
E�cient embedded cluster density

approximation calculations with an orbital-free

treatment of environments

Yu-Chieh Chi,† Maliheh Shaban Tameh,‡ and Chen Huang∗,¶

†Department of Scienti�c Computing, Florida State University, Tallahassee, Florida 32306,

USA

‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA

¶Department of Scienti�c Computing, Materials Science and Engineering Program,

National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida

32306, USA

E-mail: chuang3@fsu.edu

Abstract

The computational cost of the Kohn-Sham density functional theory (KS-DFT), em-

ploying advanced orbital-based exchange-correlation (XC) functionals, increases quickly

for large systems. To tackle this problem, we recently developed a local correlation

method in the framework of KS-DFT: the embedded cluster density approximation

(ECDA). The aim of ECDA is to obtain accurate electronic structures in the entire

system. With ECDA, for each atom in a system, we de�ne a cluster to enclose that

atom, with the rest atoms treated as the environment. The system's electron density

is then partitioned among the cluster and the environment. The cluster's XC energy

density is then calculated based on its electron density using an advanced orbital-based
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XC functional. The system's XC energy is obtained by patching all clusters' XC en-

ergy densities in an atom-by-atom manner. In our previous formulation of ECDA,

environments were treated by KS-DFT, which makes the following two tasks computa-

tionally expensive for large systems. The �rst task is to partition the system's electron

density among a cluster and its environment. The second task is to solve the environ-

ments' Sternheimer equations for calculating the system's XC potential. In this work,

we remove these two computational bottlenecks by treating the environments with the

orbital-free (OF) DFT. The new method is called ECDA-envOF. The performance of

ECDA-envOF is examined in two systems: ester and Cl-tetracene, for which the exact

exchange (EXX) is used as the advanced XC functional. We show that ECDA-envOF

gives results that are very close to the previous formulation in which the environments

were treated by KS-DFT. Therefore ECDA-envOF can be used for future large-scale

simulations. Another focus of this work is to examine ECDA-envOF's performance

on systems having di�erent bond types. With ECDA-envOF, we calculate the energy

curves for stretching/compressing some covalent, metallic, and ionic systems. ECDA-

envOF's predictions agree well with the benchmarks by using reasonably large clusters.

These examples demonstrate that ECDA-envOF is nearly a black-box local correlation

method for investigating heterogeneous materials in which di�erent bond types exist.

1 Introduction

It is important to obtain accurate electronic structures in large systems. Toward such goal,

local correlation methods were actively developed in the past, based on the observation that

the Coulomb interactions between electrons quickly decay over distance in many systems.1�3

A key step for developing local correlation methods is to de�ne locally correlated electrons.

Locally correlated electrons can be de�ned based on the localized molecular orbitals, and

methods of this type include the method of increments,4,5 local con�guration interaction

method,6�8 local coupled cluster methods,9�13 local many-body perturbation theory.14�18 Lo-
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cally correlated electrons can also be de�ned by partitioning the system's density matrix,

which leads to various density-matrix embedding methods.19�27 Local correlation methods

can also be formulated based on Green's function, such as the dynamical mean �eld the-

ory28�31 and the self-energy embedding.32

Another way to de�ne locally correlated electrons is to partition the electron density.

Methods of this type are often called density embedding.33�49 With density embedding, a

system's electron density is partitioned among a cluster and its environment. The cluster's

electronic property is then calculated using a high-level quantum mechanical method. Previ-

ous density-embedding approaches often focused on obtaining accurate electronic structures

in the region of interest. Recently, several density-embedding-based local correlation methods

for obtaining accurate electronic structures in the entire system have been developed, such

as the many-electron expansion method48 and the embedded cluster density approximation

(ECDA).50,51

In this work, we further develop the ECDA method, which is a local correlation method

formulated in the framework of Kohn-Sham density functional theory (KS-DFT).52,53 With

ECDA, a system's exchange-correlation (XC) energy is obtained by patching the clusters'

XC energy densities that are calculated using advanced, orbital-based XC functionals. The

idea of ECDA is illustrated in Figure 1, in which ECDA is applied to benzene. For each

atom in the molecule, we de�ne a cluster to enclose it, with the rest atoms considered as its

environment. The central atoms of these clusters are marked by red circles, and the clusters

are de�ned by including the nearest neighbors. In Figure 1, each subplot shows the electron

densities of a cluster and its associated environment. The density partitioning among a clus-

ter and its environment is carried out using the density functional embedding theory.44,49

After calculating the clusters' XC energy densities using high-level XC functionals, the clus-

ters' XC energy densities are projected to their central atoms. The system's XC energy is

then obtained as the sum of these atomic XC energy densities.

One merit of ECDA is that the system's XC potential can be e�ciently calculated,54

3



which makes ECDA a fully self-consistent method. ECDA can therefore be used to in-

vestigate systems that have signi�cant charge redistribution (under the assumption that the

electron correlations in these systems are local). Furthermore, ECDA is a variational method

and its analytical energy gradients can be derived,51 which makes it possible to e�ciently

optimize structures and calculate structure-related properties (such as phonon spectra). Dif-

ferent from other local correlation methods that are based on localized molecule orbitals, it

is not straightforward for ECDA to use correlated wave function methods as cluster solvers,

because clusters often have fractional electron numbers from the density partitioning. How-

ever, it is straightforward to solve clusters using advanced orbital-based XC functionals,

which makes ECDA a nearly �black-box� local correlation method for scaling up high-level

KS-DFT calculations.

Figure 1: Electron densities of the clusters and their associated environments. Clusters are
de�ned for the central atoms marked by red circles. Cluster electron densities are yellow and
environment electron densities are blue. C and H atoms are brown and grey, respectively.

In this work, we overcome several computational bottlenecks in our previous formulation

of ECDA. These computational bottlenecks were all due to the KS-DFT treatment of envi-

ronments. For a large system, environments are large, which makes the following two tasks
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computationally expensive. The �rst task is to solve the environment electron densities for

partitioning the system's electron density. The second task is to solve the environments'

Sternheimer equations for calculating the system's XC potential. In this work, we remove

these computational bottlenecks by treating environments using orbital-free (OF) DFT.55�58

This new ECDA method is termed ECDA-envOF. The previous formulation (in which the

environments were treated by KS-DFT) is termed ECDA-envKS. In this work, we demon-

strate that ECDA-envOF and ECDA-envKS give very similar results.

The paper is organized as follows. First, we give an introduction to ECDA. We then

discuss how to partition a system's electron density among a cluster and its environment for

the case that the environment is treated by either KS-DFT or OF-DFT. To make ECDA-

envOF a self-consistent method, we derive the equations for calculating the system's XC

potential. Numerical examples are given to demonstrate that ECDA-envOF and ECDA-

envKS give very similar results. At last, the performance of ECDA-envOF is examined by

calculating the stretching/compressing energies of hydrocarbon molecules, a sodium nanorod,

and a MgO nanorod.

2 Theoretical Methods

2.1 Total energy for ECDA

The total energy for ECDA follows that of KS-DFT and is

Etot = Ts + J + Exc + Eext + Eii − TS + Ep, (1)

where Ts is the KS kinetic energy

Ts = −2
∑
j

fj

∫
ψj(r)

∇2

2
ψj(r)d

3r. (2)
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ψj is the system's j-th KS orbital and fj is its occupation number. In Eq. 2, the factor �2� is

due to that non-spin-polarized case is considered throughout this work, and the generalization

to spin-polarized case is straightforward. J is the Hartree energy

J =

∫∫
ρtot(r)ρtot(r

′)

|r− r′|
d3rd3r′, (3)

where ρtot(r) is the system's electron density. Exc is the XC energy which is discussed in

Section 2.2. Eext =
∫
ρtot(r)vext(r)d

3r is the external energy, with vext being the system's

external potential. Eii is ion-ion Coulomb energy. T is the electronic temperature and S is

the electronic entropy

S = −2kB
∑
j

[fj ln fj + (1− fj) ln(1− fj)], (4)

where kB is the Boltzmann constant. The reason for having the entropy term is not for

considering the temperature but for making the density partitioning (discussed in Section 2.4)

numerically stable, as explained in our previous work.50,59

Ep in Eq. 1 is a penalty term for regularizing the optimized e�ective potential (OEP)

equation,60�63 in order to obtain a smooth XC potential as discussed in our previous work.51

Ep is de�ned as51

Ep =
1

2
γ

[∫
dr′v2d(r

′) +

∫
dr′|∇vd(r′)|2

]
(5)

with vd(r) = vs(r) − vH(r) − vext(r). vs is the system's KS potential, and vH = δJ/δρtot

is the Hartree potential. Since the total energy contains Ep, vd consists of both the XC

potential vxc = δExc/δρtot and the penalty potential vp = δEp/δρtot. γ controls the weight of

the penalty term and is set to 10−4 in this work. To make ECDA a self-consistent method,

we need to calculate vxc + vp, which is discussed in Section 2.5. The system's KS equation
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�nally becomes

[
−1

2
∇2 + vext(r) + vH(r) + vxc(r) + vp(r)

]
ψi(r) = εiψi(r). (6)

2.2 The calculation of the XC energy with ECDA

In this work, the exact exchange (EXX) is used as the high-level XC functional for calculating

clusters' XC energy densities. EXX is de�ned as64

EEXX
x = −

∑
k

∑
l

fkckl

∫∫
drdr′

ϕk(r)ϕl(r)ϕl(r
′)ϕk(r

′)

|r− r′|
, (7)

where k and l run over all orbitals. {ϕk} are the KS orbitals, {ek} are the orbital energies,

and ckl = 1 + sgn(ek − el). EXX de�ned in Eq. 7 directly follows the adiabatic connection

�uctuation-dissipation theorem (ACFDT)65�68 and is di�erent from the Hartree-Fock theory,

as pointed in out in Ref.64. The reason for using ACFDT-based EXX is that its exchange

holes always satisfy the sum rule, even for systems having fractionally occupied orbitals.54,69

This is important since clusters de�ned based on density partitioning often have fractionally

occupied KS orbitals. ACFDT-based EXX ensures that the system's XC energy density can

be better approximated by clusters' XC energy densities. To patch the system's EXX energy,

we need to de�ne the EXX energy density, which is given below

εEXX
x (r) = −

∑
k

∑
l

fkcklϕk(r)ϕl(r)

∫
ϕl(r

′)ϕk(r
′)

|r− r′|
, (8)

where k and l run over occupied orbitals.

After calculating the clusters' XC energy densities, the system's XC energy is obtained

as

Exc =
Natom∑
j=1

∫
wj(r)∆ε

cluj
xc (r)d3r + ELDA

xc [ρtot] (9)
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with

∆εclujxc (r) = ε
cluj
xc,EXX(r)− εclujxc,LDA(r). (10)

ELDA
xc [ρtot] is the system's XC energy calculated using the local density approximation (LDA).70

The �rst term on the right-hand side of Eq. 9 is the correction to ELDA
xc [ρtot]. wj(r) is the

atomic weight function according to Becke's atom-in-molecule scheme (see Ref.51 for details).

wj(r) projects the cluster j's XC energy density to the central atom j to avoid any boundary

e�ect. In Eq. 10, εclujxc,EXX(r) and εclujxc,LDA(r) are cluster j's EXX and LDA energy densities,

respectively.

2.3 Partition a system's electron density with the environments

treated by KS-DFT

The cluster's electron density is obtained by partitioning ρtot among the cluster and its

environment. For the case that both cluster and environment are treated by KS-DFT, the

density partitioning was discussed in our previous work.51 In what follows, we brie�y review

it and show how to perform the density partitioning for the case that environments are

treated by OF-DFT in the next section.

Let's focus on the atom j. We �rst de�ne the number of electrons in the cluster and the

environment as

Ncluj =

∫
wcluj(r)ρtot(r)d

3r (11)

Nenvj =

∫
wenvj(r)ρtot(r)d

3r, (12)

where wcluj =
∑

k wk (k loops over all atoms in the cluster) and wenvj = 1 − wcluj are the

weight functions for the cluster and the environment, respectively. We then partition the
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system's KS potential among the cluster and the environment as

vcluj(r) = (vs(r)− µ− vb)wcluj(r) (13)

venvj(r) = (vs(r)− µ− vb)wenvj(r), (14)

where µ is the system's chemical potential. The term vs − µ ensures that the system's

chemical potential is shifted to zero at distant. By subtracting vb, vcluj(r) and venvj(r) are

further decreased to make sure that the electrons are well con�ned in the cluster and the

environment. ECDA results are not sensitive to the choice of vb, and vb is set to 0.5 a.u. in

this work.

An embedding potential (vembj) is then added to both vcluj(r) and venvj(r) as

vclujs (r) = vcluj(r) + vembj(r) (15)

venvjs (r) = venvj(r) + vembj(r). (16)

The cluster and environment's electron densities are obtained by solving their KS equations

(
−1

2
∇2 + vclujs (r)

)
φ
cluj
i (r) = ε

cluj
i φ

cluj
i (r) (17)(

−1

2
∇2 + venvjs (r)

)
φ
envj
i (r) = ε

envj
i φ

envj
i (r), (18)

where φcluji and φenvji are the i-th KS orbitals of the cluster and the environment, respectively.

ε
cluj
i and εenvji are the i-th orbital energies of the cluster and the environment, respectively.

The cluster and the environment's electron densities are

ρcluj(r) = 2
∑
i

f
cluj
i [φ

cluj
i (r)]2 (19)

ρenvj(r) = 2
∑
i

f
envj
i [φ

envj
i (r)]2, (20)
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where f cluji and f
envj
i are the occupation numbers of the cluster and environment, respec-

tively. vembj is determined by making the density-matching condition to hold

ρcluj(r) + ρenvj(r) = ρtot(r). (21)

In our previous work, vembj(r) was solved using a modi�ed Zhao-Parr method.51 Solving

vembj is an OEP problem, which needs to be regularized for obtaining a smooth solution. The

regularization leads to an approximate density-matching condition (Eq. 33) that is di�erent

from Eq. 21. See Ref.51 for details.

2.4 Partition a system's electron density with the environments

treated by OF-DFT

Next, we discuss how to modify the above density-partitioning scheme for the case that

environments are treated by OF-DFT. For the kinetic energy density functional (KEDF),

we use the linear combination of a modi�ed Thomas-Fermi71,72 (denoted as TFm) functional

and a modi�ed von Weizsäcker73 (denoted as vWm) functional:

Ts ≈ TTFm + λTvWm (22)

with TFm and vWm KEDFs de�ned as

TTFm = CTF

∫
F (r)ρ(r)5/3d3r (23)

TvWm =

∫
φm(r)

(
−1

2
∇2

)
φm(r)d3r (24)

with CTF = 3
10

(3π2)2/3, F (r) = 1− exp
[
−(ρ(r)/ρ0)

1/3
]
, and φm(r) =

√
ρ(r) + ρ0. By using

F , the inverse of the TFm kernel (KTFm(r, r′) = δ2TTFm/δρ(r)δρ(r′)) does not diverge in

low electron-density regions. φm is used to ensure that the vWm potential (vvWm(r) =
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δTvWm/δρ(r)) does not diverge in low electron-density regions. The reason for a possible

divergence is that it is di�cult to solve ρ(r) accurately in low-density regions using plane-

wave basis (which is used in this work). We set ρ0 = 10−5 a.u. in both F and φm in this

work.

Since environments are treated by OF-DFT, vs in Eq. 14 needs to be replaced by its

OF-DFT counterpart vOF:

vOF(r) = µ− δTTFm[ρtot]

δρtot(r)
− λδTvWm[ρtot]

δρtot(r)
. (25)

Using vOF, Eq. 16 becomes

v
envj
OF (r) = (vOF(r)− µ− vb)wenvj(r) + vembj(r). (26)

To partition the system's electron density among the cluster and its environment, we

still employ the Zhao-Parr method developed in our previous work.51 The only change is

that now the environment is treated by OF-DFT. We drop the subscript j in the following

discussions for simplicity. The Zhao-Parr energy is de�ned as74,75

Ezp = Eclu + EOF
env +

η

2

∫∫
eα|r−r

′|∆ρ(r)∆ρ(r′)

|r− r′|
d3rd3r′ (27)

with ∆ρ = ρclu+ρenv−ρtot. The last term is the penalty term to enforce the density-matching

condition. The penalty term is de�ned based on the Yukawa potential in order to regularize

the equations for solving the system's XC potential as explained in Ref.51 α is set to 0.2

bohr−1 in this work. η controls how good the density-matching condition is satis�ed. In

practice, results (such as total energies) need to be converged with respect to η. In Eq. 27,
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Eclu and EOF
env are the cluster and environment's energies de�ned as

Eclu = 2
∑
k

f cluk

∫
φcluk (r)

(
−1

2
∇2

)
φcluk (r)d3r (28)

+

∫
vclu(r)ρclu(r)dr

3 − TSclu

EOF
env = TTFm[ρenv] + λTvWm[ρenv] +

∫
venvOF (r)ρenv(r)d

3r (29)

where T is the smearing temperature used in the Fermi-Dirac statistics for assigning the

occupation numbers of the cluster's KS orbitals. To be consistent with the total system,

T is the same as the smearing temperature used in Eq. 1. Sclu is the cluster's electronic

entropy. By minimizing Ezp against the cluster's KS orbitals, we obtain the KS equations

for the cluster: (
−1

2
∇2 + vclu(r) + vpen(r)

)
φcluk (r) = ecluk φcluk (r) (30)

where φcluk (r) and ecluk are the kth KS orbital and orbital energy. In Eq. 30, vpen is due to the

penalty term and is

vpen(r) = η

∫
e−α|r−r

′|∆ρ(r′)

|r− r′|
d3r′. (31)

For the case that an environment is treated by the TFm+λvWm KEDF, the environment's

electron density ρenv is solved by directly minimizing Ezp against ρenv with the cluster's

electron density �xed. This leads to minimizing the following energy against ρenv

EOF′

env = EOF
env +

∫
vpen(r)ρenv(r)d

3r. (32)

For the case that an environment is treated by the TFm KEDF, ρenv is calculated by solving

a modi�ed TF equation.

In summary, the density partitioning is performed with the following steps. For a given

vpen, Eq. 30 is solved to obtain ρclu, and EOF′
env is minimized to obtain ρenv. vpen is then

updated using Eq. 31. These steps are repeated until the convergence of vpen is reached.
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The convergence is accelerated by using the Pulay mixing.76 At convergence, vpen is taken

as the embedding potential. Note that the density-matching condition Eq. 21 can only be

reproduced for η →∞. For a �nite η, Eq. 21 should be replaced by the following condition:51

ρtot(r) = ρclu(r) + ρenv(r)−
α2 −∇2

4πη
vemb(r). (33)

This new density-matching condition is important for deriving the XC potential in Sec-

tion 2.6, since it connects ρclu with ρtot.

2.5 The calculation of the XC potential with ECDA

To make ECDA a self-consistent method, next we derive the system's XC potential. We

actually calculate the sum vxcp = vxc + vp by solving the following OEP equation

δ(Exc + Ep)

δvs(r)
=

∫
vxcp(r

′)χ0(r, r
′)d3r′, (34)

where χ0(r, r
′) = δρ(r)/δvs(r

′) is the system's KS linear response function. The key is to

calculate the left-hand side of Eq. 34. For the case that the environments are treated by KS-

DFT, the calculations of δEp/δvs and δExc/δvs were discussed in Ref.51 In what follows we

discuss how to calculate δExc/δvs for the case that the environments are treated by OF-DFT.

Since the cluster i's XC energy density depends on Ncluj and v
cluj
s , we have

δExc
δvs(r)

=
Natom∑
j=1

[p1,j(r) + p2,j(r) + p3,j(r)] , (35)

13



with

p1,j(r) =

∫
yj(r

′)
δv

cluj
s (r′)

δvs(r)
d3r′ (36)

p2,j(r) =

∫
wj(r

′)
∂∆εxc,j(r

′)

∂Ncluj

∣∣∣∣
v
cluj
s

δNcluj

δvs(r)
d3r′ (37)

p3,j(r) =

∫
wj(r

′)vLDA
xc (r′)χ0(r, r

′)d3r′, (38)

where vLDA
xc is the system's LDA XC potential and yj is de�ned as

yj(r
′) =

∫
wj(r)

δ∆εxc,j(r)

δvclu,js (r′)

∣∣∣∣
Ncluj

d3r. (39)

If the employed XC functional is an explicit function of KS orbitals (such as EXX functional

used here), yi can be calculated following the chain rule as

yj(r
′) =

∑
k

∫∫
wj(r)

δ∆εxc,j(r)

δφ
cluj
k (r1)

δφ
cluj
k (r1)

δvclu,js (r′)

∣∣∣∣
Ncluj

dr1dr, (40)

where k runs over all orbitals in the cluster j. For EXX, yj has been derived in Ref.54 The

calculations of p2,j and p3,j do not depend on how environments are treated and follow our

previous discussions.51

The calculation of p1,j depends on how the environments are treated. For simplicity, we

drop the subscript j in the following derivations. p1 depends on δvclus /δvs, which is given by

(based on Eqs. 13 and 15)

δvclus (r′)

δvs(r)
=

[
δ(r′ − r)− δµ

δvs(r)

]
wclu(r

′) +
δvemb(r

′)

δvs(r)
. (41)

Above, δµ/δvs(r) is calculated as δµ/δvs(r) =
∑

k ψ
2
k(r)∂µ/∂ek, where ek is the orbital

energy of the k-th orbital and ∂µ/∂ek = fk(1 − fk)/
∑

m fm(1 − fm). The calculation of

δvemb/δvs is given in the next section.
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2.6 The calculation of δvemb(r)/δvs(r
′)

The key for deriving the system's XC potential is to derive the dependence of the embedding

potential on the system's KS potential, which can be derived based on the density-matching

condition (Eq. 33). By perturbing vs, Eq. 33 can be linearized to

δρtot(r) = δρclu(r) + δρenv(r)−
α2 −∇2

4πη
δvemb(r), (42)

with

δρtot(r) =

∫
χ0(r, r

′)δvs(r
′)d3r′. (43)

δρclu(r) =

∫
χclu0 (r, r′)δvclus (r′)d3r′ +

∂ρclu(r)

∂Nclu

∣∣∣∣
vclus

δNclu (44)

δρenv(r) =

∫
χenvOF (r, r′)δvenvOF (r′)d3r′ +

∂ρenv(r)

∂Nenv

∣∣∣∣
venv
OF

δNenv, (45)

where χenvOF (r, r′) = δρenv(r
′)/δvenvOF (r) is the OF linear response function for the environment.

δvclus and δvenvOF are

δvclus (r) = wclu(r)(δvs(r)− δµ) + δvemb(r) (46)

δvenvOF (r) = wenv(r)(δvOF(r)− δµ) + δvemb(r). (47)

The connection between δvOF and δvs is

δvOF(r′)

δvs(r)
=

∫
δvOF(r′)

δρtot(r1)

δρtot(r1)

δvs(r)
d3r1

=

∫
χ−1OF(r′, r1)χ0(r1, r)d

3r1, (48)
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where χOF(r, r′) = δρtot(r)/δvOF(r′) is the system's OF linear response function. δNclu and

δNenv depend on δvs as

δNclu

δvs(r)
=

∫
χ0(r, r

′)wclu(r
′)d3r′ (49)

δNenv

δvs(r)
=

∫
χ0(r, r

′)wenv(r
′)d3r′. (50)

After writing everything in terms on δvs, we insert Eqs. 43, 44, 45, 49, and 50 into Eq. 42

and obtain
δvemb(r

′)

δvs(r)
=

∫
Q−11 (r′, r′′)Q2(r

′′, r)d3r′′, (51)

in which Q1 and Q2 are (in the matrix presentation)

Q1 = Xclu
0 +Xenv

OF −
1

4πη
(α2 −∇2) (52)

Q2 = X0 −Xclu
0 Wclu −Xenv

OFWenvX
−1
OFX0

+[Xclu
0 |wclu〉+Xenv

OF |wenv〉] 〈
δµ

δvs
|

−
[
| ∂ρclu
∂Nclu

〉 〈wclu|+ |
∂ρenv
∂Nenv

〉 〈wenv|
]
X0. (53)

whereXclu
0 , Xenv

0 , andX0 are matrix representations of the KS linear responses of the cluster,

environment, and total system, respectively. Xenv
OF and XOF are the matrix representation of

the OF linear responses of the environment and total system, respectively. In real space,Wclu

and Wenv are diagonal matrices whose diagonal elements are the cluster and environment's

weight functions, respectively. For the case that the environments are treated by TFmKEDF,

∂ρenv/∂Nenv in Eq. 53 is calculated using the central �nite di�erence method by changing

Nenv by 0.001. For the case that environments are treated by vWm KEDF, ∂ρenv/∂Nenv is

calculated following Appendix C.
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Combining Eqs. 51, 41, and 36, the expression for p1 is

p1(r) = y(r)wclu(r) +

∫
QT

2 (r, r′)z(r′)d3r′

− δµ

δvs(r)

∫
y(r′)wclu(r

′)d3r′, (54)

in which z is de�ned

z(r) =

∫
Q−11 (r, r′)y(r′)d3r′. (55)

To avoid inverting Q1, in practice z is obtained by solving the linear equation

∫
Q1(r, r

′)z(r′)d3r′ = y(r) (56)

using the conjugate gradient method. Eqs. 54 and 56 involve calculating the products be-

tween KS and OF linear response functions and vectors. The product between KS linear

response and a vector is calculated by solving the Sternheimer equation derived for systems

having fractionally occupied KS orbitals.77�79 The product between OF linear response and a

vector is calculated following the methods given in Appendices A and B. When applying QT
2

to z in Eq. 54, we need to calculate the product between X−1OF and a vector. For TFm KEDF,

X−1OF is the kernel of TFm KEDF: X−1OF = KTFm = δ2TTFm/δρ(r)δρ(r′). For TFm+λvWm

KEDF, X−1OF(r, r′) = KTFm + λKvWm, with KvWm(r, r′) = δ2TvWm/δρ(r)δρ(r′).

2.7 Flowchart for ECDA-envOF calculations

To summarize, the �owchart for performing ECDA-envOF calculations is given below.

1. For a given vs, solve the system's KS equation and obtain its electron density ρtot.

2. For each atom, partition ρtot among its cluster and the environment following Sec-

tion 2.4.

3. Calculate the clusters' XC energy densities and assemble the system's XC energy ac-
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cording to Eq. 9. Calculate δExc/δvs(r) following Section 2.5, and calculate δEp/δvs

follows Ref.51. Solve the OEP Eq. 34 to obtain vxc + vp.

4. Calculate the system's Hartree potential. Update the system's KS potential as vs =

vH + vxc + vp + vext. Check the convergence of vs. If vs is converged, exit ECDA calcu-

lations. If vs is not converged, return to Step 1. The convergence of vs is accelerated

using the Pulay mixing.76

3 Numerical details

All ECDA and KS-DFT-EXX calculations are implemented in a FORTRAN90 program

which calls a modi�ed ABINIT program80 (version 7.10.4) that solves the KS equation for a

given KS potential. To avoid the singularity from the Coulomb potential, EXX energy are

calculated in the real space using a Poisson solver81 implemented in ABINIT. A Fermi-Dirac

smearing of 0.1 eV is used for all ECDA and KS-DFT calculations. Molecular structures and

EXX potentials are plotted using the VESTA program.82

For ester and Cl-tetracene, a relatively small kinetic energy cuto�, 600 eV, is used for all

calculations, in order to reduce the cost of EXX calculations and the Sternheimer equation

calculations. η = 200 is used for the electron density partitioning. Troullier-Martins norm-

conserving pseudopotentials83 are used to represent atoms.

For C10H2, C12H14, and C12H26, a kinetic energy cuto� of 400 eV is used for KS-DFT-EXX

and ECDA-envOF(TF) calculations, and η = 5000 is used for electron density partitioning.

Troullier-Martins pseudopotentials are used. The molecules' structures mainly follow Ref.84

For C10H2, C-H bond is 1.091 Å, C-C triple bond is 1.263 Å, and C-C single bond is 1.320

Å. For C12H14, C-H bond is 1.091 Å, C-C single bond is 1.462 Å, C-C double bond is 1.369

Å, C=C-C angle 124.5◦, C=C-H angle (inside the chain) is 118.3◦, and C=C-H angle (at

the two ends of the chain) is 121.7◦. For C12H26, C-C bond is 1.534 Å, and C-C-C angle

is 113.7◦. For the H atoms inside the chain, C-H bond is 1.10 Å, and H-C-H angle is
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106.1◦. The coordinates of the six H atoms at the two ends of the chain are optimized using

NWChem program (version 6.8).85 During the optimization, all other atoms are �xed. The

geometry optimization is performed using the Becke, 3-parameter, Lee�Yang�Parr (B3LYP)

XC functional86 and 6-311G** basis set.

The Na nanorod is built from the body-centered cubic Na bulk with a lattice parameter of

4.282 Å. The MgO nanorod is built from the cubic MgO bulk with a lattice constant of 4.217

Å. Their structures are shown in Figure 10. These nanorods are centered in large unit cells,

with the distance between periodic images to be 10 Å in all directions. Na and Mg's norm-

conserving pseudopotentials87 are generated using the fhi98PP program.88 Since the current

formalism of ECDA does not support the nonlinear core correction,89 these pseudopotentials

do not have the nonlinear core correction. The pseudopotentials are generated for the ground

states of the atoms. Na and Mg's pseudopotentials are generated using Hamann90 and

Troullier-Martins83 schemes, respectively. The s and p angular momentum channels are used

as the local potentials for Na and Mg, respectively. To reduce computational cost, kinetic

energy cuto�s of 50 eV and 300 eV are used for the Na and MgO nanorods, respectively.

For the Na nanorod, η = 200 is used for the electron density partitioning. For the MgO

nanorod, the Zhao-Parr method is unable to converge due to the charge sloshing of the

sum of the cluster and environment's electron densities.91 The reason is that atoms in ionic

systems are far from charge neutral. Therefore, ρclu(r) + ρenv(r)− ρtot(r) can produce large

embedding potential at small wave vectors, due to the attenuated Coulomb potential in the

Yukawa function. To avoid such problem, we replace the Yukawa function with 1
2
η
∫

(ρclu(r
′)+

ρenv(r
′)− ρtot(r′))2d3r′ (with η = 2000), which leads to smooth convergences.

4 Results and discussion

In what follows, ECDA calculations with environments treated by KS-DFT are denoted by

ECDA-envKS. ECDA calculations with environments treated by OF-DFT are denoted by
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ECDA-envOF. ECDA-envOF calculations with environments treated by TFm KEDF are

denoted by ECDA-envOF(TF). ECDA-envOF calculations with environments treated by

TFm+1
9
vWm are denoted by ECDA-envOF(TF+1

9
vW).

4.1 Compare ECDA-envKS with ECDA-envOF

The comparison between ECDA-envKS and ECDA-envOF is made on two systems: es-

ter and Cl-tetracene, with their structures given in Fig. 2. In Table 1, we compare the

total energies from ECDA-envKS and ECDA-envOF calculations. All calculations are self-

consistent. Three di�erent cluster sizes are considered: Nb = 1, 2, and 3, which indicates

that the �rst, second, and third nearest neighbors are included for de�ning clusters, respec-

tively. For ECDA-envOF calculations, environments are treated by two di�erent KEDFs:

TF and TF+1
9
vW. Table 1 shows that ECDA-envOF(TF), ECDA-envOF(TF+1

9
vW), and

ECDA-envKS give similar results. As Nb increases, ECDA results gradually converge to

KS-DFT-EXX results. Table 2 shows the dipole moments of the two molecules. We have

similar observations: ECDA-envKS and ECDA-envOF give similar results, and also ECDA

results gradually converge to KS-DFT-EXX results for large Nb.

The good agreement between ECDA-envKS, ECDA-envOF(TF), and ECDA-envOF(TF+1
9
vW)

is due the fact that they give similar cluster electron densities. Taking Cl-tetracene as an

example, Figure 3 shows the cluster densities for a speci�c cluster calculated with the en-

vironment treated in di�erent ways. Even though the three cluster densities are slightly

di�erent at the cluster-environment boundaries, they are nearly the same inside the cluster.

On the other hand, we only consider the XC energy density around the central atom (marked

by the red circles in Figure 3), when constructing the system's XC energy with Eq. 9. This

largely removes the boundary e�ect caused by the di�erent treatments for the environments.

As a result, the system's XC energy has a weak dependence on how the environments are

treated.

Above observation suggests that ECDA-envKS can be replaced by ECDA-envOF in
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Figure 2: Structures of (a) ester and (b) Cl-tetracene. Oxygen, carbon, hydrogen, and
chlorine atoms are red, brown, grey, and green.

Table 1: Total energies (in Hartree) from self-consistent ECDA-envKS and self-consistent
ECDA-envOF calculations for ester and Cl-tetracene.

ester Cl-tetracene
Nb = 1
ECDA-envKS -91.587 -120.634
ECDA-envOF(TF) -91.580 -120.640
ECDA-envOF(TF+1

9
vW) -91.581 -120.637

Nb = 2
ECDA-envKS -91.423 -120.566
ECDA-envOF(TF) -91.421 -120.569
ECDA-envOF(TF+1

9
vW) -91.421 -120.568

Nb = 3
ECDA-envKS -91.474 -120.543
ECDA-envOF(TF) -91.474 -120.543
ECDA-envOF(TF+1

9
vW) -91.475 -120.542

KS-DFT-EXX -91.484 -120.553
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Figure 3: The cluster (yellow) and environment (blue) electron densities from treating the en-
vironment using KS-DFT, TFm, and TFm+1/9vWm, respectively. The clusters are de�ned
for the central atoms (marked by the red circles) with Nb = 2.
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Table 2: Dipoles (in Debye) from self-consistent ECDA-envKS and self-consistent ECDA-
envOF calculations for ester and Cl-tetracene.

ester Cl-tetracene
Nb = 1
ECDA-envKS 1.68 2.68
ECDA-envOF(TF) 1.70 2.87
ECDA-envOF(TF+1

9
vW) 1.72 2.86

Nb = 2
ECDA-envKS 1.98 2.19
ECDA-envOF(TF) 1.93 2.30
ECDA-envOF(TF+1

9
vW) 1.97 2.26

Nb = 3
ECDA-envKS 1.94 2.53
ECDA-envOF(TF) 1.90 2.57
ECDA-envOF(TF+1

9
vW) 1.96 2.52

KS-DFT-EXX 1.91 2.58

future ECDA calculations. In addition, the good agreement between ECDA-envOF(TF)

and ECDA-envOF(TF+1
9
vW) results suggests that we can use TFm KEDF to treat en-

vironments, which is computationally much cheaper than treating the environment with

TFm+1
9
vWm, due to the fact that the TF equation is easy to solve.

To further examine the performance of ECDA-envOF(TF), in Figures 4 and 5 we compare

the EXX potentials from self-consistent ECDA-envOF(TF) and self-consistent KS-DFT-

EXX calculations. Even for Nb = 1, a good agreement between ECDA-envOF(OF) and

KS-DFT-EXX is observed. We observe that ECDA-envOF(OF)'s EXX potentials become

closer to the KS-DFT-EXX results as Nb increases.

The quality of the EXX potentials predicted by ECDA-envOF(TF) can be assessed by

examining the KS eigenvalues shown in Fig. 6. As Nb increases, ECDA-envOF(TF)'s eigen-

values become closer to KS-DFT-EXX's eigenvalues for the occupied orbitals. For the unoc-

cupied orbitals, the convergence is not very good, which may be due to the fact that EXX

functional does not depend on the unoccupied orbitals. We expect that the convergence can
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Figure 4: EXX potentials of ester from self-consistent KS-DFT-EXX and self-consistent
ECDA-envOF(TF) calculations, with di�erent cluster sizes. Contour plane is de�ned by the
O1, O2 and C1 atoms in Fig. 2(a). Interval between contour lines is 0.1 a.u..

Figure 5: EXX potentials of Cl-tetracene from self-consistent KS-DFT-EXX and self-
consistent ECDA-envOF(TF) calculations, with di�erence cluster sizes. Contour plane is
de�ned by the benzene rings in Fig. 2(b). Interval between contour lines is 0.1 a.u..

24



be improved, if ECDA calculations employ a correlation energy functional that depends on

the unoccupied orbitals.

Figure 6: KS orbital energies of (a) ester and (b) Cl-tetracene from self-consistent ECDA-
envOF(TF) calculations with di�erent Nb values and self-consistent KS-DFT-EXX calcu-
lations (benchmark). Occupied and unoccupied orbitals are indicated by solid and dashed
lines, respectively. The orbital energies of highest occupied orbitals are set to zero for easy
comparison.

4.2 Performance of ECDA-envOF(TF) on carbon chains

Three polymers (polyyne, polyacetylene, and polyethylene) were recently used to investigate

the performance of the periodic density embedding theory92 (a variant of the density matrix

embedding theory20 by adjusting a bath's chemical potential). And polyyne was also used

to examine the performance of the periodic density matrix embedding theory.93 Here, we

examine the performance of ECDA on similar systems. Since we have not implemented

ECDA for the periodic boundary condition, we cannot simulate these polymers here. Instead,

we perform ECDA calculations on three molecules (a) C10H2, (b) C12H14, and (c) C12H26,

to mimic these polymers. Structures of these molecules are shown in Fig. 7. C10H2 has

an alternating C≡C-C structure for mimicking polyyne. C12H14 has an alternating C=C-
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C structure for mimicking polyacetylene. C12H26 mimics polyethylene. Details of these

structures are given in the �Numerical Details� section. In what follows, we examine the

performance of ECDA-envOF(TF) for patching EXX energies in these molecules.

Figure 7: Structures of (a) C10H2, (b) C12H14, and (c) C12H26. Carbon atoms are brown and
hydrogen atoms are grey.

All carbon chains are uniformly stretched/compressed by a scaling factor α. Only carbon-

carbon bonds are scaled by α, and other geometry parameters are kept �xed, except C12H26

for which the six hydrogen atoms at its two ends are optimized for di�erent α values. Fig. 8

shows the total energies versus the scaling factor α. ECDA results converge to KS-DFT-

EXX results as Nb increases. In the lower subplots, we plot the energy error per atom. For

all molecules, the errors are smaller than 5 mHa by including atoms up to the third nearest

neighbors (i.e., Nb = 3) for de�ning the clusters.

Fig. 8 also shows that all ECDA energy curves are smooth. Smooth energy curves are

important for structure-related calculations, e.g., structure optimization and phonon calcula-

tions. The smoothness is largely due to the use of density partitioning for de�ning clusters,

which makes the clusters' electronic structures to change smoothly as the molecules are
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Figure 8: Total energies versus scaling factor α for C10H2, C12H14, and C12H26 from self-
consistent KS-DFT-EXX and self-consistent ECDA-envOF(TF) calculations. Errors per
atom are shown in lower subplots.

stretched/compressed. This is di�erent from the local correlation methods based on local-

ized molecular orbitals. In these methods, localized molecular orbitals need to be carefully

selected to make sure that clusters' electronic structures change smoothly as molecular struc-

ture changes. This is challenging, if some localized orbitals span both the cluster and the

environment. Density partitioning does not have such problem, because clusters are de�ned

by directly cutting the bonds at cluster-environment boundary. However, this causes one

problem: The dangling bonds at the cluster-environment interfaces can a�ect the electronic

structures inside the clusters. This is expected to be the reason for the zigzag convergence

observed for C12H26: The energy curves of Nb = 1 and Nb = 3 are lower than the benchmark,

while the energy curve of Nb = 2 is higher than the benchmark. Nevertheless, for a given

Nb, ECDA produces smooth energy curves that follow well with the benchmarks. Such good

agreement should be largely due to the fact that density embedding suppresses the e�ect

from the dangling bonds by enforcing the cluster and the system's electron densities to match

inside the cluster.

In Figure 9, we examine the KS eigenvalues from KS-DFT-EXX and ECDA-envOF(TF)

calculations. Their agreement on the occupied orbitals becomes better as Nb increases;

however, ECDA's predictions for the gaps between the highest-occupied molecular orbitals
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(HOMOs) and the lowest occupied molecular orbitals (LUMOs) (Table 3) are not improved

by increasing Nb. It is not clear why ECDA's gaps decrease slightly as Nb increases from 1 to

3. By comparing Figure 8 and Table 3, we �nd no much correlation between the convergence

of the total energies and the convergence of the HOMO-LUMO gaps. ECDA gives the largest

error for C10H2's energies but gives the best predictions for C10H2's HOMO-LUMO gaps.

Figure 9: KS orbital energies from self-consistent ECDA-envOF(TF) and self-consistent
KS-DFT-EXX calculations (benchmark) for α = 1. Occupied and unoccupied orbitals are
indicated by solid and dashed lines, respectively. The highest occupied orbitals are shifted
to zero for easy comparison.

Table 3: HOMO-LUMO gaps (in eV) from self-consistent KS-DFT-EXX and self-consistent
ECDA-envOF(TF) calculations (with di�erent Nb).

C10H2 C12H14 C12H26

KS-DFT-EXX 2.09 1.63 3.95
ECDA (Nb=1) 2.04 1.61 3.66
ECDA (Nb=2) 1.99 1.56 3.40
ECDA (Nb=3) 1.99 1.54 3.40

4.3 Performance of ECDA-envOF(TF) on the Na andMgO nanorods

In the previous sections, we have investigated the performance of ECDA-envOF(TF) on

several covalent systems. In what follows, we investigate its performance on one metallic (a

Na nanorod) and one ionic system (a MgO nanorod). Details about their structures and

calculations are given in the �Numerical details� section. For both nanorods, we examine
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the energy versus a uniform scaling of the rods' lengths. To obtain smooth energy curves,

for di�erent Nb values the clusters are de�ned based on the unscaled structures. For each

atom, its nearest neighbors are de�ned according to the bonds shown in Figure 10.

Figure 10: The structures of (a) Na and (b) MgO nanorods. In subplot (b), oxygen atoms
are red and Mg atoms are brown.

Figure 11 gives the total energy versus the scaling for the Na nanorod. The ECDA curve

with Nb = 1 deviates from the KS-DFT-EXX curve for α > 1, due to the fact that the

density matrix decays slowly in metallic systems and therefore clusters de�ned by Nb = 1

cannot capture the long-range exchange. The ECDA energy curve is much improved by using

larger clusters (i.e., Nb = 2 and 3). Figure 12 shows the energy versus the scaling for the

MgO nanorod. Even with Nb = 1, ECDA's energy curve agrees well with the KS-DFT-EXX

curve, due to the fact that the density matrix decays fast in this ionic system. In addition,

the error per atom is much less than the Na nanorod. One puzzle is that the errors do not

decrease much for large Nb. Nb = 3 is expected to produce smaller errors than Nb = 1;

however they give similar errors. To check whether this unexpected observation is due to the

�nite η used in the Zhao-Parr method, we increased η to 2 × 106 for the α = 1.0 case and

found that the changes of the total energies are less than 1 mHa. Therefore, this unexpected

observation seems not to be due to a �nite η. The reason for this unexpected observation is

still unclear at this point and should be investigated in the future work.
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Figure 11: Total energy versus a uniform scaling of the Na nanorod from self-consistent
KS-DFT-EXX and self-consistent ECDA-envOF(TF) calculations. The lower subplot gives
the total energy error per atom.

Figure 12: Total energy versus a uniform scaling of the MgO nanorod from self-consistent
KS-DFT-EXX and self-consistent ECDA-envOF(TF) calculations. The low subplot gives
the total energy error per atom.
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5 Computational aspect of ECDA

Compared to a conventional KS-DFT calculation on the full system, ECDA saves the cost

by calculating the system's XC energy in an atom-by-atom manner. Its overhead is mainly

from two tasks: (1) the density partitioning using the Zhao-Parr method and (2) solving z(r)

with Eq. 56. The overhead cost can be much reduced by treating the environments with OF-

DFT. Taking the MgO nanorod for example, we brie�y show the reduction of the overhead

cost. Both ECDA-envOF(TF) and ECDA-envKS calculations are performed with Nb = 3.

For ECDA-envKS calculations, we assign one CPU for each cluster and one CPU for each

environment. For ECDA-envOF calculations, each cluster together with its environment is

solved by one CPU. This shows another bene�t from treating the environments with OF-

DFT: The number of CPUs can be reduced by half. With ECDA-envOF(TF), the average

cost of each iteration of the Zhao-Parr method is nearly halved: 38 seconds for ECDA-

envOF(TF) and 76 seconds for ECDA-envKS. The average cost of each iteration for solving

z(r) is reduced by 33%: 9 seconds for ECDA-envOF(TF) and 14 seconds for ECDA-envKS.

The cost reduction should be more signi�cant for large systems.

We note that our current implementation of ECDA is ine�cient: a system and its clusters

are put in the same unit cell. This makes the costs of these cluster calculations in tasks (1)

and (2) scale with the system's size. In the future, clusters will be put in the super cells

whose sizes are determined by the clusters. This will further reduce the overhead cost.

For large systems, ECDA-envOF's computational cost will be dominated by the following

tasks: (a) solving the system's KS equation, (b) solving the system's OEP equation (Eq. 34),

and (c) calculating p1 in Eq. 54. The cost of task (a) is determined by the implementation of

KS-DFT and can be reduced by combining ECDA with linear-scaling KS-DFT methods.94,95

Tasks (b) and (c) are costly, since they depend on solving the system's Sternheimer equation.

In addition, task (b) is about Noep times more expensive than task (c), where Noep is the

number of iterations for solving the system's OEP equation. In the future work, we will

try to completely avoid task (b) by directly minimizing the system's energy against its KS
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potential (vs) as suggested by Yang and Wu.96

6 Conclusions

By treating environments with OF-DFT, in this work we have removed two computational

bottlenecks in ECDA calculations: (a) partitioning the system's electron density among

clusters and environments and (b) calculating environments' linear responses for build-

ing the system's XC potential. With two examples (ester and Cl-tetracene), we showed

that ECDA-envOF and ECDA-envKS gave very similar results even with small clusters.

Therefore, ECDA-envOF can be used in future ECDA calculations. Two KEDFs (TFm and

TFm+1/9vWm) were employed for treating environments. Their performances were similar.

Since the cost of OF-DFT calculations with TFm KEDF is much less, ECDA-envOF(TF)

should be used in future calculations.

Another focus of this work is to investigate ECDA-envOF(TF)'s performance on di�erent

types of systems: covalent, metallic, and ionic. For covalent systems, we employ ECDA-

envOF(TF) to study three hydrocarbons that have di�erent types of carbon-carbon bonds.

The energy curves for stretching/compressing these molecules followed the benchmarks well

even for clusters that only contain the nearest neighbors. For metallic and ionic systems, we

examined the Na and MgO nanorods. Due to the slow decay of the density matrix in metallic

systems, it is found that clusters need include atoms up to the second nearest neighbors for

the Na nanorod. For the MgO nanorod, even with Nb = 1, ECDA-envOF(TF) results agreed

well with the benchmark, due to the fast decay of the density matrix in ionic systems. These

examples demonstrate that ECDA's performance depends on how rapidly electron correlation

decays. It was also observed that the energy curves for stretching/compressing these systems

were smooth, which suggests that ECDA-envOF(TF) is applicable to structure-related tasks,

such as geometry optimization and phonon calculations. Forces are needed for structure-

related tasks and can be derived for ECDA-envOF(TF) following the similar way as in our
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recent work.51

In summary, by removing the computational bottlenecks related to environment calcu-

lations and showing the good performance of ECDA-envOF(TF) in systems with di�erent

types of bonds, we expect ECDA-envOF(TF) to become an e�cient and nearly black-box lo-

cal correlation method for scaling up high-level KS-DFT calculations in large heterogeneous

materials.
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A Linear response for a system treated by OF-DFT with

TFm KEDF

For the case that environments are treated by TFm KEDF, their total energies are EOF =

TTFm[ρ]+
∫
ρ(r)v(r)dr3, where v is the external potential. Note that Hartree and XC energies

are not considered, since environments are modeled as non-interacting electron systems. We

then have vTFm(r)+v(r) = µ, where vTFm(r) = δTTFm/δρ(r) and µ is the chemical potential.

Linearizing the equation for a given ∆v, the perturbed electron density is

∆ρ(r) = (∆µ−∆v(r))/KTFm(r), (57)
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where KTFm(r, r′) = δ2TTFm/δρ(r)ρ(r′) is TFm's kernel. ∆µ is calculated based on the

conservation of electron density
∫

∆ρ(r)dr3 = 0:

∆µ =

∫
K−1TFm(r, r)∆v(r)d3r∫
K−1TFm(r, r)d3r

. (58)

B Linear response for systems treated by OF-DFT using

TFm+λvWm KEDF

For the case that an environment is treated by TFm+λvWm KEDF, its total energy is

EOF = TTFm[ρ] + λTvWm[ρ] +

∫
ρ(r)v(r)d3r. (59)

De�ne the Lagrangian

LOF = EOF − µ
(∫

φ(r)2d3r −N
)
, (60)

where φ(r) =
√
ρ(r). The last term is for conserving the electron number N . µ is the

Lagrangian multiplier. Based on δLOF/δφ(r) = 0 and replacing φ with φm, we obtain the

equation for φm

HOF |φm〉 = µ |φm〉 , (61)

with HOF = −1
2
∇2 + vscf and vscf(r) = (vTFm(r) + v(r))/λ. Given a perturbing potential

∆vscf , the perturbation ∆φm can be calculated using the Sternheimer equation

[HOF − µ+ Pv] |∆φm〉 = −PcM |∆vscf〉 , (62)

where Pv = |φm〉 〈φm| is the projector to the occupied space and Pc = 1−Pv. M is a matrix

whose diagonal elements are φm, that is, M(r, r′) = δ(r− r′)φm(r). Since ∆vscf depends on

∆φm, we have to solve above equation self-consistently as in conventional density functional

perturbation theory. To avoid solving Eq. 62 self-consistently, we can write ∆vscf in terms
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of ∆v and ∆φm

|∆vscf〉 = |∆v〉+
2

λ
KTFmM |∆φm〉 . (63)

After inserting |∆vscf〉 into Eq. 62, we obtain the equation for |∆φm〉

[
HOF − µ+ Pv +

2

λ
PcMKTFmM

]
|∆φm〉 = −PcM |∆v〉 . (64)

The above linear system cannot be solved using the conjugate gradient method, since the

operator PcMKTFmM on left-hand side is not symmetric. To overcome this issue, we can

replace it with PcMKTFmMPc, due to the fact that |∆φm〉 is orthogonal to φm. Since

PcMKTFmMPc is positive-de�nite and symmetric, Eq. 64 can be solved by the conjugate

gradient method. After obtaining ∆φm, the perturbed electron density is calculated by

∆ρ(r) = 2φm(r)∆φm(r).

C The calculation of δρ(r)/δN for systems treated by OF-

DFT using TFm+λvWm KEDF

Consider a system with its total energy de�ned by Eq. 59. Normalize φm as φ′(r) =

φm(r)/
√
N + Ωρ0, where Ω is the volume of the simulation cell, and we have

∫
φ′(r)2d3r = 1.

φ′ is related to ρ as

ρ(r) + ρ0 = (N + Ωρ0)[φ
′(r)]2. (65)

Note that φ′ is also the solution to Eq. 61, and therefore the Sternheimer equation for solving

∆φ′ (due to ∆vscf) is similar to Eq. 62 and is

[HOF − µ+ Pv] |∆φ′〉 = −PcM ′ |∆vscf〉 , (66)

where Pv = |φ′〉 〈φ′| and Pc = 1 − Pv. M ′ is a diagonal matrix with the diagonal elements

equal to φ′ (i.e., M ′(r, r) = φ′(r)). Since ∆vscf depends on ∆φ′, Eq. 66 has to solved self-
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consistently. To avoid solving Eq. 66 self-consistently, we derive the expression for ∆vscf .

Based on Eq. 65, a change of electron number (δN) causes a change in ρ(r) as

δρ(r) = φ′(r)2δN + 2(N + Ωρ0)φ
′(r)δφ′(r). (67)

δρ then causes a change in vscf as

δvscf(r) =

∫
δvscf(r)

δρ(r′)
δρ(r′)d3r′

=
δN

λ

∫
KTFm(r, r′)φ′(r′)2d3r′ +

2(N + Ωρ0)

λ

∫
KTFm(r, r′)φ′(r′)δφ′(r′)d3r′.(68)

Inserting Eq. 68 into Eq. 66, we obtain the equation for ∆φ′

[
HOF − µ+ Pv +

2(N + Ωρ0)

λ
PcM

′KTFmM
′
]

∆φ′(r) = −1

λ
PcM

′KTFmφ
′(r)3. (69)

Again, we can make above linear system to be symmetric by replacing PcM ′KTFmM
′ with

PcM
′KTFmM

′Pc, due to the fact that ∆φ′ is orthogonal to φ′. The new linear system can

then be solved using the conjugate gradient method. Finally δρ/δN is given by

δρ(r)

δN
= φ′(r)2 + 2(N + Ωρ0)φ

′(r)∆φ′(r). (70)
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