
Autonomous Navigation for Quadrupedal Robots with Optimized
Jumping through Constrained Obstacles

Scott Gilroy*, Derek Lau*, Lizhi Yang*, Ed Izaguirre, Kristen Biermayer, Anxing Xiao, Mengti Sun,
Ayush Agrawal, Jun Zeng, Zhongyu Li, Koushil Sreenath

Abstract— Quadrupeds are strong candidates for navigating
challenging environments because of their agile and dynamic
designs. This paper presents a methodology that extends the
range of exploration for quadrupedal robots by creating an end-
to-end navigation framework that exploits walking and jumping
modes. To obtain a dynamic jumping maneuver while avoiding
obstacles, dynamically-feasible trajectories are optimized offline
through collocation-based optimization where safety constraints
are imposed. Such optimization schematic allows the robot to
jump through window-shaped obstacles by considering both
obstacles in the air and on the ground. The resulted jumping
mode is utilized in an autonomous navigation pipeline that
leverages a search-based global planner and a local planner
to enable the robot to reach the goal location by walking.
A state machine together with a decision making strategy
allows the system to switch behaviors between walking around
obstacles or jumping through them. The proposed framework
is experimentally deployed and validated on a quadrupedal
robot, a Mini Cheetah, to enable the robot to autonomously
navigate through an environment while avoiding obstacles and
jumping over a maximum height of 13 cm to pass through a
window-shaped opening in order to reach its goal. (Video1)

I. INTRODUCTION

Quadrupedal robots have a wide range of mobility modes
that allow for greater applicability in navigating challenging
environments. Unlike wheeled robots that have difficulty
in traversing uneven terrain, quadrupeds display the ability
to adapt to rough terrain [1], [2], and achieve dynamic
motions, such as bounding over obstacles [3], depicting
potentials of usability in unstructured environments and of
being dynamic service robots [4]. Recently, research has
shown that quadrupeds are capable of performing a wide
range of jumps [5], [6], allowing these robots to reach areas
that were previously inaccessible due to the discrete change
of ground level. While prior work has demonstrated the
feasibility of jumping maneuvers on quadrupedal robots [7],
the additional constraints of jumping through constrained
obstacles, i.e., jumping while avoiding a collision, was
not considered. Moreover, autonomous navigation exploiting
the jumping ability to avoid obstacles of these robots in
congested environments has not been demonstrated. In this
paper, we focus on tackling a challenging scenario where the
traversable region is narrow and window-shaped, i.e., there

* Authors have contributed equally.
1 Experimental videos can be found at https://youtu.be/

5pzJ8U7YyGc.
All authors are affiliated with UC Berkeley, USA. {scott_gilroy,

delau, lzyang, eizaguir, kbiermayer, xax,
mengtisun, ayush.agrawal, zengjunsjtu,
zhongyu_li, koushils}@berkeley.edu

Fig. 1: A Mini Cheetah travelling in a congested environment
autonomously by navigating around obstacles and jumping
through an obstacle in order to reach the goal location.

are obstacles on the ground, the sides and in the air, as shown
in Fig. 1. By solving such a problem, we seek to develop
a navigation framework for quadrupedal robots with multi-
modal transitions that include walking modes to move around
obstacles and jumping maneuvers to hop over obstacles in
order to reach a specified goal location.

A. Related Work

Prior work has demonstrated that quadrupeds have a
promising ability to move freely through an environment.
One approach for motion planning utilizes inverse kinemat-
ics, where collision-free trajectories are generated by solving
for body poses and foot contact positions [8], [9]. While this
method was presented to solve for trajectories quickly, the
use of inverse kinematics cannot prevent singularities from
occurring. Singularities could easily present when moving
legs to avoid height-constrained environments. Alternatively,
jumps can be accomplished by scaling the impulse applied
during bounding to complete running jumps as seen in [10].
However, this work fails to consider window-shaped obsta-
cles. Trajectory optimization has been utilized to generate
jumps in [3] but lacks the integration with navigating through
unknown environments.

Motion planning for agile movements such as jumping can
also be formulated as an optimization problem, where the
dynamics of the robot as well as obstacles are incorporated in
the constraints to obtain optimal state trajectories [11], [12],

https://youtu.be/5pzJ8U7YyGc
https://youtu.be/5pzJ8U7YyGc

Reference
trajectory

Velocity Commands
Sensor
data

Motor
torque

Decision Making,
Sec. V

Local Planner,
Sec. V

Next
waypoint

Vision-Based
Mapping, Sec. V

Walking Controller

Obstacles

Jumping Controller

Global Planner,
Sec. V

Goal Location
Jumping Trajectory

Optimization, Sec. IV Controllers, Sec. VI

Fig. 2: Proposed framework for navigating in confined spaces with an optimized jumping mode. This autonomous pipeline
allows the robot to sense the environment with an RGB-Depth camera and a tracking camera. A global path to reach the
goal location is obtained by a search-based planner. A state machine determines robot locomotion modes, such as walking
and jumping, in order to move around or jump over obstacles that are not traversable by walking.

[5]. Robots such as SALTO-1P [13], the MIT Cheetah [10],
[3], and ANYmal [14] have all displayed capabilities in
performing jumps and navigating around the environment.
A common approach in such techniques is to use a reduced
order model of the robot by binding the left and right legs to
improve computation speed while not sacrificing the ability
to jump along the sagittal plane [6], [7]. Various control tech-
niques such as Model Predictive Control (MPC) [15], Whole-
Body Impulse Control (WBIC) [2], [16] or PD control [6],
[7] can then be used to track these reference trajectories.
These works, however, do not consider jumping in highly
constrained environments such as jumping through window-
shaped obstacles.

Our approach leverages recent results in trajectory opti-
mization using a duality-based approach [17] which allows
us to convert obstacle avoidance criteria between two con-
vex regions, i.e., maintaining a minimum distance, into a
differentiable and smooth non-convex avoidance constraint.
The smoothness property allows the use of general-purpose
gradient- and Hessian-based optimization algorithms in tra-
jectory generation. This approach has been applied to differ-
ent robots, such as quadrotors [18] and wheeled robots [19].
This motivates us to apply this formulation of obstacle
avoidance to the legged systems, which could be exploited to
generate a collision-free trajectory through height-constraint
obstacles.

B. Contributions

The main contributions of this paper are the development
of one of the first end-to-end navigation autonomy for
quadrupedal robots to travel in an unstructured environment
through multi-modal transition. Such framework leverages
two locomotion modes, planar walking and forward jumps.
In order to achieve dynamic jumping maneuvers while avoid-
ing obstacles, a multi-phased collocation based nonlinear
optimization is firstly developed to generate a trajectory of
the robot to jump through window-shaped obstacles while re-
specting the robot’s physical limitations. A controller is also
introduced to enable the robot to achieve the optimized jump
online. By integrating a state machine, path planners, and
the proposed jumping controller into the navigation pipeline,
we firstly enable a quadrupedal robot, the Mini Cheetah,
to intelligently choose either walking around obstacles or
jumping over obstacles without collision while traveling in

environments that are previously nontraversable by only the
walking mode.

II. FRAMEWORK

The proposed navigation autonomy using quadrupedal
robots developed in this paper is illustrated in Fig. 2. The
environment is perceived by an RGB-Depth camera, and ob-
stacles are registered into maps which include the maximum
obstacle height on each grid. After being given a target goal
location, a global planner using A* [20] is constructed to find
a sequence of collision-free waypoints on the map from the
robot’s current position to the goal location. A state machine
is designed to switch between the robot locomotion modes
of walking and jumping. A local planner is later developed
to obtain desired walking velocity profiles for the robot
to track a waypoint selected from the global path. If the
planned waypoints cross a non-traversable obstacle which
the robot is capable of jumping over, the state machine will
prepare the robot to jump. Mapping, planners, and the state
machine use Visual Intertial Odometry (VIO) to estimate
the robot’s current state and they are introduced in Sec. V.
In order to enable the robot to attain a dynamic jumping
mode while considering the surrounding confined space,
such as a window-shaped obstacle, trajectory optimization
is formulated offline to obtain dynamically-feasible joint
profiles for the robot while imposing collision-avoidance
constraints. This optimization is discussed in Sec. IV and
it is based on the robot planar model presented in Sec. III.
A jumping controller developed in Sec. VI empowers the
robot to perform the optimized trajectory, resulting in a safe
landing on the target point behind the obstacles. Such model-
based vision-to-torque navigation pipeline is deployed on
a Mini Cheetah and is validated in experiments presented
in Sec. VII. Conclusion and future work is discussed in
Sec. VIII.

III. MODEL AND DYNAMICS

In this section, we characterize the quadrupedal jumping
behavior with different phases. According to the jumping
behavior, the robot is simplified under a planar model and
the corresponding dynamics is also introduced.

𝑈3

𝑈4

𝑈1

𝑈2
𝑞𝐵1

𝑞𝐵2

𝑞𝐹1

𝑞𝐹2

𝑧

𝑥

Fig. 3: Simplified planar model used for quadruped jumping.
The planar model consists of base position, orientation
together with four joints. The inputs of this planar model
are four torques acting on joints.

A. Simplified Model

The jumping behavior of the quadruped motivates us
to propose a simplified model that takes advantage of the
robot’s symmetry. A planar model with two legs is used
to capture the jumping behaviors for the quadruped and is
shown in Fig. 3. The system states x and control inputs u
of this simplified model are as follow,

q := [qx, qz, qθ, qF1, qF2, qB1, qB2]T ∈ R7 (1)

x := [q; q̇] ∈ R14 (2)

u := [τF1, τF2, τB1, τB2]T ∈ R4, (3)

where qx, qz and qθ represent the robot’s base position and
pitch angle, respectively. q = [qF1, qF2, qB1, qB2]T is the
hip and knee joint angles of the front and back leg of the
simplified model and u represents the input of this planar
model which consists of torques acting on the front and
back leg. The simplification from the original four-legged
model [21] allows us to reduce the computational complexity
by reducing from the 18 Degrees-of-Freedom (DOF) model
for the 3D quadruped into 7 DOF for the planar system.

We also denote the robot’s pose in 3D by using qy to
represent the robot’s position in the lateral direction and qφ
to represent the robot’s turning yaw.

B. Quadrupedal Jumping

The jumping maneuver of quadrupedal robots is featured
as four different phases as illustrated in Fig. 4, which include:
all feet contact, rear feet contact, flight, and landing:

1) All feet contact phase: Both the front and back feet are
in direct contact with the ground. To transition to the
rear feet contact phase, the quadruped pushes off the
ground using the front legs and rotates upon the back
feet.

2) Rear feet contact phase: The back legs extend allowing
for the quadruped to push off the ground. When the
contact forces of the back legs become zero, the robot
switches into the flight phase.

3) Flight phase: The whole robot is under free fall while
being able to reconfigure in the air allowing itself to
perform different tasks, such as avoiding obstacles.

4) Landing phase: At the end of the flight phase, the robot
remakes contact with the ground on all feet.

Fig. 4: Jumping behavior of a simplified quadrupedal robot.
The phases can be distinguished as all feet contact, rear
feet contact, flight, and landing, respectively. The possible
window-shaped obstacles are colored in red in the flight
phase.

C. Simplified Dynamics

The dynamics of the planar model can be modeled based
upon the Lagrangian equations of motion [22]:

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu + J(q)TT, (4)

where D(q) is the Mass-Inertia matrix, C(q, q̇) is the
Coriolis matrix, G(q) is the gravity vector, B is the in-
put mapping matrix, u is the joint torques and T :=
[TFx, TFz, TBx, TBz]

T ∈ R4 denotes the contact forces act-
ing on the front and back leg from the ground. Additionally,
the following constraint is needed for the feet to be in contact
with the ground.

J(i)(q)q̈ + J̇(i)(q)q̇ = 0. (5)

By combining equations (4) and (5), we could capture the
system dynamics at i-th phase with notations as follow,

ẋ = f (i)(x,u,T) (6)

IV. JUMPING TRAJECTORY GENERATION

After having introduced the simplified model and dynam-
ics for quadrupedal jumping, we are going to illustrate the
trajectory generation for jumping mode using a collocation-
based optimization. The optimization formulation is intro-
duced in Sec. IV-A. After that, cost function design, physical
constraints, and safety constraints are presented in Sec. IV-B,
IV-C, and IV-D, respectively.

A. Formulation

We propose an optimization-based trajectory generation
for the jumping motion, which is stated as follows,

min
x,ẋ,u,T

J(x, ẋ,u,T) (7a)

s.t. x(tk+1) = x(tk) +
∆t(i)

2
(ẋ(tk+1) + ẋ(tk)) (7b)

ẋ(tk+1) = f (i)(x(tk),u(tk),T(tk)) (7c)
x(t0) = x0 (7d)

where ∆t(i) = Ti/Ni for the i-th phase (as described in
Sec. III-B) with the duration of the phase being Ti and the
number of collocation nodes in the phase being Ni. The
optimization (7) optimizes of the cost function J(x, ẋ,u,T)
over N =

∑4
i=1Ni collocation nodes. The constraint on the

initial condition x0 is in (7d). The trapezoidal constraints be-
tween nodes are in (7b) and system dynamics are considered
as constraints in (7c).

B. Cost Function

The cost function J(x, ẋ,u,T) is formulated as follow,

J =(q(tN+1)− q0)TPf (q(tN+1)− q0)

+
N+1∑
k=0

(q̇T (tk)Qq̇q̇(tk) + q̈T (tk)Qq̈q̈(tk)

+ T(tk)QTT(tk) + uT (tk)Ruu(tk))

+
2∑
i=1

PiTi +

N2∑
i=1

Pδδ

(8)

where Qq̇, Qq̈, QT, and Ru represent the positive definite
matrices for stage cost and input cost respectively. q0 is
the configuration of joint angles while standing and the first
term of (8) minimizes the error between it and the final joint
configuration of the optimization.

∑2
i=1 PiTi minimizes the

travel time for Phases 1 and 2 with Pi being positive scalars.
Next, δ is the relaxation variable for leg contact during
Phase 2 and it is minimized by the cost term

∑N2

i=1 Pδδ. All
the costs above together minimizes the joint velocities and
acceleration for all states to generate a smoother optimized
trajectory with appropriate control inputs.

C. Physical Constraints

The following constraints are added to the optimization
to account for geometric limitations and physical hardware
limitations:

• Joint Angle: qmin ≤ q(tk) ≤ qmax
• Joint Velocity: q̇min ≤ q̇(tk) ≤ q̇max
• Torque: umin ≤ u(tk) ≤ umax
• Friction Cone:

∣∣∣TFx(tk)TFz(tk)

∣∣∣, ∣∣∣TBx(tk)TBz(tk)

∣∣∣ ≤ µ
• Contact Force: Tz,min ≤ TBz(tk), TFz(tk) ≤ Tz,max
• Contact Position: −δ ≤ zC ≤ 0

Here, the joint position, velocity, and torque limitations are
considered under physical hardware constraints [21] and the
friction coefficient µ for the contact legs is assumed as
a value of 0.5. The rear feet contact phase is the most
significant part for the jumping performance, where we
enforce contact force and position constraints. The maximum
contact force Tz,max is estimated with physical hardware
limitation and a minimum contact force Tz,min is included
to ensure the optimized force is large enough to support the
weight of the robot. zC represents the vertical position of the
contact point of the back leg on the ground, which should
be zero but it is relaxed with a variable δ to enhance the
feasibility of the local planner.

D. Safety Constraints for Obstacle Avoidance

Obstacle avoidance provides an additional constraint for
the optimization in which a convex set that represents the
bounding-box of the robot maintains a minimum distance
from convex obstacles [18], [19], shown in Fig. 5. The
quadruped is modeled as a controlled object E(tk) with a

Current configuration

Initial configuration

Obstacle

Signed distance

𝑧

𝑥

𝐑𝑦(𝑡𝑘)
ℎ(𝑡𝑘)

𝑤(𝑡𝑘)
𝐏(𝑡𝑘)

𝑑 > 𝑑𝑚𝑖𝑛

Fig. 5: Obstacle avoidance between quadruped in flight phase
and window-shaped obstacle. The key points of the robot to
construct bounding box are marked as blue and the center of
the bounding box is marked as red. Safety constraint between
the bounding box and the convex obstacle (colored in red)
is maintained by forcing the signed distance d between them
to be larger than a safety margin dmin.

rectangular bounding-box encapsulating the model through-
out the trajectory. We model the bounding-box as a convex
set by utilizing six key points pi(tk) (the red points in Fig. 5)
on the robot: two points on hip, knee, and feet, respectively,
whose coordinates are denoted as pi = [xpi , zpi]

T ∈ R2.
The center of the bounding box pc(tk) (the purple point in
Fig. 5) is determined by the mean position of the key points,

pc(tk) =
1

6

6∑
i=1

pi(tk) (9)

and the rotation Ry(tk) = Ry,qθ is assumed as the robot
body pitch angle. The controlled bounding box (the solid
blue rectangle in Fig. 5) could be regarded as a convex region
E(t) transformed from an initial convex set B(t) with rotation
Ry(tk) ∈ R2×2 and translation P(tk) ∈ R2 at each time
step.

E(tk) = Ry(tk)B(tk) + P(tk). (10)

Here, P(tk) = pc(tk) and the initial bounding box (the
dashed blue rectangle in Fig. 5) could be considered as
a rectangle centered at origin O with time-varying width
w(tk) and height h(tk), which could be represented as
B(tk) = {y : L(w(tk), h(tk))y ≤ l} where L ∈ R4×2.

To ensure our bounding box is valid, we add an additional
cost term as follow into (8) to minimize height and width
along the trajectory,

Jw,h(tk) =
∑
k

w(tk)2 + h(tk)2, (11)

while enforcing the i-th key points to lie inside the four
vertices Vj(tk) ∈ R2 (the blue points in Fig. 5) of the
bounding box with the following equality constraints

pi(tk) =
4∑
j=1

Vj(tk)γij(tk). (12)

Here, γij(tk) denotes the weight for j-th vertex under the
convex representation of i-th key points at each time step tk.

4∑
j=1

γij(tk) = 1, γij(tk) ≥ 0 (13)

When the robot intends to jump through the obstacle, the
upper and lower boundaries of a window-shaped obstacle are
considered as a combination of two obstacles. Each of them
can be described as a convex set O with a rectangular shape,

O = {y ∈ R2 : AOy ≤ bO}. (14)

The obstacle avoidance optimization algorithm is equivalent
to a dual optimization problem at each time step tk as
follows, with the minimum signed distance d being larger
than a safety margin dmin,

−lTµ(tk) + (AOP(tk)− bO)Tλ(tk) > dmin

LTµ(tk) + Ry(tk)TAT
Oλ(tk) = 0

||AT
Oλ(tk)|| < 1, λ(tk) > 0, µ(tk) > 0.

(15)

Here, λ and µ are dual variables related to the obstacle
O. The detailed proof of (15) with duality can be found
in [17]. The additional cost in (11) together with key points
constraints in (12) and obstacle avoidance constraints in (15)
allows the robot to change its intrinsic dimensions to jump
through a height-constrained obstacle.

Additionally, the final state constraint is proposed as
follow,

qx(tN+1) ≥ xobs, (16)

which ensures that the robot lands past the obstacle in its
final configuration, where xobs represents the x position of
the obstacle. This constraint is necessary, otherwise, the local
planner might generate a safe but conservative trajectory
without jumping past the obstacle.

V. PLANNERS

In order to utilize the optimized jumping maneuver to
travel through a congested space, the jumping mode is
embedded into an autonomous navigation framework with
localization and mapping, motion planners, and a gait deci-
sion maker as introduced in this section.

This framework works as follows. Two maps are generated
and updated in this pipeline. One is a 2D occupancy grid map
encoding the traversable region for the robot, and a 2.5D
map keeps track of the obstacle height in the environment.
A global planner searches for a global path on the occupancy
map and sends an in-range target waypoint to the state
machine. Based on the coordinate of waypoint, the state
machine decodes the obstacle height from 2.5D height map
and decides whether the robot should use walking or jumping
modes. If a change of modes is detected, the state machine
also adds a standing mode to smooth the mode transitions.
Moreover, the state machine also adds desired yaw rotation
based on the selected modes. The target waypoint and desired
yaw position are tracked by a local planner when the walking
mode is chosen.

A. Mapping and Localization

Additional onboard computing and sensors are included
to enable the robot to navigate through the environment. A
sensor suite, as shown in Fig. 6, includes an Intel NUC
providing external computing resource with a RGB-Depth

Traversable Region
with Jumps

Tracking
Camera

Depth
CameraExternal

Computer
External
Battery

2.5D Map

Voxel Grid

Fig. 6: The Mini Cheetah carries a sensor suite that contains
an RGB-Depth camera, a tracking camera, and an additional
power source and computer for online navigation. The robot
uses the tracking camera to estimate its current state. The 3D
environment represented by a voxel grid is perceived by the
RGB-Depth camera. A 2.5D map that records the obstacle
height in each grid is updated from the voxel grid. The
darkness of the grid grows with increasing obstacle height. A
region that has obstacles whose heights are below the robot’s
jumps are classified as a traversable region with jumps.

camera (Intel RealSense D435i), and a tracking camera (Intel
RealSense T265). The additional computer and sensors are
used to accurately map and localize the robot while exploring
the environment.

RTAB-Map is used to generate a 3D point cloud of
heights in the environment [23]. From the voxel grid with a
resolution of 0.1 m, two maps are created, an occupancy map
with a resolution of 0.1 m and a 2.5D map with a resolution
of 0.2 m. The maximum height of the voxel grid of the same
planar coordinates is recorded. If this height is above what
the robot can jump over, this grid is marked as untraversable
with a Boolean variable 0, otherwise, the grid will be a free
space encoded by Boolean variable 1, and this information is
stored in a 2D occupancy map. A coarser 2.5D map is also
created along with the voxel grid, which features a map of
discrete tiles sizes, i.e., 0.2 m. The maximum height within
the tile is then marked as obstacle height zobs in that tile, as
illustrated in Fig. 6.

The observed robot current states in the 3D space,
[q̃x,y,z,φ, ˜̇qx,y,z,φ]T , are estimated by Visual Inertial Odome-
try (VIO) through the tracking camera.

B. Global Planner

To find a global path from the current robot position to
the given goal location, a search-based A* planner over the
updated 2D occupancy map is utilized to find a collision-
free path that contains a sequence of 2D coordinates of
waypoints. The global planner also considers an inflation of
0.4 m of the occupied grid as a planning safety buffer. In the
planned global path, a waypoint that is ahead of the robot’s
current position coordinate in the given range is selected. In

this paper, we choose a waypoint that is 0.3 m ahead of the
robot. The 2D coordinate [qdesx , qdesy] and its obstacle height
zobs are recorded in the 2.5D map and sent to the following
state machine and local planner.

C. State Machine

After receiving a target waypoint with the information of
admissible height from the global planner, a state machine is
developed to choose robot locomotion modes to jump, stand,
or walk. Moreover, the state machine also decides a target
yaw position of the waypoint. If the obstacle height is 0 m,
which indicates that it is a free space that the robot can walk
through, the state machine sets the target yaw position as the
direction between robot current coordinate and waypoint, i.e.,
qdesφ =< [q̃x, q̃y]T , [qdesx , qdesy]T >. If the obstacle height is
non-zero, the state machine will proceed to prepare the robot
to jump. Firstly, the desired yaw is set to be perpendicular
to the obstacle to jump over, and the position of the target
waypoint will be held and not updated. This will lead the
robot to reach to the obstacle and get prepared to jump. Once
the robot arrives at the target coordinate, the state machine
will firstly switch the robot from the walking mode to a
standing mode, and then switch to the jump mode. After the
robot executes the jump and lands, the state machine will
switch back to walking mode through a standing transition,
and the target waypoint will be updated by the global planner.
Note that the obstacle height from the given waypoint is
always admissible for the robot to jump over as the global
planner will avoid obstacles that are beyond the robot’s jumps
ability in the 2D occupancy map.

The output from the state machine contains discrete loco-
motion modes: jumping, standing, and walking, and target
waypoint with desired yaw qdesφ .

D. Local Planner for Walking

If the state machine decides to use the walking mode of the
quadrupedal robot to walk around the obstacles, a local plan-
ner that is able to track the given waypoint with orientation
[qdesx , qdesy , qdesφ]T is designed. This local planner leverages
a collocation-based trajectory optimization using a simple
double integrator dynamics to track the given waypoint. The
optimization problem with collocation has 30 nodes and
spans over 1 second. The decision variables include the states
of robot planar and yaw positions and their derivatives. It is
formulated to minimize the distance between the final node
to the target waypoint while respecting the robot’s actual
velocity limits. The optimized trajectory contains a sequence
of robot desired walking velocities, q̇desx , q̇desy , and turning
rates q̇desφ , and will be tracked by the robot using a walking
controller.

VI. CONTROL

After having seen trajectory generation and planners for
two locomotion modes, we are going to present the con-
trollers that are used to enable quadrupedal robots to realize
these locomotion behaviors, where jumping and walking
controllers are described in Sec. VI-A and VI-B, respectively.

A. Jumping Control

For a robot jump, the trajectory optimization in Sec. IV
solves for a reference trajectory with the desired joint angles
qdes ∈ R4×N , joint velocities q̇des ∈ R4×N , and torque
inputs τ des ∈ R4×N . The reference joint trajectory and
torque input are then linearly interpolated with a 1 kHz
sample rate and are sent to a joint-level PD controller with
a feed-forward term of desired torque, as follow,

τ = τ des + Kp,i(q
des − q) + Kd,i(q̇

des − q̇) (17)

where Kp,i ∈ R3×3 and Kd,i ∈ R3×3 are proportional and
derivative gains during the i-th phase and τ des is the feed-
forward torque obtained from the optimization for jumping.

Gain scheduling of both Kp,i and Kd,i occur so that the
gains for each phase of the jump can be tuned independently.
During the landing phase, the proportional and derivative
gains are interpolated which respect the landing phase’s
duration, i.e., τ deslanding = λτ deslanding , where the feed-forward
torque is decreased by a factor, λ, to reduce the impact
of timing mismatch has when the quadruped re-establishes
contact with the ground. By manipulating both the gains and
feed-forward torque during landing, the quadrupedal robot is
more robust to errors in the landing time, where the optimal
landing trajectory is used. By interpolating the gains, the
spike of motor torque upon landing will be reduced while
still allowing the robot to reach the desired end configuration.
This results in safe landing maneuvers even in the scenarios
where the robot’s landing configuration deviates from the
planned one.

B. Walking Control

A model predictive controller (MPC) and whole body
impulse controller (WBIC) was developed in [16] for the
Mini Cheetah. Empowered by this controller, the robot is
able to track given planar velocity and yaw rotation rate from
the local planner developed in Sec. V-D while maintaining
gait stability.

VII. EXPERIMENTS AND EVALUATION

Using the approach described throughout this paper, the
performance was evaluated based upon the Mini Cheetah’s
ability to navigate through environments, to detect and jump
over the obstacle, and to continue navigating to the goal
location. This approach is validated with experiments using
different environments, i.e., obstacle configurations, and is
demonstrated in the supplementary video1. The environment
contains obstacles of various sizes obstructing the path of the
Mini Cheetah, shown in Fig. 7, and some of them cannot
be traversed only by walking. Without having the ability
to jump over certain obstacles, an environment with large
obstructions would prevent quadrupeds from reaching the
goal location.

The Mini Cheetah with the carried sensor suite is able
to detect obstacles and create maps of the environment.
While navigating through the environment, the Mini Cheetah

1https://youtu.be/5pzJ8U7YyGc

https://youtu.be/5pzJ8U7YyGc

Initial Position

Global PathTarget Waypoint with
Desired Yaw

Goal
LocationLocal Path

(a) (b) (c)

Goal Location

(d)

Fig. 7: A snapshot of the Mini Cheetah: (a) avoiding an obstacle within the environment while navigating to the end goal;
(b) preparing to jump over an obstacle that obstructs the robot from the goal; (c) robot in flight jumping through the obstacle;
and (d) continuation of navigating the environment to the end goal. Top-view of the mapped environment in RViz is shown
in the bottom plots. The robot initial position and goal location are marked as red and yellow points, respectively. The global
path is represented by green line while the local path is denoted as yellow points. The target way point with desired yaw
orientation given from the state machine is shown as green point.

0 0.5 1 1.5 2

Time (s)

-4

-2

0

2

4

Jo
in

t P
os

iti
on

 (r
ad

)

(a) Front Leg Joint Angles

0 0.5 1 1.5 2

Time (s)

-20

-10

0

10

20

30

Jo
in

t V
el

oc
ity

 (r
ad

/s
)

(b) Front Leg Joint Velocities

0 0.5 1 1.5 2

Time (s)

-20

-10

0

10

20

Jo
in

t T
or

qu
e

(N
m

)

(c) Front Leg Joint Torques

0 0.5 1 1.5 2

Time (s)

-4

-2

0

2

4

Jo
in

t P
os

iti
on

 (r
ad

)

(d) Back Leg Joint Angles

0 0.5 1 1.5 2

Time (s)

-20

-10

0

10

20

30

Jo
in

t V
el

oc
ity

 (r
ad

/s
)

(e) Back Leg Joint Velocities

0 0.5 1 1.5 2

Time (s)

-20

-10

0

10

20

Jo
in

t T
or

qu
e

(N
m

)

(f) Back Leg Joint Torques

Fig. 8: The comparison between the measured joint angles, velocities, and torques from the experiment, which are shown
in solid lines, and the desired values from the jumping trajectory optimization drawn in dash lines. The values plotted are
gathered from the hip and knee joints of the front right and back right legs of the robot. The front hip joint is shown as
red, the front knee joint is demonstrated as blue, back hip is drawn as green and the back knee is marked as yellow.

accurately marks higher obstacles and safely walks around
them, shown in Fig. 7a. Once an obstacle that can be jumped
over is found, the Mini Cheetah tunes its orientation to point
towards the obstacle and navigates in front of it. Afterward,
the Mini Cheetah can successfully perform the jumping
maneuver and clear the obstacle. Fig. 7b demonstrates the
Mini Cheetah overcoming a 13 cm tall obstacle with a
window size of 70 cm that would normally not be traversable
by walking.

Fig. 8 shows the tracking performance of the joint angles
and velocity for all four phases of the jump over a 13 cm tall
obstacle. The PD controller running at 1 kHz provides great

tracking of both the joint position and velocity throughout
the duration of the jump while obeying the physical hardware
limitations. In Fig. 8, spikes in joint velocity indicate the
transition between all feet contact and rear feet contact at 0.7
s in Fig. 8b, transition from rear feet contact to flight at 0.9
s in Fig. 8e, and the impact of landing at 1.4 s in Fig. 8b, 8e.
In the optimization-based trajectory generation, the landing
phase is optimized with a lower coefficient of friction than
the take off phase to prevent the possibility of over rotation
of the robot upon landing with a high horizontal velocity. To
reduce the overall tendency to bounce upon landing, gains
are interpolated throughout the landing phase.

Experiments throughout this paper are nearing the maxi-
mum jumping heights due to the hardware limitations of the
Mini Cheetah. With the current torque to weight ratio of the
Mini Cheetah, the robot is able to clear obstacles up to 13
cm tall with the 2.25 kg sensor suite attached. Additional
experimentation is conducted without the sensor suite, and
the Mini Cheetah is capable of clearing obstacles up to 24
cm. Both experiments conducted are able to demonstrate that
the optimization problem can solve for optimal trajectories
with different torque to weight ratios. Quadrupedal robots
with larger torque to weight ratios using the methodology
presented in this paper would therefore be capable of clearing
higher obstacles than shown in experiments.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a navigation autonomy for
quadrupedal robots to maneuver in cluttered environments
while avoiding obstacles. We developed an end-to-end frame-
work that enabled multi-modal transitions between walking
and jumping skills. Using multi-phased collocation based
nonlinear optimization, optimal trajectories were generated
for the quadrupedal robot while avoiding obstacles and al-
lowing the robot to jump through window-shaped obstacles.
An integrated state machine, path planner, and jumping and
walking controllers enabled the Mini-Cheetah to jump over
obstacles and navigate previously nontraversable areas.

Future work includes implementing an online trajectory
optimization and optimizing for jumps where the take off
and landing are not at the same elevation.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foun-
dation Grants CMMI-1944722. The authors would like to
thank Professor Sangbae Kim, the MIT Biomimetic Robotics
Lab, and NAVER LABS for providing the Mini Cheetah
simulation software and lending the Mini Cheetah for ex-
periments.

REFERENCES

[1] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Motion planning for quadrupedal locomotion: Coupled planning,
terrain mapping, and whole-body control,” IEEE Transactions on
Robotics, vol. 36, no. 6, pp. 1635–1648, 2020.

[2] C. Yang, B. Zhang, J. Zeng, A. Agrawal, and K. Sreenath, “Dynamic
legged manipulation of a ball through multi-contact optimization,”
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020.

[3] H.-W. Park, P. M. Wensing, S. Kim et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
2015.

[4] A. Xiao, W. Tong, L. Yang, J. Zeng, Z. Li, and K. Sreenath, “Robotic
guide dog: Leading a human with leash-guided hybrid physical in-
teraction,” in International Conference on Robotics and Automation,
2021.

[5] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 6295–
6301.

[6] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim, “Optimized
jumping on the mit cheetah 3 robot,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 7448–7454.

[7] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 2464–
2470.

[8] M. Geisert, T. Yates, A. Orgen, P. Fernbach, and I. Havoutis, “Contact
planning for the anymal quadruped robot using an acyclic reachability-
based planner,” in Annual Conference Towards Autonomous Robotic
Systems. Springer, 2019, pp. 275–287.

[9] R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kot-
tege, and M. Hutter, “Perceptive whole-body planning for multilegged
robots in confined spaces,” Journal of Field Robotics, vol. 38, no. 1,
pp. 68–84, 2021.

[10] H.-W. Park, M. Y. Chuah, and S. Kim, “Quadruped bounding con-
trol with variable duty cycle via vertical impulse scaling,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 3245–3252.

[11] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” Robotics and Automation Letters, vol. 3,
no. 3, pp. 1560–1567, 2018.

[12] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajec-
tory optimization through contacts and automatic gait discovery for
quadrupeds,” Robotics and Automation Letters, vol. 2, no. 3, pp. 1502–
1509, 2017.

[13] J. K. Yim, B. R. P. Singh, E. K. Wang, R. Featherstone, and R. S.
Fearing, “Precision robotic leaping and landing using stance-phase
balance,” Robotics and Automation Letters, vol. 5, no. 2, pp. 3422–
3429, 2020.

[14] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso,
V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch
et al., “Anymal-toward legged robots for harsh environments,” Ad-
vanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.

[15] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–9.

[16] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[17] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” Transactions on Control Systems Technology, 2020.

[18] J. Zeng, P. Kotaru, M. W. Mueller, and K. Sreenath, “Differential flat-
ness based path planning with direct collocation on hybrid modes for a
quadrotor with a cable-suspended payload,” Robotics and Automation
Letters, vol. 5, no. 2, pp. 3074–3081, 2020.

[19] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC), 2018, pp. 4327–4332.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” Transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[21] W. Bosworth, S. Kim, and N. Hogan, “The mit super mini cheetah:
A small, low-cost quadrupedal robot for dynamic locomotion,” in
2015 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2015, pp. 1–8.

[22] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2018.

[23] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36,
no. 2, pp. 416–446, 2019.

	Introduction
	Related Work
	Contributions

	Framework
	Model and Dynamics
	Simplified Model
	Quadrupedal Jumping
	Simplified Dynamics

	Jumping Trajectory Generation
	Formulation
	Cost Function
	Physical Constraints
	Safety Constraints for Obstacle Avoidance

	Planners
	Mapping and Localization
	Global Planner
	State Machine
	Local Planner for Walking

	Control
	Jumping Control
	Walking Control

	Experiments and Evaluation
	Conclusion and future works
	References

