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Abstract—The performance of a model-based controller can
severely suffer when its model inaccurately represents the real
world dynamics. We propose to learn a time-varying, locally
linear residual model along the robot’s current trajectory, to
compensate for the prediction errors of the controller’s model.
Supervised learning is performed online, as the robot is running
in the unknown environment, using data collected from its
immediate past. We theoretically investigate our method in
its general formulation, then apply it to a bipedal controller
derived from the full-order dynamics of virtual constraints, and
a quadrupedal controller derived from a simplified model of
contact forces. For a biped in simulation, our method consistently
outperforms the baseline and a recent learning-based method. We
also experiment with a 12 kg quadruped in simulation and real
world, where the baseline fails to walk with 10 kg of payload but
our method succeeds.

Index Terms—Model Learning for Control, Legged Robots

I. INTRODUCTION

MANY popular frameworks for controller design are
based on the robot’s model of dynamics. In the real

world, however, this model can often turn out to be inaccurate,
due to, for example, misspecification of the robot’s physical
parameters, mechanical wear and tear, and deployment-time
interventions such as additional payload. While a well de-
signed controller is robust to small inaccuracies in the dynam-
ics, large deviations may significantly degrade its performance.

Our goal is to make corrections to the model behind the
controller during deployment, through online learning using
onboard sensors. Since the nature of a model is to predict the
future given the past, data for supervised learning of dynamics
can be collected automatically without human supervision, as
time goes on and the future is revealed.

Because data are generated along the controller’s trajectory
that we are trying to improve, they might not contain enough
information about the entire system. Nevertheless, we find it
sufficient to limit the scope of learning to a local neighborhood
of the current point in the current trajectory, instead of the
entire system, if the learned model is updated in real time as
the trajectory evolves.
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Fig. 1. The 12 kg A1 robot carrying 10 kg of payload with our method, tested
for trotting in place and walking forward.

Fortunately, even globally complex systems, such as the
highly nonlinear hybrid systems for legged locomotion, can
be locally simple. Therefore, we also find it sufficient to
learn with only a time-varying, locally linear model, which
is computationally feasible to be updated in real time.

We first develop the intuition of online learning into a
method for controllers that drive the outputs to the desired
behavior based on control-affine models. We then analyze
this method’s theoretical properties, and evaluate it in two
applications for legged locomotion.

A. Related Work

1) System identification: Given a system with known form
but unknown parameters, system identification (sysID) esti-
mates these parameters from signals given by the system
([1]). Recent papers have applied sysID for inertial param-
eters of a humanoid ([2], [3]). The parameters are assumed
to be constant in time, and estimation is performed before
the deployment of a controller. Thinking of identification as
training and deployment as testing, sysID trains a model before
deployment, and keeps the model fixed during testing. Since
the goal is to model the system’s behavior globally across the
entire state space, sysID usually requires driving the system
to diverse enough states, using diverse enough inputs. This
requirement is known as persistence of excitation in control
theory, and might be difficult to satisfy without many samples
from the plant. In contrast, we only model the system’s
behavior locally, around the small neighborhood of our current
state, learning a linear model even for complex systems with
relatively few samples.

2) Learning dynamics: There is also a developing commu-
nity in machine learning, modeling dynamics of the environ-
ment from interactions and observations ([4], [5], [6], [7], [8],
[9], [10], [11]). It has roughly the same goal as sysID, but
often uses powerful tools from deep learning, and does not
assume any specific form of the system; here, learning often
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produces a general prediction model. We diverge from this
community in the global vs. local aspect (like from sysID),
but embrace its philosophy of learning a general model with
parameters that might not be interpretable.

3) Adaptive control: The intuition of adaptive control is to
change the controller’s parameters during deployment ([12]).
Online system identification ([13]) is the most relevant sub-
field, since it directly concerns the model behind the controller.
It has been successfully applied in manipulation ([14], [15],
[16], [17], [18]), and for the location and inertial parameters
of the center of mass of a quadruped ([19]). For online sysID,
the parameters considered are very specific, and estimation
relies on the physics of the model and the particular controller
for the application. Our work considers parameters in a much
more general sense closer to that of the machine learning
community. Our parameters are functions of the state, thus
are inherently time-varying and abstract. In fact, in the control-
affine form, every term of our dynamics is updated in real time
as the state evolves. Furthermore, unlike sysID (online or not)
whose goal is to identify the parameters, our goal is simply
to give accurate predictions for the next timestep, again closer
to the goal of learning. This allows our method to not rely
on the specific meanings of the parameters and instead work
with general model-based controllers. Another relevant sub-
field is L1 adaptive control ([20], [21]), which, like our work,
concerns the residual dynamics, but does not use learning.

4) Online learning: Our work performs supervised learning
online, which has long been a subject of research in ma-
chine learning ([22], [23], [24]). The two central questions
are: where does the label come from, and how is learning
evaluated. Traditionally ([25]), learning has been evaluated
with regret, and labels can come from a potentially adversarial
oracle. Recently, the computer vision community has been
using self-supervised tasks to provide labels ([26], [27], [28],
[29], [30]), and the continual learning community has been
evaluating with forward and backward predictions ([4]) c.f.
Subsection II-B.

B. Conventions

In this paper, vectors (a,α) are bold and lowercase, ma-
trices (A,Ω) are bold and uppercase, scalars and functions
(of all type signatures) are not bold. We assemble matrices
and vectors like in MATLAB: [A,B] concatenates A and
B horizontally with a comma, and [A; B] concatenates them
vertically with a semicolon. 0n denotes the n × n matrix of
zeros, and 1n denotes the n × n identity matrix. Also, ‖ · ‖
denotes the 2-norm for vectors (Euclidean norm) and matrices
(spectral norm), unless stated otherwise. We express quantities
in the nominal dynamics ᾱ with a bar, in the residual dynamics
α̃ with a tilde, and in the true (plant) dynamics α without
anything on top.

II. METHOD

A. Unknown Dynamics and Linear Residual Models

Given a robotic system that is characterized by rigid-body
dynamics, we denote x ∈ Rn as its state, u ∈ Rm its vector
of control inputs, and y ∈ Rd its vector of outputs. The

model-based
controller plant

sliding window
dataset

nominal model +

residual model

baseline controller

proposed controller

Fig. 2. Block diagram of our method. ᾱ and β̄ are time-varying parameters
of the nominal model for a system’s output dynamics, assumed to be control-
affine. As the model-based controller is running, data are collected into the
sliding window dataset, and supervised learning is performed to estimate
residual parameters α̃ and β̃; they are then used to improve the model behind
the controller. See Section II for more details.

output dynamics can almost always be written as a second-
order system of the following form ([31]), known as control-
affine ([32]):

ÿ = ᾱ(x)u + β̄(x). (1)

We consider model-based controllers whose goal is to drive
the vector of tracking errors η = [y; ẏ] to zero.

The bars on top of the variables imply that they come from
our assumed nominal model, which in reality can never be
completely accurate. The unknown real-world dynamics are
called the true (plant) model, denoted without the bars as α, β.
We often use an alternative set of notations to write equation
(1) simply as:

ÿ = ᾱu + β̄, (2)

in order to emphasize the role of ᾱ and β̄ as time-varying
parameters of the output dynamics.

To make corrections to the nominal model, we incorporate
two residual parameters and obtain the following form:

ÿ = (ᾱ + α̃) u +
(
β̄ + β̃

)
, (3)

where α̃ is called the weight and β̃ is called the bias. They
are written as time-varying parameters, and have the same
dimensions as ᾱ and β̄ respectively. The tildes on top of them
emphasize that they are estimated from data.

To better understand these residual parameters, we manip-
ulate equation (3) into:

ÿ −
(
ᾱu + β̄

)
= α̃u + β̃. (4)

Intuitively, the above equation says that the goal of learning is
to make the residual model on the right-hand side account for
the prediction errors of the nominal model on the left-hand
side. It also reveals the role of labels vs. covariates, as we
explain next in the context of learning.

B. Data Collection and Online Learning

For real systems, sensor data can only be collected at
discrete sampling intervals. We denote each sampling timestep
by an integer subscript, which converts equation (4) into:

ÿt −
(
ᾱtut + β̄t

)
= α̃tut + β̃t. (5)
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Note that we are merely sampling a continuous system at
discrete timesteps, so continuous-time concepts such as accel-
eration are still well defined. We collect a dataset of the form
D := {labels, covariates}s=t−k,...,t−1, where s is the index of
discrete timesteps, and k denotes the fixed size of the sliding
time window. From equation (5), we have

D =
{
ÿs −

(
ᾱsus + β̄s

)
,us
}
s=t−k,...,t−1.

Given a dataset, our method solves regularized least squares
a.k.a. ridge regression on the labels and covariates. The weight
of the solution is α̃t, and bias is β̃t. Note that in textbook-style
least squares, the weight is a vector, and the label and bias are
scalars; for our learning problem, the weight is a matrix in
Rd×m, and the label and bias are vectors in Rd. But we can
simply reduce this to d independent vector-scalar least squares
problems. The same regularization is added independently to
these d problems, since they share the same covariates; thus
inversion of the covariance matrix, the most computationally
costly step, is only performed once.

The solved parameters are then immediately used by the
model-based controller to produce ut. In both of our later ex-
amples, the baseline controller solves for ut in an application-
specific optimization problem with the assumed nominal pa-
rameters ᾱt and β̄t. We simply substitute these with ᾱt + α̃t
and β̄t + β̃t respectively, as shown in Figure 2.

Learning is performed online, as the controller is running
with the learned parameters. At the beginning, all residual
parameters are initialized to zero, because there is not enough
data to learn them. Once we are k steps into the trajectory, we
have enough data to form D as above and solve for the residual
parameters; informed by them, the controller generates an
improved trajectory, which in turn generates new data that
are more relevant as time goes on.

The fact that D only keeps the k most recent data points
implements a natural forgetting mechanism. In reinforcement
learning terms, D is called the replay buffer, which stores the
off-policy data that are not generated by the current controller;
in our case, data in D are generated by the old controllers using
the residual parameters from previous timesteps. Because we
learn small, local models, we encourage forgetting so that
our model capacity can be used only for the neighborhood
of our current state. This is in contrast to the vast literature in
reinforcement learning [33], [24], [34], [4], where the goal is
to learn a large, global model; there the replay buffer contains
as much historical data as possible, and various techniques are
implemented to discourage forgetting.

Our method can also be viewed as bootstrapping from a
“bad” controller based on an inaccurate model to a better
one. This might not be feasible, however, if the initial model
deviates too much from the plant. For example, if the nominal
model is so far off that the robot loses balance immediately,
no useful information will be contained in the data collected.
Fortunately, when deviations happen gradually over time,
there will more likely be enough information for learning to
maintain a controller that keeps generating useful data. We
study this phenomenon empirically in Section IV.

C. Theoretical Analysis

Suppose the true (plant) output dynamics is control-affine:

ÿt = αtut + βt. (6)

We prove that our method stabilizes the tracking errors under
two assumptions. The main theorem illustrates our intuition
of learning in a local time window under smoothly varying
dynamics, and characterizes the role of k, our window size.

Denote errors in the nominal model’s prediction as

ˆ̈yt := ÿt −
(
ᾱtut + β̄t

)
= α̂tut + β̂t, (7)

with α̂t :=αt − α̃t, and β̂t :=βt − β̃t.
Denote the prediction of the residual model as

˜̈yt := α̃tut + β̃t. (8)

Assumption 1: The model-based controller can stabilize the
tracking errors η = [y; ẏ] if for some ε > 0,∥∥∥ÿt − ((ᾱt + α̃t) ut +

(
β̄t + β̃t

))∥∥∥ < ε. (9)

Assumption 2: ‖α̂t+1 − α̂t‖ < δα, ‖β̂t+1 − β̂t‖ < δβ .

In words, Assumption 1 says that the proposed model-based
controller works when the proposed (nominal plus residual)
model is relatively accurate; Assumption 2 says that the
deviations in dynamics are relatively smooth (in the space of
parameters) over time.

In addition, we denote the motor torque saturation as ‖u‖ <
B. Denote u′t = [ut; 1] ∈ Rm+1, and

U′ =

[
[u1; 1]>; ...; [uk; 1]>

]
∈ Rk×(m+1). (10)

We set k ≥ m+1, so σmin(U′) > 0, i.e. the covariance matrix
of ordinary least squares (OLS) has rank m+ 1.

Theorem 1: Given the above assumptions, if

(B + 1)2
√
d

σmin(U′)
k
√
k(δα + δβ) < ε, (11)

then the model-based controller stabilizes η.
Note that any claim of stability in Theorem 1 is completely

inherited from the baseline controller, when Assumption 1
holds. Our method is agnostic to the exact type of stability
e.g. exponential / asymptotic, which depends on the underlying
baseline, and is orthogonal to the theory we develop.

In Theorem 1, B, d, δα and δβ are constants determined
by the application. ε is the model-based controller’s tolerance
for model inaccuracy, also independent of our method. The
only quantity we tune is k, the window size, which strongly
affects σmin(U′). With a large k, we pay a factor of k

√
k,

intuitively due to the lag in our dataset. With a small k, we
pay for the decrease in σmin(U′), as α̃ and β̃ become more
sensitive to noise. The user should tune k to find a sweet spot
in the middle. In practice, we use regularized least squares
instead of OLS, so σmin(U′) is always > 0 and more noise
tolerant, making the balance less delicate w.r.t. choice of k.
We use k = 100 in both of our applications (100 and 200 ms
respectively).
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Before proving Theorem 1, we state two lemmas, whose
proofs are given in Subsection A of the appendix.

Lemma 1: For A ∈ Rm×n and b ∈ Rm, if ‖A‖ ≤ δA and
‖b‖ ≤ δb, then ‖[A,b]‖ ≤ δA + δb.

Lemma 2: Let yt ∈ Rd, ut ∈ Rm and At ∈ Rd×m. Let
yt = Atut for t = 1, ..., k, and Ã be the OLS estimator
of the dataset {(y1,u1), ..., (yk,uk)}. If for t = 1, ..., k + 1,
‖At+1 −At‖ < δA, and ‖ut‖ < B, then∥∥At − Ãt

∥∥ < B
√
d

σmin(U)
k
√
kδA, (12)

where U = [uT1 ; ...; uTk ] ∈ Rk×m.
Proof of Theorem 1: By triangle inequality, we have ‖u′t‖ <

B + 1. Also define Ât = [α̂t, β̂t] ∈ Rd×m+1, and similarly
Ãt = [α̃t, β̃t]. Combining Assumption 2 and Lemma 1, we
have ‖Ât+1 − Ât‖ < δα + δβ . Now∥∥∥∥ÿt − ((ᾱt + α̃t) ut +

(
β̄t + β̃t

))∥∥∥∥ (13)

=
∥∥ˆ̈yt − ˜̈yt

∥∥ =

∥∥∥∥ (α̂t − α̃t) ut +
(
β̂t − β̃t

)∥∥∥∥ (14)

=

∥∥∥∥(Ât − Ãt

)
u′t

∥∥∥∥ ≤ (B + 1)

∥∥∥∥Ât − Ãt

∥∥∥∥. (15)

By definition, Ãt is the least squares solution on D. We then
apply Assumption 1 and Lemma 2 to finish the proof.

III. APPLICATIONS

We now apply our method to two model-based controllers,
derived from two different perspectives for different robotic
platforms: a Lyapunov perspective to control the full-order
dynamics of bipedal robots, and a simplified dynamics based
control architecture for robust quadrupedal locomotion. We
focus on identifying the components of our method in the
context of each controller, without elaborating on derivations
of the nominal dynamics.

A. CLF-QP for Bipedal Locomotion

Let q be the robot’s configuration, and x = [q; q̇] be the
robot’s state. We define y = h(x), where h is called the virtual
constraints ([35]). For a biped, stabilizing η = [y; ẏ] means,
for example, that the torso maintains a constant posture, and
the legs walk in a scissor-symmetric gait.

The nominal output dynamics, whose derivation we omit,
can then be written in the familiar form of equation (1), using
Lie-derivatives of the nominal dynamics in the state space as
ᾱ and β̄:

ÿ =
d

dt

(
∂h

∂q

)
q̇− ∂h

∂q
D̄
(
C̄q̇ + ḡ

)
︸ ︷︷ ︸

β̄(x)

+
∂h

∂q
D̄B︸ ︷︷ ︸

ᾱ(x)

u, (16)

where D̄ is the inverse of the mass-inertia matrix, C̄ is the
Coriolis matrix and ḡ is the gravity vector. While ᾱ(x) might
not be square (d = m) in general, this particular bipedal con-
troller has the same number of virtual constraints as actuated
joints. Now the control law u = ᾱ(x)−1

(
−β̄(x) + v

)
, a.k.a.

input-output (I/O) linearization, produces ÿ = v.

We can then design v to stabilize the output dynamics using
control Lyapunov functions (CLFs), a common tool in control
theory for providing stability guarantees in legged locomotion
([36]). Because η̇ is linear in η and v, it is straightforward
to find a CLF by solving the Lyapunov equation V (η) ([37]).
It is then a well known fact that V̇ (η,v) < −cV implies
exponential stability of η(t), with a constant c > 0. This
motivates the following CLF-based quadratic program (CLF-
QP) to solve for v:

v(x) = argmin
v

u>u

s.t. C1. V̇ (η,v) < −cV
C2. u = ᾱ(x)−1

(
−β̄(x) + v

)
,

C3. umin � u � umax,

(17)

where umin and umax are bounds of the torque saturation
constraints. Since the output dynamics is already in the form of
equation (1), it is straightforward to apply our method to obtain
α̃ and β̃. We can then modify the C2 in the optimization
problem (17) to have

u = (ᾱ + α̃)
−1
(
−
(
β̄ + β̃

)
+ v

)
. (18)

In Section IV we show that this simple modification leads to
significant improvements under uncertain dynamics.

B. MPC with Contact Force for Quadrupedal Locomotion

To control a quadrupedal system walking stably under large
disturbance (such as heavy loads), we take the model predictive
control (MPC) approach using the simplified dynamics from
[38] as our baseline controller.

For quadrupedal dynamics, let p, ṗ, p̈ ∈ R6 be the position,
velocity and acceleration of the robot’s center of mass (CoM).
Let f i ∈ R3 be the ground reaction force at the robot’s ith foot,
with i ∈ {1, 2, 3, 4}. We also denote f = [f1; f2; f3; f4] ∈ R12.
The nominal dynamics of the CoM is given by

p̈ = D̄Gf − ḡ, (19)

where ḡ ∈ R6 is the gravity vector, D̄ ∈ R6×6 is the inverse
mass matrix, and G ∈ R6×12 is called the grasp map, which
depends on the robot’s state and is assumed to be accurate.

The goal of the model-based controller is to have p and ṗ
track the desired position and velocity pd and ṗd, generated
from user command. In Sec.II notations, y = p − pd, we
want to stabilize η = [y, ẏ] around zero. This is achieved by
having p̈ track some desired acceleration p̈d, generated from
PD control on pd and ṗd. The model-based controller then
uses equation (19) to solve for f :

argmin
f

‖D̄Gf − ḡ − p̈d‖Q + ‖f‖R

s.t. stance and swing leg constraints,
friction pyramid condition.

(20)

where more details can be found in [39], Following the outline
in Section II, we modify (19) to incorporate the linear residual
model:

p̈ =
(
D̄ + D̃

)
Gf − (ḡ + g̃) , (21)
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where D̃ is the weight, and −g̃ is the bias.
Note that the nominal dynamics in (19) has no Coriolis

terms, a simplification often adopted in the literature for
model-based controller design of quadrupeds with small an-
gular velocity. While this simplification has been validated
in many implementations, it is never completely accurate.
Therefore, even if D̄ = D and ḡ = g i.e. they are both
accurate parameters, (19) is still an inaccurate description
of the plant. We make no distinction, philosophically or
algorithmically, between unknown dynamics e.g. payload, and
unmodeled dynamics e.g. the Coriolis terms discarded by
design. Our true output dynamics can take any general form.
Also note that Assumption 1 is in fact not satisfied by our
baseline controller due to its simplifications e.g. massless legs.
In this case, stability is left to empirical validation.

Moving on, we sample equation (21) at discrete timesteps:

p̈t −
(
D̄Gtf t − ḡ

)
= D̃tGtf t − g̃t, (22)

and form the dataset as

Dq =

{
p̈s −

(
D̄Gsfs − ḡ

)
,Gsfs

}
. (23)

After solving for D̃ and ḡ, we use them to modify the objective
function in equation (20) as:

min
f

∥∥∥∥(D̄ + D̃
)

Gf − (ḡ + g̃)− p̈d

∥∥∥∥
Q

+ ‖f‖R. (24)

By definition, D̄ + D̃ must be positive definite; this is also
necessary for the optimization problem above to make sense.
For computational efficiency, we solve for D̃ unconstrained,
and find that our least squares solution in fact always gives
D̄ + D̃ positive definite for our experiments.

IV. RESULTS

Video of our experiments is available at https://youtu.be/Je
2Y-FQpKw ([40]). Simulations are performed in the PyBullet
([41]) physics engine.

A. Simulation for Bipedal Walking

Our baseline controller discussed in Subsection III-A is
taken from [33], which introduces its own setting and method
for unknown dynamics. We perform simulation in their setting,
and make comparison with their method.

The problem setting is based on RABBIT ([42]), an under-
actuated planar five-link bipedal robot with seven degree-of-
freedom; virtual constraints and controller design are based on
[37]. Model uncertainty is introduced in [33] by scaling the
mass of each link by a factor of two in the real environment.
The baseline CLF-QP controller falls in a few steps in this
setting, due to the significant difference in dynamics between
the nominal and true model.

By querying the plant, [33] uses model-free reinforcement
learning (RL) to train a policy that directly adds on the orig-
inal control inputs u, without reasoning about the unknown
dynamics in the model space. Specifically, the commanded
control inputs take the form u + uθ(x), where u is a neural
network policy with parameters θ. Their reward is designed
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Fig. 3. Bipedal walking with mass of each link scaled by two. Both
our method and that of [33] walk stably. Their RL-based method trains on
20,000 samples from the real environment before deployment. Our method
trains completely online and does not sample from or anticipate the real
environment, treating it as truly unknown until the robot is deployed, and
results in smaller impulses of control inputs and better tracking performance.
The top panel visualizes the gait generated by our method.

to encourage V̇ < −cV , where the value of V is obtained by
simulating in the plant. After 20,000 samples from the plant
simulated using the true dynamics, their method trains a policy
which walks in the true dynamics without falling.

Our method walks stably in the same setting, training
completely online without querying the plant at all before
deployment. In fact, Fig. 3 shows that our method enjoys
smaller impulses of control inputs and better tracking perfor-
mance than the RL-based method, even though the latter had
privileged access to the plant before deployment to optimize
exactly for these metrics.

Online learning enables us to treat the plant as truly un-
known, in terms of both data and mathematical representation,
while only the latter is unknown for methods that train
offline like in [33]. This philosophical difference prevents our
controller from overfitting on the training environment. In
particular, our controller still walks stably under the original
dynamics without scaling, where the policy trained with the
scaled links fails, because it overfits to the scaled dynamics.

In addition, our controller walks stably in all environments
below, where the baseline and the RL-based method cannot:

1) scaling the control inputs by half, in order to simulate
transmission inefficiencies and motor wear and tear;

2) scaling the mass of the torso by four, in order to simulate
payload on the back of the humanoid;

3) scaling the mass of the right leg by four, as an example
of asymmetric changes in dynamics.

We keep the same hyper-parameters for all the experiments
above, including a windows size of 100 ms (where k = 100
and each timestep is 1 ms). The robot is still able to walk

https://youtu.be/Je_2Y-FQpKw
https://youtu.be/Je_2Y-FQpKw
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Fig. 4. Quadruped walking with payload in simulation. We start with
an empty payload, and increase its mass by 5 kg / s once simulation begins.
The baseline has completely fallen in 2 s, but the proposed method still walks
stably after 10 s (50 kg). The bottom visualizations are captured when the
payload reaches the specified mass. The torque limit is reached at 25 kg.

under the scaled dynamics with a window size of 10 or 1000,
but has higher norm of control inputs and tracking errors.

B. Simulation for Quadrupedal Robot

Our baseline controller, as discussed in Subsection III-B, is
based on [38] and used subsequently in [39] and [43]. Our
implementation is modified from the publicly available code
of [43] on an Unitree A1 quadruped, and keeps their original
parameters unless stated otherwise. The A1 weighs 12 kg and
has 12 motors, three for each leg, with the stated torque limit
of 35.5 Nm. We experiment in PyBullet using Unitree’s URDF
description, and also on a real robot. In both simulation and
real world, we use a window size of k = 100 (like for the
biped); the controller runs at a frequency of 500 Hz, making
the dataset window 200 ms.

We command our robot to walk with linear velocity of
0.5 m / s in the x-direction, while maintaining CoM height of
0.24 m. Both the baseline and the proposed method can walk
stably without payload, while tracking the desired velocity and
height. With 6 kg of payload, however, the baseline can barely
walk at 2 / 3 the desired velocity, and sags to 2 / 3 the desired
height; the robot falls with 7 kg.

The proposed method walks stably with 12 kg of payload
(same as its body mass), while tracking the desired velocity up
to 0.05 m / s, and the desired height up to 0.01 m; all motors
torques are less than 35.5 Nm. With more than 12 kg, however,
tracking becomes less accurate, and with 15 kg the robot
falls. Since the payload is carried from very the beginning
of simulation, the robot visibly sags for the first fifth of a
second, as we collect data before we can estimate the residual
parameters. With 12 kg it soon recovers from the sag, but for
larger payloads it struggles to get back.
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Fig. 5. Quadruped walking with payload in the real world.

Next, we experiment with gradually changing dynamics.
We start with an empty payload, and increase its mass by
5 kg / s, that is, 0.001 kg per timestep, once simulation begins.
The tracking errors are shown in Figure 4. The baseline falls
within 2 s. We have tried to improve the baseline by tuning the
PD gains for p̈d, but found it ineffective. This observation is
reasonable, since larger gains only make p̈d more aggressive,
but cannot help if the model-based controller fails to achieve
it using the nominal dynamics. The proposed method walks
stably even when the payload reaches 50 kg. Motor torques
reach the specified limit at 25 kg (5 s), but the URDF allows
simulation to keep running.

C. Hardware Experiments for Quadrupedal Robot

To facilitate hardware testing, we fit the Unitree A1
quadruped with a loading rig designed to hold up three
standard 1 inch weight plates. The rig allows for incremental,
discrete changes in load while the quadruped is in operation.
The rig itself weighs 0.9 kg.

The experiments were designed to compare the performance
of the baseline and proposed controllers under varying load
conditions during operation. Two tests for each controller were
performed: a step-in-place test and a 0.1 m/s forward motion
test. The load conditions for the tests are shown in Table 1.
Due to the manual loading process, the duration of each load
varies by a small amount of transition time, typically less than
1 s. To protect the hardware from possible damage, we do not
load beyond 10 kg, and limit operation at this load to 5 s.

In the transition from simulation to hardware, we had to
address the problem of acceleration estimation from noisy
measurements. [43] uses a Kalman filter to fuse IMU and
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TABLE I
LOAD CONDITIONS FOR HARDWARE EXPERIMENTS

Load (kg) 0.9 5.4 7.7 10 0.9
Duration (s) 5 10 10 5 5

joint encoder measurements and produce a CoM velocity
measurement. From this, first order difference is then used
to compute a CoM acceleration estimate for the learning
algorithm. Two parameters for the Kalman filter, namely the
window size and IMU variance value, are tuned to give a final
acceleration estimate with suitable trade-off between lag and
noise. The window size is modified from 120 to 60 samples,
and the IMU variance is modified from equal to the encoder
variance to 5 times the encoder variance. Ultimately, after
tuning, the estimator produces acceptable linear acceleration
estimates, but the angular terms proved too noisy to be
useful. As such, we proceeded with hardware experiments with
learning enabled for only the linear terms.

The hardware experiments were performed on the A1 on
flat, grassy terrain. Both the baseline and proposed methods
perform nominally with low load, but as the weight increases,
the baseline controller sags in body height and is unable to
maintain forward velocity. The proposed controller does not
suffer this degradation and is able to maintain desired body
height and forward velocity for the range of load conditions.
Results for the forward walking test are summarized in Fig-
ure 5. Video comparison of both trot-in-place and forward
walking is available in [40].

V. DISCUSSION
We have introduced a method to update model parameters

through online learning, while a controller is running with
past, inaccurate versions of these parameters. Unlike methods
in adaptive control, our method uses learned parameters that
are general functions of the state, thus inherently time-varying.
To the best of our knowledge, this is the first method that
applies machine learning to make real-time updates (500 to
1000 Hz) in hardware walking experiments.

While the nominal models in our applications are derived
from classical mechanics, our method can be applied to any
black box nominal model e.g. a simulator. While our baselines
are derived from classical control principles, our method can
also be applied to any controller using the black box model,
even a policy trained in simulation. We hope to explore
these potentials in future work, under broader definitions of
unknown dynamics, such as sim-to-real transfer.

APPENDIX
A. Proofs

1) Proof of Lemma 1:∥∥[A,b]
∥∥ = max

x∈Rn,y∈R

∥∥∥∥[A,b]

[
x
y

] ∥∥∥∥ :

∥∥∥∥ [xy
] ∥∥∥∥ ≤ 1

= max
x∈Rn,y∈R

∥∥∥∥Ax + yb

∥∥∥∥ :

∥∥∥∥ [xy
] ∥∥∥∥ ≤ 1

≤ max
‖x‖≤1

‖Ax‖+ max
y∈[−1,1]

‖yb‖

= δA + δb.

2) Proof of Lemma 2: We first prove the vector version in
a claim, which is used in the proof of the lemma.

Claim 1: Consider yt = 〈ut,at〉 ∈ R for t = 1, . . . , k, and
ut,at ∈ Rm. Suppose ‖ut‖ < B and ‖at+1 − at‖ < ε. Let ã
be the OLS estimator on this dataset, then

‖ak − ã‖ < B

σmin(U)
k
√
kε

.
Proof: Define the feasible set of weights for a dataset as

A = {(a1,a2, · · · ,ak) : yt = 〈ut,at〉 , ‖at − at+1‖ ≤ ε, ∀t} .

Then ak can only exist in the kth component of A, denoted

Ak = {ak : ∃(a1, · · · ,ak−1) s.t. (a1,a2, · · · ,ak) ∈ A} .

Our goal is to bound maxak∈Ak
‖ã− ak‖.

Define et = at − ak, where ek = 0 and ‖et+1 − et‖ < ε.
We can rewrite A using these conditions as

A = {(a1, · · · ,ak) : yt = 〈ut,at〉 , et = at − ak,

ek = 0, ‖et+1 − et‖ < ε, ∀t}.

Define E = [eT1 ; ...; eTk ] and A = [aT1 ; ...; aTk ]. Also, by
definition of OLS, ã = (UTU)−1UTy. Therefore

‖ak − ã‖ = max
ak∈Ak

‖ã− ak‖

= max
ak∈Ak

‖(UTU)−1UTy − ak‖

= max
ak∈Ak

‖(UTU)−1UT (U ◦A · 1)− ak‖

= max
ak,E
‖(UTU)−1UT (Uak + U ◦E · 1)− aK‖

= max
E
‖(UTU)−1UT (U ◦E · 1)‖

≤ ‖(UTU)−1UT ‖max
E
‖U ◦E · 1‖

=
maxE ‖U ◦E · 1‖2

σmin(U)
,

where ◦ denotes the Hadamard operator, σmin(U) is the
minimum non-zero singular value of U; the last equality
follows from singular value decomposition of U. Note that

max
E
‖U ◦E · 1‖ < max

t=1,...,k
‖ut‖‖[0; · · · ; k − 1]‖ε

<

√
3B

3
k
√
kε < Bk

√
kε,

which finishes the proof of Claim 1.
Now we extend the result of Claim 1 to prove Lemma 2,

Note that in the context of Lemma 2, At ∈ Rd×m, and is
different from the definition of A in the proof of Claim 1. We
use the standard matrix norm relationship ([44])

‖X‖/
√
d ≤ ‖X‖2→∞ ≤ ‖X‖, (25)

for any matrix X ∈ Rd×m. Combining the second half of
equation (25) with the lemma’s assumption, we have

‖At+1 −At‖2→∞ < ε. (26)

As explained in Subsection II-B, the matrix-vector least
squares problem is solved by reducing to d independent vector-
scalar sub-problems, for each dimension of yt. Each sub-
problem solves for one row of Ã. From equation (26), we
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already know that rows of the ground truth weight matrices
satisfy the smoothness assumption in Claim 1. Therefore we
can apply Claim 1 to each row of Ã, yielding

‖Ak − Ã‖2→∞ <
B

σmin(U)
k
√
kε.

Combining this with the first half of equation (25) finishes the
proof of Lemma 2.
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