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Abstract

The computational cost of the Kohn-Sham density functional theory (KS-DFT), em-
ploying advanced orbital-based exchange-correlation (XC) functionals, increases quickly
for large systems. To tackle this problem, we recently developed a local correlation
method in the framework of KS-DFT: the embedded cluster density approximation
(ECDA). The aim of ECDA is to obtain accurate electronic structures in the entire
system. With ECDA, for each atom in a system, we define a cluster to enclose that
atom, with the rest atoms treated as the environment. The system’s electron density
is then partitioned among the cluster and the environment. The cluster’s XC energy

density is then calculated based on its electron density using an advanced orbital-based



XC functional. The system’s XC energy is obtained by patching all clusters’ XC en-
ergy densities in an atom-by-atom manner. In our previous formulation of ECDA,
environments were treated by KS-DFT, which makes the following two tasks computa-
tionally expensive for large systems. The first task is to partition the system’s electron
density among a cluster and its environment. The second task is to solve the environ-
ments’ Sternheimer equations for calculating the system’s XC potential. In this work,
we remove these two computational bottlenecks by treating the environments with the
orbital-free (OF) DFT. The new method is called ECDA-envOF. The performance of
ECDA-envOF is examined in two systems: ester and Cl-tetracene, for which the exact
exchange (EXX) is used as the advanced XC functional. We show that ECDA-envOF
gives results that are very close to the previous formulation in which the environments
were treated by KS-DFT. Therefore ECDA-envOF can be used for future large-scale
simulations. Another focus of this work is to examine ECDA-envOF’s performance
on systems having different bond types. With ECDA-envOF, we calculate the energy
curves for stretching/compressing some covalent, metallic, and ionic systems. ECDA-
envOF’s predictions agree well with the benchmarks by using reasonably large clusters.
These examples demonstrate that ECDA-envOF is nearly a black-box local correlation

method for investigating heterogeneous materials in which different bond types exist.

1 Introduction

It is important to obtain accurate electronic structures in large systems. Toward such goal,
local correlation methods were actively developed in the past, based on the observation that
the Coulomb interactions between electrons quickly decay over distance in many systems. '
A key step for developing local correlation methods is to define locally correlated electrons.
Locally correlated electrons can be defined based on the localized molecular orbitals, and

methods of this type include the method of increments,? local configuration interaction

method,%® local coupled cluster methods,*'3 local many-body perturbation theory. '8 Lo-



cally correlated electrons can also be defined by partitioning the system’s density matrix,
which leads to various density-matrix embedding methods.!*2" Local correlation methods
can also be formulated based on Green’s function, such as the dynamical mean field the-
ory 273! and the self-energy embedding. 32

Another way to define locally correlated electrons is to partition the electron density.
Methods of this type are often called density embedding.?*® With density embedding, a
system’s electron density is partitioned among a cluster and its environment. The cluster’s
electronic property is then calculated using a high-level quantum mechanical method. Previ-
ous density-embedding approaches often focused on obtaining accurate electronic structures
in the region of interest. Recently, several density-embedding-based local correlation methods
for obtaining accurate electronic structures in the entire system have been developed, such
as the many-electron expansion method® and the embedded cluster density approximation
(ECDA).5951

In this work, we further develop the ECDA method, which is a local correlation method
formulated in the framework of Kohn-Sham density functional theory (KS-DFT).?%%% With
ECDA, a system’s exchange-correlation (XC) energy is obtained by patching the clusters’
XC energy densities that are calculated using advanced, orbital-based XC functionals. The
idea of ECDA is illustrated in Figure 1, in which ECDA is applied to benzene. For each
atom in the molecule, we define a cluster to enclose it, with the rest atoms considered as its
environment. The central atoms of these clusters are marked by red circles, and the clusters
are defined by including the nearest neighbors. In Figure 1, each subplot shows the electron
densities of a cluster and its associated environment. The density partitioning among a clus-
ter and its environment is carried out using the density functional embedding theory. %4
After calculating the clusters’ XC energy densities using high-level XC functionals, the clus-
ters’ XC energy densities are projected to their central atoms. The system’s XC energy is

then obtained as the sum of these atomic XC energy densities.

One merit of ECDA is that the system’s XC potential can be efficiently calculated,>*



which makes ECDA a fully self-consistent method. ECDA can therefore be used to in-
vestigate systems that have significant charge redistribution (under the assumption that the
electron correlations in these systems are local). Furthermore, ECDA is a variational method
and its analytical energy gradients can be derived,® which makes it possible to efficiently
optimize structures and calculate structure-related properties (such as phonon spectra). Dif-
ferent from other local correlation methods that are based on localized molecule orbitals, it
is not straightforward for ECDA to use correlated wave function methods as cluster solvers,
because clusters often have fractional electron numbers from the density partitioning. How-
ever, it is straightforward to solve clusters using advanced orbital-based XC functionals,

which makes ECDA a nearly “black-box” local correlation method for scaling up high-level

KS-DFT calculations.
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Figure 1: Electron densities of the clusters and their associated environments. Clusters are
defined for the central atoms marked by red circles. Cluster electron densities are yellow and
environment electron densities are blue. C and H atoms are brown and grey, respectively.

In this work, we overcome several computational bottlenecks in our previous formulation
of ECDA. These computational bottlenecks were all due to the KS-DFT treatment of envi-

ronments. For a large system, environments are large, which makes the following two tasks
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computationally expensive. The first task is to solve the environment electron densities for
partitioning the system’s electron density. The second task is to solve the environments’
Sternheimer equations for calculating the system’s XC potential. In this work, we remove
these computational bottlenecks by treating environments using orbital-free (OF) DFT.%> 58
This new ECDA method is termed ECDA-envOF. The previous formulation (in which the
environments were treated by KS-DFT) is termed ECDA-envKS. In this work, we demon-
strate that ECDA-envOF and ECDA-envKS give very similar results.

The paper is organized as follows. First, we give an introduction to ECDA. We then
discuss how to partition a system’s electron density among a cluster and its environment for
the case that the environment is treated by either KS-DFT or OF-DFT. To make ECDA-
envOF a self-consistent method, we derive the equations for calculating the system’s XC
potential. Numerical examples are given to demonstrate that ECDA-envOF and ECDA-
envKS give very similar results. At last, the performance of ECDA-envOF is examined by
calculating the stretching/compressing energies of hydrocarbon molecules, a sodium nanorod,

and a MgO nanorod.

2 Theoretical Methods

2.1 Total energy for ECDA

The total energy for ECDA follows that of KS-DFT and is
Etot = Ts +J+ Exc + Ee:pt + Ezz - TS+ Ep; (1)

where T is the KS kinetic energy

7= 23 f; [ w5 v @ )



1; is the system’s j-th KS orbital and f; is its occupation number. In Eq. 2, the factor “2” is
due to that non-spin-polarized case is considered throughout this work, and the generalization

to spin-polarized case is straightforward. J is the Hartree energy

Piot\I' ) Prot\I'" ) r) o

where py(r) is the system’s electron density. FE,. is the XC energy which is discussed in
Section 2.2. Eept = [ prot(r)vese(r)d®r is the external energy, with v.,: being the system’s
external potential. Fj; is ion-ion Coulomb energy. T is the electronic temperature and S is

the electronic entropy

S=—=2kp» [filnf;+ (1= f;)In(1— f;)], (4)
J
where kg is the Boltzmann constant. The reason for having the entropy term is not for
considering the temperature but for making the density partitioning (discussed in Section 2.4)
numerically stable, as explained in our previous work. %5
E, in Eq. 1 is a penalty term for regularizing the optimized effective potential (OEP)

60-63 in order to obtain a smooth XC potential as discussed in our previous work.%!

E, - %'y [ / 2 (r) + / dr/|Vvd(r’)|2} (5)

with v4(r) = vs(r) — v (r) — Ven(r). vy is the system’s KS potential, and vy = 6J/0pi0

equation,

E, is defined as®

is the Hartree potential. Since the total energy contains F,, vy consists of both the XC
potential v,. = 0E,./dpior and the penalty potential v, = 0E,/0ps.t. 7y controls the weight of
the penalty term and is set to 1074 in this work. To make ECDA a self-consistent method,

we need to calculate v,. + v,, which is discussed in Section 2.5. The system’s KS equation



finally becomes
5V () v (1) + (1) + (1) | ) = et (). (6)

2.2 The calculation of the XC energy with ECDA

In this work, the exact exchange (EXX) is used as the high-level XC functional for calculating

clusters’ XC energy densities. EXX is defined as®*

EIEXX ZkaCkl // drdr /il ¢l|r)_ I€|/)Q0k(r/)’ (7)

where k and [ run over all orbitals. {p} are the KS orbitals, {e} are the orbital energies,
and ¢y = 1 + sgn(e,, — ¢;). EXX defined in Eq. 7 directly follows the adiabatic connection
fluctuation-dissipation theorem (ACFDT)%8 and is different, from the Hartree-Fock theory,
as pointed in out in Ref.%*. The reason for using ACFDT-based EXX is that its exchange
holes always satisfy the sum rule, even for systems having fractionally occupied orbitals. 3469
This is important since clusters defined based on density partitioning often have fractionally
occupied KS orbitals. ACFDT-based EXX ensures that the system’s XC energy density can
be better approximated by clusters’ XC energy densities. To patch the system’s EXX energy,

we need to define the EXX energy density, which is given below

er*X(r) ZkaCleDk )ou(r )/gol?:")fgm;/(’r’)’ (8)

where k and [ run over occupied orbitals.
After calculating the clusters’ XC energy densities, the system’s XC energy is obtained

as

Natom
Z /wj Agcluj( )dgr"‘E:%?A[Ptot] (9)
7=1



with

At (1) = e (1) — €5 A (). (10)

ELDA[p, 1] is the system’s XC energy calculated using the local density approximation (LDA).

The first term on the right-hand side of Eq. 9 is the correction to EXP4[p,p]. w;(r) is the

atomic weight function according to Becke’s atom-in-molecule scheme (see Ref.?! for details).

w;(r) projects the cluster j’s XC energy density to the central atom j to avoid any boundary
clu,

effect. In Eq. 10, 5;l:,§xx<r) and €,,.7pa(r) are cluster j’s EXX and LDA energy densities,

respectively.

2.3 Partition a system’s electron density with the environments

treated by KS-DFT

The cluster’s electron density is obtained by partitioning p;,; among the cluster and its
environment. For the case that both cluster and environment are treated by KS-DFT, the
density partitioning was discussed in our previous work.®! In what follows, we briefly review
it and show how to perform the density partitioning for the case that environments are
treated by OF-DF'T in the next section.

Let’s focus on the atom j. We first define the number of electrons in the cluster and the

environment as

Ncluj = /wcluj(r)ptot(r)dgr (11)

Nenv]- - /wenvj(r)ptot(r)dgru (12)

where we.,, = Y, wi (k loops over all atoms in the cluster) and wep,, = 1 — Wy, are the

weight functions for the cluster and the environment, respectively. We then partition the



system’s KS potential among the cluster and the environment as

Vet (T) = (0s(T) — 10— Up)Weta, (T) (13)

Venu; (T) = (vs(T) — 1 — Vp) Weny, (T), (14)

where 1 is the system’s chemical potential. The term vy, — p ensures that the system’s
chemical potential is shifted to zero at distant. By subtracting vy, v, (r) and ven,, (r) are
further decreased to make sure that the electrons are well confined in the cluster and the
environment. ECDA results are not sensitive to the choice of vy, and vy is set to 0.5 a.u. in
this work.

An embedding potential (Vepmp;) is then added to both vep,, (r) and ven, (r) as

v (1) = Vet (r) + Ve, (¥) (15)

V5" () = Veny, (T) + Vems, (T). (16)

The cluster and environment’s electron densities are obtained by solving their KS equations

(‘%W o <r>) 6 () = €6 (x) an
(‘%W * vi””%r)) o () = "0 (x), as)

where gzﬁfluj and ¢; " are the i-th KS orbitals of the cluster and the environment, respectively.

clu; env;
, ~and e 7

are the i-th orbital energies of the cluster and the environment, respectively.

The cluster and the environment’s electron densities are

pen,(r) = 237 [ [E @) (19)
pe, (¥) = 23 [ )P, (20)



clu; env; . .
where f," 7 and f;7 are the occupation numbers of the cluster and environment, respec-

tively. vemp; is determined by making the density-matching condition to hold

Petu; (T) + Penv; (T) = prot(T). (21)

In our previous work, vems, (r) was solved using a modified Zhao-Parr method.”! Solving
Vemp; 18 an OEP problem, which needs to be regularized for obtaining a smooth solution. The
regularization leads to an approximate density-matching condition (Eq. 33) that is different

from Eq. 21. See Ref.5! for details.

2.4 Partition a system’s electron density with the environments

treated by OF-DFT

Next, we discuss how to modify the above density-partitioning scheme for the case that
environments are treated by OF-DFT. For the kinetic energy density functional (KEDF),
we use the linear combination of a modified Thomas-Fermi™ " (denoted as TFm) functional

and a modified von Weizsicker ™ (denoted as viWm) functional:
Ts ~ TTFm + )\Tva (22)
with TFm and vWm KEDFs defined as

T = Crp / Fr)p(r)3dr (23)

Tt = [ 0u0) (~57°) onlriats (24)

with Crp = 5(312)%3, F(r) =1 — exp [—(p(r)/po)/?], and ¢ (r) = \/p(r) + po. By using
F, the inverse of the TFm kernel (Ktpn(r,r’) = 6*Trrm/dp(r)dp(r’)) does not diverge in

low electron-density regions. ¢y, is used to ensure that the vWm potential (vywm(r) =

10



0Towm/dp(r)) does not diverge in low electron-density regions. The reason for a possible
divergence is that it is difficult to solve p(r) accurately in low-density regions using plane-
wave basis (which is used in this work). We set pp = 107 a.u. in both F' and ¢, in this
work.

Since environments are treated by OF-DFT, v, in Eq. 14 needs to be replaced by its

OF-DFT counterpart vop:

6TTFm [ptot] 5Tva [ptot]
pu— —_— h— . 2
vor(x) = 4 dprot (1) A O prot(T) (25)

Using vor, Eq. 16 becomes
U(e)q:j (r) = (vor(r) — p — Ub)wenvj (r) + Vemb; (r). (26)

To partition the system’s electron density among the cluster and its environment, we
still employ the Zhao-Parr method developed in our previous work.! The only change is
that now the environment is treated by OF-DFT. We drop the subscript j in the following

discussions for simplicity. The Zhao-Parr energy is defined as™™

W Ap(r)Ap(r! ‘
Ezp = Ly + Eeonlj; + Q // €a|r—r I—p(r) p(r )dSTdJT’, (27)

2 r — 1|

with Ap = peu+ Penv — Pror- The last term is the penalty term to enforce the density-matching
condition. The penalty term is defined based on the Yukawa potential in order to regularize
the equations for solving the system’s XC potential as explained in Ref.?! « is set to 0.2
bohr~! in this work. 7 controls how good the density-matching condition is satisfied. In

practice, results (such as total energies) need to be converged with respect to n. In Eq. 27,
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E., and EOF are the cluster and environment’s energies defined as

env

1
Buu = Z o / o (r) <—§V2> v (r)dPr (28)
" / veta(E)pan(T)dr® — TS

ESE; = TTFm[penv] +)‘Tva[penv] +/“8?( )penv(r)dgr (29)

where T' is the smearing temperature used in the Fermi-Dirac statistics for assigning the
occupation numbers of the cluster’s KS orbitals. To be consistent with the total system,
T is the same as the smearing temperature used in Eq. 1. Sg, is the cluster’s electronic
entropy. By minimizing E,, against the cluster’s KS orbitals, we obtain the KS equations

for the cluster:

(=574 vle) + ) ) 60) = o) (30)

where ¢¢“(r) and e are the k' KS orbital and orbital energy. In Eq. 30, v, is due to the

penalty term and is

vpen(r) :n/e—ar r’\Ap< )ds / (31)

r—r|
For the case that an environment is treated by the TFm+AvWm KEDF, the environment’s

electron density pen, is solved by directly minimizing E,, against pe,, with the cluster’s

electron density fixed. This leads to minimizing the following energy against pep,

EOF _ pOF 4 / Spon (1) pen ()P (32)

For the case that an environment is treated by the TFm KEDF, p.,. is calculated by solving
a modified TF equation.

In summary, the density partitioning is performed with the following steps. For a given
Upen, Eq. 30 is solved to obtain p,, and EOF" is minimized to obtain pen,. Upen, 1S then

ENvV

updated using Eq. 31. These steps are repeated until the convergence of vy, is reached.

12



The convergence is accelerated by using the Pulay mixing.”® At convergence, v, is taken
as the embedding potential. Note that the density-matching condition Eq. 21 can only be

reproduced for n — co. For a finite 1, Eq. 21 should be replaced by the following condition: !

Prot(T) = Petu(T) + Pens(T) — ————Vemp(T). (33)

This new density-matching condition is important for deriving the XC potential in Sec-

tion 2.6, since it connects pg, Wwith pio.

2.5 The calculation of the XC potential with ECDA

To make ECDA a self-consistent method, next we derive the system’s XC potential. We

actually calculate the sum v,., = v, + v, by solving the following OEP equation

S(Eye + Ep)

51)8(1‘) - /chp(r/>X0<r7 I‘,)d3T,, (34)

where xo(r,r") = dp(r)/ovs(r’) is the system’s KS linear response function. The key is to
calculate the left-hand side of Eq. 34. For the case that the environments are treated by KS-
DFT, the calculations of 0E,/dvs and dE,./dvs were discussed in Ref.?! In what follows we
discuss how to calculate d E,./dv, for the case that the environments are treated by OF-DFT.

Since the cluster ’s XC energy density depends on N,; and vil“j , we have

5(1?(9:) _ Zm [p1,j(r) + p2i(r) + p3;(1)] (35)

13



with

po) = [u 2 e ()

’ 8A6m- r 6Ncluj /
post) = [ W;U el (37)

psto) = [ BN ol )

where vEPA is the system’s LDA XC potential and y; is defined as

() = [y 205

d>r. 39
Svd (r") (39)

cluj

If the employed XC functional is an explicit function of KS orbitals (such as EXX functional

used here), y; can be calculated following the chain rule as
e
clu] ) 6U§lu ](I'/)

where k runs over all orbitals in the cluster j. For EXX, y; has been derived in Ref.?* The

drydr, (40)

Nejo
clu‘7

calculations of py ; and ps; do not depend on how environments are treated and follow our
previous discussions.?!
The calculation of p; ; depends on how the environments are treated. For simplicity, we

drop the subscript j in the following derivations. p; depends on jv<“/§v,, which is given by
(based on Egs. 13 and 15)

Sveu(r’) S N V(1)
Sus(r) R KR ey

(41)

Above, du/dvg(r) is calculated as du/dvs(r) = >, ¥i(r)Op/dey, where ey is the orbital
energy of the k-th orbital and du/der, = fi(1 — fi)/ >, fm(1 — fi). The calculation of

OVemp/0Vs 18 given in the next section.

14



2.6 The calculation of Jve(r)/dvs(r)

The key for deriving the system’s XC potential is to derive the dependence of the embedding
potential on the system’s KS potential, which can be derived based on the density-matching

condition (Eq. 33). By perturbing v,, Eq. 33 can be linearized to

Oé2 _ v2
5ptot(r) = 5pclu(r) + 5penv(r) - 4 5U€mb(r)v (42)
™
with
dpiot(r) = /Xo(r,r')évs(r’)d3r’. (43)
5pclu(r) — /X(c)lu(r’rl)évglu(rl)diirl + 8pclu(r) 6Nclu (44)
a-Z\[Clu vglu
Spantt) =[x mugr ety + 2ot o, (43
env  |ygny

where XG1 (T, ') = 0peny (r') /&R (r) is the OF linear response function for the environment.

ENV

dvet and dvgw are

SV (1) = Wi (1) (00(1) — 6pt) + Ve (T) (46)

VG () = Weny (1) (dVor(r) — dpt) + 0Vemp (). (47)

The connection between dvor and dv, is

dvor(r') [ 6vor(r’) 0pser(r1) 3,
dvs(r) N /5,0t0t(r1) dvs(r) d°r

= /X(_)%(r/, r1)Xo(r1, r)d’r, (48)
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where xor(r,r’) = dpiot(r)/dvor(r’) is the system’s OF linear response function. 0N, and

0Ny depend on dv, as

5Nclu / N 33,1
= d 4
51}5(1‘) /XO(I', r )wdu<r ) r ( 9)

5N€m} o / N 33,/
50u(1) = /Xo(r,r YWeny (r))do7". (50)

After writing everything in terms on dv,, we insert Eqs. 43, 44, 45, 49, and 50 into Eq. 42

and obtain
6Uemb (I'

/> _ -1 . Y r 37n//
)~ [ i, 61

in which @; and @, are (in the matrix presentation)

clu env 1
Q1 = XM+ X&Y - —47m(oz2 -V (52)
Q2 = Xo— Xglchlu - Xé%”WengéXo
Cclu EeENv 5/1/
+[Xol |wclU> + XoF wenv>] <5T|
8pclu apem)
- clu env X . 53
R (w1 502 (el | Ko (53)

where X, X5, and X, are matrix representations of the KS linear responses of the cluster,
environment, and total system, respectively. X&' and Xop are the matrix representation of
the OF linear responses of the environment and total system, respectively. In real space, W,
and W,,, are diagonal matrices whose diagonal elements are the cluster and environment’s
weight functions, respectively. For the case that the environments are treated by TFm KEDF,
Openv/ONeny in Eq. 53 is calculated using the central finite difference method by changing
Neny by 0.001. For the case that environments are treated by vWm KEDF, 0pep, /ONeny is

calculated following Appendix C.

16



Combining Egs. 51, 41, and 36, the expression for p; is

pi(r) = y(r)we(r /Qz r,r’)z(r))d®r’
_ 51):;1?) / (Y ()P, (54)

in which z is defined

/Q1 r, 1t )y(r)d*r. (55)

To avoid inverting ()¢, in practice z is obtained by solving the linear equation

/Q1 r,r')z(r")d®r = y(r) (56)

using the conjugate gradient method. Eqs. 54 and 56 involve calculating the products be-
tween KS and OF linear response functions and vectors. The product between KS linear
response and a vector is calculated by solving the Sternheimer equation derived for systems
having fractionally occupied KS orbitals. "™ The product between OF linear response and a
vector is calculated following the methods given in Appendices A and B. When applying QI
to z in Eq. 54, we need to calculate the product between Xaé and a vector. For TFm KEDF,
X{)é is the kernel of TFm KEDF: Xg)é = Krpm = 0°Trrm/0p(r)dp(r’). For TFm-+AvWm
KEDF, Xoi(r, 1) = Krpm + MK ywm, With Kowm (r, 1) = 62 Towm/dp(r)dp(r’).

2.7 Flowchart for ECDA-envOF calculations

To summarize, the flowchart for performing ECDA-envOF calculations is given below.
1. For a given vy, solve the system’s KS equation and obtain its electron density pu.

2. For each atom, partition p,,; among its cluster and the environment following Sec-

tion 2.4.

3. Calculate the clusters’ XC energy densities and assemble the system’s XC energy ac-

17



cording to Eq. 9. Calculate E,./évs(r) following Section 2.5, and calculate 6 E,/dv

follows Ref.5!. Solve the OEP Eq. 34 to obtain v, + v,.

4. Calculate the system’s Hartree potential. Update the system’s KS potential as v, =
VH + Ve + Up + Vegr. Check the convergence of v,. If v, is converged, exit ECDA calcu-
lations. If v, is not converged, return to Step 1. The convergence of v is accelerated

using the Pulay mixing.®

3 Numerical details

All ECDA and KS-DFT-EXX calculations are implemented in a FORTRAN90 program
which calls a modified ABINIT program®® (version 7.10.4) that solves the KS equation for a
given KS potential. To avoid the singularity from the Coulomb potential, EXX energy are
calculated in the real space using a Poisson solver®! implemented in ABINIT. A Fermi-Dirac
smearing of 0.1 eV is used for all ECDA and KS-DFT calculations. Molecular structures and
EXX potentials are plotted using the VESTA program.%?

For ester and Cl-tetracene, a relatively small kinetic energy cutoff, 600 eV, is used for all
calculations, in order to reduce the cost of EXX calculations and the Sternheimer equation
calculations. 1 = 200 is used for the electron density partitioning. Troullier-Martins norm-
conserving pseudopotentials®® are used to represent atoms.

For CioH,, CioHyy, and CioHag, a kinetic energy cutoff of 400 eV is used for KS-DFT-EXX
and ECDA-envOF(TF) calculations, and n = 5000 is used for electron density partitioning.
Troullier-Martins pseudopotentials are used. The molecules’ structures mainly follow Ref.8
For CioH,, C-H bond is 1.091 A, C-C triple bond is 1.263 A, and C-C single bond is 1.320
A. For C15H14, C-H bond is 1.091 A, C-C single bond is 1.462 A, C-C double bond is 1.369
A, C=C-C angle 124.5°, C=C-H angle (inside the chain) is 118.3°, and C=C-H angle (at
the two ends of the chain) is 121.7°. For Cj3Hag, C-C bond is 1.534 A, and C-C-C angle
is 113.7°. For the H atoms inside the chain, C-H bond is 1.10 A, and H-C-H angle is

18



106.1°. The coordinates of the six H atoms at the two ends of the chain are optimized using
NWChem program (version 6.8).%% During the optimization, all other atoms are fixed. The
geometry optimization is performed using the Becke, 3-parameter, Lee—Yang-Parr (B3LYP)
XC functional® and 6-311G** basis set.

The Na nanorod is built from the body-centered cubic Na bulk with a lattice parameter of
4.282 A. The MgO nanorod is built from the cubic MgO bulk with a lattice constant of 4.217
A. Their structures are shown in Figure 10. These nanorods are centered in large unit cells,
with the distance between periodic images to be 10 A in all directions. Na and Mg’s norm-
conserving pseudopotentials®” are generated using the fhi98PP program.®® Since the current
formalism of ECDA does not support the nonlinear core correction,®® these pseudopotentials
do not have the nonlinear core correction. The pseudopotentials are generated for the ground

O and

states of the atoms. Na and Mg’s pseudopotentials are generated using Hamann®
Troullier-Martins®® schemes, respectively. The s and p angular momentum channels are used
as the local potentials for Na and Mg, respectively. To reduce computational cost, kinetic
energy cutoffs of 50 eV and 300 eV are used for the Na and MgO nanorods, respectively.
For the Na nanorod, n = 200 is used for the electron density partitioning. For the MgO
nanorod, the Zhao-Parr method is unable to converge due to the charge sloshing of the
sum of the cluster and environment’s electron densities.?! The reason is that atoms in ionic
systems are far from charge neutral. Therefore, p.,(r) + peny(r) — pror(r) can produce large
embedding potential at small wave vectors, due to the attenuated Coulomb potential in the

Yukawa function. To avoid such problem, we replace the Yukawa function with 57 [(pa.(r')+

Peno(Y') — prot(r)))2d3r” (with n = 2000), which leads to smooth convergences.

4 Results and discussion

In what follows, ECDA calculations with environments treated by KS-DFT are denoted by

ECDA-envKS. ECDA calculations with environments treated by OF-DFT are denoted by
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ECDA-envOF. ECDA-envOF calculations with environments treated by TFm KEDF are
denoted by ECDA-envOF(TF). ECDA-envOF calculations with environments treated by
TFm+;vWm are denoted by ECDA-envOF(TF+3vW).

4.1 Compare ECDA-envKS with ECDA-envOF

The comparison between ECDA-envKS and ECDA-envOF is made on two systems: es-
ter and Cl-tetracene, with their structures given in Fig. 2. In Table 1, we compare the
total energies from ECDA-envKS and ECDA-envOF calculations. All calculations are self-
consistent. Three different cluster sizes are considered: N, = 1, 2, and 3, which indicates
that the first, second, and third nearest neighbors are included for defining clusters, respec-
tively. For ECDA-envOF calculations, environments are treated by two different KEDFs:
TF and TF+§vW. Table 1 shows that ECDA-envOF(TF), ECDA-envOF (TF+5vW), and
ECDA-envKS give similar results. As N, increases, ECDA results gradually converge to
KS-DFT-EXX results. Table 2 shows the dipole moments of the two molecules. We have
similar observations: ECDA-envKS and ECDA-envOF give similar results, and also ECDA
results gradually converge to KS-DFT-EXX results for large V.

The good agreement between ECDA-envKS, ECDA-envOF (TF), and ECDA-envOF(TF+3vW)
is due the fact that they give similar cluster electron densities. Taking Cl-tetracene as an
example, Figure 3 shows the cluster densities for a specific cluster calculated with the en-
vironment treated in different ways. Even though the three cluster densities are slightly
different at the cluster-environment boundaries, they are nearly the same inside the cluster.
On the other hand, we only consider the XC energy density around the central atom (marked
by the red circles in Figure 3), when constructing the system’s XC energy with Eq. 9. This
largely removes the boundary effect caused by the different treatments for the environments.
As a result, the system’s XC energy has a weak dependence on how the environments are
treated.

Above observation suggests that ECDA-envKS can be replaced by ECDA-envOF in
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(a) ester

Figure 2: Structures of (a) ester and (b) Cl-tetracene. Oxygen, carbon, hydrogen, and
chlorine atoms are red, brown, grey, and green.

Table 1: Total energies (in Hartree) from self-consistent ECDA-envKS and self-consistent
ECDA-envOF calculations for ester and Cl-tetracene.

ester  Cl-tetracene

Nb =1

ECDA-envKS 91.587  -120.634
ECDA-envOF (TF) -91.580  -120.640
ECDA-envOF (TF+3vW) -91.581  -120.637
Nb =2

ECDA-envKS 91.423  -120.566
ECDA-envOF (TF) 91.421  -120.569
ECDA-envOF (TF43vW) -91.421  -120.568
Ny, =3

ECDA-envKS -91.474  -120.543
ECDA-envOF (TF) -91.474  -120.543

ECDA-envOF (TF45vW)  -91.475  -120.542

KS-DFT-EXX -91.484 -120.553
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(a) KS-DFT

Figure 3: The cluster (yellow) and environment (blue) electron densities from treating the en-
vironment using KS-DFT, TFm, and TFm+1/9vWm, respectively. The clusters are defined
for the central atoms (marked by the red circles) with N, = 2.
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Table 2: Dipoles (in Debye) from self-consistent ECDA-envKS and self-consistent ECDA-
envOF calculations for ester and Cl-tetracene.

ester Cl-tetracene

Ny =1

ECDA-envKS 1.68 2.68
ECDA-envOF (TF) 1.70 2.87
ECDA-envOF(TF+3ivW)  1.72 2.86
N, =2

ECDA-envKS 1.98 2.19
ECDA-envOF (TF) 1.93 2.30
ECDA-envOF (TF+5vW)  1.97 2.26
N, =3

ECDA-envKS 1.94 2.53
ECDA-envOF (TF) 1.90 2.57
ECDA-envOF(TF+5vW)  1.96 2.52
KS-DFT-EXX 1.91 2.58

future ECDA calculations. In addition, the good agreement between ECDA-envOF(TF)
and ECDA-envOF(TF+;vW) results suggests that we can use TFm KEDF to treat en-
vironments, which is computationally much cheaper than treating the environment with
TanL%VWm, due to the fact that the TF equation is easy to solve.

To further examine the performance of ECDA-envOF(TF), in Figures 4 and 5 we compare
the EXX potentials from self-consistent ECDA-envOF(TF) and self-consistent KS-DFT-
EXX calculations. Even for N, = 1, a good agreement between ECDA-envOF(OF) and
KS-DFT-EXX is observed. We observe that ECDA-envOF (OF)’s EXX potentials become
closer to the KS-DFT-EXX results as /N, increases.

The quality of the EXX potentials predicted by ECDA-envOF(TF) can be assessed by
examining the KS eigenvalues shown in Fig. 6. As N, increases, ECDA-envOF (TF)’s eigen-
values become closer to KS-DFT-EXX’s eigenvalues for the occupied orbitals. For the unoc-
cupied orbitals, the convergence is not very good, which may be due to the fact that EXX

functional does not depend on the unoccupied orbitals. We expect that the convergence can
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Figure 4: EXX potentials of ester from self-consistent KS-DFT-EXX and self-consistent
ECDA-envOF(TF) calculations, with different cluster sizes. Contour plane is defined by the
O1, O2 and C1 atoms in Fig. 2(a). Interval between contour lines is 0.1 a.u..

0.15

-0.8

Figure 5: EXX potentials of Cl-tetracene from self-consistent KS-DFT-EXX and self-
consistent ECDA-envOF(TF) calculations, with difference cluster sizes. Contour plane is
defined by the benzene rings in Fig. 2(b). Interval between contour lines is 0.1 a.u..

24



be improved, if ECDA calculations employ a correlation energy functional that depends on

the unoccupied orbitals.

(a) ester (b) Cl-tetracene
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Figure 6: KS orbital energies of (a) ester and (b) Cl-tetracene from self-consistent ECDA-
envOF (TF) calculations with different N, values and self-consistent KS-DFT-EXX calcu-
lations (benchmark). Occupied and unoccupied orbitals are indicated by solid and dashed
lines, respectively. The orbital energies of highest occupied orbitals are set to zero for easy
comparison.

4.2 Performance of ECDA-envOF(TF) on carbon chains

Three polymers (polyyne, polyacetylene, and polyethylene) were recently used to investigate
the performance of the periodic density embedding theory“? (a variant of the density matrix
embedding theory?® by adjusting a bath’s chemical potential). And polyyne was also used
to examine the performance of the periodic density matrix embedding theory.? Here, we
examine the performance of ECDA on similar systems. Since we have not implemented
ECDA for the periodic boundary condition, we cannot simulate these polymers here. Instead,
we perform ECDA calculations on three molecules (a) CioHsg, (b) Ci2Hi4, and (c¢) CioHag,
to mimic these polymers. Structures of these molecules are shown in Fig. 7. CyoHs has

an alternating C=C-C structure for mimicking polyyne. CioHy4 has an alternating C=C-
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C structure for mimicking polyacetylene. CioHog mimics polyethylene. Details of these
structures are given in the “Numerical Details” section. In what follows, we examine the

performance of ECDA-envOF(TF) for patching EXX energies in these molecules.

(@) CyoH,

(b) C12H1g

A A A

©) Ci2Hze

O Q O

Figure 7: Structures of (a) CioHa, (b) C12Hyy, and (¢) Ci12Hgg. Carbon atoms are brown and
hydrogen atoms are grey.

All carbon chains are uniformly stretched /compressed by a scaling factor . Only carbon-
carbon bonds are scaled by «, and other geometry parameters are kept fixed, except CioHog
for which the six hydrogen atoms at its two ends are optimized for different o values. Fig. 8
shows the total energies versus the scaling factor . ECDA results converge to KS-DFT-
EXX results as NV, increases. In the lower subplots, we plot the energy error per atom. For
all molecules, the errors are smaller than 5 mHa by including atoms up to the third nearest
neighbors (i.e., N, = 3) for defining the clusters.

Fig. 8 also shows that all ECDA energy curves are smooth. Smooth energy curves are
important for structure-related calculations, e.g., structure optimization and phonon calcula-
tions. The smoothness is largely due to the use of density partitioning for defining clusters,

which makes the clusters’ electronic structures to change smoothly as the molecules are
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Figure 8: Total energies versus scaling factor o for CigHy, C1oHyy, and CioHgg from self-
consistent KS-DFT-EXX and self-consistent ECDA-envOF(TF) calculations. Errors per
atom are shown in lower subplots.

stretched /compressed. This is different from the local correlation methods based on local-
ized molecular orbitals. In these methods, localized molecular orbitals need to be carefully
selected to make sure that clusters’ electronic structures change smoothly as molecular struc-
ture changes. This is challenging, if some localized orbitals span both the cluster and the
environment. Density partitioning does not have such problem, because clusters are defined
by directly cutting the bonds at cluster-environment boundary. However, this causes one
problem: The dangling bonds at the cluster-environment interfaces can affect the electronic
structures inside the clusters. This is expected to be the reason for the zigzag convergence
observed for CioHog: The energy curves of N, = 1 and N, = 3 are lower than the benchmark,
while the energy curve of N, = 2 is higher than the benchmark. Nevertheless, for a given
Ny, ECDA produces smooth energy curves that follow well with the benchmarks. Such good
agreement should be largely due to the fact that density embedding suppresses the effect
from the dangling bonds by enforcing the cluster and the system’s electron densities to match
inside the cluster.

In Figure 9, we examine the KS eigenvalues from KS-DFT-EXX and ECDA-envOF(TF)
calculations. Their agreement on the occupied orbitals becomes better as N, increases;

however, ECDA’s predictions for the gaps between the highest-occupied molecular orbitals
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(HOMOs) and the lowest occupied molecular orbitals (LUMOs) (Table 3) are not improved
by increasing N,. It is not clear why ECDA’s gaps decrease slightly as [V, increases from 1 to
3. By comparing Figure 8 and Table 3, we find no much correlation between the convergence
of the total energies and the convergence of the HOMO-LUMO gaps. ECDA gives the largest

error for CioHy’s energies but gives the best predictions for CigHy’s HOMO-LUMO gaps.

(a) CyoH, (b) CpHyy (c) Cy2Hz
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Figure 9: KS orbital energies from self-consistent ECDA-envOF(TF) and self-consistent
KS-DFT-EXX calculations (benchmark) for @« = 1. Occupied and unoccupied orbitals are
indicated by solid and dashed lines, respectively. The highest occupied orbitals are shifted
to zero for easy comparison.

Table 3: HOMO-LUMO gaps (in eV) from self-consistent KS-DFT-EXX and self-consistent
ECDA-envOF(TF) calculations (with different Ny).

C10H2 Cl2H14 C12H26
KS-DFT-EXX  2.09 163  3.95
ECDA (N,~1) 2.04 161  3.66
ECDA (N,—2) 1.99 156  3.40
ECDA (N,—3) 1.99 154  3.40

4.3 Performance of ECDA-envOF(TF) on the Na and MgO nanorods

In the previous sections, we have investigated the performance of ECDA-envOF(TF) on
several covalent systems. In what follows, we investigate its performance on one metallic (a
Na nanorod) and one ionic system (a MgO nanorod). Details about their structures and

calculations are given in the “Numerical details” section. For both nanorods, we examine
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the energy versus a uniform scaling of the rods’ lengths. To obtain smooth energy curves,
for different NV, values the clusters are defined based on the unscaled structures. For each

atom, its nearest neighbors are defined according to the bonds shown in Figure 10.

(a) Na nanorod

(b) MgO nanorod

Figure 10: The structures of (a) Na and (b) MgO nanorods. In subplot (b), oxygen atoms
are red and Mg atoms are brown.

Figure 11 gives the total energy versus the scaling for the Na nanorod. The ECDA curve
with N, = 1 deviates from the KS-DFT-EXX curve for a > 1, due to the fact that the
density matrix decays slowly in metallic systems and therefore clusters defined by N, = 1
cannot capture the long-range exchange. The ECDA energy curve is much improved by using
larger clusters (i.e., N, = 2 and 3). Figure 12 shows the energy versus the scaling for the
MgO nanorod. Even with N, = 1, ECDA’s energy curve agrees well with the KS-DFT-EXX
curve, due to the fact that the density matrix decays fast in this ionic system. In addition,
the error per atom is much less than the Na nanorod. One puzzle is that the errors do not
decrease much for large N,. N, = 3 is expected to produce smaller errors than N, = 1;
however they give similar errors. To check whether this unexpected observation is due to the
finite  used in the Zhao-Parr method, we increased n to 2 x 10° for the o = 1.0 case and
found that the changes of the total energies are less than 1 mHa. Therefore, this unexpected
observation seems not to be due to a finite 7. The reason for this unexpected observation is

still unclear at this point and should be investigated in the future work.
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Figure 11: Total energy versus a uniform scaling of the Na nanorod from self-consistent
KS-DFT-EXX and self-consistent ECDA-envOF (TF) calculations. The lower subplot gives
the total energy error per atom.
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Figure 12: Total energy versus a uniform scaling of the MgO nanorod from self-consistent
KS-DFT-EXX and self-consistent ECDA-envOF(TF) calculations. The low subplot gives
the total energy error per atom.
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5 Computational aspect of ECDA

Compared to a conventional KS-DFT calculation on the full system, ECDA saves the cost
by calculating the system’s XC energy in an atom-by-atom manner. Its overhead is mainly
from two tasks: (1) the density partitioning using the Zhao-Parr method and (2) solving z(r)
with Eq. 56. The overhead cost can be much reduced by treating the environments with OF-
DFT. Taking the MgO nanorod for example, we briefly show the reduction of the overhead
cost. Both ECDA-envOF(TF) and ECDA-envKS calculations are performed with N, = 3.
For ECDA-envKS calculations, we assign one CPU for each cluster and one CPU for each
environment. For ECDA-envOF calculations, each cluster together with its environment is
solved by one CPU. This shows another benefit from treating the environments with OF-
DFT: The number of CPUs can be reduced by half. With ECDA-envOF(TF), the average
cost of each iteration of the Zhao-Parr method is nearly halved: 38 seconds for ECDA-
envOF (TF) and 76 seconds for ECDA-envKS. The average cost of each iteration for solving
z(r) is reduced by 33%: 9 seconds for ECDA-envOF(TF) and 14 seconds for ECDA-envKS.
The cost reduction should be more significant for large systems.

We note that our current implementation of ECDA is inefficient: a system and its clusters
are put in the same unit cell. This makes the costs of these cluster calculations in tasks (1)
and (2) scale with the system’s size. In the future, clusters will be put in the super cells
whose sizes are determined by the clusters. This will further reduce the overhead cost.

For large systems, ECDA-envOF’s computational cost will be dominated by the following
tasks: (a) solving the system’s KS equation, (b) solving the system’s OEP equation (Eq. 34),
and (c) calculating p; in Eq. 54. The cost of task (a) is determined by the implementation of
KS-DFT and can be reduced by combining ECDA with linear-scaling KS-DFT methods. %49
Tasks (b) and (c) are costly, since they depend on solving the system’s Sternheimer equation.
In addition, task (b) is about N,, times more expensive than task (c), where N, is the
number of iterations for solving the system’s OEP equation. In the future work, we will

try to completely avoid task (b) by directly minimizing the system’s energy against its KS
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potential (v,) as suggested by Yang and Wu.%

6 Conclusions

By treating environments with OF-DFT, in this work we have removed two computational
bottlenecks in ECDA calculations: (a) partitioning the system’s electron density among
clusters and environments and (b) calculating environments’ linear responses for build-
ing the system’s XC potential. With two examples (ester and Cl-tetracene), we showed
that ECDA-envOF and ECDA-envKS gave very similar results even with small clusters.
Therefore, ECDA-envOF can be used in future ECDA calculations. Two KEDFs (TFm and
TFm-+1/9vWm) were employed for treating environments. Their performances were similar.
Since the cost of OF-DFT calculations with TFm KEDF is much less, ECDA-envOF(TF)
should be used in future calculations.

Another focus of this work is to investigate ECDA-envOF(TF)’s performance on different
types of systems: covalent, metallic, and ionic. For covalent systems, we employ ECDA-
envOF(TF) to study three hydrocarbons that have different types of carbon-carbon bonds.
The energy curves for stretching/compressing these molecules followed the benchmarks well
even for clusters that only contain the nearest neighbors. For metallic and ionic systems, we
examined the Na and MgO nanorods. Due to the slow decay of the density matrix in metallic
systems, it is found that clusters need include atoms up to the second nearest neighbors for
the Na nanorod. For the MgO nanorod, even with N, = 1, ECDA-envOF (TF) results agreed
well with the benchmark, due to the fast decay of the density matrix in ionic systems. These
examples demonstrate that ECDA’s performance depends on how rapidly electron correlation
decays. It was also observed that the energy curves for stretching/compressing these systems
were smooth, which suggests that ECDA-envOF(TF) is applicable to structure-related tasks,
such as geometry optimization and phonon calculations. Forces are needed for structure-

related tasks and can be derived for ECDA-envOF(TF) following the similar way as in our
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recent work. 5!

In summary, by removing the computational bottlenecks related to environment calcu-
lations and showing the good performance of ECDA-envOF(TF) in systems with different
types of bonds, we expect ECDA-envOF(TF) to become an efficient and nearly black-box lo-
cal correlation method for scaling up high-level KS-DFT calculations in large heterogeneous

materials.
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A Linear response for a system treated by OF-DFT with

TFm KEDF

For the case that environments are treated by TFm KEDF, their total energies are Fop =
Tremlp)+ [ p(r)v(r)dr?®, where v is the external potential. Note that Hartree and XC energies
are not considered, since environments are modeled as non-interacting electron systems. We
then have vrpy (r) +v(r) = p, where vrp,(r) = 07rrm/dp(r) and p is the chemical potential.

Linearizing the equation for a given Awv, the perturbed electron density is

Ap(r) = (Ap — Av(r))/Krpm(r), (57)
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where Krpy(r, 1) = 0*Trrn/0p(r)p(r’) is TFm’s kernel. Ay is calculated based on the

conservation of electron density [ Ap(r)dr® = 0:

B fKT_ém(r,r)Av(r)d?’r
[ K r)dr

Ap (58)

B Linear response for systems treated by OF-DFT using

TFm--AvWm KEDF

For the case that an environment is treated by TFm+AvWm KEDF| its total energy is

Eor = Trrm[p] + Mowm|p] + / p(r)v(r)d’r. (59)

Define the Lagrangian

Lo = For ([ olrfar - ). (60)

where ¢(r) = /p(r). The last term is for conserving the electron number N. g is the
Lagrangian multiplier. Based on dLor/d¢(r) = 0 and replacing ¢ with ¢,,, we obtain the

equation for ¢y,

Hop |¢m> =p |¢m> ) (61)

with Hop = —%V2 + Uset and vger(r) = (vrFm(r) + v(r))/A. Given a perturbing potential

Avg, the perturbation A¢,, can be calculated using the Sternheimer equation
[Hor — b+ P |A¢n) = —P.M |Avgy) (62)

where P, = |¢n) (¢m] is the projector to the occupied space and P, = 1 — P,. M is a matrix
whose diagonal elements are ¢,,, that is, M(r,r’) = 6(r — r’)¢n(r). Since Avgs depends on
Ad¢.,, we have to solve above equation self-consistently as in conventional density functional

perturbation theory. To avoid solving Eq. 62 self-consistently, we can write Avgs in terms
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of Av and A¢y,
2
|Avger) = |Av) + XKTFmM |Ad) - (63)

After inserting |Avss) into Eq. 62, we obtain the equation for |A¢y,)
2
Hop —p+ P, + XPCMKTFmM |A¢y) = —P.M |Av) . (64)

The above linear system cannot be solved using the conjugate gradient method, since the
operator P.M Krp, M on left-hand side is not symmetric. To overcome this issue, we can
replace it with P.M Krp,MP,, due to the fact that |A¢y,,) is orthogonal to ¢,. Since
P.M KtpM P, is positive-definite and symmetric, Eq. 64 can be solved by the conjugate

gradient method. After obtaining A¢,,, the perturbed electron density is calculated by
Ap(r) = 26 (r) Agrn ().

C The calculation of §p(r)/dN for systems treated by OF-

DFT using TFm+AvWm KEDF

Consider a system with its total energy defined by Eq. 59. Normalize ¢, as ¢'(r) =
ém(r)/v/'N + Qpo, where Q is the volume of the simulation cell, and we have [ ¢/(r)?d*r = 1.

@' is related to p as

p(r) +po = (N + Qpo)[¢/ (r)]*. (65)

Note that ¢’ is also the solution to Eq. 61, and therefore the Sternheimer equation for solving

A¢' (due to Avgg) is similar to Eq. 62 and is
[Hor — i+ P |A¢") = —P.M' |Avg) , (66)

where P, = |¢/) (¢/| and P. =1 — P,. M’ is a diagonal matrix with the diagonal elements
equal to ¢’ (i.e., M'(r,r) = ¢/(r)). Since Avg depends on A¢’, Eq. 66 has to solved self-
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consistently. To avoid solving Eq. 66 self-consistently, we derive the expression for Awvg.

Based on Eq. 65, a change of electron number (0/N) causes a change in p(r) as
Sp(r) = ¢'(r)20N + 2(N + Qpo)¢' (r)6¢' (r). (67)

0p then causes a change in vy as

5 sc / /
dvget(r) = ;}p(fr(’r).) Sp(x')dr

_ 5TN/KTFm(r,r’)¢/(r')2d3r’+M/KTFm(I'»r')ﬁb'(r')w,(r/)dgr(ﬁg)

Inserting Eq. 68 into Eq. 66, we obtain the equation for A¢’

A

|:HOF_M+P1)+ 3

1 .
PCM,KTFIHM/:| AQS/(I') = __PCM/KTFm¢/(r)3‘ <69>

Again, we can make above linear system to be symmetric by replacing P.M'Krtg, M’ with
P.M'K1pyM'P,, due to the fact that A¢’ is orthogonal to ¢’. The new linear system can

then be solved using the conjugate gradient method. Finally dp/0N is given by

= ¢/(r)* + 2(N + Qpo) ' (r) Ag(x). (70)
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