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ABSTRACT
The stochastic nature of many Machine Learning (ML) algorithms

makes testing of ML tools and libraries challenging. ML algorithms

allow a developer to control their accuracy and run-time through a

set of hyper-parameters, which are typically manually selected in

tests. This choice is often too conservative and leads to slow test

executions, thereby increasing the cost of regression testing.

We propose TERA, the first automated technique for reducing the

cost of regression testing in Machine Learning tools and libraries

(jointly referred to as projects) without making the tests more flaky.

TERA solves the problem of exploring the trade-off space between

execution time of the test and its flakiness as an instance of Sto-

chastic Optimization over the space of algorithm hyper-parameters.

TERA presents how to leverage statistical convergence-testing tech-

niques to estimate the level of flakiness of the test for a specific

choice of hyper-parameters during optimization.

We evaluate TERA on a corpus of 160 tests selected from 15

popular machine learning projects. Overall, TERA obtains a geo-

mean speedup of 2.23x over the original tests, for the minimum

passing probability threshold of 99%. We also show that the new

tests did not reduce fault detection ability through a mutation study

and a study on a set of 12 historical build failures in studied projects.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Software Testing, Machine Learning, Bayesian Optimization, Test

Optimization

ACM Reference Format:
Saikat Dutta, Jeeva Selvam, Aryaman Jain, and Sasa Misailovic. 2021. TERA:

Optimizing Stochastic Regression Tests in Machine Learning Projects. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464844

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00

https://doi.org/10.1145/3460319.3464844

1 INTRODUCTION
The growing popularity of Machine Learning (ML) has led to rapid

development of general-purpose libraries and specialized tools that

build on top of these libraries. These tools perform various tasks

in applications like computer vision, natural language processing,

and medical diagnosis by implementing algorithms such as Deep

Learning [44], Reinforcement Learning [61], or Probabilistic Pro-

gramming [45, 48]. However, bugs in the implementations of such

tools can make the ML-based applications vulnerable to failures

and lead to loss of lives and property [47, 103].

Testing ofML libraries and tools is currently not well-understood,

which causes the developers to apply ad-hoc techniques when

writing tests. An important trait of many ML algorithms – e.g.,

Reinforcement Learning [100], Bayesian modelling [31], Seq-to-seq

learning [99] – is inherent randomness, meaning that each execution

of the algorithm may produce a slightly different result. Hence,

developers often opt to execute such algorithms for long cycles

(more than actually necessary) to ensure their results are highly
likely to be close to expected values in tests, thereby unnecessarily

increasing the cost of testing.

An optimized testing procedure for ML algorithms needs to

make careful choices. ML algorithms allow a developer to control

their accuracy and run-time through a set of hyper-parameters
– numerical values that guide model selection or define training

strategies. Common examples of hyper-parameters for learning

algorithms include the number of training iterations, learning rate,

and the number of elements sampled from output distribution.

Listing 1 shows a common pattern of tests that check for correct-

ness of an ML algorithm. Such a test typically involves: (1) setup

code, e.g., for downloading sample data, initializing test environ-

ment on Line 2, (2) initializing a stochastic ML algorithm with

one or more hyper-parameters 𝑃1, . . . , 𝑃𝑘 on Line 3, (3) executing

the algorithm and computing accuracy metrics on Lines 4-5, and

(4) assertions checking if computed metrics are near to or exceed

expected values on Lines 6-7. When the developers do not choose

the hyper-parameters carefully, these tests can be slow to execute.

We observe that such tests are typically more time-consuming than

other tests in the test-suite and consume a significant portion of

test time, sometimes even exceeding 80% (Section 5).

1 def testAlgo():

2 [[setup code]]

3 trainer = MLAlgo( 𝑃1 = 𝑣1,𝑃2 = 𝑣2,. . .,𝑃𝑘 = 𝑣𝑘 )

4 trainer.train()

5 metrics = trainer.compute_metrics()

6 for i in range(len(metrics)):

7 assert metrics[i] >= expected[i]

Listing 1: Example test pattern

https://doi.org/10.1145/3460319.3464844
https://doi.org/10.1145/3460319.3464844
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Choosing optimal hyper-parameters is often non-intuitive and

difficult for a developer to get right. In this process, developers

also need to ensure that their tests are not too flaky – pass and fail

non-deterministically for the same version of code – due to ran-

domness of the ML algorithm. For instance, if a developer chooses

hyper-parameters too conservatively (e.g., selects a large number

of training iterations), the test becomes less flaky but is too expen-

sive to run. On the other hand, if the developer chooses hyper-

parameters too liberally, the test runs faster but can become more
flaky. Dutta et al. [33] showed that algorithmic randomness is the

major cause of flakiness in the ML domain, further signifying the

importance of accounting for randomness in tests.

At present, developers have to make ad-hoc decisions and man-

ually select sub-optimal hyper-parameter values. Naturally, they

are more inclined to be conservative since they are focused on

eliminating flakiness. An important and intriguing challenge then

is to find a way to significantly reduce the running time of such

tests without making them more flaky.

Our Work. We propose TERA – the first automated technique for

reducing the cost of regression testing in ML projects
1
without

making the tests more flaky. TERA rests on a (seemingly counter-

intuitive) insight that modestly relaxing the desired passing prob-

ability of some tests can result in both faster and highly reliable

execution of the test suite. To find the optimized version of the

tests, TERA systematically navigates the trade-off space between

execution time of the test and its passing probability by tuning the

algorithm hyper-parameters.

To determine the degree of flakiness of a test, we define a metric

Test Passing Probability (TPP) – probability that a given test passes

for the same code version. For its exploration, TERA exposes TPP

to the developer as a tunable knob 𝛼 ∈ [0, 1]. For instance, if the
developer specifies 𝛼 = 0.99, TERA will try to find a set of optimal

hyper-parameter values which minimize the running time of the

test without dropping the probability of passing below 99% (or such

that TPP ≥ 𝛼). If successful, the optimization will reduce the regular

testing time and the build time (which involves running tests across

multiple environments) of the project in the continuous integration

systems like Travis-CI [22] and CircleCI [3].

TERA formulates the problem of exploration of the trade-off

space between the execution time of the test and its passing prob-

ability as an instance of Stochastic Optimization over the space of

algorithm hyper-parameters. Stochastic Optimization [94] encom-

passes a family of algorithms for optimizing objective functions

when randomness is present. The main benefits of Stochastic Op-

timization are that (1) the optimization can reduce the running

time of the test in a black-box fashion (i.e., it does not need to look

into the test body); and (2) it automates the selection of algorithm

hyper-parameters in a systematic manner. In this work, we use

Bayesian Optimization, as an instance of Stochastic Optimization

method, to solve the optimization problem.

For a given test, TERA constructs an objective function that exe-

cutes the test (using a given set of hyper-parameter values) several

times and returns the average execution time (the optimization ob-

jective) and the test passing probability. However, to construct this

1
By “ML projects” we denote ML-related libraries or tools, in which the outcomes are

affected by some stochastic component (e.g., in the algorithm or the data-set that the

test generates). Hereon, we will use “projects” to refer to such libraries/tools.

objective function, we must address two challenges: (1) How many

times to execute the test? and (2) How to estimate the test passing

probability? Existing literature on optimization algorithms does

not provide mechanisms to automatically develop such stochastic

objective functions.

We apply two key techniques to address the challenges above.

First, we monitor the values in the assertions of the test while

executing the test several times. We then use the samples of the

actual values in the assertion (e.g., metrics[i] in Listing 1, Line 7)

to check whether it converges to the target distribution. We use the

convergence property to dynamically determine howmany times to

execute the test. Second, we approximate the passing probability of

the test by computing the passing probability of its assertions. We

compute this probability by first estimating the distribution using

the samples of the actual values and then computing how likely

it is to exceed the expected values (e.g., expected[i] in Listing 1,

Line 7). We present more details in Section 4.6.

Results. We evaluate TERA on a corpus of 160 tests selected from

15 projects, chosen from four popular ML libraries – PyTorch, Ten-

sorFlow, Pyro, PyMC3 – and tools that build on top of them. These

tools provide application specific functionalities and have a wide

user base, making them an important part of the ML domain. TERA

found the optimized configurations for 133 tests. TERA’s optimized

tests are 2.23x (geo-mean) faster than the original tests, for the

passing probability threshold (𝛼) of 0.99 (or 99%). Developers al-

ready accepted our optimizations for 24 tests at the time of writing

this paper. We performed two studies on the ability of optimized

tests to detect faults:

• On a set of mutated programs, we observed that the mutation

scores increase slightly on average. We further inspect some mu-

tants and find two key trends, which we discuss in Section 7.1:

1) an optimized test catches a bug missed by original test when

faults introduce small variations in computations which are ab-

sorbed in longer cycles (original) but detected in tighter execu-

tions (optimized) – increasing true positive rate, and 2) optimized

test misses a bug when the error accumulation exceeds a cer-

tain threshold (more likely in longer cycles) – increasing false

positives. TERA’s approach of changing hyper-parameters only

affects executions which exhibit such small deviations - which

are very rare as demonstrated by our mutation study. Hence, the

optimized tests retain most of the fault detection ability of origi-

nal tests. We also discuss a composite test-execution strategy to

mitigate the false positives in Section 7.2.

• On a set of 12 historical failures in the project builds, we con-

firmed that our optimized tests were able to detect the faults in

all cases.

These results jointly show that our approach can improve the per-

formance of testing, while retaining the fault detection ability of

the optimized tests. We anticipate developers can apply TERA, in

addition to existing tests, when a new test of ML algorithm gets

added and when such a test fails due to regression errors.

Contributions. This paper makes the following contributions:

• We frame the problem of reducing the running time of tests in

Machine Learning projects as an optimization problem over the

space of hyper-parameters used in learning algorithms.
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• We propose TERA, an automated approach for optimizing ex-

pensive tests by combining Bayesian optimization and statistical

testing techniques.

• We evaluate TERA on 160 tests from 15 projects. We show that

the optimized versions of the tests run 2.23x times faster while

still retaining similar fault detection ability.

We provide a complete replication package containing the source

code of TERA and the instructions for reproducing our results at

https://github.com/uiuc-arc/tera.

2 EXAMPLE
Listing 2 shows an example test (simplified) for a reinforcement

learning algorithm in ML-Agents project [10]. ML-Agents pro-
vides implementations of several training algorithms (like deep

reinforcement learning ) for training agents in games and simula-

tion environments. We describe the test next.

Lines 2-12 initialize a simple simulation environment (SimpleEn-
vironment) and the training algorithm (SAC). Line 13 performs

the training step. Lines 14-18 compute the score (rewards) of the

trained agent for the given environment and checks if the scores

are above the expected value (0.8).

1 def test_2d_sac():

2 env = SimpleEnvironment(...)

3 config = TrainerSettings(

4 trainer_type=TrainerType.SAC,

5 hyperparameters=SACSettings(

6 learning_rate=5.0e-3 ,

7 batch_size=16 ,

8 ...

9 ),

10 max_steps=10000

11 )

12 trainer = create_trainer(env, config, ...)

13 trainer.start_learning()

14 processed_rewards = [

15 reward_processor(rewards) for rewards in env.final_rewards.values()

16 ]

17 for reward in processed_rewards:

18 assert reward > 0.8

Listing 2: Example test from ml-agents

1 def sample_mini_batch(batch_size, sequence_length):

2 num_seq_to_sample = batch_size // sequence_length

3 mini_batch = AgentBuffer()

4 ...

5 num_sequences_in_buffer = buff_len // sequence_length

6 start_idxes = (

7 np.random.randint(num_sequences_in_buffer, size=num_seq_to_sample)

8 * sequence_length

9 )# Sample random sequence starts

10 for key in self:

11 mb_list = [self[key][i : i + sequence_length] for i in start_idxes]

12 mini_batch[key].set(list(itertools.chain.from_iterable(mb_list)))

13 return mini_batch

Listing 3: Source of Randomness (Batching)

We select this test for optimization with TERA because it uses

a machine learning algorithm (SAC), which is a reinforcement

learning algorithm that makes random choices, requires selecting

1 def sample_action(dist):

2 ...

3 continuous_action = dist.sample()

4 return AgentAction(continuous_action)

Listing 4: Source of Randomness (Sampling Action)

several hyper-parameters, and contains an approximate assertion

(Line 18). These hyper-parameters (like max_steps) determine the

running time of the test. Developers typically choose these hyper-

parameters in an ad-hoc manner, based on their intuition on what

seems to be good enough. As a result, this test runs longer than

what is required (as we show later) to achieve the desired reward

(Line 18). The original test takes 90 seconds to run.

The Soft-Actor Critic (SAC) Algorithm [52] is a deep Reinforce-

ment Learning algorithm. Reinforcement learning algorithms aim

to maximize the expected reward of an agent solving a given task

(such as playing a game).

Sources of Randomness. The SAC algorithm involves several

sources of randomness. Listing 3, shows the simplified code snippet

for a function sample_mini_batch, which is used by SAC algo-

rithm [11]. In each iteration, the algorithm uses this function to

compute gradients using batches randomly sub-sampled (Lines 6-

12) from the agent buffer (which contains traces of the previous

steps). Listing 4 shows another function sample_action, which is

used by SAC [12] to sample the next action (which can either be a

discrete choice or a continuous value) using a specified distribution

(Line 3) for the agent. Due to these random choices of mini-batches

and actions at each step, every execution of the test can yield slightly

different results (rewards). Hence, if the developers do not choose

optimal hyper-parameters
2
, the test can sometimes fail and become

unacceptably flaky.
Optimizing the test. A naive approach to reduce the running

time of the test might be to do binary search on the max_steps
parameter and choose a value for which the test passes. However,

this approach is problematic. First, reducing max_steps alone, or
any other hyper-parameter may not help us find the optimal run-

time.We need to simultaneously adjust other hyper-parameters like

batch_size and learning_rate. Second, running the test once is

not enough. We need to ensure the test passes with high probability

i.e., is not too flaky. These problems make manual test optimization

hard for developers.

To optimize this test, we select three hyper-parameters: learn-
ing_rate, batch_size, and max_steps. To use TERA, we need to

first define a valid range of values for each parameter. This, in turn

defines the search space for optimization. For learning_rate, we
select a continuous range [1𝑒−5, 1.0], which is a few orders below

and above the original value (5𝑒−3). For batch_size, we allow a set

of discrete choices {2, 4, 6, 8, 16, 32, 64, 128, 256}, which are typical

batch sizes used in machine learning. For max_steps we select a

discrete interval: [100, 10000] with increments of 100. We select the

2
For tests like this, one could argue that a simple way to deal with randomness during

testing is to set the seed in the random number generators, which will make the

execution more deterministic. The developers can then just execute the test for a much

smaller number of steps and reduce the run-time. However, setting the seeds may not

always be the right choice: they can be brittle in presence of program changes and

can hide bugs [33].

https://github.com/uiuc-arc/tera
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original value (10000) as the upper bound for this interval since we

want to reduce the number of steps and consequently the run-time.

Using the parameter specifications above, TERA automatically

adds instrumentation blocks to the code, which perform two steps:

(1) replace original parameter values with placeholders: e.g. max_-
steps = 10000 => max_steps = “<max_steps>”, and (2) add

code to log the actual (reward) and expected values (0.8) in the

assertion. The values in the assertion help TERA reason about how

likely is the test to pass over multiple runs.

Next, TERA’s Optimizer module constructs a scoring function,

that encodes the optimization problem. The scoring function runs

the instrumented version of the test with the given parameter val-

ues several times and monitors the execution of the test. Then, it

inspects the execution trace (the logged assertion values) and deter-

mines the probability of passing of the test. This scoring function

is called by the Bayesian optimization algorithm, as it systemati-

cally explores the search space. For this experiment, we allow the

minimum passing probability threshold 𝛼 = 0.99.

TERA reduces the running time of this test to less than 15 sec-

onds. This is over 6x faster than the original test. The optimal

configuration TERA found has the following hyper-parameter val-

ues: max_steps : 2300, batch_size : 4, and learning_rate : 0.023.
To estimate the impact of this optimization on the fault detection

capability, we can compute the mutation score post-hoc. In the case

of the tests in theML-Agents project, the mutation score after the

optimization is slightly above the one of the original tests (62.44% vs

61.16%), indicating that the fault detection capability is not reduced.

3 BACKGROUND
In this section, we introduce necessary background related to Bayesian

optimization, which is a Stochastic Optimization method, and con-

vergence testing.

3.1 Bayesian Optimization
Bayesian Optimization [72, 81] is a popular technique used for

global optimization of black-box functions. Given a randomized

objective function 𝑓 , we want to find an input 𝑥 ∈ R𝑑 (𝑑 ∈ N)
which minimizes the output of 𝑓 , subject to a set of constraints on

the input space, encoded by the functions 𝑔1, . . . , 𝑔𝐾 . Formally:

min

𝑥 ∈R𝑑
𝑓 (𝑥), s.t. 𝑔𝑖 (𝑥) ≥ 0, for 𝑖 = 1, . . . , 𝐾

Bayesian Optimization algorithms do not make any assumptions

about the nature of the objective function and use a prior distri-

bution to model the behavior of the objective function. The user

only needs to define the input space of the objective function. The

algorithm then evaluates the function using different inputs and up-

dates the prior to form the posterior distribution using the outputs

obtained from function evaluations. The posterior distribution is

then used to create an acquisition function. The acquisition function

is used to select the inputs for the next round such that it maximizes

the chances of finding the optimal parameters.Two common choices

of prior/posterior distributions include Gaussian Processes, used in

Gaussian Process Regression [88], and Kernel Density Estimators

(Non-Parametric), used in Tree-Parzen Estimators [25] (which we

use in this work). Examples of acquisition functions include the

probability of improvement, expected improvement (used in this

work), and knowledge gradient. Bayesian Optimization is advan-

tageous over other methods like random/grid/genetic search [81]

when the objective function is computationally expensive.

Researchers have previously employed Bayesian Optimization

for problems such as compiler auto-tuning [29], compiler test-

ing [66], finding optimal configurations for software systems [74],

and program analysis [56, 77].

3.2 Automating Convergence Testing
Given a test which performs stochastic computations, we want to

determine how flaky it is. A naive way would be to run the test a

large number of times and then check how often it fails. However,

this approach is expensive, especially when the test run-time is

high or when the test fails rarely.

Convergence testing. Suppose we have an assertion Φ in a test

function 𝑇 . We can determine the probability of passing of the

test by computing the probability of passing for this assertion. To

compute this probability, we need to reason about the entire distri-

bution of values that the expression in the assertion can evaluate

to. Without loss of generality, let us assume we have an assertion

of the form: assert 𝑥 < 𝛾 , where 𝑥 is a variable in the test and 𝛾 is a

fixed threshold.

Wewant to estimate the distribution for𝑥 so that we can compute

the probability of 𝑥 exceeding 𝛾 . We frame this problem as estimat-

ing the distribution of an unknown function F , where F evaluates

𝑇 , capturing and returning the value of 𝑥 . We use a sampling-based

approach for this problem such that we execute F several times,

obtain a number of samples of 𝑥 , estimate the distribution from the

samples, and compute the probability of passing: Pr(F ≤ 𝛾). This
approach involves two main challenges. We need to decide (1) how
many samples to collect at minimum and (2) whether we have seen
enough samples.

Several convergence metrics exist in literature [40, 41, 89]. We

use the Geweke Diagnostic [41] (similar to [33]) as a heuristic

to measure convergence of a set of samples, to solve the second

challenge outlined above. Intuitively, the Geweke diagnostic checks

whether the mean of, say, the first 10% of samples is not significantly

different from, say, the last 50%. If true, then we can say that the

distribution has converged. To measure the difference between the

two sub-sets of samples, the Geweke diagnostic computes the Z-

score (can be essentially considered as standard deviation), which is

computed as the difference between the two sample means divided

by the standard errors. Equation 1 presents the formula for the

Z-score computation for Geweke diagnostic, where 𝑎 is the early

set of samples, 𝑏 is the later set of samples,
ˆ𝜆 is the mean of each

set and Var is the variance of each set of samples.

𝑧 =
ˆ𝜆𝑎 − ˆ𝜆𝑏√

Var(𝜆𝑎) + Var(𝜆𝑏 )
(1)

To use the Geweke Diagnostic as the convergence test, the user

needs to specify the minimum desired threshold (which we call the

convergence threshold). The convergence testing procedure keeps
collecting samples (from test runs) until the Geweke Diagnostic

drops below the user-specified threshold. Naturally, a lower thresh-

old needs more samples for convergence. Dutta et al. [33] showed
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that using a threshold of 1.0 works well for detecting flakiness in

ML projects. We use the same threshold 1.0 in our work.

Choosing the minimum number of samples is non-trivial. Too

few samples can lead us to incorrect conclusions whereas too many

samples can be too expensive to compute (especially when running

the test is expensive). The user can choose appropriate number

of samples. For our evaluation we use a minimum of 30 samples

(guided by existing studies [91] that recommend this number of

samples for statistical significance).

4 TERA
4.1 Problem Formulation
We formalize the optimization problem TERA aims to solve as

follows. Given a test 𝑇 : ∅ ↦→ {0, 1}, TERA transforms the test to

an equivalent variant 𝑇 ′ : 𝜽 ↦→ {0, 1}, which is parameterized by

an ordered tuple of hyper-parameters 𝜽 . Here, 𝜽 = (𝑃1, . . . , 𝑃𝑘 ),
where each 𝑃𝑖 (𝑖 ∈ {1, . . . , 𝑘}) is a tunable hyper-parameter we can

optimize and 𝑘 is the number of hyper-parameters identified in 𝑇 .

Each parameter is either a discrete integer (e.g., number of itera-

tions) or a continuous value (e.g., learning rate). Therefore, 𝑃𝑖 ∈ 𝑈
∀𝑖 ∈ {1, . . . , 𝑘}, where𝑈 = Z or R and 𝜽 ∈ 𝑈1 ×𝑈2 . . . ×𝑈𝑘 .

We define a function TPP : (𝑇 ′, 𝜽 ) ↦→ [0, 1], which takes a

transformed test 𝑇 ′ and a tuple of hyper-parameters 𝜽 and returns

the probability of passing of 𝑇 ′ when executed using the selected

hyper-parameters 𝜽 . Additionally, we also define function Time :
(𝑇 ′, 𝜽 ) ↦→ R+, which returns the execution time of the test using

the selected parameters.

TERA searches for a hyper-parameter tuple 𝜽 ∗ ∈ 𝑈1×𝑈2 . . .×𝑈𝑘 ,
which when provided as an input to 𝑇 ′ minimizes the execution

time of test: Time (our objective function), given the constraint that

the test passes with at-least probability TPP(𝑇 ′, 𝜽 ∗) ≥ 𝛼 . Formally:

𝜽 ∗ = argmin

𝜽 ∈𝑈1×...×𝑈𝑘

Time(𝑇 ′, 𝜽 )

s.t. TPP(𝑇 ′, 𝜽 ) ≥ 𝛼

We must address several challenges to solve this optimization

problem. First, the nature of the objective function (Time) is un-
known since wemay not have sufficient information about the exact

functional form of the given test or the code under test. Hence, we

need black-box optimization methods for this problem (Section 4.5).

Second, the optimization space of hyper-parameters is typically

large, which makes any analytical or enumerative approaches in-

feasible. Further, evaluating each configuration can be expensive

since the test execution can take several minutes and even multiple

executions. Hence, we resort to sampling based approaches to find

optimal hyper-parameters. However, instead of randomly sampling

from the search space, we use Bayesian techniques to sample more

efficiently (Section 4.5). Third, since the test execution involves

randomness (as shown in Section 2), we need to determine how

likely the test is to pass with a given tuple of hyper-parameters 𝜽 .
A naive strategy is to run the test 𝑁 times and report how often it

passes. However, this can lead to imprecise results. We show how

we can apply statistical techniques to both determine how many

Algorithm 1 TERA Algorithm

Input: Test𝑇 , Parameters 𝜽 , Min. Passing Probability 𝛼

Output: Optimized Test𝑇 ∗ , Parameters 𝜽 ∗

1: procedure TERA(𝑇, 𝜽 )
2: Search_Space← Initialize_Search_Space(𝑃 )
3: 𝑇 ′ ← TestInstrumentor(𝑇, 𝜽 )
4: Optimizer← BayesOpt(Search_Space, Scorer,𝑇 ′, MAX_EVALS, TIMEOUT, 𝛼)
5: 𝑇 ∗, 𝜽 ∗ ← Optimizer.minimize()
6: return𝑇 ∗ , 𝜽 ∗
7: end procedure

times to run the test and precisely compute the probability of pass-
ing using the assertions in the test (Listing 1, Lines 6-7). We filter

out hyper-parameters which drop the probability of passing below

user-specified threshold 𝛼 . We provide more details in Section 4.6.

4.2 System Overview
We describe how we implement the solution for the optimization

problem discussed above in TERA. Algorithm 1 describes the main

algorithm for TERA and how it uses the main components. It takes

a test 𝑇 , a tuple of hyper-parameters 𝜽 used in the test, and the

minimum test passing probability 𝛼 as its inputs. TERA consists of

four main components:

• The Test Identifier finds tests which run inference algorithms or

training algorithms and contain one or more tunable parameters.

For each parameter in 𝜽 , we define the valid range of values for

the parameter and how to sample the values (Line 2).

• The Test Instrumentor modifies the given test by creating place-

holders for hyper-parameters that TERA needs to optimize and

adding instrumentation code for logging the actual and expected

values in the test assertion (Line 3).

• The Optimizer executes the Bayesian Optimization algorithm. It

runs a test with different parameter configurations several times

and finds an optimal parameter configuration which minimizes

the running time of the test. We initialize the Optimizer (Line 4)
using the defined search space, the scoring function (Scorer),

the instrumented test 𝑇 ′, and a few hyper-parameters like max-

imum number of evaluation of test (MAX_EVALS) and time limit

for optimization (TIMEOUT).
• The Scorer implements the entire optimization problem. It takes

the instrumented test 𝑇 ′, a tuple of hyper-parameters 𝜽 , and the

minimum passing probability 𝛼 as input. Then it runs the test

(with the parameter configuration) several times, records the

actual and expected values in the assertion, and computes the

probability of the assertion passing. If the probability of passing is

greater or equal to the user specified threshold (𝛼), then the Scorer

returns the average run time of the tests as output. Otherwise,

the Scorer returns infinity (∞). The Scorer is passed as the scoring
function by the optimization algorithm.

4.3 Test Identifier
To run TERA, we first need to identify parameters in the test which

directly affect the running time of the test and the accuracy of

the result. For instance, to run an inference algorithm like Sto-

chastic Variational Inference (SVI) in Pyro, the developer needs

to set the number of iterations to run and the learning rate of the

AdamOptimizer (which is a variant of Stochastic Gradient Descent).
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Similarly, to run a reinforcement learning algorithm in ML-Agents,
the developer needs to choose hyper-parameters like the number

of iterations, batch size, and learning rate. We identify such param-

eters manually in the test and use TERA to tune them. For instance,

we look for parameters that match the following patterns: samples,
iterations, epochs, batch size, learning rate, num passes, and chains.

We also need to identify assertions in the test which TERA can

use to determine the reliability of the test results. In particular,

we look for assertions which perform approximate comparisons

between expected and actual values. This notion of approximate

assertions is similar to the ones used in previous works [33, 75].

One example of such an assertion is the Python assert statement

of the form: assert 𝑎 < | > | <= | >= 𝑏. Other examples include

numpy APIs like assert_allclose and assert_almost_equal,
and unittest APIs like assertLess and assertGreater. One differ-
ence with previous works is that we also consider assertions that

check for exact equality. However, we limit it to cases where the

assertions check some property of a trained model or inference.

Overall, we typically spend 1-2 hours per project on average

to identify tests with suitable hyper-parameters and assertions

as described above. We anticipate that the developers who have

familiarity with their projects will identify such tests much faster.

4.4 Test Instrumentor
For the given test 𝑇 in a project, and hyper-parameters 𝜽 , the Test
Instrumentor performs two tasks. First, it replaces the original val-

ues of each parameter with a placeholder, which will be used by

TERA to set new parameter values and run the test. Second, it adds

statements to record the actual and expected values in the test as-

sertions (specified by the user). This step ensures TERA can later

reproduce the executions, by simply reading the values from the

logs and reason about the distribution of values. The Test Instru-

mentor can handle logging any scalar, vector, or tensor objects. We

use Python’s AST library [87] to implement the Test Instrumentor.

4.5 Optimizer
TERA uses Bayesian Optimization to optimize the running time

of the tests. In this work, we use Tree Parzen Estimators (TPE)
Algorithm [25], which is a variant of Bayesian Optimization [72].

To use this algorithm, we need to provide:

• Legal Parameter Values: First, we need to define the space of

legal parameter values that the optimization algorithm uses to

sample the parameter values. To use the TPE algorithm, we need

to specify a distribution for each parameter that will be used for

sampling. We use three kind of parameters spaces in this work:

(1) Continuous bounded interval, e.g. 𝑥 ∈ [1𝑒−5, 1.0], (2) Discrete
bounded interval, e.g. 𝑥 ∈ [100, 1000], (3) Discrete choices, e.g.
𝑥 ∈ {1, 2, 3, 4, 5}. For the parameters with continuous bounded

interval (e.g. learning rate), we use a log-uniform distribution so

that it samples values of different orders. For parameters with

discrete bounded intervals (e.g. iterations) or discrete choices (e.g.

batch size), we use a uniform distribution for sampling.

We manually define the bounds of the distribution based on the

kind of parameter. For instance, for parameters like iterations and
number of samples, we choose the upper bound to be the default

value of the parameter and lower bound to 100 (or 1 if default is

less than 100). For parameters like learning rate, we choose the
lower and upper bounds as 1𝑒−5 and 1.0 respectively.

• Objective Function: Second, we need to define an objective

function, which takes as input a set of new parameter values pro-

posed in an iteration by the algorithm and returns a score which

intuitively evaluates the goodness of a given set of parameter

values. Since we are concerned with reducing the run time of the

tests, we could just return the execution time of the test as the

score. However, it is insufficient to run the test once. We must

also ensure that the test passes with high probability. Otherwise,
we might obtain a faster, but highly flaky test.

4.6 Scorer
The Scorer module encodes the optimization problem. Algorithm 2

describes the Scorer algorithm. First, it replaces the parameter place-

holders in the instrumented test 𝑇 ′ with the actual values in 𝜽 and

creates a concrete version of the test 𝑇𝐶 (Line 2). Next, it initializes

the set of samples 𝑆 to an empty set (Line 4). Then it iteratively

runs the test, collects samples, and computes the score (Lines 5–17).

We next describe how the Scorer decides how many times to run
the test and how to compute the probability of passing.
Collecting samples from the distribution. We need to deter-

mine whether a version of the test is too flaky. Machine Learning

algorithms do not come with formal specifications of accuracy

which makes it hard to determine the correctness of any implemen-

tation. Hence, we use the assertions in the test as specifications

of correctness. The Scorer collects the actual and expected values

of the assertion from each run of the test (Lines 7–11). Then it

applies the convergence test (Lines 12–15) to determine whether

we have enough samples of actual values to reason correctly about

the distribution i.e. whether the distribution has converged. If the

convergence test fails, we continue running the test more times

until the distribution converges. We compute the probability of

passing of the test (Line 18). If this computed probability is above or

equal to 𝛼 , then we compute and return the average running time

of the test executions (Line 20), otherwise we return∞ (Line 22).

Computing the probability of passing. Given a set of samples,

we need to determine the probability that the assertion passes. To

compute the probability of passing, we perform the following steps.

First, we fit a distribution to the set of samples. Since, we may not

know the exact shape of the distribution, we try and fit a number

of distributions and choose the one with the best fit (maximum

likelihood). In our experiments we used the following distributions:

normal, exponential, gamma, pareto, student-t, lognorm, log uniform,

log normal, and truncated normal. In contrast, Dutta et al. [33]

used empirical distribution to fit the samples; however, empirical

distributions are not suited for computing the tails of a distribution.

Next, we compute the probability that a sample from the fitted

distribution is within the assertion threshold. For instance, for

an assertion of the form: assert 𝑥 < 𝛾 , we obtain a distribution

D fitted on the samples of 𝑥 . Then we compute the cumulative

distribution frequency: CDF(D, 𝛾), which is also the probability of

passing of the test : Pr(𝑥 < 𝛾). For equality assertions, we only

compute the percentage of times the actual and expected values

match exactly to derive the probability of passing of the test.
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Algorithm 2 Scorer Algorithm

Input: Instrumented test𝑇 ′, Parameters 𝜽 , Min. Passing Probability 𝛼

Output: Score𝐶
1: procedure Scorer(𝑇 ′, 𝜽 , 𝛼 )
2: 𝑇𝐶 ← setParameters(𝑇 ′, 𝜽 )
3: 𝑖 ← 0

4: S← ∅
5: while i < MAX_ITERS do
6: 𝑏 ← 0

7: while 𝑏 < BATCH_SIZE do
8: sample← ExecuteTest(𝑇𝐶 )
9: S← S ∪ {sample}
10: 𝑏 ← 𝑏 + 1
11: end while
12: score← ConvergenceScore(𝑆)
13: if score < CONV_THRESHOLD then
14: break
15: end if
16: 𝑖 ← 𝑖 + BATCH_SIZE
17: end while
18: TPP← ComputeProbPass(𝑆)
19: if TPP ≥ 𝛼 then
20: return AvgRunTime(𝑆)
21: end if
22: return∞
23: end procedure

Table 1: Project Details

Project Description #Tests %Time

autokeras [1] ML architecture tuning 2 2.89%

bambi [2] Bayesian Modelling 2 13.50%

cleverhans [4] Adverserial Attacks for ML models 5 75.72%

fairseq [5] Seq-to-Seq Modelling 2 0.58%

gensim [6] Topic Modelling Library 10 25.88%

gpytorch [7] Gaussian Process Modelling 9 44.99%

imbalanced-learn (im.-learn) [9] Learning over Imbalanced Datasets 2 1.89%

ml-agents [10] Training ML agents 14 68.04%

numpyro [13] Probabilistic Programming 13 24.04%

parlai [14] Dialog AI modelling 29 5.53%

pyGPGO [15] Bayesian Optimization 3 85.00%

pymc3 [17] Probabilistic Programming 18 14.85%

pymc-learn [16] Probabilistic Machine Learning 8 5.82%

pyro [18] Probabilistic Programming 22 26.36%

sbi [21] Simulation Based Inference 21 84.28%

Total/Avg 160 31.96%

5 METHODOLOGY
Selection of projects. For this work, we focus on two probabilistic
programming systems: Pyro [26, 85] and PyMC3 [84, 93], and two

machine learning frameworks: PyTorch [80] and TensorFlow [102].

We look for tests in these projects as well as their dependent projects

using GitHub’s API. Among the dependent projects
3
, we select

projects with at least 10 stars and manually inspect them to search

for tests. Since TensorFlow and PyTorch have a very large set of

dependents, we only inspect the top 30 dependent projects (based on

stars) for each. For PyMC3 and Pyro, we inspect 8 and 5 dependent

projects respectively. Overall, we end up with 71 unique projects.

Out of these, we exclude 14 projects which are not maintained,

require special build systems (e.g. bazel) to build/run tests, or need

special hardware (e.g. Raspberry Pi).

For each remaining project, we install the project locally and run

its test-suite using pytest [86] to obtain the test run-times. We then

sort the tests based on run-time in decreasing order and inspect

3
We use the dependent “packages” as reported by the GitHub API, which are projects

that can compile into reusable libraries. Packages are more likely to be actively main-

tained by developers and have reasonable test suites.

them to check if they fit our criteria (Section 4.3). We filter out

tests which run for less than five seconds since they are already

inexpensive. We also exclude tests which run for more than 15

minutes. These involve tests which are typically run on GPUs on

Continuous Integration servers and run considerably slower when

run on CPUs (which we use for our evaluation). We exclude tests if

their parameters have a low value (e.g. 1-2 iterations). We exclude

a project if it has no such expensive tests. We excluded 15 projects

based on this criteria. Finally, among the remaining projects, we find

several suitable tests in Pyro and PyMC3. Among the dependent

projects, we found tests in 3 PyMC3 dependents, 3 Pyro dependents,

4 PyTorch dependents, and 3 TensorFlow dependents. Overall, we

find 160 tests in these projects. In these tests, we find 17 unique

parameters. The top five parameters (and their occurrences) are

learning-rate (74), batch_size (49), num_samples (46), num_epochs
(31), and num_steps (28).

Table 1 shows the details for these projects. Column Project
presents the base name of the project. ColumnDescription presents

the main utility of the project. Column #Tests presents the number

of tests we find in each project. Column %Time shows the portion
of the total test-suite run-time consumed by the selected tests.We
observe that these tests consume more than 31% of the run-time of
the whole test-suite. Hence, optimizing these tests can significantly
reduce the run-time of the test-suites.
Mutation Testing. Mutation Testing [58, 79] is an approach for

evaluating the effectiveness of a test suite using artificial injected

faults. Mutation testing approaches apply simple mutation opera-

tors on source code, e.g. changing arithmetic operators, mutating

constants, mutating expressions, etc. We use mutation testing anal-

ysis to compare the effectiveness of the original and the optimized

versions of the tests.

For each project, we select the subset of tests that we are able to

optimize using TERA. We compute the line coverage of this subset

of tests (original version) and generate mutant versions of code

by applying mutation operators only on the covered lines. We run

both the original and optimized test suite on these mutants and

compute the mutation score:

Mutation score = Mutants Killed
Total No. of Mutants%

To account for the randomness in the analysis (some mutants

may be killed/survive by chance), we run the analysis on each

project 20 times, and then report the average and standard deviation

of the mutation scores.

Extracting historically failed tests. For a given project, we ob-

tain the set of most recent 200 failed builds on Travis CI. For this

step we use the GitHub Actions API [43] to fetch the builds. We use

the Travis API [22] when the former is not available for a project.

Since TERA’s optimization mainly targets algorithm parameters,

we focus only on builds which contain one or more assertion errors

and filter out builds failing due to configuration errors or syntactic

errors (like type error or out of bound errors). For this step, we

developed a simple Python script to parse the build logs and search

for assertion errors. Next, among the builds with assertion errors,

we manually look for tests that failed and contain one or more

tunable parameters for ML algorithms. For each such test, we find

the failing version of the code from the build information and try

to reproduce the failure locally. If this step works, we also find the
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most recent version of code before the build where the test passes.

Finally, we run TERA to optimize these tests using the passing ver-

sion of code and check if the optimized test reproduces the failure

in the failing version of code. Overall, we find 12 such tests.

Experimental Setup. For all our experiments, we used 32 core

machines with 3.7 GHz Intel processors and 64 GB memory on

Azure. For PyMC3, we used machines with larger memory (144 GB)

since its tests are more memory-intensive. For the main algorithm

(Section 4.2), we set the maximum evaluation at 5000 and timeout

for the search process at 100 minutes every round. We choose 99%

as the minimum probability of passing (Section 4.6) in all cases. For

the convergence test (Section 3.2), we choose a threshold of 1.0 for

the Geweke Diagnostic metric, maximum iterations as 500, initial

batch size of 30, and update batch size of 30. We implemented TERA

entirely using Python. We used the HyperOpt python package [8,

24] for Bayesian Optimization.

6 EVALUATION
We answer the following research questions:

RQ1 How much does TERA reduce the run-time of the tests?

RQ2 What is the impact of TERA on the fault detection capability

of the tests?

RQ3 How does TERA’s optimization impact the reproduction of

historically failed builds?

RQ4 What is the run-time of TERA?

RQ1: Run-time Reduction Obtained by TERA
We apply TERA on 15 projects selected using the methodology

from Section 5. For each project, we find tests that have one or

more tunable parameters. We identified 160 such tests (most run

an inference algorithm or a training algorithm).

Table 2 presents the results for the amount of run-time reduc-

tion TERA obtains for the selected tests. Column Project presents
the project name. Column #Tests presents the number of tests we

considered. Column Mean Speedup presents the geometric mean

speedup TERA obtained. ColumnMax Speedup presents the max-

imum speedup TERA obtained for any test. ColumnOriginal Run-
time presents the total running time of the original version of the

tests. Column Optimized Run-time presents the total running

time of the optimized version of the tests. The last row presents

the total number of tests, overall geometric mean speedup, overall

maximum speedup, average running time of the original tests, and

average run time of the optimized tests.

From Table 2, we observe that TERA significantly reduces the

run-time of the tests in a majority of cases. Overall, TERA obtains

an average reduction of 2.23x across all projects. For Pyro, TERA

obtains the highest average reduction (9.94x), with a maximum

of 93.65x (reducing from 322s to 3s) for one test. Out of 160 tests,

TERA was able to optimize 133 tests, with more than 10% speedup

in 119 cases and more than 50% speedup in 79 cases. The results

show TERA can significantly reduce the running time of the tests

while still ensuring that the tests pass with high probability.

Tests that TERAoptimized.Among the tests that were optimized

by TERA, parameters like number of sampling iterations in infer-

ence algorithms (like MCMC) and the maximum number of training

iterations were mostly reduced. It is commonly known that these

Table 2: Run-time improvements of tests obtained by TERA

Project #Tests Mean Max Original Optimized
Speedup Speedup Run-time Run-time

autokeras 2 1.08x 1.16x 33.40s 30.66s

bambi 2 1.39x 1.95x 56.64s 44.27s

cleverhans 5 1.30x 1.40x 26.74s 20.10s

fairseq 2 1.22x 1.23x 3.97s 3.24s

gensim 10 1.35x 4.52x 162.89s 132.81s

gpytorch 9 1.97x 3.38x 38.45s 17.25s

im.-learn 2 1.43x 1.99x 10.22s 5.93s

ml-agents 14 2.21x 6.17x 811.60s 354.58s

numpyro 13 1.41x 6.82x 279.49s 178.85s

parlai 29 1.10x 2.42x 269.19s 212.71s

pyGPGO 3 3.23x 5.19x 262.87s 54.37s

pymc-learn 8 1.98x 5.08x 494.56s 254.25s

pymc3 18 2.13x 12.78x 469.89s 224.14s

pyro 22 9.94x 93.65x 3039.84s 495.94s

sbi 21 3.22x 7.50x 2221.73s 769.90s

Total/Avg 160 2.23x 93.65x 545.43s 186.60s

parameters directly influence how long the algorithms (and con-

sequently the tests) will run. However, reducing these parameters

alone is not sufficient.

We observe that in most cases, TERA finds the configuration

with the maximum speedup if it adjusts one or more associated pa-

rameters as well. One such parameter is learning rate of optimizers

(e.g. Adam [62], Adagrad [105]). The learning rate controls how fast

the inference/training updates the weights based on computed gra-

dients in each round. A higher learning rate can often overshoot the

optimal point whereas a lower learning rate can make convergence

very slow. Another example parameter is batch size. Smaller batch

sizes enable faster training through parallelization but can return

non-optimal solutions. Large batch sizes can lead to optimal solu-

tions at the cost of slow convergence. These trade-offs hence also

influence how long the test needs to run to match expected results.

TERA enables the developers to effectively navigate this trade-off

space while still ensuring the test passes with high probability.

In our evaluation we find multiple cases where developers sig-

nificantly over-estimate the number of iterations/samples required

for obtaining the desired results in the tests. For instance, in a test

for variational inference [19] in Pyro, developers run variational

inference on a simple model using a simple loss function: Radial

Basis Function (RBF) [20] of size 1. However, the developers initially

specified 25000 iterations (learning rate: 2e-4) for inference (which

takes 322s to run), which is much more than what is needed for

inference to converge. TERA finds that running 100 iterations with

learning rate 0.09 is enough for the model to converge and pass the

desired accuracy in the test and takes only about 3s. We observe

similar patterns in other projects as well, indicating that developers

are often too conservative.

Tests that TERA did not optimize. Among the tests for which

the speedup was less than 10% (mostly in projects like parlai, autok-
eras, bambi, and imbalanced-learn) we observed that in some cases,

TERA did optimize the parameters to some extent, but that alone

did not reduce the running time of the tests by much. There can be

several reasons behind this. For instance, in some cases, other parts

of the test like initialization and setup contribute to the majority

of the test run-time. In a few other cases, there are other parame-

ters which affect the running time more, but were not exposed in
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Table 3: Mutation testing scores

Project #Mutants Original Optimized

autokeras 274 50.00% (±0.00) 50.00% (±0.00)
bambi 770 60.14% (±3.25) 62.55% (±5.36)
cleverhans 185 62.19% (±0.12) 64.16% (±0.69)
fairseq 3374 16.38% (±2.13) 16.39% (±2.13)
gensim 1075 27.88% (±5.72) 26.53% (±5.53)
gpytorch 555 61.25% (±0.32) 63.32% (±0.68)
im.-learn 457 34.57% (±0.00) 35.23% (±0.00)
ml-agents 724 61.16% (±0.11) 62.44% (±0.03)
numpyro 566 60.60% (±0.00) 61.11% (±1.73)
parlai 335 59.51% (±0.39) 58.81% (±0.00)
pyGPGO 102 67.65% (±0.00) 68.63% (±0.00)
pymc-learn 91 68.68% (±2.49) 74.18% (±2.44)
pymc3 750 48.40% (±0.00) 58.01% (±0.03)
pyro 443 47.40% (±0.00) 48.31% (±0.00)
sbi 346 66.46% (±1.43) 67.65% (±1.46)
Average 52.82% 54.49%

the test itself. In some tests, the parameters were already at their

optimum value (like parlai), hence making too many adjustments

causes the tests to fail more often than the allowable threshold.

Developer Responses.Due to limited time, we randomly sampled

projects which had high speedups and spread the pull requests

among them. We intended to have over 20% of the tests sampled

from the test population. Overall, we selected 37 tests across 7

projects and sent Pull Requests to their developers. So far, 24 tests

have been accepted and merged into the projects, 9 rejected, and

4 are still pending developer responses. For the cases that were

rejected, the developers thought that the gains (in testing time) were

not significant enough for them to accept our changes. Developer

responses reflect that they are often open to accepting changes in

hyper-parameters in the tests, if they can provide significant gains.

RQ2: Fault Detection Ability of Optimized Tests
Modifying the tests written by developers can impact the capability

of the tests in catching regressions in code. In this research question,

we study the impact of TERA’s optimizations on the fault detection

ability of the tests. We describe our approach and the results next.

For each project, we generate several buggy versions (mutants)

of the code using the methodology outlined in Section 5. We use the

Mutmut tool [73] for mutation testing of our projects. To control the

cost of mutation testing, we apply mutations only on code related

to main inference or training algorithms. We leave out code for

utility functions since they are usually almost equally shared across

most tests. For projects with longer running times (sbi, pyro, and
pymc-learn) we choose the top 50% of the most optimized tests.

Table 3 shows the average (and standard deviation) of muta-

tion scores across 20 runs for each project. It also shows the num-

ber of mutants generated per project (Column #Mutants). We ob-

serve that the average mutation scores remain the same or improve

slightly in 13 out of 15 projects.We also perform Student’s t-test [27]

to check the hypothesis that mutation score of optimized test-suite

is smaller than original. Interestingly, it rejects the hypothesis in 14

cases, including gensim which has high variance. The improvement

in mutation scores reflects that optimizing the tests can make them

tighter and help them detect more regression bugs, which would

otherwise be hidden when running for longer cycles. PyMC3 is

an extreme case, in which the mutation score improves by almost

10%. Our investigation found that PyMC3 developers often set a

Table 4: Reproducing historical failures

Project Passing SHA Failing SHA #Tests #Reproduced

gensim 0027fb5 3db9406 3 3

ml-agents 82ea74f 3f4b2b5 1 1

numpyro 71532cc b5d548b5 1 1

pyro f9dee1e2 7f84f19 2 2

pyGPGO 1c718d c21120 1 1

sbi 86d9b07 c8aec2f 1 1

sbi 1534cff fa705c0 3 3

Total 12 12

very high number of sampling iterations (>5000) in the tests. Thus,

small variations in computations (caused by faults in the system)

can often remain hidden during long cycles of test execution. How-

ever, the end-user will experience regressions in performance when

using the tool to solve real-world tasks.

The mutation scores regress by about 1-2% in 2 projects (gensim

and parlai). This is not unexpected, since we allow the tests to have

a minimum probability of passing of 99% during optimization. As a

result, the tests might run for fewer cycles than necessary to catch

subtle regression bugs. For example, some faults only surface up

when the error propagation exceeds the expected threshold leading

to a failure. The developer however can opt for a higher passing

threshold if required. We discuss more about such examples from

our mutation study in Section 7.1.

Overall, we observe that the mutation scores are roughly around

52-54%, which indicates many mutants survive (i.e. not killed). This

behavior can potentially be attributed to the probabilistic nature of

the ML algorithms. This means that some mutations can generate

valid approximations of the software which still meet the desired

accuracy specifications (i.e. tests in our case), as observed previously

by Hariri et al. [53] in general approximate software.

RQ3: Reproducing Historical Failures
In this research question, we evaluate if we apply TERA to the

historical versions of tests in these projects, do they still fail when

the original versions failed in historical builds.

We obtain 12 failing tests across 6 projects using themethodology

outlined in Section 5. For each test, we run TERA to optimize the

test (using the passing version). Finally, we report how many of the

optimized tests reproduce the failure in the failing code version.

Table 4 shows the result for this experiment. Column Passing
SHA shows the commit hash of the version of the code where

the test passes. Column Failing SHA shows the commit hash of

the version of code where the original test fails. Column #Tests
shows the number of tests which failed in the failing version and we

optimized using TERA. Column #Reproduced shows the number

of tests which were optimized and reproduced the failure in the

failing version of code. We observe that in all cases we are able to

optimize the original version of the test using TERA. The optimized

tests also reproduce the failure in the failing version of code in all

cases. This demonstrates TERA’s optimized tests can reproduce

real failures.

RQ4: Efficiency of TERA
We analyze the amount of time TERA’s optimization algorithm

takes to find optimal parameters.
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Table 5: Running times for optimization

Project #Tests Avg. Med. Avg. Avg. Avg. Avg. Test
Time Time #Iters #Params Runs Run-time

autokeras 2 2m4s 2m4s 6 1.0 30.00 16.70s

bambi 2 2h53m40s 2h53m40s 39 3.0 30.00 28.32s

cleverhans 5 43s 48s 3 1.0 91.50 5.35s

fairseq 2 25s 25s 12 1.0 30.00 1.98s

gensim 10 1m17s 57s 5 1.0 30.00 16.29s

gpytorch 9 5m43s 3m27s 60 2.0 30.00 4.27s

im.-learn 2 3m38s 3m38s 47 1.5 30.00 5.11s

ml-agents 14 44m36s 36m21s 103 2.9 30.73 57.97s

numpyro 13 1h0m34s 51m29s 99 1.7 30.00 21.50s

parlai 29 29m4s 15m49s 94 3.0 34.03 9.28s

pyGPGO 3 8m26s 3m42s 2 1.0 30.00 87.62s

pymc-learn 8 2h36m1s 3h30m38s 25 1.6 34.29 61.82s

pymc3 18 3h16m18s 3h28m10s 46 3.1 30.00 26.10s

pyro 22 17m2s 5m25s 21 2.0 45.63 138.17s

sbi 21 1h10m53s 1h3m7s 84 1.9 51.69 105.80s

Table 5 presents the measurements. Column Avg. Time shows
the average time taken by TERA for a complete run of the optimiza-

tion algorithm (Section 4.2) – i.e., until it either exhausts evaluating

all configurations in the search space or reaches a terminating

condition such as exceeding maximum function evaluations (MAX_-
EVALS) or exceeding the allotted time limit (TIMEOUT). ColumnMed.
Time shows the median optimization time. Column Avg. #Iters.
shows the average number of iterations taken by the optimization

algorithm. Column Avg. #Params shows the average number of

parameters per test. Column Avg. Runs shows the average num-

ber of test runs in a single optimization round. Column Avg. Test
Run-time shows the average run-time of the original test.

For 10 projects, the average optimization time is less than an

hour. For 5 projects (sbi, bambi, pymc-learn, numpyro, and pymc3),

the average optimization time is more than an hour. PyMC3 and

Bambi have a higher average number of parameters, and we chose

a wide range of legal values for each parameter. A developer with

more domain experience could select a smaller range of values.

Numpyro also requires high number of iterations due to its large

search space. Sbi’s tests have a high running time (>100 seconds)

and the flakiness of the tests increases TERA’s iterations. Similarly,

pymc-learn also has tests with high run-time (>60 seconds).

7 DISCUSSION
7.1 Fault Detection Ability of Optimized Tests
Modifying the tests written by developers can have an adverse

impact on the fault detection ability of tests [96]. We can charac-

terize the fault detecting effectiveness of a test using the following

metrics: True Positive (TP) – failing on real faults, False Positive

(FP) – failing when no faults, True Negative (TN) – not failing

on no faults, and False Negative (FN) – not failing on real faults.

TERA improves or retains the TP rate of the test in most cases,

as shown by our mutation study from RQ2, and can increase the

FN rate in some cases (where the mutation score drops). Since we

use a minimum passing threshold of 99%, the FP rate may increase

slightly (similarly TN rate would reduce by a small amount). Even

though the optimized tests may regress in some of these factors,

the gap in effectiveness is very small in practice and would only

miss faults which require very rare executions to manifest as test

failures. These observations along with our study on reproducing

historical bugs from RQ3 show that TERA’s optimized tests are

highly reliable. We discuss a strategy to alleviate some of these

adverse effects in Section 7.2.

We manually inspect some mutants from our mutation study for

cases: 1) when our optimized test catches a bug missed by original

test and 2) when our optimized test misses a bug caught by original

test. We identified two trends: for the first case, we observe that

small variations in computations (due to faults in the system) can

remain undetected during long cycles of execution in the original

test, whereas they are detected by the optimized versionwhich has a

tighter execution since it runs for fewer cycles. For the second case,

we observe that some faults only manifest as failures when the error

accumulated exceeds a certain threshold – these are detected by

the original test which runs for sufficient cycles but are sometimes

missed by the optimized test.

7.2 Composite Test Running Strategies
We canmitigate some of the adverse affects of optimization by using

composite running strategies. For instance, we can re-run on failure:
first run the optimized test (which is correct with probability 𝛼), and

if it fails, run the original test, which succeeds with typically higher

probability (> 𝛼). This composite execution is, on average, faster

than executing the original test, and can still retain the effectiveness

of the original test. In this case, the expected run-time of the test

will be: 𝛼 ·𝑇opt+(1−𝛼) · (𝑇opt+𝑇orig), where𝑇opt and𝑇orig are the run-
times of the optimized and original versions of the test respectively.

Since we typically restrict 1 − 𝛼 to a small value (e.g., less than 1%),

the second term does not increase the run-time significantly. For

instance, for Pyro this would only increase the total run-time of

optimized tests from 495.94s to only 526.34s. Overall, using this

composite strategy increases the running time of our optimized

tests across all projects by only 3% on average. This strategy can

help reduce flaky failures (false positives) and increases the chances

of detecting genuine faults (true positives).

7.3 Comparison of Different Search Methods
In this work, we use Bayesian optimization for efficiently search-

ing for optimal hyper-parameters (Section 4.2). Researchers also
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Table 6: Comparison of different search methods

Project BayesOpt Random Binary

Spd
test

TTERA Spd
test

TTERA Spd
test

TTERA

autokeras 1.08x 2m4s 1.07x 2m18s 1.00x 19s

bambi 1.39x 2h53m40s 1.32x 3h34m16s 1.19x 1h11m9s

cleverhans 1.30x 43s 1.17x 1m20s 1.25x 1m23s

fairseq 1.22x 25s 1.10x 4m22s 1.01x 43s

gensim 1.35x 1m17s 1.26x 2m55s 1.27x 53s

gpytorch 1.97x 5m43s 1.64x 9m5s 1.60x 1m8s

im.-learn 1.43x 3m38s 1.29x 7m5s 1.07x 1m0s

ml-agents 2.21x 44m36s 2.11x 1h10m4s 2.09x 8m23s

numpyro 1.41x 1h0m34s 1.40x 37m20s 1.38x 10m32s

parlai 1.10x 29m4s 1.06x 33m8s 1.05x 36s

pyGPGO 3.23x 8m26s 3.20x 24m38s 3.17x 10m52s

pymc-learn 1.98x 2h36m1s 1.50x 3h10m21s 1.46x 1h55m15s

pymc3 2.13x 3h16m18s 2.06x 3h38m9s 1.92x 1h53m27s

pyro 9.94x 17m2s 7.70x 1h27m16s 2.71x 29m4s

sbi 3.22x 1h10m53s 1.72x 53m49s 1.60x 11m21s

Avg 2.23x 58m27s 1.89x 1h12m20s 1.59x 26m59s

Here, Spd
test

is the Avg. Speedup (Geo-mean) of the optimized tests and TTERA is the

Avg. Time (Arithmetic Mean) that TERA takes per project and per search method.

commonly use other search methods such as random search or

binary search. We compare our main optimization results against

a version of TERA which uses these two alternatives instead of

Bayesian optimization.

Random search is a method which uniformly samples from the

search space of hyper-parameters to find optimal results. For ran-

dom search method, we use the same configuration for TERA as the

main evaluation (see Section 5). Binary search method evaluates the

middle element in the value interval for a given parameter (such as

iterations) and proceeds with either half of the interval depending

on whether the objective function evaluates to true (choose lower

half) or false (choose upper half). The search continues until the

interval is reduced to a single element. Since binary search cannot

optimize multiple parameters simultaneously, our implementation

optimizes one parameter at a time (keeping others fixed), then uses

the optimal value found when optimizing the next parameter. We

only choose parameters with a bounded discrete interval such as it-
erations and number of samples for optimization using binary search.

We ignore parameters such as learning rate, since optimizing such

parameters in isolation has no direct effect on test’s run time.

Table 6 presents the results for this experiment. First column

shows the name of the project. For each search method, its two

sub-columns show the average speedup (geometric mean) of the

optimized test and average time (arithmetic mean) for running the

optimization algorithm, respectively.

We observe that Bayesian optimization outperforms both ran-

dom search and binary search methods. Although random search

reduces the execution time of tests, it finds a less optimal parame-

ter setting than Bayesian optimization for all projects. This is not

surprising since random search, unlike Bayesian optimization, does

not learn from results obtained in earlier rounds to adapt the search

process. Compared to Bayesian optimization, random search takes

more time to finish in 13 projects and less time in 2 projects. We

observe that binary search is less effective overall and provides

lower speedups in all projects than Bayesian optimization and in 13

projects than random search. It is faster than other methods since

it evaluates fewer parameter values or combinations of parameter

Table 7: Savings on build/test time per day using TERA

Project Builds/day Savings/day

autokeras 1 2s

bambi 1 12s

cleverhans 1 6s

fairseq 2 1s

gensim 1 30s

gpytorch 1 21s

im.-learn 1 4s

ml-agents 11 1h23m47s

numpyro 5 8m23s

parlai 18 16m56s

pyGPGO 1 3m28s

pymc-learn 1 4m0s

pymc3 1 4m5s

pyro 1 42m23s

sbi 1 24m11s

values. We conclude that binary search may only be suitable for

tests with few parameters with discrete bounded intervals.

7.4 Gains of Optimization
We anticipate that the cost of running TERA can be easily amor-

tized through the daily savings developers will get in build/test

time on CI servers. Table 7 shows the number of builds developers

currently trigger per day (Builds/day) and the savings developers

would get if they use TERA’s optimized tests instead of original

tests for their builds (Savings/day). We compute Savings/day as:

Builds/day× (Original Run-Time−Optimized Run-Time). The Orig-
inal and Optimized run-times can be obtained from Table 2.

We observe that TERA can provide large savings for the devel-

opers in many projects – more than 80 mins/day for ml-agents and
more than 40 mins/day for pyro. These gains are further enhanced
with increasing builds per day. Finally, we expect that develop-

ers will run TERA offline (e.g. outside of normal working hours)

without impacting their time.

7.5 Threats to Validity
In this work, we study only a subset of projects in the ML domain,

so our results and observations may not generalize to all projects.

To mitigate this threat, we focus on four widely used machine

learning frameworks, and their top starred dependent projects,

which indicates they have a large user-base and are popular.

We may have missed some tests, in the studied projects, which

use ML algorithms and have tunable parameters. To account for

this risk, multiple student co-authors independently studied these

projects and their test-suites to find tests which fit our criteria. As

a result, we obtain a substantial number of such tests.

Optimization is a hard problem which makes it difficult to find

the best solution for a given problem. As such, it is possible to

further enhance the reduction in run-time.

Changing the developer-set parameters in a test can make the

test less reliable (or more flaky). We mitigate this risk in two ways.

First, we set the minimum passing probability to 99% during op-

timization, which ensures test quality does not regress too much.

Second, we performmutation testing of the test suites and show the

optimized suite is commonly as good as the original suite. Further,

since mutations may not represent real errors, we also show that

optimized tests can reproduce real historical failures.
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8 RELATEDWORK
Test Reduction. There is significant research on reducing the

test size in terms of the lines of code while preserving the test

coverage [49, 59, 101] and reproducing the same bugs [90, 109].

Most of these approaches assume that the test and the program-

under-test are deterministic (either natively, or with fixed seeds) and

the lines of code are the proxy for the execution time. In contrast,

TERA reduces the execution time of tests for machine learning

algorithms. TERA finds the optimal parameters (such as learning

rates or the numbers of iterations) that lead to reduced execution

times of the tests with minor impact on the test’s fault-detection

ability. To the best of our knowledge, the only existing approach

for reducing the parameters of machine learning algorithms along

with the program code for the purpose of testing is Storm [35] (for

probabilistic programming languages). However, Storm’s reduction

of parameters uses a simple binary search, and does not consider

the scenario of optimizing test run-times.

AutoML Methods. Automated Machine Learning (or AutoML)

is a novel approach for automated construction of an end-to-end

ML pipeline, using limited computational budget [55, 108]. AutoML

methods deal with data preparation, feature engineering, model gen-

eration, and model evaluation. The model generation step involves

selecting from a set of suitable ML architectures (Architecture Op-

timization) and choosing optimal model specific hyper-parameters

(Hyper-Parameter Optimization) [37, 113]. In these steps, AutoML

methods typically aim to optimize the accuracy of the model on

a data-set. Unlike AutoML, TERA targets the dual problem of re-

ducing the running time of a test executing a fixed ML architecture

while also preserving the desired passing probability of the test.

Hyper-parameter Tuning For Machine Learning. Bergstra et
al. [25] explored various strategies to optimize hyper-parameters

for neural networks. They showed that Gaussian Process based

BayesianOptimizationmethods and the newly proposed Tree Parzen

Estimator Algorithm perform better than manual or random search

based methods on several difficult data-sets. Snoek et al. [98] pro-

posed a new algorithm based on a Gaussian process based sur-

rogate model for Bayesian Optimization for Machine Learning

Algorithms. Their approach also accounts for the cost for each

configuration of the learning algorithm during optimization by

considering the expected improvement per second in the acqui-

sition function. Maclaurin et al. [69] introduced a gradient based

hyper-parameter optimization technique. Unlike those use-cases,

the objective of TERA is to improve performance of software testing,

which it accomplishes by maintaining a desired level of reliability

(i.e. minimum probability of passing) using statistical machinery

while reducing the running time of the test.

Flaky Tests. Flaky tests have emerged as an important problem in

software testing – several studies characterized and classified such

tests in real-world projects [50, 54, 63, 68, 78, 92, 110], and are con-

sidered an important class of bugs in industry [54, 63]. Researchers

also developed automated tools to detect [23, 33, 38, 65, 95, 106],

and fix flaky tests caused due to test-order dependency [97] and

under-determined specifications [111].

Prior work has studied the causes and fixes for flaky tests in

open-source software [68, 78]. They studied flaky tests in traditional

software, finding that common causes for flaky tests include async

wait, concurrency, and test-order dependencies. Romano et al. [92]

studied flaky UI tests in web and Android projects- their causes,

manifestations, and fixes. In this work, we optimize tests in ML

projects while modestly relaxing the desired passing probability

of the test. While reducing parameters like number of iterations

could potentially make the tests more flaky, TERA ensures that

the probability of passing does not degrade beyond an acceptable

threshold chosen by the developer.

Lam et al. [64] proposed a technique to handle flakiness in tests

due to asynchronous calls. They show that the running time of such

tests can be reduced significantly while still retaining similar test

failure rate (or flakiness). They run each test only a fixed number of

times to determine how often it fails and use simple binary search

for finding optimal timeout times. TERA, on the other hand, handles

tests which are flaky due to algorithmic randomness. TERA uses

convergence tests to determine how many times to run the tests

and Bayesian optimization to search for optimal hyper-parameters.

Dutta et al. [34] proposed a method to fix flaky tests in Machine

Learning projects by only updating assertion bounds in tests. In

contrast, in this work we look at the dual problem of speeding up

the test by tuning the hyper-parameters whist preserving a high

passing probability. While both hyper-parameters and assertion

thresholds can affect the flakiness of a test, only hyper-parameters

influence the execution time of the test.

Testing of SystemsDealingwithRandomness.Robustmachine

learning frameworks like TensorFlow [102] and PyTorch [80] have

paved the way for rapid development of machine learning based

solutions. In recent times, there has also been a surge in interest in

probabilistic programming in both academic and industrial research

communities. This has led to the development of numerous proba-

bilistic programming languages over the years [28, 30, 39, 42, 45, 46,

70, 71, 76, 82, 85, 104, 107]. Researchers proposed techniques for test-

ing and verifying probabilistic systems [32, 67], machine learning

frameworks [36, 51, 57, 83, 112], and randomized algorithms [60]

to complement manual test writing. These techniques complement

manual test development, but the advances in efficient automated

test generation for these systems is yet to catch up with the speed

of application development, while capturing the inherent nondeter-

minism and overcoming the lack of reliable oracles in this domain.

9 CONCLUSION
We presented TERA, an approach to help developers optimize the

running time of the tests which involve stochastic computations.

TERA combines techniques from Bayesian Optimization and statis-

tical convergence testing to effectively reduce the running time of

the tests while guarding their reliability. Using TERA we obtained

more than 2.23x average speedup in 160 tests across 15 projects

in Machine Learning domain. We anticipate developers will use

TERA for the following main tasks: (1) optimize existing expen-

sive tests, (2) optimize parameters of newly added tests, (3) update

hyper-parameters after test modification.
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