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formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based
over-approximation of the true Clarke Jacobian for a given input region.

Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader
class of functions than previous works supported - specifically, arbitrary compositions of neural networks
with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called Deep]J and
evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both
the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze
Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural
networks for rotational, contrast variation, and haze perturbations, as well as their compositions.
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1 INTRODUCTION

Recent years have seen growing adoption of machine learning (ML) models in several safety-
critical domains, including autonomous driving [Bojarski et al. 2016] and healthcare [Esteva
et al. 2019]. The first derivatives specified via the Jacobian matrix are the backbone of many
prominent learning paradigms and are used in all facets of the machine learning pipeline, from
training to testing. Automatic Differentiation (AD), and more broadly, Differentiable Programming,
have been developed to offer a principled, language-based method of compositionally computing
derivatives. However, the needs of ML researchers have rapidly outpaced formal development
on the programming languages side. For instance, ML techniques regularly must differentiate
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through functions that may have points of non-differentiability, such as the commonly used ReLU
activation in neural networks, which is not differentiable at 0. In practice, for such a situation,
existing AD frameworks just return any arbitrary number in the interval [0, 1]. While such an
ad-hoc approach may suffice in many practical scenarios, for critical domains requiring formal
certification of properties defined over the first derivatives, this lack of rigor is troubling. To resolve
this limitation, programming language researchers have begun using generalizations of the Jacobian
for describing AD semantics [Sherman et al. 2021], such as the Clarke Generalized Jacobian [Clarke
1990] for non-smooth, but Lipschitz continuous functions.

However, these developments still cannot provide the desired formal guarantees for practical
verification tasks, such as obtaining formal bounds on the Lipschitz constant (which measures
how rapidly a function’s output changes) of the composition of a non-differentiable perturbation
and a differentiable network within an input region. Lipschitz constants can be used as a metric
to compare the stability and smoothness of the output of neural networks prior to deployment,
as a network with a smaller constant is often preferable [Lin et al. 2019]. Formal bounds on the
Lipschitz constant can also be used during training to learn classifiers that are certifiably robust
to adversarial perturbations [Tsuzuku et al. 2018], robust to quantizations [Lin et al. 2019], or to
improve interpretability by making network explanations themselves more robust [Alvarez-Melis
and Jaakkola 2018]. Further, analyzing the Lipschitz constant has direct applications in algorithmic
fairness [Dwork et al. 2012] and differential privacy [Dwork et al. 2006], where fairness and privacy
are established by certifying a small Lipschitz constant. Beyond using the Jacobian for formally
bounding Lipschitz constants, a Jacobian analysis can also be used to formally reason about the
local geometry of ML models [Zhang et al. 2019], which has applications in explainability, e.g., why
a network works well for certain inputs but not for others.

Challenges. We focus on designing a static analysis that can formally reason about not only Jacobians
of functions that are differentiable (e.g., tanh), but can also handle non-differentiable behavior due
to functions like ReLU and the branching that can arise in differentiable programs. Furthermore, we
must also handle high-dimensional computational graphs with arbitrary arithmetic (instead of, e.g.,
solely neural networks that avoid non-scalar multiplication and division). Simultaneously handling
all of these requires a theoretical formalism that is beyond the scope of the existing works [Edalat
and Maleki 2017; Jordan and Dimakis 2020; Mangal et al. 2020; Zhang et al. 2019]. One of the
main difficulties arises from the fact that generalized notions of Jacobians do not always obey the
same rules as classical Jacobians. For example, the Clarke Jacobian cannot simply be computed by
concatenating partial Clarke derivatives into a matrix [Clarke 1990; Khan and Barton 2013]. In this
same light, we want our desired generality to also come with compositionality: we want to be able to
combine different functions together instead of restricting ourselves to a non-compositional analysis
limited to a specific, fixed type of function (e.g., a DNN) or input perturbation. More practically, we
want this analysis to be scalable and fully end-to-end, specifically for real-world problems such
as analyzing Lipschitz robustness with respect to multiple input perturbations. This has proven
challenging, as most formalisms that aim for broad theoretical generality cannot scale beyond toy
examples [Di Gianantonio and Edalat 2013], do not have implementations [Edalat and Lieutier
2004; Edalat et al. 2013; Edalat and Maleki 2017, 2018], or lack end-to-end integration with specific
analyses for practical problems. Moreover, the Lipschitz robustness analyses that go beyond toy
examples, such as RecurJac [Zhang et al. 2019] and ProLip [Mangal et al. 2020], are either tailored for
handling fully-connected architectures (like RecurJac) and therefore cannot immediately analyze
the state-of-the-art convolutional architectures, or are heavily restricted in the activation functions
supported (like ProLip). These issues substantially limit the practical applicability of these tools.
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This Work. To address these challenges, we propose Deep], a forward-mode interval abstraction
built atop dual numbers (the canonical number system used for implementing forward-mode AD).
A dual number a + be has two components: the real part a and the dual part b, which in applications
will correspond to a function’s derivative at a.

The analysis is adapted to compute an interval over-approximation of the Clarke Jacobian. Our
key insight is that formalizing the static analysis on top of dual numbers as a forward-mode
analysis represents a general solution suitable for reasoning about Clarke derivatives, which can
simultaneously offer both an intuitive and scalable implementation. Hence, we reduce the problem
of bounding a Clarke Jacobian in a local region to the problem of bounding results of dual number
arithmetic and functions. Forward-mode analysis can be particularly useful for multiple practical
problems, such as analyzing Lipschitz robustness with respect to individual input perturbations
or their compositions. These problems have small input dimension, for which a forward-mode
analysis requires fewer passes than a reverse-mode analysis.

Deep] analyzes a first-order core (without unbounded loops or recursion) of the language
proposed by Sherman et al. [2021], which we extend with conditional branch expressions and
also show necessary conditions for the well-definedness of the Clarke Jacobian of these branches
(Section 4). We then recursively define an interval-domain abstraction of the Clarke Jacobian
for sets of points and prove this over-approximation sound (Section 5). Next, we show how to
equivalently compute this interval Clarke Jacobian in a forward pass using a novel, interval-domain
abstraction of dual numbers (Section 6). Finally, we demonstrate how Deep] leverages the interval
over-approximation of the Clarke Jacobian for multiple practical uses in a fully end-to-end and
scalable manner, namely analyzing Lipschitz robustness and local optimization geometry of large
neural networks in the face of non-smooth input perturbations (Section 8). Deep]’s implementation
also optionally offers floating-point soundness [Miné 2004], i.e., its result can capture all possible
outputs under different rounding modes and under different orders of computations of floating-point
operations. This guarantee is not possible with any other existing method.

The novelty in our work lies in the fact that we are the first to formalize a static analysis that is
simultaneously (a) defined for the more general Clarke Jacobian, thus supporting both differentiable
and non-differentiable, but still Lipschitz functions, (b) extends to all arithmetic operations and is
defined for branching beyond just min and max, (c) is fully compositional by leveraging an interval
abstraction of forward-mode dual numbers, and (d) is integrated in a fully end-to-end manner for
practical tasks that no prior work could tackle.

Results. We implement Deep] and evaluate it on two tasks:

e Lipschitz Robustness: Certifies bounds on the local Lipschitz constant of a given input region.
e Local Optimization Landscape: Uses the Clarke Jacobian to analyze a function’s local geometry
in a specified input region to determine the absence of stationary points.

We apply Deep] to neural networks with both fully-connected and convolutional layers that
are trained on the CIFAR10 [Krizhevsky et al. 2009] and MNIST [LeCun et al. 1998] datasets. For
each of our analyses, we compose the neural networks with three perturbation functions: haze
(which models images as foggy), contrast variation (which accentuates the differences between
bright and dark pixels), and rotation (which rotates the image by a specified angle 6 with bilinear
interpolation). Analyzing the Jacobian of a network with respect to these perturbations is out of
reach of the existing techniques.

For each perturbation, Deep] is able to leverage its fully localized analysis, which computes
Clarke Jacobians solely for the specified input region, to obtain local Lipschitz constants that can
be up to several orders of magnitude smaller than a baseline analysis based on Gouk et al. [2021]
(which multiplies a network’s global Lipschitz constant by the perturbation’s local Lipschitz
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constant instead of being fully localized). Deep] can also extend the analysis to compositions of
multiple perturbations. Furthermore, the localized Jacobian analysis can certify the absence of
stationary points in a network’s optimization landscape. Deep]’s paralle]l CPU-based implementation
is efficient: it can precisely analyze 100 CIFAR10 images on our largest convolutional network
containing > 62K neurons within a median time of 15 seconds each for haze and contrast variations,
and under 1.4 minutes for rotation. It can also compute precise results for 10 CIFAR10 images on
the same network within a median time of 9 seconds for contrast variation composed with haze,
and under 51 seconds for contrast variation or haze composed with rotation. Our largest network
has the same architecture as the one commonly handled by state-of-the-art CPU-based robustness
verifiers [Singh et al. 2018, 2019; Urban and Miné 2021]. The differences in the computed constants
between the Deep] versions with and without sound floating-point rounding are negligible, with
2.8-4.1x execution time overhead for the sound version.

Contributions. This paper makes the following main contributions:

(1) A new dual number-based interval abstraction for analyzing Clarke Jacobians. Our domain
soundly over-approximates the Clarke Generalized Jacobian of locally Lipschitz and piecewise
differentiable functions, allowing it to soundly handle functions like max, ReLU, and limited
branches. Furthermore, as our abstraction is defined for sets of points, we can analyze local
properties of locally Lipschitz functions beyond the scope of prior work.

(2) A novel Clarke Jacobian analysis and Lipschitz certification of neural networks composed
with non-differentiable perturbations.

(3) A scalable, optionally floating-point sound, implementation of our method which supports
both convolutional and fully-connected neural networks.

(4) An extensive evaluation against multiple perturbation types on several deep neural networks,
showing that Deep] can (a) achieve orders of magnitude tighter bounds on local Lipschitz
constants compared to a baseline analysis and (b) certify the absence of stationary points
within a given input region.

Deep] is available at https://github.com/uiuc-arc/Deep]. Our implementation exploits CPU-level
parallelism. We believe that Deep] can be easily parallelized over GPUs to boost the scalability
to even larger architectures, such as those considered by GPU-based verifiers [Miller et al. 2021].
The GPU extension of Deep] may help train networks to be robust to semantic non-differentiable
perturbations like rotation and contrast variation, which is beyond the reach of existing robust
training methods [Balunovi¢ et al. 2019; Mirman et al. 2018, 2019; Zhang et al. 2021, 2020].

2 OVERVIEW

In this section, we start with a small illustrative example that showcases a real-world use of our
abstraction for a scenario not handled by any prior work.

Running Example: Contrast Variation Perturbation. We consider the simple fully-connected network
shown in Fig. 1. For simplicity, the network takes two inputs in the input layer, and we assume
the network has been fully trained. The network contains a single hidden layer and all activation
functions in both the hidden and output layers are tanh (with no biases). Most importantly, we
compose the network with a perturbation function modeling contrast variation. We are interested
in knowing precisely how sensitive the network’s outputs are to inputs that are perturbed by
contrast variation, which often arises when the image passed to a network was obtained with
a fixed aperture lens [Paterson et al. 2021]. Hence, instead of passing input image pixels x; and
x directly into the input layer, we pass their perturbed values, x| and x;. The contrast variation
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Contrast Variation
@\ Perturbation
. xi—0.5-a
@—> max (O, min (1, W))

Input Layer Hidden Layer Output Layer

tanh tanh

Fig. 1. Composition of a Neural Network with the Contrast Variation Perturbation

perturbation for a pixel x; is given in Paterson et al. [2021] as
x; — 0.5 a))
-«

(1)

where a specifies the amount of contrast variation. We apply this perturbation to every input pixel
(there are only two in this example). We can thus think of the perturbation as a function of the
perturbation parameter a.

x; = max (O, min (1,

Jacobian Analysis. We will measure the sensitivity of the network with respect to the perturbation
by computing the Jacobian of the composition of the network with the perturbation. This allows us
to analyze how sensitive and robust the network’s outputs are with respect to a change in « in some
local region. For this example, the local region we are interested in is when « €[0, 0.1]. This allows
us to analyze what happens when the amount of perturbation ranges from none up to a modest
amount. Because of the combination of both non-differentiable (max and min) and differentiable
(tanh) functions, as well as the division in the perturbation function, computing a Jacobian for the
composition of the network and the perturbation is beyond the capabilities of existing frameworks.

Abstract Domain. To perform the analysis, we need to compute bounds on the Jacobian of the
composition of the network and the perturbation. However, this is complicated by the fact that
(a) we cannot settle for the derivatives at a single point (as standard automatic differentiation
gives) and instead need a bound on the derivatives for an entire input region, (b) max and min are
Lipschitz, but not differentiable, thus we need a more general notion of differentiation that works
for such functions, and (c) the analysis cannot be restricted to only neural networks, since it needs
to be able to compositionally handle arbitrary combinations of functions. As mentioned, prior work
cannot address these challenges, thus our solution necessitates a novel abstract domain. The full
formalism is described in Sections 5 and 6.

Our abstract domain associates to each variable an interval bounding the variable itself and an
interval bounding that variable’s Clarke derivative via a dual interval of the form [a, b] + [c, d]e,
where a,b,c,d € RU {*oco}, a < b and ¢ < d. We will call [a, b] the real part and [c, d] the dual
part. Dual intervals are an adapted interval-domain abstraction of the canonical dual numbers of
forward-mode automatic differentiation. The key benefit of this approach is that we can leverage
an existing numerical system to track derivatives instead of relying on non-extensible, ad-hoc
approaches as in Edalat et al. [2013]; Mangal et al. [2020]; Zhang et al. [2019]. However, a naive
adaptation is not sufficient, as one still has to contend with non-differentiable functions like max.
Furthermore, all primitive operations must be reinterpreted for dual interval arithmetic.

Abstract Interpretation of the Perturbation and Network. We now step through the abstract interpre-
tation of the composition of the neural network and the contrast variation perturbation, which

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 56. Publication date: January 2022.



56:6 Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic

max(0,[0.9, 1]+[0,0.62]€) tanh([1.05,1.22]+[-0.43,0.37]¢)  tanh([1.37,1.53] + [-0.04,0.83]¢)
[0.95,0.95]+[0,0]e x1 =[0.9,1] + [0,0.62]¢ f3 =[0.78,0.84] + [-0.17,0.14]€ f5 =[0.88,0.91]+[-0.01,0.19] €
min(, xll_,o';'a) [1,1] + [0,0]€e /]:3\ [1,1]+[0,0]e

=[0.9,1]+[0,0.62]€
[0,0.1]+[1,1]e

050(

’ max (0, mm(l

min(1, M)

=[0.15,0.22] + [-0.43,-0.25]€

[-1,-1] + [0,0]€ \\f_“/ [1,-1] + [0, 0]e

[0.2,0.2]+[0,0]e max(0,[0.15,0.22] + [-0.43,-0.25]€) tanh([0.67,0.85] + [0.25,1.05]€)  tanh([0.09,0.25] + [-0.85,0.01]€)
xj =[0.15,0.22] + [-0.43,-0.25]¢ fi =[0.59,0.69] + [0.13,0.68]e fo =[0.09,0.24]+[-0.84,0.012] €

Fig. 2. The Dual Interval Abstraction of the Neural Network and Perturbation Function from Fig. 1

is detailed in Fig. 2. As every term in the abstract domain must be a dual interval, to perform the
analysis, we first must lift the constant edge weights w; to dual intervals of the form [w;, w;]+[0, 0]€,
as shown in Fig. 2. Upon lifting all constants and edge weights to the abstract domain, we start from
the inputs x1, x; and the perturbation parameter a. As our goal is to compute the sensitivity solely
with respect to «, we set its dual part to [1, 1]e. This means that we treat x; and x, as constant;
since we do not need to compute derivatives with respect to x; and x;, the analysis sets their dual
part to [0, 0]e. Furthermore, as x; and x; are pixel values of some fixed image, their real parts are
just the degenerate interval of their pixel intensities: [0.95,0.95] and [0.2, 0.2], respectively.

We begin by propagating the dual interval inputs through the contrast variation perturbation
function in Eq. 1. This requires that all arithmetic operations (+, —, -, /) and function primitives (min
and max) be redefined for dual intervals. Section 6 presents a full formalization of dual intervals.

For each pixel x;, we first compute ﬂ inside the min function. Though not shown in the
function, the constants 0.5 and 1 are actually interpreted as the dual intervals [0.5,0.5] + [0, 0]€ and
[1,1]+[0, 0]€, respectively. The numerator x; —0.5- « abstractly evaluates to [0.9,0.95] +[-0.5,-0.5]€
and likewise x, — 0.5 - « evaluates to [0.15,0.2] + [-0.5,-0.5] €. These follow from the rules of dual
interval arithmetic: scaling by a constant scales a term’s real and dual part, and dual interval
addition between terms adds their respective real and dual components. Therefore, we have
implicitly encoded the notion of linearity of the derivative.

To compute the entire quotient for each variable, we next perform dual interval division (described
in Section 6.1). The terms xlloj £ and leoj £ ultimately evaluate to [0.9, 1.05]+[0.4, 0.62]€ and
[0.15,0.22] + [-0.43,-0.25]¢, respectively. Dual interval division implicitly encodes the quotient
rule of differentiation.

Non-Differentiable Functions. Upon computing X7%% and 2-2¢ 'ye now must take the min of

each with [1, 1] + [0, 0]e. This is highly challengmg as min is not differentiable. To resolve this, we
must use a more general notion of differentiation, specifically the Clarke Jacobian [Clarke 1990],
which has also recently emerged in the programming languages literature [Di Gianantonio and
Edalat 2013; Sherman et al. 2021]. The Clarke Jacobian can compute a generalized derivative for
non-differentiable, but Lipschitz functions like min, max, ReLU, abs, and even functions defined
by conditional branching statements (provided one proves such functions are continuous and
piecewise differentiable). The Clarke Jacobian does so by returning a convex set of points as the
“derivative” instead of just a single point. To perform the Clarke differentiation through the min
function, one takes the standard derivative of whichever of the min function’s two arguments
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attains the minimum. The caveat is that if both arguments attain the minimum, one must take
the convex hull of both arguments’ derivatives. However, this becomes even more difficult for the
interval domain, as due to the inherent uncertainty when two intervals overlap, it is possible that
either could attain the minimum. Thus, if the real parts of two dual intervals overlap, our analysis
must take the convex hull of their respective dual parts.

Recall that for x; we must take the min of [1, 1] + [0, 0]€ and % =[0.9, 1.05]+[0.4, 0.62] €. In
this case, the real parts overlap, so we must take the convex hull (denoted by co) of their respective
dual parts: [0, 0] and [0.4, 0.62], as shown in Eq. 2.

x1—05-«a

— ) =min([1,1] + [0,0]e, [0.9, 1.05]+[0.4,0.62] €)

min (1,
= min([1, 1], [0.9, 1.05]) + co([0, 0], [0.4,0.62] e (2)
= [0.9, 1]+[0, 0.62]

For x,, when computing the min of [1, 1] + [0, 0]e and ’% =[0.15,0.22] + [-0.43,-0.25]€, the
real parts do not intersect, thus the result is exactly just [0.15,0.22] + [-0.43,-0.25]e.
Finally, as the contrast variation perturbation is also composed with the max function, we must

repeat the same procedure, albeit with max instead of min. For x; and x,, we compute:

x; = max([0,0] + [0,0]e, [0.9, 1]+[0,0.62]€) = [0.9, 1] + [0,0.62]€
x} = max([0, 0] + [0, 0]¢, [0.15,0.22] + [-0.43,-0.25]€) = [0.15,0.22] + [-0.43,-0.25]€

Propagation through the Network. Upon computing the perturbed inputs x; and x;, we propagate
their abstracted values through the network itself. For simplicity in presentation, we give each
network node a fresh variable name (- fs). To compute the value of f3, we first multiply x; and x;
by the corresponding edge weights using dual interval multiplication and sum incoming terms,
resulting in the dual interval [1.05, 1.22]+[-0.43, 0.37]e. Then, we apply the dual interval lifting
of tanh to the argument [1.05, 1.22]+[-0.43, 0.37]e. The dual interval lifting of tanh applies the
interval lifting of tanh (where tanh([a, b]) = [tanh(a), tanh(D)]) to the real part of its argument,
then applies the interval lifting of the closed-form derivative (1 — tanh?) to the dual part.

f5 = tanh([1.05, 1.22]+[-0.43,0.37]€) = tanh([1.05, 1.22]) + ((1 — tanh?([1.05,1.22])) - [-0.43, 0.37])e
=[0.78,0.84] + [-0.17,0.14]

The dual part of the result is also multiplied by the dual part of the input ([-0.43, 0.37]), implicitly
encoding the chain rule. In this example, f; evaluates to [0.78,0.84] + [-0.17, 0.14]e.

Likewise for f;, the input to the tanh function is the sum of x| and x; scaled by the edge weights,
which is just [0.67,0.85] + [0.25, 1.05]€. Hence, f; evaluates to [0.59,0.69] + [0.13,0.68]€. As our
analysis is fully compositional, we easily repeat this procedure for the subsequent (final) layer. Mul-
tiplying f5 and f; by their respective edge weights, then passing these values to the tanh activations,
allows us to determine that f5 =[0.88,0.91]+[-0.01,0.19] € and f; =[0.09, 0.24]+[-0.84, 0.012]e.

Interval Clarke Jacobian. Upon computing the outputs f; and f;, we take their dual parts as the
Interval Clarke Jacobian. This is because we show in Section 6.3 that abstractly evaluating func-
tions with dual intervals is equivalent to computing the Interval Clarke Jacobian, which in turn
soundly over-approximates the true Clarke Jacobian. Since we are modeling the composition of the
network and the perturbation as a function of only « (while holding all other inputs fixed), the
Interval Clarke Jacobian is a 2 X 1 interval matrix, as the network has 2 outputs. In this case, it is
[[-0.01,0.19],[-0.84,0.012]]7.
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Practical Applications. Upon computing this over-approximation of the Clarke Jacobian, we can use
it for several practical applications. For instance, we can compute the local Lipschitz constant in the
region « € [0,0.1] by taking the maximum norm of the Interval Clarke Jacobian, which intuitively
gives us a point summary of the network’s sensitivity to perturbations by « in this local region.
For this example, the Lipschitz constant (with respect to the £,-norm) evaluates to 0.84.

We can also use the over-approximation of the Clarke Jacobian to analyze the local landscape
of the composition of the network and the perturbation for stationary points. If a point is a local
extremum, then the Clarke Jacobian at that point contains 0. Therefore, if any entry of the Interval
Clarke Jacobian does not contain 0, it certifies that no point in the input range is a local extremum.
In this example, as both entries contain 0, the analysis determines that the input region a € [0,0.1]
could still contain a local extremum.

3 PRELIMINARIES

We define all the mathematical preliminaries needed to describe automatic differentiation, as well
as the Clarke Jacobian. We start with the definition of the standard Jacobian.

Definition 3.1. The Jacobian of a function f : R™ — R” differentiable at a point xo € R™ is

of of

a_xll |x:Xo ﬁ |x=X0
J(f.xo) = " e

a_xrll |x=x0 39(:1 |x:x0

When m = n = 1, the Jacobian is merely the classical derivative: J(f,%o) = % | xc=xq-

Dual Numbers. The question then arises, how do we automatically compute this Jacobian? The
most popular method is via Automatic Differentiation, or AD. AD has two modes: reverse and
forward. The former recursively evaluates derivatives of sub-expressions, and can be thought
of as a generalization of backpropagation. We focus on the latter, as forward-mode automatic
differentiation is much easier to implement and excels when the function’s input dimension is
small (as will be in our use cases). To implement forward-mode automatic differentiation, one may
overload all primitive arithmetic operations to work on dual numbers, which we now describe.

Definition 3.2. Dual numbers are numbers of the form a + be, where a, b € R and ¢ is a symbolic
variable (akin to i for imaginary numbers). We denote the set of all dual numbers as D. Dual number
arithmetic is given by the following rules:

(a+be)+ (c+de)=(a+c)+ (b+d)e
(a+be) - (c+de) = (ac) + (ad + be)e

a bc —ad
(a+be)/(c+de) = (Z) + ( = )e

The above arithmetic rules for dual numbers implicitly encode linearity, the product rule, and
the quotient rule in the computation of their dual part. To access the real part of a dual number, we
write fst(a+be) = a, and likewise the dual part is accessed by snd(a+be) = b. For any differentiable
function f : R — R, we use the standard lifting of f to dual numbers f : D — D given as

fla+be) = f(a)+(f'(a) - b)e

Therefore, the dual part of a dual number corresponds to the value of the function’s derivative
evaluated at the real part, a. Further, multiplying the derivative f’(a) by the existing dual part b
implicitly encodes the chain rule of calculus.
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3.1 Lipschitz Continuity

We subsequently show how to extend the previous concepts to non-differentiable but locally
Lipschitz functions. Hence, we first define the local Lipschitz property.

Definition 3.3. A function f : R™ — R” is locally Lipschitz on X € R™ if there exists a positive
constant K*# € R, such that for any x, x2 € X we have

If(x1) = f(x)llp < K llx1 = x2lla

where || - ||, and || - ||5 are arbitrary p-norms over R™ and R", respectively. Furthermore, if for a
given point xo € R™, there exists a positive real § > 0 such that f is locally Lipschitz within a ball
of radius § centered at xo, we say f is Lipschitz near x,.

Lipschitz Constant. The constant K% is called the (local) Lipschitz constant, which provides a
formal bound on how much a function’s output can change (measured by the || - | norm) given a
change in input (measured by the || - ||, norm). The constant can easily be obtained once one has
the Jacobian J. For a Lipschitz function f : R™ — R” that is differentiable, one can compute the
local Lipschitz constant on a region X by taking the maximum dual norm of the Jacobian over X:

K%B = sup [|J(f, x) lap
xeX

where the dual norm of any matrix M € R™™ is given as [|[M||op = SUP|jy1, <1 1Mol . For com-
mon values of a and f, there is a closed-form expression for ||M||q,s. For instance, [|M||1,; =
maxi <j<m(Xi=; |M;;|), thus we simply take the norm of the Jacobian (over all points in X) that
has the maximum absolute column sum.

3.2 Clarke Generalized Jacobian

However, the following question arises: what if we need to compute the derivative at a point where
it is not defined, such as ReLU(x) at x = 0? Can one extend Jacobians (and methods to compute
them) to non-differentiable functions? We follow recent work by Sherman et al. [2021] and employ
the notion of the Clarke Generalized Jacobian [Clarke 1990] for this extension. Intuitively, this
generalizes the notion of a Jacobian to non-differentiable, but still Lipschitz continuous functions.

Convexity. The Clarke Jacobian of a function f : R™ — R” evaluates to a convex set of n X m
matrices, hence we define the following operators. Let Co(R™™) denote all convex sets of n X m
real matrices. Further, let co : #(R™™) — Co(R™™) be the convex hull operator, which given a
set of matrices, takes their convex hull. We can now define the Clarke Generalized Jacobian.

Definition 3.4. (Clarke Thm. 2.5.1 [Clarke 1990]) Let f : R™ — R” be a function that is locally
Lipschitz at xo € R™, where the set of non-differentiable points of f has Lebesgue measure 0 (we
denote that set as S ¢ R™). The Clarke Generalized Jacobian of f at the point x, is denoted with
the following signature 9, : (R™ — R") x R™ — Co(R™™), and is given as:

9:(f,%0) = co{lim J(f,x;) : lim x; = xo and x; ¢ S for all j € N} (3)
]4)00 J*)OO

We first detail this definition when x, is a point of non-differentiability of f. Intuitively, since
we cannot compute the actual Jacobian J at a point of non-differentiability, we instead take any
sequence of points that converges to that point of non-differentiability, such that the Jacobian is
defined for all points in that sequence; we then compute what the Jacobians evaluated at those
points in the sequence converge to. The Clarke Jacobian is then just the convex hull over all such
sequences’ respective limiting Jacobians. Thus, we obtain a convex set of matrices. When the
function is differentiable at the point xo, this limit reduces to exactly the standard Jacobian at
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Trc:R™ >R T'rx;:R™ >R
Trfi:R™ SR Tkf:R™ > RP
f ::|: 2:}? T+ fi X f:R™ — R™P
| A f2
| 1/A I'rfi:R" >R T+fp:R" >R
| C'ofi THfi+f :R™ SR
| fo>c?fi:fa
: ’C“"GR THfi:R" >R T+f:R” SR
I'rfi-fo:R" >R
C! == sin(x) | cos(x)
| e* | log(x) | sqrt(x) THA:R™ >R Trfi:R" >R
| o(x) [tanh(x) Tri/fi R SR T+Clofi :R™ >R
THfy:R" SR Trfi:R" >R" Trf:R" 5R"
Trfo>c?fi: fo:R™ —>R"?

Fig. 3. Locally Lipschitz Function Syntax and Typing Rules

Xo (and the convex hull becomes superfluous), hence J.(f, x¢) will be a singleton set containing
exactly J(f, %o).

Example 3.5. Let f(x) = ReLU(x). Then d.(f, 0) = co{0,1} = [0, 1].

4 LANGUAGE SYNTAX AND SEMANTICS

We describe our differentiable programming language, which is based upon Ag [Sherman et al. 2021]
but with additional branching primitives. Our language is first-order and purely functional (no
side-effects), yet expressive enough to encode neural networks and locally Lipschitz perturbations.

4.1 Syntax

Figure 3 presents the syntax of the language. Deep] syntactically supports standard arithmetic
operations, differentiable function primitives, and limited branching for encoding Lipschitz but
non-differentiable functions like min and max. One can encode neural networks in Deep]; however,
instead of encoding them as a series of edge-weight matrix multiplications, our syntax constructs
them inductively via compositions: o, Cartesian products: X, and branching (e.g., for ReLU networks).

Arithmetic Operations. We support all of the key arithmetic primitives: addition, multiplication,
and division. While syntactically speaking, these are only defined for functions of a single output
variable, one can easily encode multi-variable versions (e.g., vector addition) by also making use of
the Cartesian product, X, where (f; X f2)(x) = (fi(x), f2(x)). For example, (fi X f2) + (s X fa) =
(i + ) X (fa + fa).

Differentiable Functions. Syntactically, we support as primitives all the standard primitive differen-
tiable functions (e.g., ¥, sin(x), tanh(x), etc.). Hence, we denote these as C! because each function
is C'-smooth, meaning the function is continuous and differentiable everywhere on its domain,
and the first derivative is also continuous everywhere on its domain.

Non-differentiable, Lipschitz Functions. We support a branching primitive, f; > 0? f; : f2, to
implement Lipschitz, but not necessarily differentiable functions such as abs, ReLU, min, and max
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O ((R’" - R”) X Rm) - co(Rnxm)

9c(fi,%0)
de(fix faxo0) © [ac(fz,xo)]

if fi & f> Lipschitz near xg, else T

oc(fi+fox0) S 9c(f1,%o) +. 9c(f2,%0)
if fi & f> Lipschitz near xg, else T
oc(fr- fx0) S fi(x0) -, 9c(fa, X0) +. fa(X0) -, 9c(f1.%0)
if fi & f> Lipschitz near xo, else T
% (1/fi,x0) S —dc(fi,%0) /.fi(x0)

if fi Lipschitz near xg and fi(x¢) # 0, else T

9(Clo fixo) = J(C, fi(x0)) - 9c(fi,%0)
if i Lipschitz near xo and C! differentiable at f (xo), else T

9 (f1.%0) if fo(x0) > ¢
(fo>c?fi:faaxo) C {9c(f2x%0) if fo(xo) < ¢
co(ac(ﬁ,xo),ac(fz,x())) otherwise
if fi & f> Lipschitz near x¢ and
fi, f2 agree on {x : fo(x) =c}, else T
dc(xi,x0) = {ei}
provided i € {1,...,m}
dc(e,;x0) = {0}

Fig. 4. Clarke Jacobian Rules

(and by extension max-pooling). For example, abs can be implemented as x > 0 ? x : —x. However,
one could easily define a discontinuous function such as x > 0 ? 1 : 0 using our syntax. Thus, for
the computed Jacobian (and by extension Lipschitz constant) to be semantically meaningful and
valid, we restrict the type of branching we support. We will later show that checking for these
restrictions is undecidable in Section 4.2, and thus the responsibility of ensuring that the restrictions
are satisfied rests upon the programmer or an (incomplete) program analysis.

Lastly, even though we restrict the type of branches we support, more complex branches with
arbitrary Boolean predicates can be systematically desugared into simpler ones. For example, the
branch (¢; < x Ax <cz) ? fi : fo can be desugared into ¢; < x ? (x < ¢z ? fi : f2) : fo. Disjunctions
and negations of Booleans can be encoded similarly.

Type System. As our language only employs real-valued functions, the typing rules for a function are
simple and based on standard real-valued arithmetic. For instance, when adding two functions, their
dimensions must agree. Likewise, when dividing by a function fi (as in 1/f), the output dimension
of the function f; must be 1. The full typing rules can be seen in Fig. 3, where I corresponds to the
typing context that maps all arithmetic expressions (including intermediate ones) to their types.
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4.2 Standard Interpretation

As our language is an augmented differentiable programming language, the semantic interpretation
of a function f is its derivative, which in our case corresponds to its Clarke Generalized Jacobian
0:(f,+). Our language is inspired by Sherman et al. [2021], hence we follow their convention of
lifting the Clarke Jacobian to become a total function by defining the result to be T whenever o,
would be undefined, such as trying to evaluate the Clarke Jacobian of log(x) at x = 0. Because of
this, T corresponds to the entire space of all real n X m matrices (R™™).

The semantic rules for recursively defining the Clarke Generalized Jacobian of each language
primitive are shown in Figure 4. Unlike the regular Jacobian, these rules use C instead of equality.
This means that the exact Clarke Jacobian is not computable; however, our end goal is to compute
a sound over-approximation.

Convex Arithmetic Operations. We denote +, : Co(R™™) x Co(R™™) — Co(R™™) to be the
addition of two convex sets (Minkowksi addition), where A +. B = {a+b : a € A/b € B}.
Likewise, we denote -, : R X Co(R™™) — Co(R™™) where v . A = {v-a : a € A} and
/e Co(R™™) x Ry — Co(R™™) where A/. v = {% -a:a € A} to be convex scalar multiplication
and division, respectively. Lastly, as mentioned, we let co : # (R™™) — Co(R™™) be the convex
hull operator that takes the convex hull of a set of matrices. We now detail the rules of Fig. 4.

Variables and Constants. The Clarke Jacobian of a single variable x; is {1}, but if we compute it
with respect to xo € R™, the Clarke Jacobian will be m-dimensional, hence denoted as {e;}, where
the i*" entry of e; is 1 and all other m — 1 entries are 0. Equivalently, f £ x; can be thought of as a
projection function going from R™ — R that takes the i*" component of xo. Similarly, the Clarke
Jacobian of any constant is just the vector of m zeroes, denoted as {0}.

Cartesian Product. The Clarke Jacobian of the Cartesian product of two functions (defined over the
same input) is a subset of the matrix concatenation of each function’s respective Clarke Jacobians.
This follows directly from proposition 2.6.2 (e) of Clarke [1990].

Addition. The Clarke Jacobian does not obey exact linearity; however, the Clarke Jacobian of the
sum of two functions is contained in the Minkowski sum of each function’s respective Clarke
Jacobian. This rule follows directly from Proposition 2.3.3 of Clarke [1990].

Multiplication and Division. The Clarke Jacobian follows both a product and quotient rule, but
as with the other rules, the relationship is of containment instead of strict equality. These follow
directly from Propositions 2.3.13 and 2.3.14 of Clarke [1990].

Composition. To ensure our language is fully compositional, we can exploit the fact that the Clarke
Jacobian follows a chain rule, when the outermost function is C!-smooth. This result follows directly
from Theorems 2.3.9 and 2.6.6 of Clarke [1990].

C! Functions. For the C! primitive functions, the Clarke Jacobian reduces to the standard Jacobian
J(CY,-). Furthermore, one can catch erroneous behavior by leveraging knowledge about the known
domain of each C! primitive function. For instance, if one tries to evaluate . (sqrt(=ReLU (x;)), 1),
this would require evaluating J(sqrt, —1). However, since -1 lies outside the domain of sqrt, this
result is undefined; thus, the expression will evaluate to T, and errors will be caught at this step.
One can then propagate T up the remainder of a function’s expression tree, since all other rules in
Fig. 4 first check if any sub-expression evaluates to T (in which case they will also evaluate to T).

Branching. Branching is absent in Clarke’s original formulation. Furthermore, As [Sherman et al.
2021] and Di Gianantonio and Edalat [2013] also do not support a branching primitive. This is
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because a branch can introduce the possibility of encoding a discontinuous function, such as
f(x) =x>07?1:0. As a branch can be thought of as “splitting” a function into two separate
pieces, we need to ensure that the entire function is still locally Lipschitz continuous (on the region
of interest containing xo) for it to have a well-defined Clarke Jacobian at x¢. Thus, to formally
establish the necessary conditions for the well-definedness of the Clarke Jacobian of a branching
function, we use results from the theory of piecewise differentiable functions [Khan and Barton
2013; Scholtes 2012]. We first state a useful lemma.

LEMMA 4.1. Let f : R™ — R”" be a function expressible using the syntax of Figure 3 that does not
contain branches. For any xo where J(f,Xo) is defined, we have that 3. (f,xo) = {J(f,%0) }.

Proor. (Sketch) Since a function that does not have branches is a constant or only uses addition,
composition with a C! function, multiplication, division, or the Cartesian product, one can directly
compute J(f, Xo) using linearity, chain rule, product or quotient rule, or the direct computation
of the derivative (for C! functions and constants), provided J(f, x¢) is well-defined (e.g., there is
no division by 0). Furthermore, by Proposition 2.2.4 of Clarke [Clarke 1990], if a function has a
well-defined Jacobian at a point, the Clarke Jacobian reduces to that value. m]

We now formally define piecewise differentiability.

Definition 4.2. (Piecewise Differentiability [Scholtes 2012]) A function f : R™ — R" is piecewise
differentiable on an open set X € R™ if f is continuous on X and for every x € X there exists an
open neighborhood O € X and a finite number of differentiable functions, denoted {gy, ..., g }, such
that for any x, € O, f(xo) € {g1(x0), .-, gr (x0) }. We will refer to the set of differentiable functions
{91, .- gi } as the selection set.

Any function f that is differentiable on a set X C R™ (meaning J(f, -) exists) is trivially piecewise
differentiable on X, albeit with a single piece. A piecewise differentiable function has a well-defined
Clarke Jacobian that can be given in terms of the convex hull of the standard Jacobian of constituent
pieces, provided an active set is known a priori [Scholtes 2012]. If f has the selection set of
differentiable functions {gy, ..., gr }, then (by Proposition 4.3.1 of Scholtes [2012]):

9c(f,%0) = co{J(gi,x0) | i € A(f,%0)} (4)
where A(f,%o) C {1, ..., k} is the active set, which denotes at xo which of the k selection functions
satisfy g;(x¢) = f(Xo). To adapt this to our setting, we start with the simplest branching function
f 2 fo>c?fi: f, where fi, f; are branch-free (meaning they are compositions, sums, or products
of C! functions). Since f; and f; do not contain branches, one can compute J(f;, Xo) directly in
accordance with Lemma 4.1. Hence, f; and f, are the selection set, as they are differentiable (by
assumption) and the value of fy > ¢ ? f; : f for some x; will necessarily be in {fi(x), f2(x0)}.
Therefore, when writing a branch, the selection set is known by construction. So all that remains
for f to be piecewise differentiable (and have a well-defined d,) is to ensure that it is continuous,
which is true provided fi(x) = fo(x) for {x : fo(x) = c}.

We do not need to restrict to cases where f; and f, are branch-free. We can nest branches
arbitrarily deeply, provided they agree on the decision boundary {x : fy(x) = c}, as all this does is
increase the number of selection functions (or pieces) by finitely many. This is because we do not
allow infinite recursion or while loops that would permit expressing countably infinite possible
branches. Intuitively, we recursively “unroll” the nested branches into all possible innermost
functions (which themselves will no longer contain branches). This ultimately yields a finite set
of branch-free functions f; for which we can compute J(f;, -) directly (as in Lemma 4.1). Using
these notions, we can now formally describe necessary conditions for the Clarke Jacobian of the
branching primitive to be well-defined.
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THEOREM 4.3. (Well-Definedness of the Clarke Jacobian of a Branch) The function given by the
branch fy > ¢ ? fi : f; is piecewise differentiable on an open set X C R™ if fi is piecewise differentiable
on{x € X : fo(x) = c}, f> is piecewise differentiable on {x € X : fo(x) < c}, and fi(x0) = fo(x0) for
allxg € {x € X : fo(x) =c}.

ProoF. (Sketch) Since f is piecewise differentiable on {x € X : fy(x) > c}, it has some
selection set {g,....gr}; hence, fy > ¢ ? fi : f> is also piecewise differentiable on {x € X :
fo(x) = ¢}, with the same selection set on that region. Likewise, since f; is piecewise differentiable
on {x € X : fy(x) < c}, it has some selection set {hy,...}; thus, f > ¢ ? fi : f; is also
piecewise differentiable on {x € X : fy(x) < c}, with the same selection set. Furthermore, since
{xeX:fpf(x)=c} C{xeX: fo(x) 2ctand {x € X : fo(x) =c} C {x € X : fo(x) < ¢}, the
selection set for {x € X : fy(x) = c} is {g1, ..., Gk, A1, ..., by }. Lastly, since xp € {x € X : foy(x) = ¢}
implies fi(xy) = f2(xp), then fy > ¢ ? fi : f> is continuous on its entire domain. O

We now present the rule for computing the Clarke Jacobian for a branching function, using the
notions of piecewise differentiability. Formally, for fy : R™ — R, fi, fo : R™ — R”, and xo € R™:

e (f1, %o) if fo(x0) > ¢
3:(fo > ¢? fi: foxo) C {9(f2,%0) if fo(xo0) <c¢ (5)
co(ac (f1,X0), 9 (fa, xo)) otherwise

When fy(x9) > c, the active set is A(f, Xo) = {f1}; similarly, when f;(x¢) < c, the active set
is A(f5,%0) = {f2}. Along the decision boundary, both f; and f; are in the active set, hence the
Clarke Jacobian is the convex hull, co, of both of their respective Clarke Jacobians. In the rule
shown in Eq. 5, we evaluate d.(fi,Xo) and d.(f2, Xo) instead of J(fi, Xo) and J(f2, Xo) as in Eq. 4.
This recursive definition allows us to capture the notion of unrolling a nested branch, as once f
and f, are themselves branch free, 9. (f;, xo) and J(f;, xo) become equivalent (by Lemma 4.1); thus,
this equation would coincide with Eq. 4.

Example 4.4. We can encode ReLU(x) = x > 0? x : 0, and hence d.(x > 0? x : 0,0) =
co(d:(x,0),9.(0,0)) = co({1,0}) = [0, 1].

Despite the elegant theory of Scholtes [2012], which allows us to characterize the conditions and
well-definedness of the Clarke Jacobian of a piecewise differentiable function (or branch in our
language), the problem of statically checking that these conditions are satisfied is undecidable. This
is because even the smaller problem of ensuring that a branch is continuous along the decision
boundary is known to be undecidable [Chaudhuri et al. 2010; Di Gianantonio and Edalat 2013;
Griewank 2013]. As those works do not target the exact framework we focus on, we offer a short
self-contained result:

LeEmMA 4.5. (Undecidability of Ensuring Piecewise Differentiability) Let f; : R™ — R" and f; :
R™ — R" be arbitrary functions in the language, and let X C R™ be an arbitrary set on which f; and
f2 are both defined. Checking if fi(x) = fo(x) for all x € X where fo(x) = c is undecidable.

ProoF. (Sketch) Reduction using Richardson’s Theorem [Richardson 1969]. o

Existing works can heuristically check for this condition using SMT solvers [Chaudhuri et al.
2010], or restrict the language to only pre-specified operators (e.g., max, min, ReLU and abs) [Beck
and Fischer 1994; Di Gianantonio and Edalat 2013; Sherman et al. 2021]. Despite the difficulties
introduced by a branching primitive, it will prove immensely useful in making the static analysis
more precise, particularly for functions such as bilinear interpolation.
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5 INTERVAL CLARKE JACOBIAN

Having now defined the syntax and the standard Clarke Jacobian, we now formalize a computable,
sound over-approximation: the Interval Clarke Jacobian, &™. We will then show how to scalably
implement our abstraction with an equivalent formulation that leverages a sound abstraction of
forward-mode automatic differentiation.

5.1 Interval Domain

To soundly approximate the Clarke Jacobian, we use the interval domain as it is fully computable and
can soundly abstract the convex set of matrices corresponding to the original Clarke Generalized
Jacobian, since interval matrices are necessarily convex sets.

Preliminaries. Denote the set of real-valued intervals of the form [a, b] where a,b € R U {+c0} and
a < b as IR. The set of n X m matrices of intervals is denoted as IR™™. We will use the notation
Xo instead of x¢ to distinguish matrices and vectors whose entries are intervals instead of scalars.
Similarly, to denote the evaluation of a function f where all of its operations are lifted to interval
arithmetic, we will write f(Xg). To denote the lower and upper bounds of an interval xy = [a, b],
we will write [b(Xo) and ub(X), respectively. We denote +, -, and /,, as the interval arithmetic
versions of addition, multiplication, and division, respectively. Likewise, we denote LI : IRXIR — IR
to be the standard interval join, which returns the smallest interval enclosing both arguments. We
may also apply LI element-wise to matrices in IR™. Lastly, we denote T = IR, which is the
entire space of n X m interval matrices. We now define the Interval Clarke Jacobian, amt,

Definition 5.1. The Interval Clarke Jacobian o™ : ((R™ — R") x IR™) — IR™™ for a function
f :R™ — R" and interval vector X € IR™ is denoted 8" ( f,X,) and is given by the rules of Fig. 5.

The interpretation of the Jacobian of a function f is now an interval matrix that over-approximates
the convex set of matrices corresponding to the original Clarke Jacobian. This will be necessary
to be able to define the local neighborhood of points for which we want to abstractly analyze or
compute a Lipschitz constant. We now detail each abstract transformer.

Constants and Variables. The Interval Clarke Jacobian of a constant function is nearly identical to
the respective Clarke Jacobian (in that /™ of a constant is 0); it is lifted to become the constant
interval [0, 0] of the same dimension as Xy, which we denote as 0 € IR™. Likewise, the Interval
Clarke Jacobian of a single variable x; is also the constant vector where the i*" component is 1 and
all other m — 1 components are 0, again lifted to become a constant interval, which we denote as
8,' e IR™.

Cartesian Product. The Interval Clarke Jacobian of a Cartesian product of functions is just the
concatenation of their respective Interval Clarke Jacobians.

Addition. The Interval Clarke Jacobian obeys linearity exactly.

Multiplication and Division. The Interval Clarke Jacobian satisfies a lifted interval arithmetic version
of the product and quotient rules.

Composition. For compositions with C!-smooth functions, the Interval Clarke Jacobian satisfies a
chain rule as well, where J™ is the classical Jacobian of the C!-smooth function, just interpreted
using interval arithmetic instead of ordinary arithmetic.

Example 5.2. Jit (sin, [xg,x(l)‘]) = cos([xg, x§1) and JI"* (tanh, [xg, x D) =[1L1]—p [tanh(xg),tanh(xg)]z.
Just as with 9., primitive C! functions are where we can check if the Jacobian is undefined (in

which case 8™ evaluates to T), which we likewise propagate up the function’s expression tree.
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ont . ((R’" 5 R”) XIR’") — [RPXm

) [ ()
I (fix fo %) = QWh@J

if fi & f2 Lipschitz on Xp, else T

I (fi+ foX0) = (fi,X0) +w I (f2,%0)
if fi & f> Lipschitz on g, else T

(A fxo) = fi(X0) o M (fo X0) 4 fo(X0) 1 @ (fi %0)
if fi & f2 Lipschitz on Xp, else T

aM(1/fi.%0) = =" (fi,%0) [y fi(X0)?
if fi Lipschitz on xg and 0 ¢ fi(Xg), else T

a[nt(cl Ofl,)a)) — JInt(Cl,fl()a))) 'IRt?I"t(ﬁ,fo)

if f; Lipschitz on X and C? differentiable on f (Xp), else T

I (fi, [fo > e](%0)) it Ib(fo(x0)) > ¢
M(fo>c?fitfXo) = (M (f[fo <c](%)) if ub(fo(x0)) <c
M (A, [fo = ] (%) LI ™ (o [fo < c](X0)) otherwise
if fi & f2 Lipschitz on Xp and
filx) = falx) forx € {x" : fo(x’) =cAx’ €Xp},else T

Mt (x;,%0) = &

(e %) = 0

Fig. 5. Interval Clarke Jacobian Rules

Branching. If the lower bound of f;(X) is larger than ¢, we definitively know that f; is the only
possible function of the active set. Similarly, if the upper bound of f;(Xp) is smaller than ¢, we
definitively know that f; is the only possible function of the active set. If ¢ € f(Xp), then it is
possible that both f; and f; are in the active set, thus we have to consider both possibilities.

In either case, we can also refine our information about xy. For example, when evaluating alnt
of the function f(x) £ x > 0 ? fi : f on the interval Xy = [—1, 1], conditional upon entering the
true branch, we should only evaluate 8™ ( f;, [0, 1]). Likewise, conditional upon entering the false
branch, we should only evaluate o™ (f;, [~1,0]). We denote the refinement of x, for a Boolean
guard of the form fy > c as [fy > ¢](Xo). However, the general problem of determining how to
optimally refine the input X, conditioned on the information of the branch f; > ¢, is undecidable.
Therefore, we follow the approach of Miné [Miné 2017] and refine X when the function f; in the
Boolean guard has a simple form: a single variable x;, and then use the fallback transformer (the
identity function) for all other cases (which can then be simplified to get the rule from Fig. 5):

Xo N ([—00,00] X ... X [=00,¢] X ... X [—e0,00]) if fy=x; A op € {<, <}
[fo op c](x0) = {Xo N ([—c0, 0] X ... X [c,00] X ... X [-e0,00])  if fy=x; A op € {>, >}

X0 otherwise
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5.2 Soundness of the Abstraction

We now state the soundness of 9/"*. We first define the concretization y.

Definition 5.3. Define the concretization y : IR™™ — Co(R™™) for an interval matrix S € IR™"™
as follows:
y(S) = {s e R™™|s e S}
This is because an interval matrix is already by definition a convex set of matrices. The soundness

theorem is now given as follows.

THEOREM 5.4. (Soundness) Let f : R™ — R" be any function constructible according to Fig. 3 and
xo € R™, x¢ € IR™ with x¢ € X¢. Then

9c(f.x0) € y(8"™ (f,%0))
Proor. See Appendix A.2 (Laurel et al. [2022]). O

6 DUAL INTERVAL DOMAIN

While we could compute 8™ recursively in a reverse-mode pass, a key contribution of our work is
to provide an equivalent, forward-mode version of the static analysis based on dual numbers.

6.1 Dual Interval Arithmetic

Definition 6.1. The set of dual intervals, denoted as ID, are tuples of the form [a, b] + [c, d]e,
where a,b,c,d € RU {£o0}, a < b and ¢ < d. Intuitively, a dual interval represents a set of dual
numbers where the real part is within [a, b] and the dual part is within [c, d]. To access the real
part [a, b] of a dual interval, we will write fst([a, b] + [c, d]€); to access the coefficients of the
dual part [c, d], we will write snd([a, b] + [c, d]€). We will denote the set of m-dimensional vectors
of dual intervals as ID™ and the set of n X m dimensional matrices as ID"™™. Lastly, we denote
T = ID™™ (the entire space of dual interval matrices).

We can lift the ordinary arithmetic operators to dual intervals. We define dual interval addition,
+p D X ID — ID as follows:

([a, b] + [c, d]e)+]D([e,f] + g, h]e) = ([a, b]+m[e,f]) + ([C»d]"'m [g,h])e
;o - ID XID — ID as

(la. ] + [e.dle) (le. f1+ [g.hle) = ([a.b] - [e f1) + ([a.b] - [g. k4 [c.d] - [e f])e

And dual interval division, /, : ID X ID — ID as
([a,b1+[c,dle)/y (e, f1+[g. hle) = ([a b1/ [e, f1)+((Lc, ] e, f1— [@,b] . [, h1) /e [, £1%)e

It will also be useful to define a join for dual intervals, LI, : ID X ID — ID as
([a b] + [c.dle) Uy, ([e, f1+ [g. hle) = ([a.b] U [e, f]) + ([c.d] U [g.h])e

6.2 Forward-Mode Abstract Evaluation with Dual Intervals

We define dual interval multiplication

We now describe how to perform a forward-mode abstract evaluation where all operations are
lifted to operate on dual intervals using the abstract interpreter Evalyp.

Definition 6.2. The abstract interpreter Evalp : ((R™ — R") x ID™) — ID" takes a real-valued
function f : R™ — R" and evaluates it abstractly by lifting the interpretation of all operations to
dual interval arithmetic, as shown in Fig. 6.

Because our language is functional, there is no “state” However, the second argument to Evalip
is the input, which serves the same purpose. We now detail the rules shown in Fig. 6.
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Evalyp : ((Rm — R") X IDm) — ID"

Evalip(fi X f2. X0 +yoe) = Evalip(fi.Xo + yoe) X Evalip (f2. %0 + yo€)
if fi & f2 Lipschitz on Xp, else T

Evalip(fi + f2. X0 +yo€) = Evalip(fi.Xo + yo€)+ Evalip (f2. X0 + yo€)
if fi & f> Lipschitz on g, else T

Evalip(fi - f2.X0 +yoe) = Evalip(fi.Xo + yo€) - Evalip (f2. Xo + yoe)
if fi & f> Lipschitz on g, else T

Evahp (1/fi,%0 +¥oe) = ([1,1] +[0,0]¢) /p Evalip (fi, Xo + Yoe)
if fi Lipschitz on X, else T

Evalip(C' o fi,Xo +yo€) = Evalp(C', Evalp (fi, %o + Yoe))
if fi Lipschitz on g and C! differentiable on f; (Xp), else T

Evalip (fi, [fo > c](Xo) +yoe)  Ib(fst(Evalip(fo, %o + Yo€))) > ¢
Evalip(f2, [fo < c](X0) +yoe)  ub(fst(Evalp(fo, %o +Yo€))) < ¢
Evahp (f1, [fo = c](X0) + yoe)  otherwise

Uy Evalip (2, [fo < c](X0) + yoe)

Evahp(fo > ¢? fi: fo, X0 +yoe) =

Evalis (x %o + oe) = %oli] +Yolile
Evalip(c,%Xp +yoe) = [c.c] +[0,0]e
Evalin (CL [x{, 541 + [y yile) = CH gD + (17 (CL Ly xt D) e [l )

if C! differentiable on [xg, x(’)‘], else T

Fig. 6. Dual Interval Forward Mode Abstract Evaluation

Constants and Variables. The abstract evaluation of a constant is that constant, albeit abstracted to
a (degenerate) dual interval. Likewise, the evaluation of a single variable x; is the i element of the
input dual interval (denoted by the [i] accessor).

Cartesian Product. To abstractly evaluate the Cartesian product of two functions f; and f; on a
given input Xg + yo€, we abstractly evaluate each one, then take the Cartesian product of the results.

Addition. To abstractly evaluate the sum of two functions, we abstractly evaluate each on the given
input Xg + yoe, then take the dual interval sum +,, of the respective results.

Multiplication and Division. As with addition, to abstractly evaluate the product of two functions
or their quotient, we first abstractly evaluate the individual functions on the input, then use the
dual interval forms of multiplication -, and division /.

Composition. The abstract evaluation of the composition of any function f; with a C! function
for an input dual interval X + yoe, is the composition of the successive abstract evaluations: f; is
abstractly evaluated on the input, then the C! function is abstractly evaluated on that result.
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Branching. When evaluating a branch abstractly, we only use the real part of the dual interval,
denoted fst(Evalp (fo, Xo + yo€)), to select which branch to take (or whether to abstractly evaluate
both). While this may seem strange, one will note that in Eq. 5, the Clarke Jacobian is only computed
for the piece that is ultimately chosen — f; or f2 (possibly both) — and not the threshold function
fo- In fact, f; is only used to select which branch to take, hence its derivative information (which
corresponds to its dual part) is unnecessary. If the lower bound Ib( f'st (Evalp (fo, Xo + Yo€))) is larger
than ¢, we definitively know to take only the true branch. Conversely, if the upper bound of the
real part ub(fst(Evalp (fo, Xo + Yo€))) is less than ¢, we only take the false branch. Otherwise, we
abstractly evaluate both branches then take their join L. In all cases, we can refine the information
of the real part Xy but not the dual part yy, as there is no way of knowing which sub-regions of X
correspond to which sub-regions in yy, since the interval domain is non-relational.

6.3 Equivalence
We now prove that Evalp can be used to compute exactly the same result as 8.

THEOREM 6.3. (Equivalence of @™ and Evalyp) Let f : R™ — R" and let Xy € IR™. Then
o™ (%) = snd(Evals (, % +€16)" X ... X Evalis (f,% +Ene))

Proor. We show the sketch for select cases; the full proof is in Appendix A.4.
Base Cases. Constants and single variables are straightforward.

snd(EvalID(c,)?() +616)T X ... X Evalp (¢, 5o +Eme)T) =10,0] X ... x [0,0] = 8" (¢, %)

snd(EvalID(x,-,)Eb +e16)7 X ... x Evalyp (xi, Ko +'eme)T) = 0,0] X ... X [1,1] X ... X [0,0] = & = 9™ (x1, %)

Arithmetic Operations. Equivalence for arithmetic primitives is straightforward, though it

requires the inductive hypothesis and using the definitions of 4+, -, /.- We now detail addition:
I (fi+ fou%o0) = 9™ (fi, o) 0™ (fo. %) (Def.)
- snd(anlID(fl, %o +€16)7 x ... x Eoalin (i, %o +Eme)T) (Ind. Hyp.)
+IRsnd(EvallD(f2, %o +e1e)] x...x Evalp (f2, Xo +'éme)T)
(Def. of +,
= snd(EvalID(fl + f2, %0 +e16) x ... x Evalip (fi + f2, X0 +Eme)T X distributes
with snd)

The case for the Cartesian product proceeds analogously. Composition also uses the inductive
hypothesis and relies upon the fact that snd(Evalp (C", [xé, xy ]+ (1, 1]e)T) =J"(C, [xé, xy ).

Branching. As stated in Lemma 4.1, up to this point, without branching the language is just a
standard differentiable programming language, thus the result is not surprising. However, with
branching, establishing this equivalence is more challenging. We split the proof into three cases:
(1) Ib(f(%0)) > ¢, (2) ub(f(X0)) < ¢, and (3) ¢ € f(Xp). Starting with Ib(f5(Xp)) > c:

I (fo>c? fi: o %0) = "™ (fi, [fo > c] (o)
And for any i € {1,..,m}, Ib(fy(X0)) > c iff Ib(fst(Evalp(fo, %o + €;€))) > ¢, hence:

Evalip(fo > ¢ ? fi « fa, %o + &i€) = Evalip (fi. [fo > c](X0) + €i€)
By induction and the definitions of Evalip (fy > ¢ ? fi : fo, Xo + €:€) and 3™ (£, [fo > ¢](X0)):

I (f e > ] (%)) = snd(EualID(ﬁ, o > ] (%0) +&16)T x...x Evaln (f1, [fo > c]](x?,)+€me)T) (Ind.)

A (foy > c?fi: fouio) = snd(EvalID(fO > ¢?fi : foXo+éie) x...xEvalp (fo > ¢? fi :fz,fo+8me)T) (Def)
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The case where ub(fy(Xp)) < ¢ proceeds exactly the same by symmetry. When we assume
¢ € fo(Xp), we must take the join. Starting from the desired right-hand side:

snd(EvalID(ﬁ) Sc?fii fo o+ 6] x...x Eoalp(fo > ¢ ? fi : fo %o +€me)T) (Desired RHS)

snd(EvalID(ﬁ, Ifo = ] (%0) +€1e) Uy, Evaln (f2, [fo < ¢] (%0) +€1)T x ... (Assump.)
. X Evalip (fi. [fo = ] (%0) +Eme) T Uy, Evalis (£ [fo < ] (%o) +€me)T)

snd(EvalID(ﬁ, Ifo > (%) +€16)T X ... x Evalin (i, [fo = ¢ (%o) +'€me)T)

(Def. of Uy, X dis-
tributes with snd)

(Def. of 9™ and Ind.
Hyp.)

u snd(EvalID(fz, [fo < c](%0) +€16)T x ... X Evalyp (f2. [fo < ¢](%0) +Eme)T)

I (fiIfo = ] (Xo)) L a™ (f2 [fo < el (%0)) = ™ (fo > ¢ ? fi : fo.%0)

]

6.4 Complexity

The key insight of Theorem 6.3 is that, as with standard forward-mode AD, the dual interval
abstraction requires as many forward passes as there are inputs. Therefore, for f : R™ — R", we
require m independent passes of Evaljp in order to compute the full interval over-approximation of
the Clarke Jacobian. However, they can be computed in parallel (as we do). Hence, as with standard
forward-mode AD, our method is better suited for functions where the input dimension is small.
Additionally, the real part for each pass will be the same, and need only be computed once.

Furthermore, for the basic arithmetic functions, dual interval arithmetic requires more primitive
operations than the same operation defined over the reals. For example, multiplication of two dual
intervals as shown in Section 6.1 requires 12 primitive multiplications to perform all the interval
arithmetic multiplications for both the real and dual parts, as well as 2 primitive additions. However,
for all arithmetic operations {+, —, -, /}, the amount of additional primitive operations required for
the dual interval version (vs. the real-valued version) is still just a constant factor more.

While it has been established that for standard AD, the amount of primitive operations of a single
pass of forward-mode evaluation with dual numbers is at most a constant amount (typically 2 — 3x)
more than the number of operations to evaluate the function itself [Griewank and Walther 2008],
this is not the case for our analysis. A key complexity issue arises due to our support of branching.
As the abstract evaluator Evaljp could potentially evaluate both branches of a conditional, we may
have exponentially many more evaluations compared to evaluating the function with ordinary real
numbers. Thus, if OPS(f) denotes the number of primitive arithmetic operations to evaluate f (not
its Jacobian) over real numbers, then O (2°75()) is the upper bound on the number of primitive
arithmetic operations required to evaluate a single pass of the dual interval lifted version of f.
For the evaluation, the ReLU function as well as the contrast variation and rotation perturbations
employ branching. Yet, despite the theoretically worst-case exponential operation complexity, in
practice, Deep]’s implementation of Evalip was still quite fast. Lastly, each term will always have
only two intervals associated to it (the real and dual parts). Hence, unlike affine interval arithmetic
[De Figueiredo and Stolfi 2004] or tools like Rosa [Darulova and Kuncak 2017], the number of
intervals we must track per variable does not grow as a function of the expression size.

7 METHODOLOGY

We next describe the experimental setup, including the perturbation functions and networks used
in our experiments. We also detail the training procedures and accuracies of these networks. We
ran our experiments on a 2.20 GHz 14 core Intel Xeon Gold 5120 CPU with 256 GB of main memory.
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Implementation. We implemented our analysis in a tool called Deep], written in C++. Deep] employs
operator and function overloading to allow dual interval inputs to be propagated through arbitrary
perturbation functions and neural networks. Even though our formalization is from a purely
functional view, one can easily use an ANF conversion [Flanagan et al. 1993] to produce imperative
code, since our programs do not have recursions or while loops. All code, neural networks, and
results are available at https://github.com/uiuc-arc/Deep].

Perturbation Functions. We consider three previously studied image perturbations affecting pixel
intensity and image geometry, as well as compositions of these perturbations. We assume that the
images’ pixel values are in the range [0, 1].

(1) Haze [Paterson et al. 2021]: The intensity x; of the i*? pixel in the original image is perturbed
to (1 — a)x; + a, where a = [0, @max] + [1, 1]€; the parameter amqx € [0, 1] represents the
degree of haze.

(2) Contrast [Paterson et al. 2021]: The intensity x; of the i*" pixel in the original image is
perturbed to max(0, min(1, %)), where @ = [0, amax] + [1, 1]€; the parameter ap,qx €
[0, 1] represents the degree of contrast.

(3) Rotation [Balunovic et al. 2019]: We analyze image rotations with bilinear interpolation
within a range of angles 0, where 0 = [—0,4x, Omax] + [1, 1]€; the parameter 0,5 € Rxg
represents the rotation angle in radians.

(4) Composition: We look at three ways of composing the above functions — haze followed by
rotation, contrast followed by rotation, and contrast followed by haze.

The contrast, rotation, and composite perturbations described above are non-differentiable but
Lipschitz continuous, and cannot be handled by prior work [Edalat and Maleki 2017; Jordan and
Dimakis 2020; Mangal et al. 2020; Zhang et al. 2019]. In our experiments, we consider ,qx < 0.63 for
the haze and contrast perturbations, and 0,4, < 0.32 radians (which corresponds to approximately
+18°) for rotation.

Network Architectures. We trained three ReLU networks each for the CIFAR10 and MNIST datasets.
The first network (FFNN) is a 7-layer fully-connected architecture from RecurJac [Zhang et al. 2019].
The other networks are convolutional networks from Mirman et al. [2018] - ConvMed features
two convolutional and two fully-connected layers, while ConvBig features four convolutional and
three fully-connected layers. Details on these networks are in Appendix A.5. Our largest network
is the CIFAR ConvBig network containing > 62 K neurons. These network sizes are comparable to
those of other state-of-the-art verification techniques [Singh et al. 2019]. Furthermore, for the local
optimization landscape experiment, we trained 7 fully-connected networks on the MNIST dataset,
varying the total number of layers from 3 to 9. Each hidden layer contains 30 neurons, and a ReLU
activation is applied after every layer (including the final layer).

Data Transformation. For all MNIST networks, we transformed the training set so that for each
image, we padded it by 4 and took a random 28x28 crop of the resulting 32x32 image. For the CIFAR10
networks, we introduced random cropping with padding 4 and randomly flipping each image
horizontally with probability 0.5. Afterwards, we normalized the images using y = 0.1307, ¢ = 0.3081
for MNIST and p = (0.4914, 0.4822, 0.4465), & = (0.2023,0.1994,0.2010) for CIFAR10.

Training Hyperparameters. For the 7 networks trained for the local optimization experiment, we
used the Adam optimizer [Kingma and Ba 2014] with a learning rate of 10~* and L2-regularization
with A = 0.001; we trained with a batch size of 500 for 60 epochs, using 6,000 images from the
training set for validation. For all other networks, we used the Adam optimizer with a learning rate
of 1073 on MNIST and 10~ on CIFAR10. We trained the MNIST networks with a batch size of 500 for
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30 epochs, using 6,000 images from the training set for validation; we trained the CIFAR10 networks
with a batch size of 64 for 60 epochs, using 5,000 images from the training set for validation. In all
cases, we then picked the model that attained the highest validation accuracy out of all epochs.

Network Accuracies. The fully-connected networks trained for the local optimization landscape
experiment all attain test accuracy of at least 92%. The classification accuracies for the networks in
the Lipschitz experiments are shown in Table 1.

Table 1. Classification accuracy on test set for our networks.

CIFAR10 MNIST
FFNN 56.71 98.34
ConvMed 67.26 98.95
ConvBig 79.58 99.50

8 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of our approach on two tasks: (i) Lipschitz robustness certification and
(ii) optimization landscape analysis. Both tasks are defined across a variety of datasets, perturbation
functions, and neural network architectures, demonstrating our language’s flexibility and scalability.

8.1 Lipschitz Robustness

We compute an upper bound on the Lipschitz constant of functions of the form f o n o p, where p
denotes one or more perturbation functions, n is an input normalization function (which simply
rescales images by a constant), and f is a neural network. The correctness of bounding the Lipschitz
constant via the Interval Clarke Jacobian is proved in Appendix A.3. We use the #,,-norm for the
calculation of all Lipschitz constants. For both individual and composite perturbations, we consider
five versions of our tool: Deep] with the given range for the input perturbation parameter(s) and
four versions of Deep] where the input intervals are subdivided uniformly, denoted Deep] kx,
where k represents how many subintervals are used per input parameter. When using splitting, we
compute the upper bound on the Lipschitz constant separately for each split and take the maximum
constant across the splits. Each pass of our analysis per image and split is completely independent
of one another, and is thus parallelized in our implementation. Since no existing work can handle
functions of the form f o n o p considered in our evaluation, we employ a baseline combining
global and local Lipschitz analysis. The baseline computes Lo (p) - Lgiobai (1) * Lgiopai (f), where
Lioc and Lyjopar are the local and global Lipschitz constants of their corresponding functions. As p
is not globally Lipschitz, we obtain L, (p) with Deep]. We compute Lgjopqi(n) as the reciprocal of
the standard deviation (MNIST) or the reciprocal of the smallest standard deviation of the three
RGB channels (CIFAR10) used for normalizing the input. We calculate Lgjopq(f) by multiplying
the norm of each layer’s weights using the tool from Gouk et al. [2021].

Results for Individual Perturbations. Figure 7 shows the Lipschitz constant results for single
perturbations on our larger convolutional architectures for both MNIST and CIFAR10. The results
for the remaining networks are in Appendix A.5. The x-axis for the haze and contrast perturbations
shows the value of @4y used for defining the input range @ = [0, &uqax] + [1, 1]€, while for rotation,
the x-axis shows 0,,,,, used for defining the input range 60 = [—0,,4x, Omax] + [1, 1]€. The y-axis
shows the upper bound on the Lipschitz constant computed with different methods. Both axes use
logarithmic scales. Each data point is the average over 100 correctly classified images, selected
by taking the first 10 correctly classified test-set images from each output category. The same set
of images are used per dataset for each experiment. We use max € {1075/ -2 | k € [2,18]} for
haze and contrast and 0,4, € {107%/* | k € [2,18]} for rotation. For the rotation perturbation, the
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Fig. 7. Upper bounds on the Lipschitz constants with respect to individual perturbations.

input to our function is in radians and covers the same range of interval sizes as the other two
perturbations, but we convert the units to degrees for clearer presentation.

In all cases, Deep] is more precise than the baseline, often obtaining Lipschitz bounds orders of
magnitude smaller than the baseline. The computed bounds become larger as the perturbation size
is increased. It can also be seen that increased splitting leads to more precise results, with Deep]
25x achieving much lower bounds than vanilla Deep] (which does not do splitting).

Table 2 shows statistics on the runtime of the different methods for the same networks as in
Figure 7. We consider all values of the parameters on the x-axis shown in Fig. 7. The runtimes
for the remaining networks can be found in Appendix A.5. We report the minimum, median, and
maximum runtimes across the 100 images for each function. Deep] 25x takes the longest to run
due to more splits, while the baseline usually runs the fastest, except for rotation on large angles.
In some cases, splitting may be faster than the baseline or vanilla Deep], since without splitting,
intervals can become too over-approximate; evaluating conditionals on over-approximate intervals
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Table 2. Runtimes in seconds to compute Interval Clarke Jacobians for individual perturbations over 100
images. For each network, the six rows represent the times for Deep] vanilla, 2x, 5x, 9x, 25x, and Baseline.

Haze Contrast Rotation

Min Med Max | Min Med Max | Min Med Max

104 109 117 | 103 105 109 | 245 248 1305

206 211 219 | 204 207 214 | 489 492 1293

511 518 574 | 507 511 536 | 794 801 1274
MNISTConvBig | o1 5 1015 3918 | 914 931 3599 | 1344 1419 3115
2540 2588 397.2 | 2527 2820 489.5 | 3523 3797  689.5

005 006 007 | 004 006 008 | 136 140 1149

09 09 10 | 09 09 09 |699 700 7156

7 17 18 | 17 17 18 | 1399 1401 614.2

41 42 43 | 41 42 43 | 1425 1434 5502

CIFAR ConvMed | o0 ¢ | 75 74 75 | 2157 2417 6302
201 218 887 | 203 216 1917 | 5031 5316 8655

005 005 007 | 006 006 007 |654 662 6856

143 147 149 | 144 147 150 | 833 837 7347

285 291 295 | 286 292 296 | 1656 167.0 6354

708 719 733 | 701 720 729 | 2083 2113 4754

CIFAR ConvBig | 1075 1303 1429 | 1275 1312 1505 | 3351 3393 768.1
3507 360.9 7575 | 351.2 357.6 5109 | 840.5 880.6 1029.7

005 006 008 | 007 007 008 |655 662 6856

often requires evaluating both branches, which may lead to the exponential blowup phenomenon
discussed in Section 6.4. For rotation with bilinear interpolation, we empirically observed this
beyond +0.1 radians.

The computation of Lj,.(p) via our method contributes the most to the runtime of the baseline.
For all versions of Deep], the rotation perturbation has the highest runtime. For a given perturbation
type, the runtime increases with the size of the network. On the most expensive rotation perturbation
with the CIFAR ConvBig network, the median time for Deep] to finish is under 1.4 min per 100
images. Finally, the precision of our analysis can be improved by increasing the number of splits
(as seen in Figure 7) at the cost of additional runtime (as seen in Table 2).

Results for Composite Perturbations. Figure 8 shows the upper bounds on the Lipschitz constant
computed for compositions of perturbations on the same networks as in Figure 7. The results for
the remaining networks can be found in Appendix A.5. Haze-Rotation denotes a haze perturba-
tion composed with a rotation, in that order; the terminology is similar for the other composite
perturbations. We use the same interval width when perturbing each parameter independently;
the x-axis shows this width. For compositions that involve rotation, if the interval size on the
x-axis is denoted s, we utilize the real interval [—s/2, s/2] for rotation and the interval [0, s] for the
other perturbation. The y-axis shows the upper bound on the Lipschitz constant computed by each
method. Again, both axes use logarithmic scales. Each data point is the average over 10 correctly
classified images, taking the first correctly classified test-set image from each output category. We
use s € {10"‘/4 -2 | k €{4,7,10,13, 16, 19}} for all experiments.

As with individual perturbations, Deep] is better than the baseline in all cases, obtaining upper
bounds on the Lipschitz constants orders of magnitude smaller than the baseline, as seen in Figure 8.
Deep] 9x with the largest number of splits is the most precise. The Lipschitz constants for both the
Haze-Rotation and Contrast-Rotation perturbations are nearly identical, since the entries in the
Clarke Jacobian corresponding to the rotation variable have much higher magnitudes. Thus, these
entries dominate the £,-norm, overshadowing the effect of the other perturbation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 56. Publication date: January 2022.



A Dual Number Abstraction for Static Analysis of Clarke Jacobians 56:25

MNIST ConvBig Haze-Rotation MNIST ConvBig Contrast-Rotation MNIST ConvBig Contrast-Haze
10" 10" -
____________________________________________________ 1010 s At I R
10" 10"
- —A— Deep) - - 10
S o —® Deepx S 0 s
% 107 8 Deep) 3x b 10 Z
o —— Deep) 5x ) 5 10°
O 100~ Deeplox 9 100 <
N o N =
= Baseline = £ 10
% s 2 108 2
2 10 s 10 =3
- - — 10(:
107 107
10°
10° 10°
107 107% 1072 107! 107" 107° 1072 107! 107! 107° 107 107!
Interval Size Interval Size Interval Size
CIFAR ConvMed Haze-Rotation CIFAR ConvMed Contrast-Rotation CIFAR ConvMed Contrast-Haze
. 78 [ R BE——
. e T
/, /,
. .
’/' ——‘/' 10°
L T ] -
S S0 s
2 2 2
S 8 §*
N N N
= = < 3
3 10° 510 5
10%
107 107 107 107! 107 107 107 107! 107 107 107 107!
Interval Size Interval Size Interval Size
CIFAR ConvBig Haze-Rotation CIFAR ConvBig Contrast-Rotation CIFAR ConvBig Contrast-Haze
. ; . 1o [ I R
10" L 1012 e 10
- I
. T - . 107
g g g
B a1 B 4ol k7 3
< 10 c 10 < 10
o o o
] O Qo
N S N7
= = £ 10
2 10 2 o0 2
£ 10 210 =
o] 3 3 108
10°
10” 10°

107 107% 1072 107! 107" 107 1072 107! 107! 107° 107 107!
Interval Size Interval Size Interval Size

Fig. 8. Upper bounds on the Lipschitz constants with respect to composite perturbations.

Table 3 shows the runtime statistics for the different methods in the same way as Table 2. The
results for the remaining networks can be found in Appendix A.5. We observe similar trends in
the relative runtimes of the different methods as with individual perturbations. For all versions
of Deep] and for the baseline, the compositions that take the longest time to analyze are those
containing rotations. On the most expensive composite perturbation (Haze-Rotation) with the
CIFAR ConvBig network, the median time for Deep] to finish is under 51 seconds per 10 images. As
with individual perturbations, the precision of Deep] can be improved by considering more splits
at the cost of additional runtime.

Our tool, though implemented via floating-point, assumes real arithmetic. To ensure this assump-
tion does not lead to substantially different results, we also implemented a floating-point sound
version using the techniques in [Miné 2004]. We ran floating-point sound experiments for vanilla
Deep]. Table 4 shows that the difference in the computed Lipschitz constants is negligible (< 1071°)
in all cases. However, ensuring floating-point soundness adds up to 4.1x runtime overhead.
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Table 3. Runtimes in seconds to compute Interval Clarke Jacobians for composite perturbations over 10
images. For each network, the six rows represent the times for Deep] vanilla, 2x, 3x, 5x, 9x, and Baseline.

Haze-Rotation Contrast-Rotation Contrast-Haze

Min Med Max | Min Med Max | Min Med Max

148 149 244 | 147 149 209 | 63 64 67

587 596 722 | 588 591 709 | 248 252 260

| 760 766 780 | 757 763 776 | 338 342 350

MNIST ConvBig | 1,5 1034 1076 | 1023 1025 1057 | 523 528 554
2477 2513 263.6 | 2464 2488 257.3 | 1586 160.0 174.0

82 82 139 |82 82 138 | 006 007 008

422 422 807 | 421 423 820 | 06 08 18

1672 167.6 2392 | 1679 173.0 2513 | 20 21 22

2091 2094 2161 | 209.3 2101 2149 | 29 31 35

CIFAR ConvMed | /) 2479 2641 | 2474 2476 2653 | 43 44 48
5277 5306 559.6 | 526.1 530.1 5617 | 127 133 135

394 394 791 | 394 394 761 | 005 005 007

499 504 891 | 500 501 897 |86 88 168

1989 199.8 2709 | 1988 1993 2697 | 342 347 352

2511 2525 257.9 | 2511 2519 2585 | 460 467 524
CIFARConvBig | 4150 3150 3283 | 3142 3159 3278 | 727 737 747
6953 7018 7283 | 693.6 6965 7259 | 220.6 2240 227.1

394 394 791 | 394 394 761 | 006 006 008

Table 4. Error and overhead of floating-point sound computations for Deep]. For each network, the two rows
represent maximum relative error and maximum relative time overhead, respectively.

Haze Contrast | Rotation | Haze-Rotation | Contrast-Rotation | Contrast-Haze
. 2.24e-11 | 9.34e-13 1.23e-12 1.24e-12 1.25e-12 9.77e-13
MNIST ConvBig 3.6e7x 3.7j5x 3.5e1x 3.5e9x 3.5esx 4.068)(
8.08e-12 | 1.79e-12 | 8.93e-13 9.07e-13 8.99e-13 5.62e-12
CIFAR ConvMed 3.5efsx 3.668x z.szx 3.268x 3.2(;( 3.46;x
e b e e B e e

8.2 Local Optimization Landscape Analysis

Obtaining an Interval Clarke Jacobian allows us to study the local geometry of f o n o p. We focus
on finding the largest input regions where no stationary point exists. To prove that a given region
does not contain a stationary point, we check if there exists an interval entry [[; ;,u; ;] in the
Interval Clarke Jacobian such that [; ; > 0 or u;; < 0. If this holds, then we can guarantee that the
Clarke Jacobian matrix will not become zero, and therefore no stationary point exists within the
given input region (which follows from Theorem 2.3.2 of [Clarke 1990]). Hence, similar to RecurJac
[Zhang et al. 2019], we study the relationship between network depth and the maximal interval
size for which the absence of stationary points can still be guaranteed. However, RecurJac cannot
handle functions of the form f o n o p considered in our work.

We define the set of input intervals to analyze as {[0,107%/% . 2] | k € [2,21]} for haze and
contrast and {[—107%/%,107%/4] | k € [2, 21]} for rotation. We consider 100 test images from MNIST
that are correctly classified, using the first 10 correctly classified test images from each category.
For each combination of perturbation type and network, we compute the largest input region
where a stationary point does not exist. For each image, we uniformly split every input interval
into 25 subintervals, computing the Interval Clarke Jacobians separately for each subinterval. Next,
we identify the subintervals where the entry in the Interval Clarke Jacobian corresponding to
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Table 5. Largest interval sizes that guarantee no stationary point exists for CIFAR10 (left) and MNIST (right)
networks, averaged over 100 images.

Haze Contrast Rotation Haze Contrast Rotation
FFNN 6.2e-5 7.5e-5 3.6e-7 FFNN 9.7e-4 2.0e-3 6.7e-5
ConvMed 4.2e-3 4.0e-3 4.4e-5 ConvMed 7.8e-3 1.8e-2 1.3e-3
ConvBig 4.4e-6  4.7e-6 2.3e-8 ConvBig 1.3e-4  7.6e-4 1.9e-5
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Fig. 9. Largest interval size that guarantees no stationary point exists for Haze (left), Contrast (center), and
Rotation (right), averaged over 100 images.

the correctly classified class is either strictly positive or negative. We sum the widths of all such
subintervals, then compute the maximum of these sums across all candidate widths.

Figure 9 shows that as the depth of the fully-connected network increases, the maximal interval
size that guarantees a non-zero Jacobian decreases for all perturbations. Further, we use the same
procedure to obtain maximal interval sizes for the networks used in Section 8.1, as shown in
Table 5. We observe that rotation requires noticeably smaller interval sizes as it is a more complex
perturbation involving interpolation, whereas the other two are simpler pixel-wise operations.
Furthermore, we can certify the absence of stationary points for larger regions on MNIST compared
to CIFAR10, due to the former’s smaller input dimension.

9 RELATED WORK

While there is considerable work on the static analysis of input-output properties of ML models
specified via constraints on the network inputs and outputs [Balunovic et al. 2019; Ehlers 2017;
Huang et al. 2017; Katz et al. 2017, 2019; Singh et al. 2018, 2019; Sotoudeh and Thakur 2020; Urban
and Miné 2021], such as for robustness and safety, much less work has been done on formally
analyzing the Jacobian matrix.

From the programming languages (PL) and automatic differentiation (AD) literature, prior works
[Di Gianantonio and Edalat 2013; Edalat et al. 2013; Khan and Barton 2013; Sherman et al. 2021] have
examined AD through the Clarke Jacobian [Clarke 1990]. However, many define their semantics
for computing the Clarke Jacobian at a single point [Khan and Barton 2012, 2013], instead of an
abstraction of points. Additionally, the works that can formally analyze Jacobians for sets of input
points are insufficient for our tasks. Di Gianantonio and Edalat [2013] restrict functions’ domains
to [-1,1] and require all Lipschitz constants be less than 1, thus their analysis cannot be used for
local Lipschitz certification. The work by Edalat and Lieutier [2004] is restricted to functions of
a single variable with input domain on [0, 1]. Follow-up works [Edalat et al. 2013; Edalat and
Maleki 2017, 2018] all suffer other restrictions, namely requiring the output dimension be one
and only supporting limited arithmetic operations (e.g., no division), which render them unable
to analyze both neural networks and our perturbations. Furthermore, these techniques provide
only a theoretical discussion, with no implementation of their approaches. Ag [Sherman et al.
2021] presents semantics for the Clarke Jacobian for concrete input points, extended partially
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to intervals (described in their appendix) as compared to our approach, which presents a sound
abstract interpretation of the Clarke Jacobian that we compute with a set of fully compositional
dual interval domain transformers, whose behavior is specified exactly for all language primitives.

Another closely related PL work by Chaudhuri et al. [2011] aims to establish Lipschitz robustness
of programs, but they use the classical Jacobian and do not support AD. Follow-up works showed
how to analyze Lipschitz robustness of non-differentiable programs by analyzing their smooth
approximation [Chaudhuri and Solar-Lezama 2011], stemming from the fact that several PL works
focus on differentiable approximations of non-differentiable programs and ML models [Chaudhuri
and Solar-Lezama 2010; Laurel and Misailovic 2020]. In contrast, Deep] can analyze Lipschitz
properties of programs with points of non-differentiability directly without using approximations,
by employing the more general Clarke Jacobian.

In addition, while the practical problem of Lipschitz certification of neural networks has been
studied [Jordan and Dimakis 2020; Scaman and Virmaux 2018; Weng et al. 2018a,b; Zhang et al.
2019], to the best of our knowledge, none of these works can bound local Lipschitz constants for
composite, non-smooth perturbations. Both Mangal et al. [2020] and Jordan and Dimakis [2020]
use proof techniques that require the classifier function analyzed be piecewise linear, hence they
cannot support arbitrary activations. Additionally, RecurJac [Zhang et al. 2019] cannot support
arbitrary arithmetic primitives like non-scalar multiplication or division. Hence, none of these
works can reason about non-differentiable input perturbations, such as those generated by rotation
[Balunovic et al. 2019] or contrast variation [Paterson et al. 2021].

Our work also bears similarity with Rosa [Darulova and Kuncak 2017], as they also bound
Jacobians to compute Lipschitz constants. However, unlike us, they do not support bounding Clarke
Jacobians. Further, while their abstract domain tracks “e-terms,” the semantics of these terms do
not correspond to first derivatives, but rather numerical round-off error effects.

10  CONCLUSION

We developed a novel abstraction for bounding the Clarke Jacobian of a Lipschitz, but not necessarily
differentiable function for local input regions. Our domain, based upon dual numbers, soundly
over-approximates all first derivatives needed to compute the Clarke Jacobian. We implemented
our analysis in tool named Deep]J and showed that it can efficiently compute Lipschitz bounds
and analyze the local geometry of multiple deep neural networks with respect to multiple non-
differentiable input perturbations. Our work is the first to address the problem of local Lipschitz
certification of non-smooth perturbations, such as haze, contrast variation, rotation with bilinear
interpolation, and their compositions.
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