of final goods — real incomes must diverge 
to infinity. The fact that the share of human labor share nevertheless converges to zero reveals again the contrast between 
absolute and relative behavior in human incomes, as discussed in earlier sections.

5. Relation to existing literature

Our model is distinct from most existing literature on long-run income distribution, in that it generates a novel set of 
long-run predictions, and its generality reveals the fundamental assumptions that respectively drive different predictions. As 
already noted, our model allows for multiple goods produced under diverse technologies with no substantive restrictions on 
them, not even convexity. Human labor could be sector-specific, or migrate across sectors via education or training, and in 
particular, workers can react to the threat of automation by switching to sectors where humans are harder to displace. In 
terms of outcomes, automation and the progressive displacement of humans occur as a consequence of capital deepening 
alone, even without any technical progress. Under a set of minimal and transparent sufficient conditions, the share of labor 
converges to zero in the long run. Moreover, balanced growth can occur when any of these conditions fail to apply.

A possible reaction to our exercise is that it is “just” an Ak model. Certainly, our economy behaves “as if” it has an 
asymptotically Ak aggregate production function, which permits long run growth as in Rebelo (1991) or Jones and Manuelli 
(1990). However, our main interest is in the long run functional distribution between capital and labor, and in this respect 
it shows how the deeper disaggregated structure matters. To elaborate, note that an asymptotic Ak model can co-exist with 
both a positive or an ever-declining labor share.21 Indeed, as Jones and Manuelli (1990, fn. 2) argue, any long run labor share 
between 0 and 1 can be generated with suitable parametric assumptions on the class of Ak aggregate production functions 
they study. Without an underlying theory of the underlying disaggregated economy, how it evolves with progressive automa-
tion, and a consideration of more primitive forces, it is not possible to make strong predictions regarding the asymptotic 
human labor share. Do all sectors eventually get automated, or just a subset? And even if the former is asymptotically true, 
are there not sectors that are yet to be automated at any finite date — and might wages in such sectors conceivably keep 
pace with capital income? Additionally, what if workers can invest in human capital to “compete” with robots? Answering 
these questions requires a more careful examination of micro-foundations, which constitutes the core of this paper. And as 
we show, the answer does not depend on technological assumptions alone: demand composition also matters.

We now discuss the literature on automation and its consequences for income distribution. In some models (such as 
Aghion et al., 2019 (AJJ)), automation results from technical progress, rather than a fall in the relative price of capital goods. 
AJJ extend the task-based setting of Zeira (1998) where automation (occurring at an exogenous rate) is akin to an increasing 
capital share in an aggregate production function, resulting in a declining labor share over time. On the other hand, capital 
accumulation increases labor share owing to “Baumol’s cost disease,” i.e., inelastic capital-labor substitution. These two ef-
fects run counter to one another. Hence the long run share of labor can be positive in AJJ if the cost-disease effect outweighs 
the automation effect. In our setting, automation is endogenous and can occur even in the absence of technical progress, as 
a consequence of progressive capital deepening.22 If the self-replication condition holds, this induced automation effect is 
powerful enough to drive the long run labor share to zero, even despite inelastic capital labor substitution in all sectors.

20 With infinitely many sectors and unbounded ν j , demand composition will matter as in previous sections.
21 Endogenous growth models such as those in Romer (1986) and Alesina and Rodrik (1994) generate a positive labor share via private diminishing 
returns, coupled with nondecreasing society-wide returns via externalities or infrastructure. A positive human share occurs in Ak models in which human 
and physical capital keep pace with each other, as in Lucas (1988) or Mankiw et al. (1992). A stable share can also arise from parametric restrictions in 
aggregative models with automation, as in Aghion et al. (2019), if automation and inelastic capital-labor substitution happen to mutually neutralize their 
opposing effects on the labor share. On the other hand, an aggregate Ak production function can equally well generate a zero share for labor income, as in 
the Harrod-Domar model or its asymptotic variants.
22 Indeed, Zeira’s original model featured replacement of labor by capital owing to adoption of labor-saving technologies when capital prices are low 
relative to wages, just as in our model. However, the focus of Zeira (1998) was on the role of economy-wide factor endowments on per capita income 
(rather than income distribution) in a cross-country setting, and it did not endogenize the supply of labor-saving technologies.
18
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Acemoglu and Restrepo (2018) (AR) also extend Zeira’s approach to study the distributional implications of automation.23

Their model has one final good, produced by a continuum of tasks, each of which is produced either by robots or humans. 
There is a task threshold above which tasks can only be performed by humans. Technical progress enlarges the set of 
tasks that lie above this threshold, and so is effectively restricted to be in favor of humans (in contrast to AJJ). Below the 
threshold, robots can substitute for humans depending on relative factor prices; hence capital accumulation tends to lower 
labor share in AR (again in contrast to AJJ). As in AJJ, a long-run positive share emerges, but for opposite reasons.

As in AR, our model generates automation and a declining labor share as a consequence of capital deepening. However 
the greater generality of our model reveals the underlying microfoundations for this result. First, our use of multiple sectors 
shows how self-replication in the robot sector spills over to all sectors, an issue that does not arise in an aggregative setting. 
Second, we make explicit the role of occupational diversity in sustaining human capital accumulation. In so doing (and again 
by invoking a multiplicity of sectors) we show the fundamental role played by the composition of demand; specifically, the 
asymptotic homotheticity of preferences as individual income climbs. Finally, our formulation of technical progress allows 
for capital as well as human productivity improvements, and does so in an ex ante unbiased fashion. The direction of 
technical progress is then driven by endogenous innovation incentives. The extension of our baseline model in Section 4
provides an illustration of plausible circumstances where technical progress ends up not being directed in favor of humans.

Benzell et al. (2018) present a model with two final consumption goods. “Robots” or “code” represent a durable capital 
asset used to produce a material good, while labor is used to produce a useful service. An increase in the stock of robots 
causes the relative price of the service and hence wages to fall, owing to induced changes in demand composition. This 
paper therefore shares some common features with ours: automation is induced by changes in factor prices and demand 
composition matters. However in their model, in the long run there is no growth and the share of labor is positive. These 
differences owe to their assumption that there is no scope for robots to displace humans in the production of services, and 
a different model of savings (an OLG specification without parental altruism) that prevents any long run growth.

Caselli and Manning (2019) study the consequences of automation on levels of real wages, rather than inequality of 
factor share between labor and capital. They compare steady states of a model with multiple final/intermediate good and 
types of labor with respect to an exogenous change in technology that lowers unit costs of all goods at any given vector 
of factor prices. They show this implies that real wages of at least one worker type must increase. Moreover the average 
real wage increases if the prices of investment goods fall faster than of consumption goods. A fortiori, these results hold 
also in our model, which additionally incorporates endogenous capital accumulation and technical progress. As shown in 
Proposition 2, automation and vanishing labor share can co-exist with real wages that rise without bound.

While our model has focused on predictions of long run labor share, it also provides a potential explanation of falling 
labor share which is distinct from other explanations in the existing literature. Aside from those based on automation and 
already discussed above, the remaining literature can be classified into the following two categories24:

(i) An argument based on sustained human capital investment, which causes effective labor to grow relative to effective 
capital. In Grossman et al. (2020), human capital investments rise owing to a fall in the interest rate, driven in turn by 
an exogenous decline in rates of technical progress. A number of additional assumptions are needed for their result: 
capital-skill complementarity, a low intertemporal substitution elasticity in consumption, a closed economy, and an 
aggregate capital-labor elasticity of substitution below 1.

(ii) Theories based on globalization, rising markups, rising market concentration, or fall in labor bargaining power. Arguments 
include globalization, whereby labor in developed countries are displaced by competing cheap imports (Autor et al., 
2017), selection into more profitable, higher-markup firms (Autor et al., 2017), or factors such as the rise of the gig 
economy or greater product differentiation, leading to a decline in firm competition and the bargaining power of labor 
(Neary, 2003; Gutiérrez and Philippon, 2017; Azar and Vives, 2018; Eggertsson et al., 2018, and Kaplan and Zoch, 2020).

Our approach is distinct both in terms of underlying assumptions and detailed predictions. The relative growth of human 
capital and physical capital in efficiency units is inverted relative to Grossman et al. (2020). While our model can be 
extended to incorporate market power of firms, our results would continue to apply in the absence of any changes in market 
power; moreover, the evidence presented by Karabarbounis and Neiman (2014) indicates the relevance of our approach, even 
if rising markups provide part of the explanation of falling labor share.

6. Concluding remarks

We study the possibility of long-term automation and decline in the labor share, driven by capital accumulation rather 
than biased technical progress or rising markups. Our argument relies on a fundamental asymmetry across physical and 
human capital in modern economies. While physical capital can be scaled up for the same activity and accumulates in 

23 Hemous and Olsen (2020) extend Acemoglu and Restrepo (2018) to incorporate skilled and unskilled labor, and focus on the implications of automation 
for wage inequality, an issue we ignore.
24 We exclude explanations based on sustained capital accumulation in an aggregative model with capital-labor substitution elasticities exceeding one (e.g., 
Piketty, 2014), because these are at odds with evidence from industry panel studies which show inelastic substitution in most industries (Chirinko and 
Mallick, 2014).
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natural units, human capital accumulates via education that alters choice into higher-skilled occupations, but — from the 
vantage point of a household or individual — cannot scale up the quantity of labor for a given occupation to an unlimited 
degree. Under a self-replication condition on the technology of the robot-producing sector, and some additional conditions 
made explicit in the paper, we show that the share of human labor in national income must dwindle to zero in the long 
run.

The self-replication condition plays an important role in the model. Though involving the technology of the robot sector 
alone, it turns out to have far reaching implications for long run growth and functional inequality. There is increasing 
recognition that the “production of robots by means of robots” is not merely a hypothetical possibility:

“They are a dream of researchers but perhaps a nightmare for highly skilled computer programmers: artificially intel-
ligent machines that can build other artificially intelligent machines . . . Jeff Dean, one of Google’s leading engineers, 
spotlighted a Google project called AutoML . . . [which] is a machine-learning algorithm that learns to build other 
machine-learning algorithms. With it, Google may soon find a way to create A.I. technology that can partly take the 
humans out of building the A.I. systems that many believe are the future of the technology industry.” (The New York 
Times, November 5, 2017.)

The model therefore suggests that the implications of recent developments in AI for the future of inequality may well be 
fundamentally different from anything observed in the past.

On the other hand, our paper also provides a number of different reasons why the labor share need not vanish asymp-
totically: if the self-replication does not hold, non-homothetic demand that progressively favors sectors where humans are 
harder to displace, the existence of growing sectors where humans cannot be displaced at all, or technical progress biased in 
favor of humans. However, while any of these scenarios is possible, we do not see any reason why they should be inevitable. 
Our main purpose has been to identify, as clearly as possible, a set of minimal sufficient conditions for a zero asymptotic 
labor share. And that at the same time, automation can help generate growth in the long run, fueling an absolute increase 
in human wages even as it causes a relative decline in labor share.

Our emphasis throughout has been on the functional distribution of income. Whether a household’s income manages to 
keep step with the rest of the economy — the question of the personal distribution of income — will depend on whether 
they invest in financial wealth or human capital (or neither, or both). This is a question we have not yet addressed, though 
our model provides the means to study it, and is something we plan to undertake. It will become necessary to take closer 
account of both the heterogeneity of the population in their preference parameters, as well as to incorporate a detailed 
description of credit market constraints. Both these features are currently present in the model, but play no more than a 
background role. Finally, we note that despite its generality, the theory presented here is simple and tractable, which may 
also allow it to be useful in analyzing effects of fiscal policies such as capital taxes, education subsidies, universal basic 
income or other policy interventions to address the distributional consequences of automation.

Appendix A. Proofs

Proof of Theorem 1. We begin with some preliminary observations.

Lemma 2. For each j, there is p
j
> 0 such that in any equilibrium and at any date t,

p j(t) ≥ p
j
> 0 (37)

whenever y j(t) > 0. If in addition, self-replication holds, then

p j(t) ≤ c j
(
1, {(νo)−1 sup P∗}) < ∞ (38)

for all j and at every date t, where P∗ is defined in Proposition 1 and o ranges over O j .

Proof. See Supplementary Appendix. �
Recall the automation index introduced in the main text (in a generic occupation o, sector subscript removed):

ao(ζ ) ≡ min
(ro,ho)

{
ro

hoζ + ro
∣∣(ro,ho) minimizes unit cost (hoζ + ro)

}
.

Lemma 3. The automation index ao(ζ ) → 1 as ζ → ∞.

Proof. Let ho(ζ ) be any selection from the set of unit cost minimizing choices of human labor at price ratio ζ . We claim 
that limζ→∞ ζho(ζ ) = 0. To prove this, pick any sequence where limζ→∞ ζho(ζ ) is well-defined (possibly infinite), and a 
further subsequence (retain notation) so that the corresponding robot choice ro(ζ ) converges to some limit, call it r∗ , as 
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ζ → ∞. Because minimized unit cost cannot exceed that from the feasible method of producing one unit of λ using νo

units of ro alone, we have ho(ζ ) → 0. Because λo is continuous,

λo(ho(ζ ), ro(ζ )) = λo(0, r∗) = 1.

Therefore r∗ is always a feasible choice for unit production, and so

ζho(ζ ) + ro(ζ ) ≤ r∗.
Because r0(ζ ) → r∗ , the claim follows. Finally, unit production of λo is maintained through the sequence, so lim infζ r(ζ ) > 0. 
It follows immediately that ao(ζ ) → 1 as ζ → ∞. �

Now we prove part (i) of the Theorem. We first show that in an equilibrium and for any group m that satisfies (23), we 
have zm(t) → ∞. Consider the indirect utility functions vm(z(t), p(t)) for individual expenditure z(t) at any date t . In any 
equilibrium, an individual in this group has F0 > 0 units of a financial asset at date 0, and thereafter makes educational 
and financial asset choices (and consumption choices), under fully anticipated prices, which includes a sequence of return 
factors {γ (t)} on financial holdings. She has several necessary conditions that describe her behavior, but one set of these 
has to do with her choice of financial assets. Because her initial income can be strictly positive if she so pleases (there is a 
positive subsistence wage), her current expenditure zm(T ) must be strictly positive at some date T , but then zm(t) > 0 for 
all t ≥ T , by the unbounded steepness of vm in z at 0. For ease in writing set T = 0. It follows that the Euler equation on 
financial assets must hold with a particular inequality at every date t ≥ 0:

v ′
m(z(t),p(t)) ≥ βmγ (t)v ′

m(z(t + 1),p(t + 1)). (39)

If (39) fails, she could always transfer resources one period into the future and increase lifetime utility. (Equality may not 
hold because human capital could have a higher rate of return than financial assets, and the individual may not be able to 
marginally pull back funds from future to present, because of credit constraints.) Now we compound this Euler inequality 
just as in the main text to arrive at (26), reproduced here as:

v ′
m(zm(0),p(0)) ≥

βt−1
m

[
(1 − δ) + 1

ck
(
1,{(νo)−1 sup P∗})

]t−2

ck
(
1, {(νo)−1 sup P∗}) v ′

m(zm(t),p(t)). (40)

It follows from condition (23) that v ′
m(zm(t), p(t)) → 0 as t → ∞. But vm is strictly increasing and concave for every p. 

Moreover, every active final goods price is bounded above and below by (38) of Lemma 2.25 Therefore (40) can only hold 
if zm(t) → ∞ as t → ∞. With a bounded credit limit on every other individual, we must conclude that per-capita income 
Y (t) as defined in (17) must go to infinity.

For part (ii), we show that any sector j must have its automation index converge to 1 along any subsequence in which 
its output grows. To show this, we argue first that inputs from some occupation o ∈ O j in that sector must also grow. If this 
were false for every occupation in O j , then k j(τ ) → ∞ as τ → ∞, and so by the unbounded steepness condition,

qo(τ ) = p j(τ )
∂

∂λo
f j(k j(τ ),λ j(τ )) → ∞ as τ → ∞ (41)

for some occupation o ∈ O j . But we know that

qo(τ ) = co(wo(τ ), pr(τ )) ≤ (νo)−1pr(τ ) ≤ (νo)−1 sup P∗ < ∞,

where the first inequality comes from the fact that automation is feasible and the second from self-replication and Propo-
sition 1. But that contradicts (41). So λo(τ ) must grow in some occupation o ∈ O j . In any such occupation, ho(τ ) ≤ 1, so 
ro(τ ) → ∞. If wo(τ ) is bounded along some subsequence, then the automation index must converge to 1 along that sub-
sequence. If wo(τ ) is unbounded along some subsequence, then — recalling that pr(τ ) is bounded — Lemma 3 applies and 
the automation index for occupation o also converges to 1 along that subsequence. Averaging the index over all growing 
occupations in sector j completes the proof.

Part (iii). For this part, we need the following

Lemma 4. Let S be the set of all infinite-dimensional nonnegative vectors s ≡ (s1, s2, . . .), with components in [0, 1] and ∑∞
j=1 s j = 1. 

Let s(t) be a sequence in S, and suppose that there is ŝ ∈ S such that s(t) converges pointwise to ŝ = (ŝ j). Let �(t) be a corresponding 
convergent sequence with components (�1(t), �2(t), . . .), where � j(t) ∈ [0, 1] for every j and t, with � j(t) → 0 as t → ∞ for every 
j with ŝ j > 0. Then limt→∞

∑∞
j=1 � j(t)ŝ j(t) = 0.

25 If a final good is inactive it has no effect on vm anyway, as it is not consumed.
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Proof. See Supplementary Appendix. �
For any active sector j and date t , define

� j(t) =
∑

o∈O j
wo(t)ho(t)

p j(t)y j(t)
∈ [0,1],

and set � j(t) = 0 if y j(t) = 0. This is well-defined: p j(t) > 0 whenever y j(t) > 0 (Lemma 2). We claim that if y j(t) → ∞
along a subsequence of dates, � j(t) → 0. To see this, pick any limit point of � j(t) along the subsequence in question. 
Choose further subsequences such that for every occupation o ∈ O j , wo(t) is either bounded or diverges to infinity; retain 
the original index t . Now, if wo(t) is bounded for some o ∈ O j , then certainly

wo(t)ho(t)

p j(t)y j(t)
→ 0

as t → ∞. (Because p j(t) is bounded below, p j(t)y j(t) → ∞.) Otherwise, if wo(t) → ∞ for some o ∈ O j , ζ o(t) =
wo(t)/pr(t) → ∞, given that pr(t) is bounded above (Proposition 1). By linear homogeneity of λo and Lemma 3,

wo(t)ho(t)

p j(t)y j(t)
≤ wo(t)ho(t)

wo(t)ho(t) + pr(t)ro(t)
= ζ o(t)ho(t)

ζ o(t)ho(t) + ro(t)
≤ 1− ao(ζ o(t)) → 0.

Aggregating these observations over all the occupations proves the claim.
If �(t) denotes the share of human labor in national income, it follows that

�(t) =
∑

o∈O j
wo(t)ho(t)

Y (t)
=

∑
j � j(t)p j(t)y j(t)

Y (t)

=
[∑∞

i=1 �i(t)pi(t)yi(t)

Y (t)

]
+

∑
j=e,r,k � j(t)p j(t)y j(t)

Y (t)
(42)

at every date t , where it is understood that any sector inactive at any date has an entry of 0 in the sum above. Write for 
every final good i active at date t:

pi(t)yi(t)

Y (t)
=

∑
m

φm(t)smi(t), (43)

where φm(t) ≡ Zm(t)/Y (t) is the ratio of current aggregate expenditure of type m to total income, and smi(t) is the corre-
sponding expenditure share on good i by type m. Combining (42) and (43),

�(t) =
∞∑
i=1

�i(t)

[∑
m

φm(t)smi(t)

]
+

∑
j=e,r,k � j(t)p j(t)y j(t)

Y (t)
(44)

for all t . We will show that the right hand side of (44) converges to 0 as t → ∞. To this end, pick any subsequence of 
dates (but retain original notation) so that �(t) converges. Exploiting the fact that the number of sectors is countable, use 
a diagonal argument to extract a further subsequence (again retain notation) so that each of the bounded sequences � j(t), 
φm(t), smi(t), p j(t), and [p j(t)y j(t)]/Y (t) also converge.26 The last finite sum in (44) pertains only to three sectors: e, r
and k. For any of these sectors, call it j, � j(t) → 0 along any subsequence for which j is consequential, and on any other 
subsequence p j(t)y j(t) must be bounded, while � j(t) ∈ [0, 1]. Putting these observations together with Y (t) → ∞, we must 
conclude that this last finite term in (44) converges to 0. The rest of the argument concerns the first set of terms in (44).

Let M be the set of all indices for which limt φm(t) > 0 for the subsequence under consideration. If M is empty, we are 
done, so assume it is nonempty. Then, using the fact that the interchange of a finite and infinite sum is always valid, we 
have

∞∑
i=1

�i(t)

[∑
m

φm(t)smi(t)

]
=

∑
m

φm(t)

[ ∞∑
i=1

�i(t)smi(t)

]

=
∑
m∈M

φm(t)

[ ∞∑
i=1

�i(t)smi(t)

]
+

∑
m/∈M

φm(t)

[ ∞∑
i=1

�i(t)smi(t)

]
. (45)

26 In particular, the ratio φm(t) = Zm(t)/Y (t) is also bounded because of finite credit limits.
22



JID:YREDY AID:1110 /FLA [m3G; v1.310] P.23 (1-26)

D. Ray r© D. Mookherjee Review of Economic Dynamics ••• (••••) •••–•••
Because φm(t) → 0 for all m /∈ M , the second term on the right hand side of this equation converges to 0. It remains to 
show that same is true of the first term. It will suffice to show that for each m ∈ M ,

∞∑
i=1

�i(t)smi(t) → 0 (46)

as t → ∞ along our chosen subsequence. Because limt φm(t) > 0 for m ∈ M and Y (t) → ∞, it follows that expenditures 
diverge to infinity for a positive measure of individuals of each type m. Let Zm(t) be the aggregate expenditure of type m
and xmi(t) the aggregate demand for good i by this type. By asymptotic homotheticity,

ŝmi ≡ lim
t

smi(t) = lim
t

pi(t)xmi(t)

Zm(t)
= lim

t
pi(t)d

m
i (p(t)).

We claim that each pi(t) is bounded above and below by strictly positive numbers. The upper bound is given by Lemma 2. 
For the lower bound, suppose by contradiction that I , the set of indices such that p j(t) → 0, is nonempty. Then, by assump-
tion (ii) on the function dm , we have lim inft dmi(p(t)) > 0 for some i ∈ I . But then that sector is active at all large dates, 
which means that its price is bounded below (see (37) of Lemma 2), a contradiction. Therefore the claim is true, and given 
assumption (i) on dm , it follows that ŝmi forms a “bonafide share vector” with 

∑
i ŝmi = 1. So the conditions in Lemma 4 are 

satisfied (ignore index m). Therefore this Lemma implies (46), and the income share of human labor must converge to zero. 
Recall (17) to write out income:

Y =
∑
i

pi yi + pe ye + pk yk,

and express it as the sum of (machine) capital and human income:

Y =
∑
i

pi yi + pe ye + pk yk =
∑
j �=r

[k j + prr j + w jh j]

=
∑
j �=r

[k j + w jh j] + pr[yr − rr] =
∑
j �=r

[k j + w jh j] + [kr + wrhr]

=
∑
j

[k j + w jh j] = K +
∑
j

w jh j.

That means that the income share of capital converges to 1.

Proof of Proposition 2. By Theorem 1, per-capita income must grow without bound. Moreover, by Lemma 2, 0 < inft p j(t) ≤
supt p j(t) < ∞. Therefore by asymptotic homotheticity and the full support restriction on dm for each m, every final goods 
sector must grow without bound. By the unbounded steepness of each sectoral production function in its inputs, the demand 
for every final goods occupation must also grow, and so each such occupation must be asymptotically automated. As a 
consequence, all occupations in the capital and robot sectors must also experience unbounded growth, and they too must 
be asymptotically automated.

Part (a). Consider any occupation o ∈ O−e and any subsequence of dates t with ho(t) > 0 for all such t . Then, by the 
first-order necessary conditions for optimality,

wo(t) ≤
[

∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

pr(t) ≤
[

∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

sup P∗, (47)

where the second inequality uses Proposition 1. Because o is asymptotically automated,

∂λo/∂r

∂λo/∂h
(ho(t), ro(t)) → θ0 as t → ∞. (48)

Combining (47) and (48), we must conclude that

lim sup
t:ho(t)>0

wo(t) ≤ sup P∗

θo
, (49)

so that

sup
[
lim sup

o
wo(t)

] ≤ sup
sup P∗

θo
= sup P∗

info∈O θo
< ∞. (50)
o∈O−e t:h (t)>0 o∈O−e −e

23



JID:YREDY AID:1110 /FLA [m3G; v1.310] P.24 (1-26)

D. Ray r© D. Mookherjee Review of Economic Dynamics ••• (••••) •••–•••
We now consider the education sector, and claim that lim supo∈Oe,t w
o(t) < ∞. For if not, then wo(t) → ∞ for some subset 

of occupations o ∈ Oe along some subsequence of dates. Now, supt pe(t) < ∞ by Lemma 2, and moreover, the education 
function is uniformly bounded. So the cost of all education is uniformly bounded. Therefore, given (50), all humans must 
ultimately be in these educational occupations with unboundedly rising wages, along the aforementioned subsequence of 
dates. Therefore the total input cost of providing education is unbounded along the same subsequence, so total revenue 
from education must also be unbounded. Using supt pe(t) < ∞ again, the total output of education must grow without 
bound along the same subsequence of dates. But now we have a contradiction, for only a bounded amount of education is 
produced at any date (the education function is uniformly bounded and there is a unit measure of humans). So the claim is 
true, and limsupo∈Oe,t w

o(t) < ∞.
With this result in hand, we can finally extend the bound (50) to include all occupations and dates, not just those for 

which ho(t) > 0. For if wo(t) were to climb to infinity along some subsequence of occupations and dates for which ho(t) = 0, 
then at large t , individuals must move to these sectors, which contradicts the presumption that ho(t) = 0.

Therefore limsupo∈O ,t w
o(t) < ∞, which establishes part (a).

Part (b). Recall that all occupations o ∈ O−e grow along with output, and so are asymptotically automated. Because ro(t) > 0
for all large t , it must be the case that for such t ,

wo(t) ≥
[

∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

pr(t).

Passing to the limit with asymptotic automation, using (48), and invoking Lemma 2 to find a strictly positive lower bound 
p
r
for the robot price, we conclude that

lim inf
t

wo(t) ≥ p
r

θo
.

for every occupation o ∈ O−e . It follows that

sup
o∈O−e

lim inf
t

wo(t) ≥ p
r

info∈O−e θo
= ∞,

which implies that there is a sequence of occupations and dates along which the human wage climbs without bound. To 
complete the proof, we claim that every human wage wι(t) must climb to infinity as well. Suppose not, then wι(t) is 
bounded along a subsequence of t , while there is some occupation o with wo(t) → ∞ along that same subsequence. But 
the education function is uniformly bounded, and so is the price of a unit of education pe(t). So at some large t , person ι
can profitably deviate by selecting occupation o for one period, and returning to her presumed optimal plan from date t + 1
onwards, a contradiction. �
Proof of Proposition 3. By the minimum subsistence bound on wages and (37) of Lemma 2, there is q− > 0 such that in 
any equilibrium, q(t) ≥ q− for all t . Recalling the definition of � j(q), we can easily use the linear homogeneity of f j and 
invoke (27) to see that there is ε > 0 such that the share of task costs in total cost in sector j satisfies:

q j(t)λ j(t)

p j(t)y j(t)
= � j(q(t)) ≥ ε > 0,

for every t and every active sector j. Therefore, if �(t) denotes the overall share of task costs in total production costs at 
date t , then, because it is simply a convex combination of all the sector-specific shares,

�(t) ≥ ε > 0 (51)

as well, for every date t .
Now consider any sequence of dates (retain original index t) along which the overall income share of human labor 

converges. Using a diagonal argument, extract a subsequence such that in every sector j, � j(t) converges — to a strictly 
positive limit, by (51), and the overall shares of human labor cost and robot cost in sectoral task costs converges as well. If 
the robot cost share converges to a number strictly smaller than one, then the proof is complete. Otherwise, the robot cost 
share converges to 1, and given that the latter has a positive limit, it follows that lim j r j(t) > 0. In particular, for large dates, 
the robot sector is active, so that:

pr(t) = cr(1,qr(t)) ≤ cr(1, ν
−1
r pr(t)). (52)

where the latter inequality comes from the feasibility of automation in the robot sector.
Now, self-replication fails by assumption, so limη→0 cr(η, 1) ≥ νr . Multiplying through by prν−1

r , and using the concavity 
of the robot cost function (the first part of our regularity condition on fr ), pr ≤ cr(1, ν−1

r pr) for every pr > 0. Indeed, using 
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(37) of Lemma 2 and the unbounded steepness of c at pr = 0 (inherited in turn from the unbounded steepness of fr ), we 
make a stronger claim: there is ε > 0 such that

pr(t) ≤ cr(1, ν
−1
r pr(t)) − ε. (53)

at every conceivable equilibrium price pr(t) at any date.27 Combining (52) and (53),

cr(1,qr(t)) ≤ cr(1, ν
−1
r pr(t)) − ε,

which in turn implies the existence of ε′ > 0 such that

qr(t) ≤ ν−1
r pr(t) − ε′

for all t large. So, because the unit task cost is bounded away from what it would have been with full automation, it follows 
that ar(t) = rr(t)/hr(t) must be bounded above. But then, because tasks in the robot sector can be produced by humans 
alone (the second part of our regularity condition on fr ), it must be that the share of human labor income in the total 
value of robot production (equal to robot income) is bounded away from 0. Therefore in this case, too, the share of human 
income in task cost is bounded away from zero, and the proof of the proposition is complete. �
Proof of Proposition 4. In any equilibrium, all prices are bounded below (pointwise) by strictly positive numbers, just as 
before; see (37) of Lemma 2. Under self-replication, Proposition 1 additionally applies and robot prices are also bounded 
above exactly as before, and independent of human productivity. In turn, this provides pointwise upper bounds on prices in 
all sectors, see (38) of Lemma 2. That includes the same bound on price of capital, so part (i) of Theorem 1 holds under the 
same conditions and following exactly the same proof.

The remainder of the proof consists in applying the following argument at more than one point:

Claim. Suppose that for some occupation o ∈ ∪ j O j , the human wage per unit of productivity, wo(t), is bounded on the equilibrium 
path by some w̄o < ∞. Then human labor in efficiency units is also bounded along that same path.

To establish the Claim, pick some S > 0 such that

p
e
S >

w̄o

1 − β
+ p̄e L

o (54)

where β is the largest discount factor among all types. Next, using (H.1), pick M < ∞, larger than initial productivity endow-
ment and the cross-occupation bound, such that e(μ, μ + �, o, o) ≥ S� for all μ ≥ M . Suppose an individual contemplates a 
move beyond a productivity of M without changing occupation; i.e., there exists t such that she moves from μo(t − 1) ≥ M
to μo(t) > μo(t − 1). Let � ≡ μo(t) − μo(t − 1). Then the lifetime wage gain as a result of this move is bounded above 
by w̄o�/(1 − β). Also, the higher productivity can lower the marginal cost of subsequent actions. By (H.2), these gains are 
bounded above by p̄e L j�, where p̄e is an upper bound on the price of education. So total gains are bounded above by

w̄o�

1− β
+ p̄e L j� (55)

On the other hand, the cost of this move is given by

pe(t)e(μ
o(t − 1),μo(t),o,o) = pe(t)e(μ

o(t − 1),μo(t − 1) + �,o,o) ≥ p
e
S�.

Combining this expression with (54) and (55), we must conclude that the cost of the proposed move exceeds its benefits, 
so it will never be made. That proves the Claim.

For parts (ii) and (iii), minor adjustments are needed. In (ii), we prove that any sector j must be asymptotically fully 
automated along any subsequence in which its output grows. Just as in the proof of Theorem 1, we can first show that inputs 
in some occupation o ∈ O j in that sector must also grow. Now we consider two possibilities. If wo(t) grows along some 
further subsequence, then the share of human labor income in total income to occupation o must converge to zero along 
that subsequence (Lemma 3). The second possibility is that wo(t) is bounded. Then by the Claim, individual productivity is 
also bounded, and — given that this occupation grows — it must become asymptotically automated.

For part (iii), we need to show again that

� j(t) =
∑

o∈O j
wo(t)ho(t)

p j(t)y j(t)
∈ [0,1],

27 Note first that pr(t) is bounded below (Lemma 2). Now consult Panel B, Fig. 1. Because cr(1, pr) is concave and initially lies strictly above the diagonal, 
it cannot converge back to the diagonal without actually crossing it. So it must remain separated from the diagonal by some strictly positive number.
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converges to zero, as in the proof of Theorem 1. Very similar (and minor) changes need to be made as in the preceding 
paragraph, using the Claim. We omit the details. With this established, there is no change in the rest of the argument to 
establish Theorem 1. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .red .2021.09 .003.
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