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ARTICLE INFO ABSTRACT

Editor: Marie Weiss Mangrove forests have witnessed significant changes resulted from both anthropogenic and natural disturbances
in the last four decades. Although a few attempts have been reported, effective methods that can repeatedly
generate large-scale mangrove maps on a timely basis are still lacking due to the difficulty in gathering sufficient
training samples in large geographical areas. In this study, we have addressed three objectives in the following
manner: (1) we aim to develop a method to automatically collect ample mangrove training samples; Corre-
spondingly, we developed an automatic training sample collection method which extracted unchanged mangrove
samples from a historical mangrove map; In addition, we employed a region growing method to include more
diversified training samples; (2) we strive to foster compatible classifiers that can leverage the collected one-class
training samples; To this end, we came up with two representative one-class classifiers: the Support Vector Data
Description (SVDD), and the Positive and Unlabeled Learning algorithm (PUL); (3) we endeavor to compare the
effectiveness of various combinations of training samples, classifiers, and input images; As a result, we developed
32 classification models by varying four different variables: training samples (unchanged vs. expanded), input
data (Landsat 8, Sentinel-1, and Sentinel-2), classifiers (SVDD vs. PUL), and study sites (Florida, the United States
and Guangxi, China). We found that our developed automatic training sample collection methods performed well
(user's accuracy >97%). Inter-annual NDVI combined with geometric restrictions warranted the effective
extraction of unchanged training samples while the region growing method further reduced the omission due to
its addition of recently emerged mangroves. In addition, PUL performed better than SVDD. This is attributed to
the fact that PUL draws upon not only mangrove samples, but also unlabeled ones unaccounted for in SVDD.
Lastly, the combination of Sentinel-1 and Sentinel-2 is recommended among all the compared models. In sum-
mary, we developed an effective method to automatically extract mangrove training samples, based on which a
one-class classification method for large-scale mangrove mapping is made possible. We envision our methods
will contribute to a wide spectrum of timely large-scale mangrove mapping tasks.
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1. Introduction

Mangrove forests are shrubs or trees distributed along coastal areas
between approximately 30° N and 30° S latitude (FAO, 2007; Giri et al.,
2011). They are treated as a cradle of biological diversity due to their
excellent capability of decontamination, water conservation and
nutrient storage (Kathiresan, 2003; Mumby et al., 2004). Thanks to their
heavy root systems which conserve massive carbon and nutrients, the
organic carbon fixation capacity of mangrove forests is almost four times
greater than that of other terrestrial forests, making mangrove forests
indispensable for global carbon cycle studies (Donato et al., 2011).
Moreover, due to the rich food webs and stable environment, mangrove
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forests are excellent food obtaining sites and perfect shelters. For
example, they support various organisms from bacteria to large preda-
tors both in the forests and offshore areas (Blaber and Milton, 1990).
Therefore, mangrove forests play a significant role for studies on the
global carbon cycle and biodiversity (Wang et al., 2019).

Nevertheless, for the last four decades, mangrove forests have been
continuously shrinking as a result of human activities and climate
change (Nicholls and Cazenave, 2010; Richards and Friess, 2016). About
35% of mangrove forests have disappeared from the year 1980 to 2000
worldwide (Schaffelke et al., 2005; Valiela et al., 2001). The global
deforestation rate in mangrove biomes from 2000 to 2012 was 4.73%,
with an annual loss rate of 0.39% (Hamilton and Casey, 2016). The
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primary cause for the shrinking is the conversion of mangrove forests to
aquaculture (Alongi, 2009). About one third of the coastal and offshore
adult fish caught in Southeast Asia develop in mangrove forests (Alongi,
2009). Such a rapid change compounded by various deforestation ac-
tivities have led to an urgent demand for mapping mangrove distribu-
tions at a large scale on a timely basis.

To our knowledge, since 2010, large-scale mangrove mapping has
become more and more automatic to satisfy the requirement of timely
mapping (Chen et al., 2017; Giri et al., 2015; Giri et al., 2011; Jia et al.,
2014a; Thomas et al., 2017; Tieng et al., 2019). Before 2010, large-scale
mangrove products were compilations of local or national mangrove
maps (FAO, 2007; Spalding et al., 2010). They were not consistent and
not comparable in different locations. In order to solve this problem, Giri
et al. (2011) generated the first comprehensive, globally consistent and
high-resolution mangrove map, the Mangrove Forests of the World
database (MFW), using hybrid supervised and unsupervised digital
image classification techniques. This map offered a good reference for
global forests and carbon cycle studies. It was widely acknowledged as a
reference in a large part of national or global forests studies (Hamilton
and Casey, 2016; Thomas et al., 2018). However, in the process of un-
supervised classification, they had to interpret and label mangrove areas
in approximately 1000 Landsat scenes globally, according to field data
and high-resolution imagery scene-by-scene. Timely repeating their
method to produce new mangrove maps was difficult. Thus, in recent
years, many studies have been proposed to address this problem by
promoting the automation of mangrove mapping methods (Bunting
et al., 2018; Hamilton and Casey, 2016; Thomas et al., 2018; Yancho
et al., 2020). Instead of using remote sensing imagery, Hamilton and
Casey (2016) mapped global mangrove cover annually at high spatial
resolution using existing forest and terrestrial ecosystem products. Using
MFW from the year 2000 as a baseline, the Global Forest Change data-
base (GFC) (Hansen and DeFries, 2004) was queried for deforestation to
produce a new mangrove map for the year 2001. This process was
repeated for every year from 2001 to 2012. In addition, forest changes in
the entire mangrove biome were mapped by integrating the Terrestrial
Ecosystem of the World database (Olson et al., 2001) and GFC using the
same method. Finally, they successfully mapped the sub-pixel mangrove
fractions, and detected the deforestation patterns of global mangrove
forests and mangrove biome from 2000 to 2012. Nevertheless, their
method relied on existing map products, which may cause error accu-
mulation. The updating period of this map had to follow the update of
these products. Moreover, newly planted mangrove forests were not able
to be delineated in their mangrove maps. To avoid these issues, super-
vised mangrove mapping methods using remote sensing imagery are
widely utilized (Bunting et al., 2018; Chen et al., 2017; Yancho et al.,
2020). Among these efforts, one of the most compelling studies was
proposed by Bunting et al. (2018). It was the first time a new global
mangrove forest distribution database, the Global Mangrove Watch
(GMW), was created with a globally consistent and automated classifi-
cation method. In lieu of unsupervised classifiers, they developed a two-
iteration mangrove mapping method with a supervised classifier, the
Extremely Randomized Trees classifier. Advanced Land Observing Sat-
ellite data and Landsat imagery, which are complementary to each
other, were used as data sources. Nevertheless, in order to ensure the
high accuracy of mangrove mapping, visual interpretation was applied
in most processes: In the creation of a mangrove habitat mask, the results
should be checked manually one by one; For the classification of
mangrove and non-mangrove land covers, visual interpretation was
required to check and edit the training data. It may cost several weeks
even with well-trained staff. In addition, Yancho et al. (2020) developed
a new tool, the Google Earth Engine Mangrove Mapping Methodology,
to monitor the extent of mangrove forests worldwide. It is a tool that can
be easily accessed and reused by “non-specialist coastal managers and
decision makers.” In addition, this tool has a proven ability to success-
fully map mangrove forests in Myanmar. Overall accuracies for both
historical and contemporary mangrove maps they made were all above
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97%. Thus, it has a high potential for application in large-scale
mangrove mapping. However, training samples in this study were still
manually collected. Therefore, to further expedite the automation, three
contingent questions must be addressed: How to timely collect ample
training samples for large-scale mangrove mapping? Which supervised
classification method is suitable for these training samples? Which
combination of training samples, classifiers, and input images are better
for large-scale mangrove mapping?

Training samples have a hard time to be updated as they were
traditionally collected from fieldwork, published literature, training
sample products, or visual interpretation (Friedl et al., 2002; Mahdian-
pari et al., 2020; Tian et al., 2020). In order to ease the way in training
sample collection, existing historical maps were used as a reference in
many large-scale mapping studies (Chen et al., 2016; Radoux et al.,
2014; Thomas et al., 2018). However, since the distribution of land
covers is changing with time and most mangrove map products are not
100% accurate, historical maps cannot represent current land cover
distribution. Simple processing procedures, such as calculating in-
tersections of different historical maps or making a possibility map for
each land cover, are not enough. A great number of mislabeled pixels
still exist. In order to collect high-quality training samples, visual
interpretation or further processing are required. Fortunately, an auto-
matic training sample collection method in large-scale land cover
mapping offers encouragement. Radoux et al. (2014) believed that
pixels along geographical boundaries between two different land cover
types were more likely to be incorrectly labeled. In addition, they
assumed that for each land cover type, spectral signatures were normally
distributed. Thus, pixels along boundaries and pixels which were out-
liers in spectral signatures were all discarded to create a training sample
dataset. However, for large-scale mangrove training sample collection,
how to define the boundary of mangrove forests and how to find an
index to remove outliers are still questioned.

Besides the challenge of training samples, a viable classification
method is still required. The commonly used supervised classification
methods for mangrove mapping are decision tree and maximum likeli-
hood classifiers as they required relatively less amount of training
samples when compared with other machine learning methods, such as
deep learning (Diniz et al., 2019; Giri, 2016). However, they required
training samples for all the land covers in mangrove ecoregions, which
are still difficult to collect at large scales. By contrast, one-class classi-
fiers only require samples for a target land cover, which saves time and
labor in training sample collection (Khan and Madden, 2014). According
to the training data they used, one-class classification can be classified
into two categories. The first one only requires training samples for the
target land cover (Khan and Madden, 2014; Tax and Duin, 1999a; Tax
and Duin, 1999b). They aim to develop a boundary around the samples
in feature space. Only objects inside the boundary are classified as the
target land cover. Another category of one-class classification is trained
with randomly collected unlabeled data and samples for the target land
cover (Chen et al., 2016; Denis et al., 2002; Khan and Madden, 2014).
The possibility of a pixel as the target land cover can be derived by
comparing it to these two sample sets. However, to our knowledge,
neither of the two categories of one-class classifiers have been used in
large-scale mangrove mapping. Thus, it is worthwhile to exploit the
performance of one-class classifiers in large-scale mangrove mapping.

To investigate automatic mangrove mapping methods, one inevi-
table question is what kinds of remote sensing data can be employed.
Before Sentinel imagery became available, Landsat imagery was the
primary data source for large-scale mangrove mapping because they are
available globally and have full temporal coverage starting from 1972
(Giri et al., 2015; Islam, 2017; Long et al., 2014). In recent years, as
Sentinel imagery offers Synthetic Aperture Radar (SAR) images unaf-
fected by clouds and multi-temporal optical images with higher tem-
poral and spatial resolution, a lot of researchers started to use them
(Chenetal., 2017; Jia et al., 2019; Tieng et al., 2019). Given the fact that
Landsat imagery and Sentinel imagery represent the two predominant
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long-term remote sensing data in the public domain, it is worthwhile to
compare their mapping performance despite their respective spectral,
spatial, and temporal resolution.

To summarize, the objective of this study is to create a suitable
method for mapping large-scale mangrove forests. Corresponding to the
aforementioned three challenges, the particular objectives of this study
include three aspects: (1) To automatically collect sufficient training
samples for large-scale mangrove mapping; (2) To find a suitable clas-
sification method for large-scale mangrove mapping; (3) To compare the
effectiveness of our classification method with different training sam-
ples, data sources and classifiers in different locations.

2. Study areas and data
2.1. Study areas

In order to test the reusability of our methods, two typical study sites
were selected: the coastlines of Florida, the United States and the
coastlines of Guangxi, China. Distribution patterns, species diversity and
land cover adjacent to mangrove forests in the two locations are
completely different. In Florida, mangrove forests cluster in large
patches. There are three major mangrove species (Avicennia germinans,
Laguncularia racemose and Rhizophora mangle), the height of which are
from 9 m to 12 m (Feliciano et al., 2017). Conversion of mangrove
forests to impervious areas or ponds rarely happens there, as the Ever-
glades National Park has provided protection for about 76% mangrove
forests in Florida since 1947 (Feliciano et al., 2017; Simard et al., 2006).
Thus, a great amount of mangrove forests is adjacent to other types of
forests. Alternatively, in Guangxi, mangrove species are more diverse:
15 species are found (Zhang et al., 2007). Eight species dominate there:
Avicennia marina, Aegiceras corniculatum, Kdel, Rhizophora stylosa, Bru-
guiera gymnorrhiza, Excoecaria agallocha, Acanthus ilicifolius and Heritiera
littoralis (Liang, 2000). The average heights for most of them are less
than 3 m (Jia et al., 2014b; Li, 2004). Different from mangroves in
Florida, a lot of mangrove forests in Guangxi are surrounded by ponds
and artificial constructions, due to conversions of mangrove forests to
aquaculture from 1980 to 2008 (Fan and Wang, 2017). Therefore, we
selected Florida and Guangxi to test our methods in two different situ-
ations. Only coastal areas of the two study sites were considered, since
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mangrove forests are found along coastlines. Coastal areas were delin-
eated according to the administrative boundaries of the United States
and China. 20-km buffer zones for the coastlines were created as our
study areas (Fig. 1).

2.2. Datasets

In order to get the recent status of mangrove forests in our study
areas, we tested our methods by mapping the distribution of mangrove
forests for the year 2018. A detailed description of the data for training
sample collection, the data for classification, and the auxiliary data were
introduced in the following three paragraphs respectively.

For training sample collection, the MFW and the time-series Landsat
5 and 8 surface reflectance images from 2000 to 2018 were used. Taking
MFW as a base map, Landsat images were used to collect mangroves
unchanged from 2000 to 2018. The MFW from the year 2000 was
downloaded from the UN Environment World Conservation Monitoring
Centre website. All the Landsat images from the year 2000 to 2018 were
obtained from Google Earth Engine (GEE) (Gorelick et al., 2017). In
these Landsat images, pixels considered to be clouds were masked out
according to the “pixel_ qa” band, a Landsat band describing cloud
condition in each pixel.

In mangrove classification, SAR, optical images and topographic
information were considered. Mangrove forests are evergreen forests
having distinctive phenology. Thus, time-series SAR and optical images
were utilized. In addition, topographic information was used to further
exclude regions where mangrove forests unlikely occur, such as regions
with high elevation or on a steep slope. To be more specific, the effect of
Sentinel-1, and two commonly used optical data, Landsat 8 surface
reflectance products and Sentinel-2 surface reflectance products
(abbreviated as Landsat 8 and Sentinel-2, hereafter), were tested to find
a good data combination for large-scale mangrove mapping. In addition,
the 30-m Shuttle Radar Topography Mission (SRTM) digital elevation
data and their derived variable (slope) were used to provide topographic
information. Sentinel-1, Landsat 8, and SRTM were all obtained via GEE.
However, the surface reflectance products of Sentinel-2 do not cover our
study areas in 2017 and most months of 2018. We did atmosphere
correction for the Sentinel-2 top-of-atmosphere products from GEE using
a 6S radiative transfer model (Wilson, 2013). The code published by
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Fig. 1. Location of study areas: (a) Florida. (b) Guangxi.
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Murphy and Hard (2017) was utilized. Moreover, the Sentinel-2: Cloud
Probability dataset in GEE was used to remove clouds in Sentinel-2 with
a manually selected threshold 50%, while clouds in Landsat 8 were
masked out using the quality band, “pixel_qa”. To further eliminate the
influence of clouds, features were collected when the Normalized Dif-
ference Vegetation Index (NDVI) (Rouse et al., 1974) achieved the me-
dian and the maximum for each pixel in each season (Spring: March to
May, Summer: June to August, Autumn: September to November, and
Winter: December to the next year February). Nevertheless, after the
elimination of clouds, the remaining data was not complete for Spring
and Winter. Therefore, we assumed that the spatial extent of mangrove
forests did not change significantly during three consecutive years.
Additionally, data in Spring and Winter were combined as one season.
Thus, Landsat-8, Sentinel-2 and Sentinel-1 in 2017, 2018 and 2019, and
SRTM were collected to map the distribution of mangrove forests in
2018.

In addition, several auxiliary data were utilized in delineating the
potential mangrove areas and validating our results. The administrative
boundary maps of the United States and China were used to define
coastlines. The GMW for the year 2016 was used as a reference to
validate our results. Lastly, in order to evaluate the accuracy of our re-
sults, we visually interpreted 1533 non-mangrove and 541 mangrove
points in Florida, and 1499 non-mangrove and 451 mangrove points in
Guangxi, according to Google Earth Images.

3. Methods

The experimental design is shown in Fig. 2: Step 1, automatic
training sample collection; Step 2, phenology-based feature extraction;
Step 3, one-class classifiers; Step 4, knowledge-driven post-classification
processing.

3.1. Automatic training sample collection

In this section, we proposed a new method to automatically collect
training samples for large-scale mangrove mapping. Using the MFW
from the year 2000 as a baseline, a rigorous screening process was
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utilized to collect unchanged areas from 2000 to 2018. Then, a region
growing method was applied on the unchanged areas to increase the
amount and the diversity of our training samples. Samples collected
from the unchanged areas and the expanded areas were named as the
unchanged training samples and the expanded training samples,
respectively.

3.1.1. Unchanged training samples

The unchanged mangrove areas from the year 2000 to 2018 were
collected according to annual maximum NDVI values, spatial charac-
teristics and median NDVI values in 2018. Mangroves with diverse
annual NDVI values from the year 2000 to 2018 were discarded. During
this process, annual maximum NDVI values were collected for each
mangrove pixel from 2000 to 2018, except 2012, because Landsat 5 and
8 images were incomplete in 2012. Therefore, 18 NDVI values were
collected for each pixel. Standard deviation of these time-series NDVI
values was used to evaluate the change. Pixels with standard deviation
values greater than the average were considered having high potential
to have changed. We discarded them as the first step of unchanged
mangrove detection. This is because a great part of the changes in
mangrove forests were caused by human activities, sea-level rise and soil
erosion (Thomas et al., 2017). Mangrove forests were transformed into
ponds, bare soil and open sea areas, leading to a significant decrease in
NDVI. Then, spatial characteristics of mangrove pixels were considered.
In fact, the major change factors for mangrove forests had a high
probability to develop along boundaries. In order to ensure a high user's
accuracy of the unchanged areas we collected, mangrove regions ac-
quired from the previous step were shrunken 60 m inside. Finally, for
median NDVI values in 2018, pixels within the first 2 percentiles were
discarded to reduce errors inherited from the MFW. The MFW was not a
100% accurate product. In order to exclude the incorrect mangrove
pixels in it, we used the median NDVI in 2018 to remove non-vegetation
pixels in the unchanged areas. After these three steps, changed and
misclassified areas were discarded from the MFW. This ensured that the
delineated areas were the mangrove forests unchanged from 2000 to
2018. Almost all the three steps were implemented in GEE. We have
shared the GEE code of deriving time-series NDVI values in the following

Step 1: Automatic training sample collection (Section 3.1)

Time series Landsat 5&8
(2000-2018)

MFW

£2

Unchanged areas:

* No significant change in yearly maximum NDVI
« Not along the boundaries of mangrove areas
* High annual median NDVI in 2018

!

Unchanged
training samples

/ Unchanged areas
I

| Region growing |
!

/ Expanded areas

P
Exp
training samples

Step 2: Feature extraction
(Section 3.2)

Bio-characteristics:

Step 3: One-class classification (Section 3.3)

* Living in coastal areas
» Evergreen forests /
I

Optical images for 2018
(Landsat 8 or Sentinel-2)

SAR images
for 2018

(Sentinel-1)

Features:

« Elevation and slope
¢ Seasonal values :

SRTM DEM

One-class classifier

NDWI
Near-Infrared
Shortwave Infrared

I

Step 4: Post-classification processing (Section 3.4)

¢ SAR values: |

100-m distance to ocean areas |

\'A%

i

VH /

Mangrove distribution map in 2018 /

Ratio of VV and VH

Fig. 2. Flow chart of the proposed approach.
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link: https://code.earthengine.google.com/775c5b125daaac0c5514dc5
91e6e9877 .

3.1.2. Expanded training samples

A region growing method was used to expand the unchanged areas.
As the detected unchanged areas were in the centers of mangrove
patches, these areas were homogeneous and not able to completely
describe the variance of mangrove forests. The unchanged training
samples collected from these areas lacked mangrove pixels mixed with
other land cover types and pixels for newly planted mangrove species.
Therefore, region growing was used to solve this problem. The un-
changed areas were used as seed pixels. For each pixel, their Green, Red,
Near Infrared (NIR) and Shortwave Infrared (SWIR) bands' median and
max values in 2018 were collected as input features. Seed pixels spatially
connected were grouped together as seed regions. Mean feature values
were calculated for each region. Euclidean Distance from each seed to
the mean values were calculated in feature space. Through trial and
error, 1.02 times of the 98th percentile distance value was used as a
threshold to grow the region. Adjacent pixels of each seed region were
absorbed into the region when their distances to the mean feature values
were less than that threshold. Growing iterations and the number of new
seeds were tracked for each time. Growing iterations were limited to ten.
In addition, when the number of new seeds was less than 10% of the
largest number in previous iterations or there were no pixels satisfying
the requirement, the growing process for that region stopped. After the
region growing process, mangrove regions we created were considered
as expanded areas. The unchanged training samples, and the expanded
training samples were randomly selected in the unchanged areas, and
the expanded areas separately to analyze the impact of region growing
on mangrove mapping. As it was difficult to implement in GEE, the re-
gion growing method was implemented in Matlab, while GEE was used
to prepare the mean feature values.

3.2. Phenology-based feature extraction

In order to effectively delineate the distribution of mangrove forests,
features should clearly distinguish mangrove forests from other land
cover types. They were selected according to the bio-characteristics and
the structure of mangrove forests. Optical features, SAR features, and
elevation and slope were the three types of features (Table 1, Table 2)
selected for our mangrove classification. As GEE provided almost all the
datasets we needed except the Sentinel-2 surface reflectance products,
the entire feature extraction work was implemented in GEE.

The optical features included seasonal NIR band values, seasonal
SWIR band values and seasonal Normalized Difference Moisture Index
values (NDWI, Eq. (1)) (Gao, 1996). Vegetation and non-vegetation have
significant differences in NIR band, and SWIR bands. In addition, as tides
move along coastal regions, a commonly used water index, NDWI, was
utilized to distinguish mangrove areas from other inland forests.
Moreover, seasonal trajectory information (seasonal values for each
optical index) was used to describe the evergreen characteristic of
mangrove forests. The aforementioned features were collected for every
seasonal period when NDVI values were median and maximum.

The SAR features consisted of VV, VH and ratio of VV and VH. Their
median and maximum values in 2018 were collected. SAR images are
effective when clouds block optical information on the ground. Thus, in
recent years, SAR images were considered as complementary data

Remote Sensing of Environment 264 (2021) 112584

Table 2
Features collected from SAR images.
\'A% VH VV/VH
Yearly median value \/ \/ \/
Yearly maximum value \/ \/ \/

resources in mangrove mapping studies (Bunting et al., 2018; Chen
et al., 2017; Thomas et al., 2018; Wang et al., 2019). They provide
structural information on the ground's surface and are not affected by
clouds. Their effects were analyzed in our study by investigating
different performances of mangrove classification models with or
without the SAR features.

Lastly, elevation and slope were considered. Since mangrove forests
grow on flat terrain with low elevation, elevation and slope information
are capable of differentiating mangrove forests from highland land
covers. The three kinds of features mentioned above were uniformed
with min-max normalization (Eq. (2)) in which the maximum and
minimum values were collected from training samples.

NDWI = (prir—Pswir) / (Prir + Pswir) (€3]

X‘ = (X_Xmin)/(Xmax_Xmin) (2)

3.3. One-class classifiers

In the process of training sample collection, only mangrove training
samples can be obtained automatically at large scales. Traditional multi-
class supervised classifiers are unsuitable here. Thus, one-class classi-
fiers, which only need us to label samples for a target land cover in
training sample collection, were used in this study (Munoz-Marf et al.,
2007; Tax and Duin, 1999b).

Based on the characteristics of training samples, one-class classifiers
can be classified into two groups: classifiers learned with target samples
only, and classifiers learned with target samples and unlabeled ones. In
order to test their performance in large-scale mangrove mapping, we
discussed one typical classifier for each group: the Support Vector Data
Description (SVDD) (Tax and Duin, 1999b) for the first group and the
Positive and Unlabeled Learning algorithm (PUL) (Elkan and Noto,
2008; Li et al., 2010) for the second.

3.3.1. Support vector data description

Since the classification features were selected according to the bio-
characteristics and the structure of mangrove forests, mangrove pixels
were assumed to congregate in feature space. Therefore, SVDD, a one-
class classifier similar to support vector machine, was suitable here
(Munoz-Mari et al., 2007; Tax and Duin, 1999b). This method only re-
quires training samples for the target land cover type which is mangrove
in this study. It aims to find a hypersphere with minimum volume which
contains all, or most of, the training samples. This hypersphere is
described with a center a and a radius R > 0. Training samples on the
boundary of the hypersphere are support vectors. A training dataset with
n samples {x;}i—1,2.» should satisfy the requirements in Eq. (3).

minR? + CZ¢&,

stlx-alf <R +&,& > Ovi ®

In order to remove outliers, slack variables {&;}i—1, 2., are introduced

Table 1
Features collected from optical images and SRTM.
NDVI is maximum NDVI is median Elevation Slope
NDWI NIR SWIR1 SWIR2 NDWI NIR SWIR1 SWIR2
Spring & Winter v v v v v v v v v v
Summer v v v v v v v v
Autumn v v v v v v v v
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in SVDD. The penalty parameter C defines a trade-off between the
simplicity of the sphere and the number of outliers. These parameters
were set according to the study of Tax and Duin (1999b).

3.3.2. Positive and unlabeled learning algorithm

Besides mangrove samples, PUL tries to extract information from
unlabeled sample points (Elkan and Noto, 2008; Li et al., 2010). It cal-
culates the probability for each pixel to be labeled using mangrove
training samples which are also considered to be labeled samples, and
unlabeled samples randomly collected in study areas. Then, the proba-
bility for each pixel to be mangrove was derived. It aims to solve the
function (4).

f (y = l‘x) =NXx p(s = l‘x)/zxe{Mangrovf Samples} P(S = l‘x) (4)

where f (y = 1|x) represents the probability that a pixel is mangrove.
Only pixels with f (y = 1|x) > 0.5 are recognized as mangrove forests.
The threshold is set according to the study of Li et al. (2010). x is feature
values for each pixel, and y € {—1,1} represents the land cover of a pixel:
If y = 1, the pixel is mangrove forests. Otherwise, the pixel belongs to
other land cover types. N represents the number of mangrove training
samples we collected. p (s = 1|x) is the probability for a pixel to be
labeled. s € {—1,1} represents a pixel is unlabeled or labeled as
mangrove forests respectively. Therefore, the PUL algorithm is able to be
used with multi-class classification methods that can offer a probability
for each pixel to be labeled. In this study, the PUL was implemented with
a maximum likelihood classifier.

3.4. Knowledge-driven post-classification processing

After the one-class classification, mangrove regions in the results
were selected by their distances from the ocean, as mangrove forests
grow in intertidal areas. In the classification results, mangrove pixels
adjacent to each other were clustered as mangrove regions. Regions
touching the 100-m buffer of ocean regions were considered as the
resultant mangrove distribution map for the year 2018 (Chen et al.,
2017). Water bodies were mapped by pixels with a yearly median value
of the Modified Normalized Difference Water Index (MNDWI, Eq. (5)) in
2018 greater than 0. This MNDWI was proven to be effective in delin-
eating water boundaries by Xu (2006). The largest water region was
considered as the major ocean extent. However, bays or estuaries
separated by bridges were excluded from this extent. In the meantime,
the major ocean extent contained a lot of ponds. Thus, we shrank the
identified major ocean extent by 30 m. Water regions within 100-m
distance from the shrunken areas were recognized as ocean regions.

MNDWI = (pGreen—pSWIR) /(pGreen + pSWIR) 5)

3.5. Comparison of different classification models

For our proposed mangrove classification method, the selections in
classification factors (training samples, data sources and classifiers) are
significant for the results. Additionally, with the same factors applied,
the results can be different in different study sites. Thus, it is essential for
us to find a suitable combination of these factors to deal with different
mapping requirements. In this study, five factors were considered:
training data, optical data, inclusion of SAR, classifiers, and study sites.

The quality of training samples is critical for our proposed mapping
method. In this study, two types of training samples, the unchanged
training samples and the expanded training samples, were considered.
Including newly planted mangrove pixels and pixels which are mixtures
of mangroves and other land covers, the expanded training samples
were expected to improve the accuracy of mangrove classification.
However, the effectiveness of the region growing strategy had not been
tested. It is meaningful to compare the training samples collected from
the unchanged areas and the expanded areas.
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The performance of our proposed mapping method is contingent
upon the input optical data. Generally, mangrove forests are often
distributed as elongated patches. Additionally, in comparison to other
deciduous forests, they are evergreen forests with little phonological
changes. In order to make use of this information, Landsat 8 and
Sentinel-2 are commonly used in mangrove mapping (Chen et al., 2017;
Giri et al., 2011). They are complementing as Landsat has full temporal
coverage ranging from 1972, while Sentinel-2 has refined temporal,
spectral and spatial resolutions. Therefore, it is worthwhile to investi-
gate how resolutions play a role in the resulting mangrove maps.

The inclusion of SAR may impact the accuracy of our proposed
mapping method. Compared with inland forests, mangrove trees are
relatively smaller. Thus, their surface textures in remote sensing images
are smoother, making mangrove forests distinctive in structure. The SAR
information of Sentinel-1 imagery offers structure information of the
land surface. In addition, it is not affected by clouds which often appear
in mangrove areas. In recent years, some studies have used it to benefit
their mangrove mapping (Chen et al., 2017; Tieng et al., 2019). There-
fore, investigating the impact of SAR on our mangrove mapping method
is helpful.

Different classifiers can generate different classification results. In
this study, two typical one-class classifiers (SVDD and PUL) were
analyzed. SVDD only needs mangrove training samples, while PUL re-
quires randomly collected points in our study areas in addition to the
mangrove training samples. In order to find which one-class classifier is
suitable for our mangrove mapping method, it is worth comparing their
performance.

Lastly, in different study sites where species and distribution patterns
of mangrove forests are not the same, the performance of our proposed
mangrove mapping method may be different. In this study, two study
sites with distinctive mangrove species and distribution patterns, Florida
and Guangxi, were studied. In Florida, mangrove patches are large and
close to each other. A large part of coastal areas is covered by forests and
impervious surfaces. In Guangxi, mangrove forests are sparsely distrib-
uted as small patches. Mangrove species are diverse there. Land cover
along the coastlines varies, such as ponds, farmlands, impervious sur-
faces, and forests. In order to have a comprehensive understanding of
our mangrove mapping method, it is meaningful to test it in the two
study sites.

In summary, in order to analyze the influence of different factors, 16
mangrove classification models (Fig. 3) were trained for each study site
(Florida and Guangxi) with two different training samples (the un-
changed training samples or the expanded training samples), two
different optical data sources (Landsat 8 or Sentinel-2), inclusion or
exclusion of SAR, and two different one-class classifiers (SVDD or PUL).
In total, 32 classification models were created. Due to the lack of
required functions in GEE, we trained our models in Matlab. In addition,
mangrove classification using PUL was also implemented in Matlab,
while classification using SVDD was in GEE.

4. Results
4.1. Training sample collection

The unchanged areas of mangrove forests were detected based on
Landsat 5 and 8 images from 2000 to 2018 and the MFW. After region
growing, the expanded areas were created. The two kinds of areas were
compared with the MFW in 2000 and the GMW in 2016 (Fig. 4). We
found that the unchanged areas are located in the center of mangrove
patches. The expanded areas not only include the mangrove forests
along boundaries (Fig. 4a, c), but also include mangrove areas which
were omitted by MFW (Fig. 4b, d). However, in the meantime, the
expanded mangrove areas have more non-mangrove pixels (Fig. 4d)
than the unchanged areas.

The total area of our expanded areas is 89,813,358 m? for Florida
and 5,139,548 m? for Guangxi. To assess the accuracy of our training
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Fig. 3. 16 mangrove classification models for each study site. These models have different selection in the following four variables: training samples (unchanged or
expanded training samples), optical data sources (Landsat 8 or Sentinel-2), inclusion or exclusion of SAR, and classifiers (SVDD or PUL).
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Fig. 4. Comparison of the derived training sample areas (the unchanged areas and the expanded areas), MFW for the year 2000 and GMW for the year 2016.

sample collection method in Florida, we visually interpreted 150
random points in the unchanged areas among which only 1 point was
mislabeled, and 250 random points inside the expanded areas among
which only 7 pixels were mislabeled. For Guangxi, 100 random points in
the unchanged areas and 200 random points in the expanded areas were
visually interpreted. User's accuracy for the unchanged areas and the
expanded areas were 99.00% and 98.00% correspondingly. Finally, in
order to test the effects of region growing, we randomly collected the

unchanged and the expanded training samples from the unchanged
areas and the expanded areas to train our classification models sepa-
rately. The amount of training samples for Florida and Guangxi are listed
in Table 3.

4.2. Classification results

According to Fig. 3, 16 mangrove classification models were created
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Table 3
Numbers of training samples collected for Florida and Guangxi.
Florida Guangxi
Unchanged training samples 10,000 1813
Expanded training samples 20,000 6283
Unlabeled samples 40,000 16,000

for Florida and Guangxi separately (32 in total). Their accuracies can be
found in Table S1. The overall accuracies for models in Florida range
from 87.75% to 91.56%. For Guangxi, the range is from 89.64% to
96.92%. In both study sites, the highest overall accuracy was generated
by the model using the unchanged training samples, PUL, Sentinel-1
SAR and Sentinel-2. This model can clearly differentiate mangrove for-
ests from water, urban areas, soil, and a large number of inland forests.
According to Fig. 5 (a, b) and Fig. 6 (a, b), the resultant mangrove extent
can match GMW for the year 2016. In addition, some areas mislabeled
by GMW are also correctly classified in our resultant maps. However,
there are still some mistakes. This model omits some mangrove forests
with few leaves (Fig. 5¢) and sparsely distributed mangrove forests
(Fig. 6¢) which may be caused by sea-level rising, human deforestation
and hurricanes. Additionally, evergreen forests distributed adjacent to
coastlines (Fig. 5d) and vegetation growing along boundaries between
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two ponds (Fig. 6d) are possible to be misclassified as mangroves.

In order to better understand the impacts of the five factors (training
samples, optical images, inclusion of SAR, classifiers, and study sites) on
mangrove mapping, we summarized the results in the following five
sections. In each section, only one factor is compared or evaluated. The
32 mangrove classification models are categorized into two groups
referring to their selection in the considered factor no matter what we
chose in the other four. For each group, a box plot for the overall, pro-
ducer's, and user's accuracies of the mangrove maps made by these
models are plotted.

4.2.1. Different training samples

To analyze the impact of training samples, we separated the 32
mangrove classification models into two groups: 16 models trained with
the unchanged training samples, and 16 models trained with the
expanded training samples. Within each group, the 16 models are
mangrove classification models with different combinations of the four
factors: optical data sources (Landsat 8 or Sentinel-2), inclusion of SAR
(inclusion or not), classifiers (SVDD or PUL), and study sites (Florida or
Guangxi). Fig. 7 shows boxplots of the overall, producer's, and user's
accuracies of models in each group. For each type of accuracy, the left
boxplot represents accuracies for models trained with the unchanged
training samples and the right boxplot represents accuracies for models
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Fig. 5. The resultant mangrove map in Florida made by the model using the unchanged training samples, PUL, Sentinel-1 and Sentinel-2. (a, b) resultant mangrove
extents consistent with GMW. (c) mangroves in GMW omitted by the resultant map. (d) evergreen forests in Florida misclassified as mangrove in the resultant map.
All the 16 resultant maps in Florida can be accessed through the link: https://luyingGEEngine.users.earthengine.app/view/oneclassmangroveclassificationflorida
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Fig. 6. The resultant mangrove map in Guangxi made by the model using the unchanged training samples, PUL, Sentinel-1 and Sentinel-2. (a, b) resultant mangrove
extents more accurate than GMW. (c) sparsely distributed mangrove forests omitted by the resultant map. (d) vegetation along boundaries of ponds misclassified as
mangrove in the resultant map. All the 16 resultant maps in Guangxi can be accessed through the link: https://luyingGEEngine.users.earthengine.app/view/oneclass

mangroveclassificationguangxi

trained with the expanded training samples.

According to Fig. 7, changing training samples does not make sig-
nificant differences on the overall accuracies of our classification models
(p = 0.052, non-significant at 95% confidence level). The median overall
accuracies of the two groups of models are almost the same (90.89% for
models trained with the unchanged training samples; 90.74% for models
trained with the expanded training samples). However, the differences
between the two groups in the producer's accuracies and the user's ac-
curacies are significant (producer's accuracies: p = 0.005; user's accu-
racies: p = 0.008). The most obvious contrast happens in the producer's
accuracies. When we change the training sample source from the un-
changed training samples to the expanded ones, the producer's accu-
racies increase and become more consistent (median value increased
from 70.69% to 78.19%; variance decreased from 0.131 to 0.106). In
contrast, the user's accuracies decrease and present greater variability
(median value decreased from 93.47% to 90.59%; standard deviation
increased from 0.053 to 0.076). This indicates that using the expanded
training samples can help in recognizing more mangrove pixels at the
cost of introducing more commission errors, i.e., more non-mangrove
areas are classified as mangroves.

4.2.2. Different optical data

In this section, the performance of Landsat 8 and Sentinel-2 are
compared. The 32 mangrove classification models are separated into
two groups according to their optical data sources, Landsat 8 or Sentinel-
2. The results of models in each group are summarized as boxplots in
Fig. 8. For each type of accuracy, the left boxplot represents accuracies
for models using Landsat 8 and the right boxplot represents accuracies
for models using Sentinel-2.

Using different optical data causes significant differences in all the
three types of accuracies (significant at 95% confidence level). In
particular, the most significant one happens in producer's accuracy (p =
0.003). It is obvious that models using Sentinel-2 have higher and more
constant producer's accuracies than models using Landsat 8. The median
values of the producer's accuracies are 74.49% and 75.33%, and the
standard deviations are 0.130 and 0.110 for models using Landsat 8 and
Sentinel-2, correspondingly. In addition, when we changed the optical
data from Landsat 8 to Sentinel-2, the overall accuracies have a slight
improvement with the median value increasing from 90.16% to 91.68%
while the standard deviation remains almost the same. By contrast,
using Sentinel-2 has a negative effect on user's accuracy. Compared with
models using Landsat 8, the user's accuracies of models using Sentinel-2
are smaller in general but have less variation. The median value
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Fig. 7. Accuracies of mangrove mapping results using different training samples (the unchanged training samples or the expanded training samples).
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Fig. 8. Accuracies of mangrove mapping results using different optical images (Landsat 8 or Sentinel-2).

decreases from 94.85% to 93.38% and the standard deviation decreased
from 0.068 to 0.065. In summary, compared with Landsat 8, Sentinel-2
makes the performance of mangrove mapping more stable and is
effective in finding more mangrove pixels with the cost of introducing a
few commission errors.

4.2.3. Inclusion of Sentinel-1 SAR data

The impact of SAR features is considered in this section. The
mangrove classification models are divided into two groups: one using
the SAR features extracted from Sentinel-1 images, and the other one
does not. The results of each group are shown as boxplots in Fig. 9.

Even though all the three types of accuracies have improvements in
mean and median values when we include SAR features in mangrove
classification, the change is only significant in the overall accuracies and
the producer's accuracies (overall accuracies: p = 0.004; producer's ac-
curacies: p = 0.018; user's accuracies: p = 0.188). To be more specific,
the median overall accuracy increases from 90.29% to 91.15%. The
median producer's accuracy increases from 74.86% to 77.18%.
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Meanwhile, changes of standard deviation are less than 0.01 for both the
overall accuracies and the producer's accuracies (standard deviation of
the overall accuracies: increases from 0.029 to 0.030; standard deviation
of the producer's accuracies: increases from 0.117 to 0.126). Thus, SAR
features are effective in improving the performance of mangrove clas-
sification in most cases.

4.2.4. Different classifiers

Two one-class classifiers, SVDD and PUL, were compared in our
study. The 32 models are classified into 2 groups: 16 models using SVDD
and 16 models using PUL. In Fig. 10, the results of mangrove classifi-
cation models in the two groups are summarized. Their overall, pro-
ducer's and user's accuracies are all plotted as boxes.

The change of classifiers causes significant differences in all the three
types of accuracies (p < 0.001). Models using PUL have a better per-
formance in the producer's accuracies. Their producer's accuracies are
higher and more constant. 50% of models using PUL have the producer's
accuracies lying between 81.66% to 88.19%, while the respective values
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Fig. 10. Accuracies of mangrove mapping results using different one-class classifiers (SVDD or PUL).

of models using SVDD are 57.68% and 70.21%. Standard deviation of
the producer's accuracies is 0.050 for models using PUL and 0.071 for
models using SVDD. In contrast, the user's accuracies of models using
PUL are more varied and smaller than that of models using SVDD.
However, compared to the improvements that have been made by PUL
in the producer's accuracies, the differences made in the user's accu-
racies are small. Thus, in the overall accuracies, models using PUL still
have higher values while the variation is relatively higher. The range of
the overall accuracies of the models using SVDD is 87.75%-92.72%
while the range of the models using PUL is 89.78%-96.92%. Therefore,
PUL classifier is effective in decreasing the omission errors in mangrove
classification and, meanwhile, introduce a few commission errors.

4.2.5. Different study sites

In this section, the performance of our proposed mangrove mapping
method is tested in two representative study sites: Florida and Guangxi.
The results are summarized as boxplots in Fig. 11. Each boxplot contains
accuracy values for 16 different classification models using different
combinations in training samples (the unchanged training samples or
the expanded training samples), optical data sources (Landsat 8 or
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Sentinel-2), inclusion of SAR (inclusion or not) and classifiers (SVDD or
PUL).

The producer's accuracies of mangrove classification models are
similar in Florida and Guangxi (p = 0.515, non-significant at 95% con-
fidence level). They have similar median values (74.86% for Florida and
76.83% for Guangxi), while, for models trained for Guangxi, the pro-
ducer's accuracies have a slightly wider range (57.12%-87.43% for
Florida and 55.88%-91.57% for Guangxi). By contrast, the overall and
user's accuracies have significant differences in the two study sites (p <
0.001). In Florida, the 16 mangrove classification models have smaller
but more constant overall accuracies. The median value and the stan-
dard deviation of the overall accuracies for models in Florida are 90.07%
and 0.012. For models in Guangxi, they are 94.23% and 0.029. The
user's accuracies are higher and more consistent in Guangxi. Their me-
dian value and standard deviation are 97.48% and 0.018. In Florida,
these values are 85.27% and 0.044. In summary, mangrove forests in
Guangxi are more likely to be accurately delineated.
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Fig. 11. Accuracies of mangrove mapping results in different study sites (Florida or Guangxi).

5. Discussion

In this paper, we developed an automatic training sample collection
method. In addition, we found one-class classifiers can exploit the
automatically derived mangrove training samples. By comparing the
accuracies of our resultant mangrove maps generated by different
models, we discovered that the expanded training samples are better
than the unchanged training samples, Sentinel-2 outperforms Landsat 8
in most cases, utilizing SAR features collected from Sentinel-1 can
improve the performance of mangrove classification, PUL is superior to
SVDD. Additionally, our proposed mangrove mapping method performs
better in study sites having diverse mangrove species than in where
mangrove species are homogenous. To our knowledge, it is the first time
that an automatic training sample collection method is developed for
large-scale mangrove mapping. Our findings regarding the optimized
combination of training samples, data sources, and classifiers adjusted
for different study sites has shed some light on the implementation of
timely large-scale mangrove mapping.

5.1. Merits of the developed methods for large-scale mangrove mapping

In this section, we aim to understand the merits of our developed
methods in two aspects: training sample collection methods (Section
5.1.1), and classification methods (Section 5.1.2). Additionally, drawing
upon the automation characteristics of our methods, we present the
potential merits to apply our method for timely large-scale mangrove
mapping (Section 5.1.3).

5.1.1. Automatic training sample collection

The proposed automatic training sample collection method is
promising for solving the problem that training samples are lacking for
timely large-scale mangrove mapping. It can be proven by the com-
parison with commonly used methods and the quality of training sam-
ples we collected for Florida and Guangxi.

Our proposed training sample collection method outperforms most
methods in terms of labor-intensity. For previous large-scale mangrove
mapping studies, training sample collection was an arduous task, despite
the help of outdated maps. Visual interpretation and field works were
widely used to generate up-to-date training samples from outdated
maps, which required considerable time and expertise (Jia et al., 2018;
Thomas et al., 2018). In contrast, no manual input is required to apply
our method in future mangrove mapping tasks, although some manual
work is involved in developing this method (e.g., defining region
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growing criteria). Two sets of mangrove training samples were
collected: the unchanged training samples and the expanded ones. The
unchanged training samples were collected by detecting unchanged
mangroves in a historical map with two assumptions: the changed
mangrove forests have large changes in inter-annual NDVI; boundaries
of mangrove patches have a high possibility to change. With the help of
GEE, which has an effective computation ability, we can automatically
extract the unchanged training samples by eliminating mangrove pixels
with large changes in inter-annual maximum NDVI and pixels locating
inside a 60-m buffer zone of mangrove boundaries. In addition, in order
to improve the diversity of training samples, the expanded training
samples were collected by expanding the unchanged areas using a re-
gion growing method. We consider that pixels adjacent to the un-
changed areas are also mangrove forests when they have similar spectra
to the unchanged mangrove forests. Although some parameters were set
through trial and error in this process, less human intervention is
required in the future. Therefore, we believe our automatic training
sample collection method is capable of collecting ample training sam-
ples in a timely manner, which can be broadly used in the future.

Additionally, the training samples collected by our method have high
accuracy and diversity. According to Table 3, thousands of mangrove
training samples were collected for both Florida and Guangxi. The user's
accuracies for these training samples are all above 97%. Thus, for lo-
cations where there are mangrove forests unchanged from the year 2000
through 2018, mangrove training samples can be collected with high
accuracy. In addition, the training samples can include most mangrove
species in our study areas. For a certain mangrove species, if it has un-
changed areas, it has a great chance to be collected. Moreover,
mangrove species did not experience a large increase in the past two
decades. The number of new species missing in our training data can be
small. Thus, the training samples we collected are capable of describing
most mangrove forests in our study areas. In sum, the amount, the ac-
curacy and the diversity of our training samples can all satisfy the
requirement of mangrove classification.

5.1.2. One-class classification applicable in large-scale mangrove mapping
Large-scale mangrove mapping greatly benefited from the one-class
classification methods in our study. The one-class classification methods
saved time and labor in training sample collection. In addition, it has the
ability to accurately map the mangroves in Florida and Guangxi.
Compared with the commonly used multi-class classification
methods, one-class classification improves the efficiency of mangrove
mapping. This is because biodiversity is high in mangrove ecoregions. A
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lot of land cover types, such as ponds, ocean, farmland, inland evergreen
forests and deciduous forests, are inhabiting there (Spalding et al.,
2010). It is difficult to timely collect ample training samples for multi-
class classification at large scales. By contrast, one-class classification
methods only require samples for the target land cover, which signifi-
cantly relieves the requirements for training samples (Khan and
Madden, 2014; Li et al., 2010; Tax and Duin, 1999b). In this study, SVDD
only requires training samples for mangrove forests. PUL requires
randomly collected samples in study areas besides mangrove training
samples. With the help of our automatic training sample collection
method, the process of training sample collection only costs a few hours.
In addition, the computational complexity of one-class classifiers is
similar to that of the commonly used classifiers, such as random forest
and maximum likelihood. Therefore, one-class classification methods
provide a new opportunity for large-scale mangrove mapping.

Additionally, one-class classification methods, especially PUL, are
capable of mapping mangrove forests accurately. The overall accuracies
of the 32 mangrove classification models are all above 80%. This is
because SVDD aims to create a hypersphere with minimum volume
which contains all the mangrove training samples. PUL aims to calculate
the probability for each pixel to be mangrove. If representative features
and training samples are selected, mangrove training samples will
congregate in feature space, making it possible for one-class classifiers to
delineate boundaries between mangrove forests and other land covers.
In this study, we selected features according to the bio-characteristics of
mangrove forests: living in low and flat intertidal zones and being
evergreen vegetation. In these features, mangroves are distinctive from
other land covers. Moreover, sufficient mangrove training samples were
collected with high diversity using our automatic training sample
collection method. Therefore, the phenology-based features and the
high-quality training samples ensure the high performance of our one-
class classification methods, making it feasible in large-scale
mangrove mapping.

5.1.3. Timely large-scale mangrove mapping

The proposed mangrove mapping method has a great potential to be
applied in timely large-scale mangrove mapping. We can understand it
in three aspects: training data collection, one-class classifiers and the
utilization of GEE. A comparison of our study and three typical large-
scale mangrove mapping studies is listed in Table 4.

The automation of training sample collection is significantly pro-
moted in this study, which enables us to timely generate training sam-
ples for large-scale mangrove mapping. Our training sample collection
method is based on differentiating unchanged mangroves from changed
ones in an existing historical map. For each study site, there are a lot of
national, continental and global historical mangrove maps published,
such as MFW and GWM, which can be used as base maps in training
sample collection. Moreover, we used annual maximum NDVI to mea-
sure the change of mangrove forests, since the major change of
mangrove forests, such as converting to water, soil or impervious sur-
face, can cause large changes in it. The historical NDVI values for all the
mangrove forests in the world can be obtained automatically from
Landsat images in GEE. Thus, with the availability of base maps and
historical NDVI values, our proposed mangrove training sample collec-
tion method can be applied in timely mapping mangrove forests at large
scales.

Table 4

Comparison of this study and three typical large-scale mangrove mapping studies.
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In addition, implementing one-class classifiers in timely large-scale
mangrove mapping is a promising prospect. As previously mentioned,
one-class classifiers only require mangrove training samples. They save
time in collecting training samples. In addition, the training and clas-
sification processes require little human intervention, which guarantees
the automation of mangrove mapping. Moreover, the efficiency of
mangrove classification is high for one-class classifiers. We only spent
two days on generating the 32 mangrove maps in our study. Therefore,
we believe one-class classification methods can be applied in timely
mapping large-scale mangroves.

Lastly, GEE significantly improves the efficiency of image processing,
which makes the timely large-scale mangrove mapping possible. It fa-
cilitates large-scale mapping by offering us a lot of ready-to-use remote
sensing images, a great number of geo-processing functions and effective
computation abilities(Gorelick et al., 2017; Wang et al., 2020). In this
study, a large part of Landsat and Sentinel image processing work was
implemented in GEE: generating annual NDVI standard deviation values
for unchanged training sample collection, preparing input data for the
classification models, classifying mangrove forests using SVDD and
preparing MNDWI maps for the knowledge-driven post-classification
processing. Although the region growing process, training of one-class
classification models, and mangrove classification using PUL were
implemented in Matlab, there are few parameters required to be
determined manually. Thus, we believe, with further improvement our
methods can be implemented entirely in GEE. In addition, thanks to
GEE, ample representative training samples for Florida and Guangxi
were automatically collected within only one to two hours, which was
impossible in previous studies with visual interpretation or field works.
About 1600 time-series Landsat 8 images and 13,177 time-series
Sentinel-2 images were accessed in about 30 s. Features of 1000 to
20,000 widely scattered training samples were extracted for only 30
min. This is unimaginable before GEE became publicly available. Re-
searchers had to download thousands of images from websites, mosaic
them and pre-process these images with software in their own devices
which consumed immeasurable time, labor and money. Therefore, GEE
makes it easy and efficient for large-scale mapping, which is promising
to be widely used in future studies.

5.2. Affecting factors on the mapping performance

In this study, training samples, data sources and study sites are
considered as significant factors affecting the performance of mangrove
mapping. Referring to our results, the mangrove classification model
incorporating the unchanged training samples, PUL, Sentinel-1 and
Sentinel-2 had the highest overall accuracy in both study sites. However,
their user's accuracies are not the highest. This is because candidates in
each factor have their own pros and cons. Different selections generate
different mapping results. To provide recommendations for future
studies, the five factors (training samples, optical data sources, inclusion
of SAR, classifiers, and study sites) are discussed separately in the
following five sections.

5.2.1. Training sample uncertainty

With regard to our comparison in training samples, the results do not
align with what we expected. The expanded training samples do not
improve the classification accuracy all the time. In this section, we

Giri et al. (2011)

Chen et al. (2017)

Thomas et al. (2018) This paper

Training sample No training sample

In situ data

Visual interpretation Automatic method

Mangrove mapping Hybrid supervised and unsupervised Decision trees Object-based random forests One-class
methods classification classification classification classification
Image pre-processing tools Manually GEE Python GEE and Matlab

Year of map 2000 2015 1996-2010 2018
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compared the effects of the unchanged training samples and the
expanded training samples for our classification models. According to
Fig. 7, two major differences can be discerned.

In general, in comparison with models using the unchanged training
samples, models using the expanded training samples have larger pro-
ducer's accuracies and smaller user's accuracies. The unchanged training
samples are composed of unchanged mangrove pixels in the geographic
centers of mangrove patches, most of which are pure pixels. It may be
difficult to recognize newly planted mangrove pixels and mangrove
pixels mixed with other land covers using classification models trained
by these samples. By contrast, the expanded training samples contain
more mixed and newly planted mangrove pixels which are helpful to
identify more mangrove pixels. Thus, the producer's accuracies of
models using the expanded training samples are higher. Nevertheless, in
the meantime, non-mangrove pixels sharing similar phenology-based
features with these mixed and newly planted mangrove pixels are
more likely to be included in our results. Therefore, the user's accuracies
decline. Thus, the expanded training samples produced by region
growing can improve producer's accuracies with the cost of user's
accuracies.

For models trained with the expanded training samples, the pro-
ducer's accuracies are more consistent while the user's accuracies have
larger variation. This is because the mixed and newly planted mangrove
pixels in the expanded training samples equip our classification models
with the capability of recognizing enough mangrove forests, regardless
of mangrove distribution patterns. In contrast, the performance of
models using the unchanged training samples largely relied on the dis-
tribution patterns of mangrove forests. In locations where mangrove
forests are diverse, sparsely distributed and mixed with other land
covers, such as Guangxi, the unchanged training samples are diverse
enough to represent the mangrove forests. Mangrove classification
models trained with our two kinds of training samples have similar re-
sults. However, in locations where mangrove forests are clustered as
large patches, such as Florida, almost all the unchanged training samples
are pure pixels. Models trained with the unchanged training samples can
omit a great number of mangrove pixels. Thus, the performance of
models using the unchanged training samples is significantly different in
different study sites. This may be the reason why the variation of pro-
ducer's accuracies is large for models using them. However, we cannot
ignore that, by introducing more mixed pixels, the expanded training
samples increase the risk of mislabeling non-mangrove pixels as
mangrove, which increases the diversity in user's accuracy. Thus, models
using the expanded training samples are stable in recognizing mangrove
forests in different study sites, while their capability in distinguishing
non-mangrove forests is inconsistent.

5.2.2. Landsat 8 vs. Sentinel-2 data

With reference to the results of classification models using different
optical images, Landsat 8 and Sentinel-2 have different impacts.
Generally, Sentinel-2 outperforms Landsat 8 in the overall accuracies.
However, their impacts on the producer's accuracies and user's accu-
racies are the opposite.

In general, the producer's accuracies of models using Sentinel-2 are
larger than that of models using Landsat 8. Pixels in Landsat 8 imagery
are more likely to be mixtures of mangrove forests and other land covers,
as their spatial resolution is 30 m which is larger than that of Sentinel-2.
These mixed pixels are mainly distributed along mangrove boundaries
or in mangrove patches which are elongated. They may not be able to be
classified as mangroves when the fractions of mangrove forests are not
enough. In comparison, with higher spectral and spatial resolution,
Sentinel-2 images can better detect the boundaries of land covers. These
images divide a 30 * 30 m? region into nine 10 * 10 m? pixels. Mangrove
forests missed by models using Landsat 8 are possible to be identified
using Sentinel-2. Thus, using Sentinel-2 can improve the producer's ac-
curacies by retrieving mangrove forests along mangrove boundaries and
mangroves clustered as elongated patches.
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Mangrove classification models using Landsat 8 have higher user's
accuracies. When grasses or small trees grow along narrow boundaries
between two water regions, their phenology-based features will be
similar to that of mangrove forests. The widths of these boundary areas
are mainly from five to twenty meters in our study areas. Thus, if we use
Landsat 8 to divide the boundary areas into several 30 * 30 m? pixels,
water fraction is very large in each pixel. Pixels containing grasses or
small trees cannot be classified as mangroves. Nevertheless, in the same
boundary areas, Sentinel-2 can generate a set of pixels with high frac-
tions of grasses or small trees by dividing one Landsat 8 pixel into nine.
Thus, grasses and trees along water boundaries are more likely to be
classified as mangroves using Sentinel-2. This means that using Sentinel-
2 can mislabel more non-mangrove land covers as mangrove forests.

5.2.3. Inclusion of SAR

In recent years, SAR features collected from Sentinel-1 have been
used to benefit mangrove mapping studies (Chen et al., 2017; Tieng
et al., 2019). It improved the performance of our proposed mangrove
classification method generally. However, they can make a negative
impact on the performance of models using SVDD. Thus, in this section,
we analyzed the advantages of SAR as well as some exceptions.

Generally, when we include SAR in the classification, our classifi-
cation models witness significant increases in the producer's accuracies,
while the user's accuracies remain almost the same. This is reasonable
because SAR offers structure information on the ground which cannot be
obtained from optical images. Moreover, SAR images are capable of
providing ground information when optical images are covered by
clouds. Thus, using features derived from SAR, the classification models
can recognize more mangrove forests than the ones not used. However,
there was little change in the user's accuracies before and after using the
SAR features. This may be caused by the fact that most mislabeled non-
mangrove pixels in our study areas are land covers with high similarity
to mangrove forests. It is plausible that the phenology-based features
used in this study were not able to differentiate them from mangrove
forests. Thus, the SAR features can improve the capability of mangrove
classification models in recognizing more mangrove forests. However, to
improve the user's accuracy of mangrove mapping, more effective fea-
tures are required for future studies.

Nevertheless, for most models using SVDD to map the mangrove
forests in Florida, the producer's accuracies decrease when SAR features
are included. SVDD aims to create a hypersphere with minimum volume
in feature space to include all the mangrove training samples inside. If
the diversity of training samples is not high enough, they will be over-
centralized in feature space. Consequently, the size of the hypersphere
we create is less than the actual one. In this circumstance, the more
features we provide, the smaller the hypersphere can be. Mangrove
points outside the hypersphere will be excluded. Additionally, there are
only three major mangrove species in Florida, which means that the
diversity of training samples there is low. Thus, using SAR cannot
improve the performance of SVDD classification in Florida. In summary,
when the training samples are not diverse enough, increasing features
for SVDD may cause the decline in classification accuracy.

5.2.4. SVDD vs. PUL

PUL is more suitable for large-scale mangrove mapping, according to
the comparison of SVDD and PUL (Fig. 10). Although SVDD performs
better in the user's accuracies, it is not recommended, since this classifier
omits a large part of mangrove pixels in our study areas. About 35% to
45% of mangrove forests are missing on the mangrove maps generated
by SVDD. In order to further understand the differences between these
two classifiers, we discussed them in the following two aspects: the
producer's accuracy and the user's accuracy.

Models using PUL have higher and more consistent producer's ac-
curacies because they not only utilized mangrove samples, but also
randomly collected samples which were not considered in SVDD. PUL
aims to find a boundary between mangrove and non-mangrove pixels in
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the feature space. Mangrove pixels which are very different from our
mangrove training samples can be correctly recognized when these
pixels are closer to mangroves than they are to non-mangroves in feature
space. Some examples are mangrove pixels mixed with other land covers
and pixels occupied by newly planted mangroves. Alternatively, SVDD
aims to find a border of mangrove training samples in the feature space.
Only pixels having high similarity to the training samples can be clas-
sified as mangrove forests. Thus, PUL can detect more mixed mangrove
pixels than SVDD. The diversity of mangrove training samples has less
influence on PUL. Therefore, by using randomly collected unlabeled
pixels as a reference, the performance of PUL is better and more stable.

Meanwhile, the user's accuracies for models using SVDD are higher
than that for models using PUL. For SVDD, only pixels close to the
mangrove training samples in feature space are classified as mangrove
forests. A large part of non-mangrove pixels can be correctly recognized
by SVDD. Nevertheless, PUL calculates the possibility of pixels to be
mangroves by comparing their distances to mangroves and non-
mangroves in feature space. Thus, more non-mangrove pixels that are
comparable to mangroves are misclassified by PUL. In summary, using
SVDD, the resulting mangrove maps have high user's accuracies at the
cost of omitting significant numbers of mangrove pixels.

5.2.5. Different study sites

Concerning our classification results, the performances of our
mangrove classification models are distinctive in different study sites
(Florida and Guangxi). Although the producer's accuracies do not
experience significant changes when we change the study site, there are
still changes we can witness when we take the classifier into account.
Thus, in this section, we discussed the influence of study sites in two
aspects: the user's accuracies and the producer's accuracies.

Generally, the mangrove classification models have better perfor-
mance in mapping mangrove forests in Guangxi, with relatively higher
user's accuracies and overall accuracies. A large part of the coastlines in
Guangxi are covered by anthropogenic land covers, such as ponds,
impervious surfaces and farmlands which are significantly different
from mangrove forests in phenology features. In contrast, most land
cover types along coastlines in Florida are vegetation. They are likely to
have comparable phenology features with mangrove forests. Thus, in
Guangxi, the mangrove classification models can better eliminate non-
mangrove pixels.

When we analyzed the producer's accuracies in detail, we recognized
that, in most cases, Guangxi witnesses higher omission errors than
Florida when we use SVDD in mangrove classification models. In
contrast, for models using PUL, omission errors in Guangxi are less than
that in Florida. This is because mangroves in Guangxi are diverse and
sparsely distributed. Florida only has three major mangrove species
which are clustered as large patches spatially. Mangroves in Florida can
be more concentrated in feature space. Thus, using SVDD, fewer man-
groves are omitted in Florida than in Guangxi. Moreover, the primary
land covers along coastlines in Guangxi are anthropogenic land covers
having significant differences with mangroves, while most coastal areas
in Florida are covered by vegetation. By comparing the distances from
each pixel to mangroves and non-mangroves in feature space, it is easier
for PUL to differentiate mangrove forests from other land covers in
Guangxi than in Florida. However, what we need to know is that
although the producer's accuracies of PUL decreased when we changed
the study site from Guangxi to Florida, it still outperformed SVDD. In
summary, even though the producer's accuracies increased for SVDD
models when we changed the study site from Guangxi to Florida, PUL is
still the best choice for both our study sites.

5.3. Limitations
Although our large-scale mangrove mapping method proved to be

effective, we realize that three major limitations are still present before
our method can be applied to timely mapping mangroves at large scales.
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These limitations reside in the training samples quality, the remote
sensing data availability, and the post-classification processing,
respectively.

5.3.1. Training samples

The quality of our training samples is attributed to three factors: the
base map accuracy, the unchanged mangrove detection method, and the
region growing method. In order to examine the training sample quality,
we will discuss each factor regarding omission and commission errors.
Omission errors are related to the fact that unchanged mangrove forests
and newly planted mangrove forests are not fully collected. Commission
errors refer to the fact that the mangrove training samples are contam-
inated by non-mangrove ones.

The omission and commission errors of the base map, MFW from the
year 2000, propagate to our training samples. From visual inspection,
we found that the base map omitted some small mangrove patches far
from coastlines. Our two kinds of training samples, the unchanged and
the expanded ones, were generated based on detecting unchanged
mangroves from the year 2000 to 2018 in the base map. Thus, the
mangroves omitted by the base map were also missed in our mangrove
training samples, especially in the unchanged training samples. In
addition, the commission errors of the base map resulted from the fact
that some non-mangrove land covers, such as grass and inland forests,
were mislabeled as mangroves. As a result, if the mislabeled mangrove
pixels do not change from the years 2000 to 2018, it is possible to
include these pixels in our training samples. Thus, the accuracy of the
base map influences the accuracy of our training samples, which further
influences the performance of our mangrove classification method.

The unchanged mangrove detection method was used to derive the
unchanged training samples. However, it introduced omission and
commission errors in the training samples. To ensure the selected areas
were mangrove forests that were unchanged from 2000 to 2018, we
discarded more than half of the mangrove pixels in our base map
assuming that unchanged mangrove forests have small changes in
annual maximum NDVI and have high potential to be located in the
centers of mangrove patches. However, during the 19 years, mangrove
forests did not change that much. Therefore, two types of unchanged
mangrove pixels are omitted in the unchanged training samples:
Mangrove pixels having heterogeneous NDVI values from 2000 to 2018,
and mangrove pixels along boundaries of mangrove patches. If these
omitted mangroves are different in phenology features from our training
samples, the training samples will not be diverse enough to represent the
mangrove forests in our study areas. In addition, the commission errors
of the unchanged training samples resulted from the fact that we used
the change of annual maximum NDVI to evaluate the change of
mangrove pixels from the years 2000 to 2018. It is possible for changed
pixels having homogeneous time-series NDVI values to be detected as
unchanged ones. For example, if mangrove pixels are quickly replaced in
one year by plants having similar NDVI to mangroves, the standard
deviations of their annual maximum NDVI values will be small. Conse-
quently, the changes will be neglected. These quick changes generally
occurred along boundaries of mangrove patches, such as species inva-
sion and human disturbance. Although we shrank the result of un-
changed mangrove detection 60 m inside, the quickly changed pixels
within the centers of mangrove patches still remained in our training
samples.

Moreover, region growing brings in non-mangrove pixels to the
expanded training samples. To increase the diversity of our training
samples, pixels nearby the unchanged areas were considered as man-
groves when they had similar spectra to mangrove forests. However,
non-mangrove vegetation pixels, such as inland forests and ponds with
aquatic vegetation, can also have similar spectral information with
mangrove forests. When these pixels are next to the unchanged areas,
they have a high potential to be collected. Moreover, parameters for the
region growing method were manually selected through trial and test.
Further research is required to determine these parameters more
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automatically and to generate a more accurate result.

5.3.2. Data availability and quality

The availability of Sentinel-2 limits the scale and the accuracy of our
mangrove mapping. To further prove the capability of our method for
timely large-scale mangrove mapping, it should be tested in more lo-
cations with larger scales. However, the lack of global Sentinel-2 surface
reflectance prohibits our ability to select more study sites.

Sentinel-2 surface reflectance products are not available globally for
the year 2017 and 2018. Although Sentinel-2 surface reflectance prod-
ucts for these years are published by some platforms, such as the
Sentinel-2 value adder (Vuolo et al., 2016), these data are not included
in GEE. It is challenging or even impossible to download and analyze all
of them in our study areas using our own devices. In this study, we used
the 6S radiative transfer model and the GEE Application Programming
Interface in python to do atmospheric correction for the 21,000 Sentinel-
2 top-of-atmosphere images in our study sites, which took more than
half of a month. Thus, it is hard for us to expand our study areas.
Fortunately, surface reflectance products for Sentinel-2 have been
globally available in GEE since 2019. Our proposed method shows
promise for the capability of mapping mangrove forests globally in the
foreseeable future.

5.3.3. Post-classification processing

Knowledge-driven post-classification processing removes inland
mangrove patches and keeps non-mangrove forests close to the coast-
lines in our classification results. As mangrove forests were considered
for distribution along coastlines, mangrove patches un-touching the
100-m buffer of the ocean were deleted from our one-class classification
results. The ocean areas were mapped using MNDWI>0. However,
shallow and muddy water areas are not fully delineated. Mangrove
forests close to these shallow and muddy water areas are omitted. In
addition, ponds close to coastlines are likely to be considered as ocean
areas. As a result, ponds with aquatic vegetation and evergreen inland
forests adjacent to these areas are likely to be misclassified as mangrove
forests. Alternatively, a coastal tidal flat map can be used to restrict the
distribution of mangrove forests. Mangrove forests are periodically
flooded by tides; thus, they are close to intertidal regions in spatial
distribution. Since GEE has become available, it is more convenient for
researchers to access time-series Landsat and Sentinel imagery. In
addition, automation and accuracy of tidal flat mapping have been
improved in recent studies (Wang et al., 2020; Jia et al., 2021). There-
fore, tidal flat maps have a high potential to improve the accuracy of our
results.

6. Conclusion

The ability of carbon absorption, water purification and nutrient
storage establishes the importance of mangrove forests. There is a
desperate need to map the latest distribution of mangrove forests at
large scales. In the meantime, the increasing number of time-series
remote sensing images build the foundation for large-scale mangrove
mapping. The cloud data processing platform, GEE, accelerates the
procedure of mapping. This study developed an automatic training data
collection method to collect ample training samples for large-scale
mangrove mapping. In addition, it is the first time that one-class clas-
sifiers are used to map the distribution of mangrove forests at large
scales. We analyzed the effects of different training samples, data
sources, classifiers, and study sites in our proposed one-class mangrove
classification method. The combination of Sentinel-1, Sentinel-2 and
PUL showed a high performance. Moreover, it is undeniable that there
will be a lot of work to be done to improve our study, such as finding
more representative mangrove samples, testing our method in more
locations and improving the accuracy of ocean areas.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2021.112584.
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