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Abstract— Motivated towards performing missions in un-
structured environments using a group of robots, this paper
presents a reinforcement learning-based strategy for multiple
quadrupedal robots executing collaborative manipulation tasks.
By taking target position, velocity tracking, and height adjust-
ment into account, we demonstrate that the proposed strategy
enables four quadrupedal robots manipulating a payload to
walk at desired linear and angular velocities, as well as over
challenging terrain. The learned policy is robust to variations
of payload mass and can be parameterized by different com-
manded velocities. (Video')

I. INTRODUCTION

Quadrupedal robots have been deployed in many real-
world applications, such as extreme environment exploration
and industrial inspection [1], [2]. While a single quadrupedal
robot can handle many tasks, it is still limited by its own
onboard power. Multiple quadrupedal robots can collaborate
together so that they are able to deal with complex tasks.
Besides, a group of quadrupedal robots are more fault-
tolerant and reliable than an individual quadruped.

Collaborative quadrupedal robots will be essential for haz-
ardous and critical tasks such as planetary exploration. Col-
laborative quadrupedal teams will offer force multiplication
and redundancy for efficient task completion. Motivated by
this, we consider a typical scenario: four quadrupedal robots
collaboratively manipulating a payload while locomoting
over challenging terrain, as shown in Fig. 1.

A. Related Work

1) Quadrupedal Manipulation: Legs for quadrupedal
robots can not only be used for locomotion purposes but also
for manipulation tasks. For instance, a quadruped robot can
manipulate a ball by its legs from different configurations [3],
[4] or guide a human via a leash [5]. A whole body strategy
for quadruped manipulation was studied by separating two
legs as arms [6]. Moreover, two additional prongs can be
designed for a quadrupedal robot to perform manipulation
tasks [7]. Quadrupeds can also be equipped with robotic
manipulators for general manipulation tasks [8], [9].
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Fig. 1: Four quadrupeds traverse over challenging terrain at a
desired velocity while collaboratively carrying a payload in RaiSim.

2) Collaborative Quadrupeds: Multiple quadrupedal
robots have the potential to execute tasks that are beyond
the capability of a single robot, e.g., robotic soccer using
multiple quadrupedal robots has been popularized since the
last decade [10]. A model-based approach was developed for
cooperative transportation by two quadrupedal robots [11].
Recently, distributed feedback controllers for cooperative lo-
comotion was developed in [12]. However, this collaborative
manipulation strategy for quadrupeds needs two additional
arms to be attached.

3) Learning Quadruped Locomotion: Reinforcement
learning based locomotion policy has shown promising re-
sults of performing robust and dynamic locomotion tasks
[13]-[21]. Different kinds of quadrupedal locomotion skills
were learned by imitating animals through reinforcement
learning [15]. A privileged learning strategy is used to teach a
quadrupedal robot to traverse over challenging terrain [16].
A contact-adaptive controller was learned for quadrupedal
robots to walk more efficiently and robustly on various
terrain, including on slippery ground [22]. While most of the
learning quadrupedal locomotion works focus on an individ-
ual quadruped robot, we develop a collaborative quadruped
policy using multiple quadrupedal robots.

4) Multi-Agent Reinforcement Learning (MARL): MARL
methods have been investigated for multi-agent’s gaming
and collaboration tasks. Independent Q-Learning algorithm
(IQL) is a basic value-based approach wherein each agent’s
network is updated separately [23]. COMIX approximates
the coupling relationship between each agent with a mixing
network, the output of which is a mixing Q function [24].
However, these works have not considered a multiple high-
dimensional quadrupedal collaboration scenario.

B. Contribution

The contributions of our work are as follows.
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Fig. 2: Control architecture of collaborative quadrupedal manipulation. The initial agent parameter qo, terrain parameter po and command
cmd are the input of this architecture. System input po describes the initial position of agents and payload, go denotes initial joint
configuration, and cmd is the linear velocity command for the payload. Priori parameters include p,; in Eq. (2) and ho, h; in Eq. (3).
Our terrain is generated by Fractal Brownian Motion (FBM) and based on which, we tune the terrain curve’s amplitude and frequency.
The model dynamics takes the robot’s generalized coordinates g and inputs u to produce the simulated state s. This is then used by the
tracking target adjustment to generate target height h,, vertex position p,, and agent velocity v, which are used for the reward function.
The decentralized MLPs obtain observation and rewards from the environment and each generates a 12-dimensional output, the desired
joint positions. Adding up the 4 outputs gets a 48 dimensional action batch g,;. Then, a PD controller is utilized to convert desired joint

positions to torques u.

« We introduce a reinforcement learning-based strategy
for collaborative quadrupeds.

« We demonstrate that our proposed strategy enables four
quadrupeds to collaboratively carry a payload while
locomoting over rough terrain.

e Our learned policy can be parameterized by different
velocities for the payload.

« We also propose a decentralized policy that eliminates
jerky behaviors seen with centralized policies.

C. Paper Structure

The rest of the paper is organized as follows. Sec. II in-
troduces the reinforcement learning formulation. The collab-
orative quadrupedal manipulation policy design is presented
in Sec. III. Sec. IV demonstrates the simulation results in
different scenarios. Sec. V provides concluding remarks.

II. REINFORCEMENT LEARNING FORMULATION

We now introduce our reinforcement learning (RL) formu-
lation for the collaborative quadrupedal manipulation task.
Our RL framework is based on the work [14], [16], and the
overall framework is illustrated in Fig. 2.

A. Background

We formulate the control process as a Markov Decision
Process (MDP) represented by the tuple {S, A, P,r}. S de-
notes the state space, A is the action space, P is the transition
probability, and r is the reward function. In each control
cycle, the agent observes a state s € S from the vectorized
environment, then it samples an action a € A according to
the state and the policy w. The agent applies this action,
which results in a reward r(s, a,s’). Repeating this process
generates a trajectory 7 = {(sg,a0,70), (S1,a1,71),...}.
Based on the gradient of the loss function L(#), the Adam
optimizer updates the parameters of the policy and value

networks after each episode to maximize the value of accu-
mulated returns J(7),

T—-1
I (1) = Errop(rim) [Z Wt] ) M
t=0

where T represents time steps in one episode, v is the
discount factor, p(7|m) is the probability of obtaining the
trajectory 7 after applying the policy .

We use proximal policy optimization (PPO) [25] to train
the policy. Hyperparameters are shown in Table. I.

TABLE I: PPO Hyperparameters

Parameter Value
Optimizer Adam
Number of epochs 4
Discount () 0.996
GAE factor (\) 0.95
Learning rate 51074
Clip parameter(e) 0.2
Network layer number 3
Activation Function Leaky ReLU

No. of nodes in each layer [128, 256, 256]

B. Observation and Action Space

The observation o for each agent 7 includes body height
h;, body orientation 8;, joint position q;, joint velocity q;,
body linear velocity v;, body angular velocity w;, contact
state I, position in payload frame pg, target height A,
target linear velocity vy, linear and angular velocity track-
ing difference e, and e,, distance between vertices and
agent’s CoM s,,. Target velocity v, refers to the target
velocity assigned to each agent, specified in Appendix A.
The observation o for the payload consists of position p,,
orientation 8, linear velocity v, and angular velocity w), of
the payload in the world frame. Adding up all 4 agents and



the payload’s observations, we generate a 196 dimensional
observation vector for policy and value networks.

We utilize a low-level joint position controller with an
action a € R*® as its input, which is a desired position vector
for the 4 agents’ total 48 joints. Action space for each policy
network is the corresponding agent’s 12 joint positions.

III. METHOD

Having established the RL framework, we next present
our collaborative quadrupedal manipulation policy design.
We first present agent tracking target adjustment, followed
by the decentralized training architecture. Lastly, we apply a
terrain curriculum to gradually train a difficult task.

A. Agent Tracking Target Adjustment

We assume that the payload placement over four
quadrupeds shown in Fig. 1 is a desired configuration for
payload support and control. The agents provide pushing
and pivoting force through the contact between the payload
and the agents’ upper surface. The reward function is an
abstraction of the interactive relationship between the system
and the environment. Setting a guiding reward function
properly helps improve the training efficiency. When the
reward function is only set concerning the payload, the
optimization efficiency is limited. Thus, we assign rewards
to agents and the payload.

Three major parts of the policy design include each agent’s
vertex tracking, velocity tracking, and height adjustment.
Vertex tracking enables a stable relative position between the
payload and each agent, which is similar to position control
in traverse plane. Velocity tracking provides momentum for
pushing and pivoting. While vertex tracking encourages the
robot to stay in the target position without moving, velocity
tracking drives robots to move at a desired velocity. Thus,
these two components are in conflict with each other. We
introduce the third component: height adjustment, which
alleviates this conflict by adjusting the support force with
respect to the payload’s lower surface. The tracking targets
are updated in every step.

1) Vertex Tracking: This component encourages the
agents to track their corresponding vertices on the payload.
The specification of the vertex tracking is presented in
Appendix B.

Pvertex = Ppayload + Rz [th Pv2; Pv3, pv4]7 (2)

where f’vmex is the position matrix of four vertices, and
P 1004 18 the position of payload, R, denotes the rotation
matrix around z axis, p,; denotes vertex i’s position in the
payload frame. The intuition is that multiple agents in a fixed
shape provide stable supporting force for the payload.

2) Velocity Tracking: In order to control the payload to
rotate at a desired angular velocity and to recover from
an undesired yaw angle, we design reward components to
encourage each agent to follow its own desired velocity,
which enables the payload to be manipulated along a curve.
We assign different velocity targets to different agents as their

Fig. 3: Snapshots of simulation setup for flat ground (left) and
uneven terrain (right).

desired curve trajectories differ from each other. Velocity
tracking specification is detailed in Appendix B.

3) Height Adjustment: When the agents are moving, the
payload might sway. The resulting sliding friction between
the payload and the agent causes changes to the agents’
position. We eliminate this problem by adjusting the height,
which indirectly changes the interaction force between the
payload and agents. Since vertex and velocity tracking may
cause sliding friction, height adjustment helps balance these
two components.

The desired height of the agent is adjusted when it is
not under a critical line as shown in Appendix B. This line
is assumed as a circle with a radius equal to the distance
between the center of the payload and a target vertex.
Standing under this line, four agents can support the payload
robustly.

A ho + kn(re — paig),
h = htr + hmax,
hmin,

if Ah € (hmim hmax)
1f Ah > hmax, (3)
if An < hin.

Here, h, is the terrain height beneath an agent, hy denotes
the initial agent height, r. equals to the critical line’s radius,
paip denotes the distance between the payload center and the
agent in traverse plane, k;, maps the range of difference to a
feasible one, A, and h,,;, are the estimated maximum and
minimum stable heights, A, = h — hy,.
B. Decentralized Training Architecture

Inspired by the independent Q-learning algorithm (IQL)
[23], in which each agent learns an individual action-value
network and selects actions greedily, our method provides
each agent with its own network while sharing a reward
function, see Fig. 2. Agents’ trained policies are distinct as
they have different relative positions. The observation space
for each agent is 196-dimensional. We also implement a
centralized training architecture as our baseline, which uses
one network for all the agents.

C. Adaptive Terrain Curriculum

Complex tasks generate large negative rewards at early
stage of training, which leads to a tendency of standing
still for our task. In order to train quadrupeds traversing
over challenging terrain with gradual difficulty, we adopt an
adaptive terrain curriculum [16]. The policy first learns to
walk on a terrain with less roughness, and after every 200
time steps, the old terrain is replaced by a new one with
more roughness. In RaiSim [26], we use zScale to indicate
the roughness of the terrain. For each update, we increase
zScale by 0.05.
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Fig. 4: Payload velocity tracking results of straight motion. The
policy is trained with payload mass = 8 kg and tested with payload
mass = 5, 8, 10, and 30 kg.
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Fig. 5: Payload yaw rate tracking results of curve motion. The
policy is trained with payload mass = 8 kg and tested with 5, 8,
10, and 20 kg.

IV. RESULTS

In this section, we first describe our simulation setup
where we evaluate the proposed method using four simulated
quadrupedal robots with a payload in RaiSim [26]. Then
we present results of the learned policy in three scenarios:
straight motion, curve motion, and rough terrain as well
as robustness tests. We next demonstrate the results of pa-
rameterized velocities. Finally, we compare the performance
between our proposed decentralized method and a centralized
baseline method.

A. Simulation Setup

We choose ANYmal as our simulated testbed. ANYmal is
a highly mobile and dynamic quadrupedal robot [27]. The
detailed parameters for ANYmal can be found in Table. II.
We use four ANYmal robots and a payload which has a
dimension of 4m x 4m X 0.2m. A gray cylinder, which
weighs 1.96 kg, is fixed on top of each ANYmal in order to
support the payload. The height of the cylinder is 10 cm and
its radius is 20 cm. The payload is moved by the contact
force between the cylinder and itself. Friction coefficients
between the payload and each agent, terrain and each agent
are all 0.7, and corresponding restitution coefficients are 0.5
and 0.2. The environment setup for flat ground and rough
terrain are shown in Fig. 3. A 400 steps trajectory is utilized
for training in every episode. The control frequency of the
policy is 100 Hz, and the simulation time step is 0.0025s. We
use RaiSim as our simulation environment [26]. The model
is trained on a machine with intel i7-10875H CPU and a
Geforce RTX 3060 GPU.

TABLE II: Physical Parameters of ANYmal

Parameter Symbol ~ Value  Units
Mass m 30 kg
Body Length Lboay 0.53 m
Body Width dpody 0.27 m
Body Height Rbody 0.5 m
Leg Link Lengths  lmignshank ~ 0.25 m
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Fig. 6: Payload velocity tracking results on a 0.5 zScale terrain.
The policy is trained with payload mass = 8 kg and tested with 5,
8, 10, and 20 kg.

B. Different Traversal Scenarios

1) Straight Motion: The walking forward motion is shown
in Fig. 4. The system achieves stable velocity within 2
seconds. The limited velocity oscillation of the payload
contributes a stable straight motion.

2) Curve Motion: The result for curve motion is shown in
Fig. 5. The desired yaw rate is -0.2 rad/s, and the actual yaw
rate converges within 1 second. The supplementary video
also shows that the orientation of each agent aligns with the
payload’s orientation.

3) Challenging Terrain: Fig. 6 demonstrates the pay-
load velocity tracking result for the challenging terrain sce-
nario. The parameterized hill terrain is generated by Fractal
Brownian Motion. Our control policy enables collaborative
quadrupeds to traverse a rough terrain while tracking a
desired velocity.

4) Robustness: We test the robustness of the control
policy by varying the payload mass. For the above three
scenarios, we use a 8 kg payload during training and test with
different payload mass. Collaborative quadrupedal robots are
able to carry a 30 kg payload during straight and can afford
a 20 kg payload during curve motion and when traversing
on rough terrain.

C. Parameterized Velocity

Fig. 7 describes the parameterized linear velocity tests.
The learned parameterized policy enables the agents with a
payload to walk at a commanded velocity. During training,
the commanded linear velocity is sampled from a uniform
distribution. We demonstrate that when the commanded
velocity is 0.82, 1.0, or 1.28 m/s, the system can track
these commands well. The tracking error increases when the
commanded velocity reaches to the upper limit.

D. Decentralized Architecture Comparison

Fig. 8 compares the left front knee joint angle results for
both centralized and decentralized methods. While both poli-
cies can achieve the traversal task over challenging terrain,
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Fig. 7: Parameterized linear velocity tests. The commanded linear
velocities used for tests are 0.82, 1.00, and 1.28 m/s (dashed lines).
The actual velocity profiles are depicted in solid lines.
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Fig. 8: Left front knee angles for four agents while traversing
over challenging terrain. Top: Centralized policy results. Bottom:
Decentralized policy results.

the behavior from the centralized policy is less natural. The
dashed red rectangular marks the reactive behavior of the
centralized policy when agents are moving uphill. In this
case, the joint angles for all agents increase, which shows a
centralized training effect.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a reinforcement learning-
based strategy for collaborative quadrupedal manipulation.
The learned policy enables four quadrupedal robots carrying
a payload while executing a locomotion task. We validated
this policy design through straight, curve, and rough terrain
tests as well as variations of payload mass. There are two
major shortcomings. The payload is manipulated through
contact. However, the simulated contact force in RaiSim
might not be realistic [28]. Another shortcoming is that we
require a large amount of observations, and part of which
might not be easy to measure for real-world experiments.
For the future work, we plan to systematically investigate
multi-agent reinforcement learning to develop efficient and
robust collaborative quadrupedal behaviors. We also plan to
deploy our policy on the real quadrupedal robots.

e

Fig. 9: Agents placement, sequence and velocity tracking targets.
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APPENDIX
A. Agents and Payload Placement

The vertex tracking component in the reward function
encourages each agent to track its corresponding virtual
vertex, which are black points as shown in Fig. 9. The dashed
circle represents the critical line in the height adjustment
section. When an agent stays within the grey area, a lower
height is set while blue area represents a higher agent height.
Ve denotes the desired velocity which includes the target
velocity in tracking target adjustment section, v, represents
the payload’s desired velocity, and v, denotes an agent’s
rotation speed around the center of the payload.

B. Reward Function

Reward functions encourage position and velocity tracking
and penalize unnatural behaviours. In our setting, the total
number of joints k£ is 48, the number of feet j for each
agent is 4, and the number of agents ¢ is 4. f’vmex and P
denote the desired position of tracking points with respect
to the payload and each agent’s center of mass (CoM) in
the traverse plane, vV and v describe each agent’s desired
and actual linear velqcity, 1, and 1) denote the payload and
agent’s yaw angle, ¢ and 1,b g represent payload’s desired
yaw rate and yaw rate history with a length of 12, hand h
describe agent’s target height and actual height, 7, denotes
generalized torque of joint k, h;, represents height of terrain
beneath agent 4, R0 and v; jp,; denote height and velocity
of agent i’s j'* foot, ¢; denotes agent i’s pitch angle, |||
denotes an Lo norm.

1) Straight Motion:

rs = 0.057,, + 0.157;, + 0.027y,
+0.01744 + 0.05r, + 5 - 10 "¢,

where 7, encourages each agent to track its corresponding
vertex, 75, and 7. respectively contributes to linear and
angular velocity tracking, r,, encourages the yaw angle of
each agent close to the payload’s yaw angle, r; rewards
for consistence of the agents’ height and the target height,



TABLE III: Reward Function Details

Item Symbol Value
Vertex Track Tor e 0vr[Prertex—PJ|
Linear Velocity Tl e Swlv=vli
Yaw Align Tya e O ”A""P*“’L’ Il
Yaw Rate Tyr e_éyer’_“j’H H
Angle Adjust Taa e~ daall¥nll
Height T e";h”ﬁ*hu
Torque ¢ -3 B
Foot Clearance Celr — Zw(o,l + hiy — hi‘fﬁw)Z . HvrlfftH
Slip Csip - Zi,f ” Vijft ”
Irregular Pitch Cpe > qb?

Tqq €ncourages a low yaw angle to ensure that the payload
is heading forward, and the torque penalty ¢, curbs energy
consumption.

2) Curve Motion:

re = 0.04r,, + 0.157;, + 0.057y,
+0.0457y, 4 0.067;, +5 - 107 "¢,

where rp, contributes to the tracking of linear velocity vig,
ry- encourages payload’s yaw rate tracking. Agents’ linear
velocity provide angular momentum for the payload so we
set a larger weight parameter for linear velocity tracking
reward.

3) Challenging Terrain:

7y = 0.04¢q, + 0.005¢,, + 0.1¢p,.

Here, foot clearance cost ¢, penalizes the swing motion with
a low step height. Slip cost cy, discourages a slipping motion
during stance period. Irregular pitch cost c,. contributes
to rectifying irregular pitch angle. The reward function is
summarized in Table. III.
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