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ABSTRACT: When arranged in a periodic geometry, arrays of metallic
nanostructures are capable of supporting collective modes known as lattice
resonances. These modes, which originate from the coherent multiple
scattering between the elements of the array, give rise to very strong and
spectrally narrow optical responses. Here, we show that, thanks to their
collective nature, the lattice resonances of a periodic array of metallic
nanoparticles can mediate an efficient long-range coupling between dipole
emitters placed near the array. Specifically, using a coupled dipole approach,
we calculate the Green tensor of the array connecting two points and
analyze its spectral and spatial characteristics. This quantity represents the
electromagnetic field produced by the array at a given position when excited
by a unit dipole emitter located at another one. We find that, when a lattice resonance is excited, the Green tensor is significantly
larger and decays more slowly with distance than the Green tensor of vacuum. Therefore, in addition to advancing the fundamental
understanding of lattice resonances, our results show that periodic arrays of nanostructures are capable of enhancing the long-range
coupling between collections of dipole emitters, which makes them a promising platform for applications such as nanoscale energy
transfer and quantum information processing.
KEYWORDS: lattice resonances, periodic arrays, nanoparticle arrays, Green tensor, dipole−dipole coupling, quantum emitters

Lattice resonances are collective modes supported by
periodic arrays of nanostructures that originate from the

coherent multiple scattering between the individual array
constituents.1−15 These resonances appear in the spectrum at
wavelengths commensurate with the periodicity of the array
and, due to their collective nature, produce optical responses
that are simultaneously very strong and spectrally narrow, thus
leading to record quality factors for metallic systems.16−25

Thanks to these exceptional properties, periodic arrays of
metallic nanostructures are being used in a broad range of
applications. These include the implementation of ultra-
sensitive sensors,26−29 the development of platforms for
exploring new physical phenomena,30−34 as well as the design
of different optical elements, such as light-emitting devi-
ces,35−46 lenses,47 color filters,48−50 and nonlinear devices.51−54

Interestingly, in the majority of these applications, the lattice
resonances are excited from the far-field using a propagating
electromagnetic wave, such as a collimated laser. As a
consequence, most of the theoretical characterization of the
optical properties of periodic arrays of metallic nanostructures
has been focused on describing their far-field response through
the analysis of quantities such as the reflectance, transmittance,
and absorbance.11,12 However, lattice resonances also produce
very large electromagnetic fields around the array,55−58 which,
as we have recently shown, are ultimately limited by the

number of elements of the array that interact coherently.59 The
strong near-fields provided by lattice resonances play a crucial
role for applications, such as nanolasing, in which the arrays
interact with quantum emitters placed in their vicinity.37,60,61

Specifically, in these systems, the lattice resonances couple with
the emitters (usually quantum dots or dye molecules) that
constitute the gain medium and provide the necessary
feedback to achieve lasing.44,45,62−68 These modes can also
strongly influence the emission patterns of the emitters.69,70

Furthermore, the collective character of lattice resonances and
their extended nature makes them ideal candidates to provide
an efficient long-range interaction between emitters placed
near the array. This possibility has started to be explored to
achieve collective emission,71,72 as well as long-range energy
propagation73 and dipole−dipole coupling.74

In this Article, motivated by the recent experimental
advances, we provide a detailed theoretical investigation of
the coupling between dipole emitters mediated by the lattice
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resonances supported by periodic arrays of metallic nano-
particles. To that end, we implement a theoretical approach
based on the coupled dipole model that allows us to compute
the Green tensor of the array connecting two points rμ and r.
This quantity, which represents the electromagnetic field
produced by the array at r when excited by a unit dipole
located at rμ, completely describes the optical response of the
array. Using this approach, we analyze the spectral and spatial
characteristics of the Green tensor of the array and show that,
when a lattice resonance is excited, this quantity is largely
enhanced with respect to the Green tensor of vacuum and
decays with |r − rμ| at a much slower rate. Therefore, in
addition to describing and implementing a powerful approach
to investigate the near-field excitation of lattice resonances by
localized sources, we provide a comprehensive analysis of how
these collective modes can enhance the long-range coupling
between dipole emitters and unravel the physical mechanisms
behind that effect. Our results constitute a solid theoretical
framework that facilitates the interpretation of recent
experimental results,71−74 as well as the development of new
applications exploiting the exceptional optical properties of
periodic arrays of nanoparticles.

■ RESULTS AND DISCUSSION
The system under study, which is depicted in Figure 1a,
consists of a square array with period a made of identical silver
nanospheres of radius R. The array is located in the xy-plane
and surrounded by vacuum. We assume that R is significantly
smaller than both a and the wavelength of light λ, which allows
us to characterize the response of the array using a coupled
dipole model.1,3,19,75−77 Within this approximation, we model

each of the nanoparticles of the array as a point dipole with
both electric p and magnetic m components, whose responses
are characterized by an electric αE and a magnetic αM

polarizability, respectively. Although, in this work, we focus
on metallic nanoparticles, for which the magnetic polarizability
plays a minor role, we have opted to include it in the model to
ensure the theory is applicable to a wide range of systems. As
shown explicitly in the Methods section, the coupled dipole
model allows us to derive the following closed expression for
the electric and magnetic field produced by the array at a point
r = (x, y, z), when excited by a unit dipole with electric μ̂E and
magnetic μ̂M components, located at rμ = (xμ, yμ, zμ)c

e
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with its electric−electric and electric−magnetic components
expl ic i t ly defined in the Methods sect ion, and

α= [ − ]− −k k( ) ( , 0)1 1( . is the polarizability of the array
(see eq 8). This last quantity encodes the intrinsic response of
the array, which is determined by the interplay between the
response of the nanoparticles, described by the polarizability

Figure 1. (a) Schematics of the system under study, consisting of a square array of period a made of identical silver nanospheres with radius R. The
array is located in the xy-plane and is surrounded by vacuum. We are interested in the analysis of the Green tensor of the array connecting two
points rμ and r, which represents the field produced by the array at r = (x, y, z) when excited by a unit dipole located at rμ = (xμ, yμ, zμ). (b, c)
Dispersion diagrams showing the extinction efficiency of an array with a = 800 nm and R = 100 nm for y (b) and z (c) polarizations (see eq 2),
calculated along the path in the first Brillouin zone depicted in (d). The red dashed curves in panels (b) and (c) indicate the position of the
Rayleigh anomalies, while the insets show zooms of relevant regions of the dispersion relations, with the yellow dashed lines marking the onset and
cutoff of the lowest-order lattice resonance at the Γ and M points, respectively.
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tensor α, and the geometry of the lattice, contained in the
lattice sum tensor k( , 0). .
The integral over k∥ in eq 1 is the result of the localized

character of the dipole source, which breaks the periodicity of
the problem. Importantly, the integrand displays narrow
features, associated with the lattice resonances of the array,
that make it necessary to use an adaptive integration
algorithm78 to perform the integral. Furthermore, the lack of
periodicity also means that a full numerical solution of
Maxwell’s equations, using, for instance, a finite element
(FEM) or a finite-difference time-domain (FDTD) method,
requires performing a similar integration, thus making such
computation very challenging.
We begin our analysis by characterizing the response of the

array through the calculation of its extinction efficiency,
defined as13,79

π= { ̂ ̂ }̂
†k

a
n k n4 Im ( )n 2

EE, (
(2)

for polarization along n̂. Here, k( )EE( is the electric−electric
component of the polarizability of the array, which is the term
that dominates the response of arrays of metallic nanoparticles,
such as those analyzed here. Figures 1b and c show,
respectively, ̂y, and ̂z, for an array with a = 800 nm and R
= 100 nm, calculated along the path in the first Brillouin zone
depicted in panel d. We consider wavelengths in the range
from 700 to 1200 nm, well within the validity of the dipole
model, as demonstrated in Figure S1 of the Supporting
Information. Here and in the remainder of this work, we
compute the electric and magnetic components of the
polarizability of the nanoparticles from the corresponding
dipolar Mie scattering coefficients80 with a dielectric function
described using a Drude model ε(ω) = ε∞ − ωp

2/(ω2 + iγω)
with ε∞ = 5, ℏωp = 8.9 eV, and ℏγ = 37 meV.81 Examining the
results shown in Figure 1b,c, we observe that the array
supports different lattice resonances characterized by large
values of the extinction efficiency. The lattice resonances
appear at slightly larger wavelengths than the Rayleigh
anomalies (indicated by the red dashed lines), at which the
real part of the lattice sums diverge. In this work, we focus on
the lowest-order lattice resonance, which has its onset at the Γ
point at a wavelength slightly larger than the array period.
Furthermore, it displays a cutoff at the M point at a wavelength
slightly larger than 2a. These two limits, which are indicated
in the insets of Figure 1b,c with yellow dashed lines, play an
important role in the behavior of the array as we discuss later.
Although, for simplicity, we consider the array to be
surrounded by vacuum, our analysis can be readily extrapolated
to any other homogeneous dielectric environment. However,
as is known,59,82 any asymmetry between the media above and
below the array can hinder the lattice resonances.
Equation 1 defines the Green tensor of the array connecting

two points rμ and r as

∫π
= −μ μ

aG r r k k r k k r( , )
4

d ( , ) ( ) ( , )
2

2 1BZ
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Due to its dominant role, in this work, we focus our analysis on
the electric-electric component of the Green tensor, which
satisfies E(r) = GEE(r, rμ)μ̂E or, in other words, represents the
electric field produced by the array at r when excited by a unit
electric dipole placed at rμ. In Figure 2, we plot the spectrum of

the yy (a, b) and zz components (c, d) of GEE(r, rμ). We
assume rμ = (0, 0, 2R) and r = (Δx, 0, 2R), with Δx = 10a (a,
c) and 100a (b, d) and the same values for the period of the
array and the size of the nanoparticles as in Figure 1, that is, a
= 800 nm and R = 100 nm. We use colored solid and dashed
curves to represent, respectively, the real and imaginary parts
of the Green tensor and a color shaded area for its envelope.
The results are normalized to the amplitude of the same
component of the Green tensor of vacuum G0

EE(r − rμ)
connecting the same two points, which is defined in the
Methods section. Notice that this quantity represents the
electric field produced at r by a unit electric dipole placed at rμ
in absence of the array. For this particular configuration, we
have G0,yy

EE (r − rμ) = G0,zz
EE (r − rμ) = exp(ikΔx)[k2(Δx)2 + ikΔx

− 1]/(Δx)3, with k = 2π/λ. We plot the real and imaginary

Figure 2. Green tensor of a periodic array with a = 800 nm and R =
100 nm connecting the points rμ = (0, 0, 2R) and r = (Δx, 0, 2R).
Panels (a) and (b) show the spectrum for the yy component, while
panels (c) and (d) display those for the zz component. In both cases,
we analyze the results for Δx = 10a (a, c) and 100a (b, d). The
colored solid and dashed curves represent, respectively, the real and
imaginary parts of the Green tensor, while the shaded areas indicate
its envelope. All of the results are normalized to the amplitude of the
same component of the Green tensor of vacuum G0

EE(r − rμ), whose
real and imaginary parts are displayed by the black solid curves and
whose envelope is signaled by the black shaded areas. In all of the
panels, the yellow dashed lines mark the onset of the lattice resonance
at the Γ point shown in the insets of Figure 1b,c.
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parts of this quantity using black solid and dashed curves, as
well as its envelope with a black shaded area. Analyzing the
results of Figure 2, we notice that, in all cases, the real and
imaginary parts of the Green tensor of the array display a fast
oscillation similar to that of the Green tensor of vacuum, which
arises from the factor exp(ikΔx) and, therefore, is a clear
signature of their far-field character. Expectedly, this oscillation
is not present in the envelope of the Green tensors. However,
the Green tensor of the array stills displays a second, slower
oscillation whose origin is more complex, as we explain later.
Another important characteristic of the results shown in

Figure 2 is the significant change of the Green tensor of the
array after the onset of the lattice resonance at the Γ point,
which is indicated by the yellow dashed lines and coincides
with those displayed in the insets of Figure 1b,c. Clearly, the
contribution of the lattice resonance produces a very large
enhancement of the amplitude of Gzz

EE(r, rμ), which grows as
Δx increases. This enhancement is not as pronounced in the
case of the yy component; indeed, for Δx = 10a, the Green
tensor of the array is smaller than that of vacuum. The large
difference between the yy and zz components is a direct
consequence of the nature of the lattice resonances excited in
each of these cases. For the yy component, the corresponding
lattice resonance has an in-plane character in which the dipoles
induced in the nanoparticles oscillate parallel to the array plane
and therefore radiate very efficiently in the perpendicular
direction. On the contrary, the lattice resonance corresponding
to the zz component is an out-of-plane mode in which the
dipoles oscillate perpendicular to the plane of the array.
Consequently, they only radiate efficiently along the plane of

the array, thus minimizing the radiative losses and producing
the much larger values of the Green tensor shown in Figure 2.
Indeed, out-of-plane lattice resonances have been investigated
in the past for their large quality factors arising from the
reduced radiative losses.83−85

In all of the calculations shown in Figure 2, rμ and r are
separated along the x-axis. However, in Figure S2 of the
Supporting Information, we analyze the amplitude of the
Green tensor of the array for a similar displacement between rμ
and r, but, in this case, along the y-axis. As expected from the
symmetry of the problem, Gzz

EE(r, rμ) remains completely
unchanged. However, the value for Gyy

EE(r, rμ) becomes
significantly smaller. The reason is that, in such a case, there
is no lattice resonance involved, since they originate from the
far-field coupling between the elements of the array, which
vanishes along the direction parallel to the dipole moment
induced in the nanoparticles.
The results displayed in Figure 2 demonstrate that Gzz

EE(r, rμ)
is the dominant component of the Green tensor for the arrays
under consideration. Therefore, in the following, we focus our
analysis on this component. In Figure 3a, we plot the spectrum
of |Gzz

EE(r, rμ)|/|G0,zz
EE (r − rμ)| for rμ = (0, 0, 2R) and r = (Δx, 0,

2R), with Δx = 100a (red curve), 300a (black curve), and
600a (gray curve). As expected from the analysis above, once
the lattice resonance begins to contribute (i.e., for λ > 832
nm), it produces a very large enhancement of the amplitude of
the Green tensor of the array. The enhancement increases with
Δx, reaching a peak of ∼90× the value of the Green tensor of
vacuum for Δx = 600a. In Figure 3a, as in the rest of the figures
of this Article, we assume a = 800 nm and R = 100 nm.

Figure 3. Amplitude of the zz component of the Green tensor of a periodic array with a = 800 nm and R = 100 nm connecting the points rμ and r.
Panel (a) shows the spectrum for rμ = (0, 0, 2R) and r = (Δx, 0, 2R), with Δx = 100a (red curve), 300a (black curve), and 600a (gray curve). Panel
(b) shows the spectrum for rμ = (x, y, 2R) and r = (x + 100a, y, 2R), with the four different combinations of x and y indicated in the upper
schematics. Panels (c) and (d) show, respectively, the spectrum for the cases with rμ = (0, 0, z), r = (100a, 0, z) and rμ = (0.5a, 0.5a, z), r =
(100.5a, 0.5a, z), for three different values of z, as indicated by the legends. All of the results are normalized to the amplitude of the corresponding
Green tensor of vacuum.
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However, it is important to understand how these results
change when a and R are varied. To this end, in Figure S3 of
the Supporting Information, we analyze the dependence of the
Green tensor of the array on these parameters. In particular, we
analyze arrays with a period of either a = 700 or 800 nm, and a
radius ranging from R = 80 to 140 nm in steps of 20 nm.
Examining these results, we observe a similar overall behavior
in all of the cases analyzed. For a given a, however, the spectral
position of the maximum value of the amplitude of the Green
tensor shifts to larger wavelengths as R increases. This is
consistent with the redshift of the lattice resonance onset for
increasing R/a described in previous works.23,59 Furthermore,
for each value of a, there is an optimum value of R that
produces the largest enhancement of the Green tensor
amplitude.
Another important aspect to analyze is the dependence of

the Green tensor of the array on the position of rμ and r within
their respective unit cells. Figure 3b shows the spectrum of
|Gzz

EE(r, rμ)|/|G0,zz
EE (r − rμ)| for rμ = (x, y, 2R) and r = (x + 100a,

y, 2R) with the four different combinations of x and y depicted
in the upper inset. The configuration in which both rμ and r are
located above a nanoparticle (red curve) results in the largest

values of the Green tensor, followed by the case in which both
points lie at the center of the unit cell (green curve). The least
favorable configurations correspond to rμ and r located in
between two of the nanoparticles, either along the x-axis (blue
curve) or the y-axis (yellow curve). These results can be
explained as a combination of two different factors: On one
hand, the excitation of the lattice resonance, as well as the field
that it produces, become stronger as rμ and r get closer to the
nanoparticles, thus resulting in a larger value of the Green
tensor. On the other hand, configurations in which rμ and r are
located in highly symmetrical points also favor a larger value of
the Green tensor, since they minimize the cancelations due to
phase differences in the excitation of the nanoparticles, as well
as in the field that they produce. This last factor explains why
the results for (x, y) = (0.5a, 0.5a) (green curve) are larger
than those of (x, y) = (0.5a, 0) (blue curve) and (x, y) = (0,
0.5a) (yellow curve).
The value of the Green tensor also depends on the

component of rμ and r along the direction perpendicular to
the array (i.e., the z-axis). We explore this dependence in
Figures 3c and d, where we plot the spectrum of |Gzz

EE(r, rμ)|/
|G0,zz

EE (r − rμ)| for rμ = (x, y, z) and r = (x + 100a, y, z) with

Figure 4. Analysis of the spectral characteristics of the Green tensor of a periodic array. (a) Iso-contours showing the position of the lattice
resonance peak within the first Brillouin zone for different wavelengths. The panels on the right display a zoom of the iso-contours for λ = 880 nm
(upper panel) and λ = 980 nm (lower panel). The blue dashed lines indicate kx,2. (b) Value of kx,1 (blue solid curve) and kx,2 (blue dashed curve) as
a function of wavelength. The gray curve represents the value of 2π/a − k. (c, d) Normalized amplitude of the zz component of the Green tensor of
the array connecting rμ = (0, 0, 2R) and r = (100a, 0, 2R) (red curves, left scales) and results of the analytical model of eq 5 (green curves, right
scales). The yellow dashed lines in panels (b)−(d) mark the onset of the lattice resonance at the Γ point and its cutoff at the M point, as shown in
the insets of Figure 1c. In all panels, we assume a = 800 nm and R = 100 nm.
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different values of z. Specifically, panels c and d show results
for (x, y) = (0, 0) and (x, y) = (0.5a, 0.5a), respectively, with z
ranging from 4R (lighter curves) to 1.5R (darker curves).
Analyzing these results, we observe that, in both cases, the
amplitude of the Green tensor grows as z decreases. However,
while this growth accelerates for (x, y) = (0, 0) as rμ and r
approach the nanoparticles, it saturates for (x, y) = (0.5a,
0.5a).
Importantly, we have verified the accuracy of the dipole

model by calculating the local density of states (LDOS)86

induced by an individual metallic nanosphere, with the same
characteristics as those of the arrays under consideration, and
benchmarking it against full numerical solutions of Maxwell’s
equations. The results of this comparison are shown in Figure
S4 of the Supporting Information. As we discussed above, a
fully numerical calculation of the Green tensor of the array
using a FEM or FDTD solver of Maxwell’s equations is
extremely challenging due to the lack of periodicity of the
problem.
The spectra displayed in Figure 3 show that the onset of the

contribution of the lattice resonance to the Green tensor is not
influenced by rμ and r. However, the oscillations of its
amplitude are strongly dependent on Δx, but are not affected
by the position of rμ and r within their corresponding unit
cells. In order to gain more insight into these behaviors, we
start by invoking the following property of the lattice sum
tensor: ρ ρ+ = ·ek R k( , ) ( , )i

ik R i. . , where Ri is an
arbitrary lattice vector. Using this relationship, we can rewrite
eq 3 as

∫ ρ ρ
π

= −μ μ
· − μa eG r r k k k k( , )

4
d ( , ) ( ) ( , )ik R R

2

2 1BZ

( ). ( . (4)

where we have defined ρ = r − R and ρμ = rμ − Rμ, with R and
Rμ being the lattice vectors corresponding to the unit cells in
which rμ and r are located. From their definition, it is clear that
the in-plane components of ρ and ρμ are located in the same
unit cell. Therefore, eq 4 shows that the integral that defines
the Green tensor of the array can be separated into two
different factors: (i) an oscillating exponential that only
depends on the separation between the unit cells in which rμ
and r are located, and (ii) a term containing the response of
the array, which only depends on the position of rμ and r
within the unit cell.
As discussed in Figure 1, the response of the array is

determined by the characteristics of its lattice resonances.
Figure 4a shows the iso-contours indicating the position,
within the first Brillouin zone, of the lowest-order lattice
resonance of an array with a = 800 nm and R = 100 nm for the
different values of the wavelength indicated by the labels.
These iso-contours are obtained by finding the maximum value
of ̂z, (see eq 2) and can be used to obtain an approximate
expression for the Green tensor of the array. In particular,
focusing again on the configuration with rμ = (0, 0, 2R) and r =
(Δx, 0, 2R), and assuming that the response of the array is
completely dominated by the lattice resonance, so that only the
iso-contours contribute to the integral of eq 4, we can write

ϕ

∼ +

= [ − Δ + ]
μ

ϕ

ϕ

Δ Δ −

+ Δ −

G e e e

e e k k x

r r( , )

2 cos ( ) /2

zz
ik x ik x i

i k k x i
x x

EE 2

( ) /2
,1 ,2

x x

x x

,1 ,2

,1 ,2
(5)

Here, ϕ is a constant phase, while kx,1 and kx,2 represent, in the
spirit of the stationary phase approximation, the points of the

lattice resonance iso-contours that have a zero derivative with
respect to ky. These are the only points that contribute to the
integral, since the rapid oscillation of the exponential factor
cancels the contribution of the rest of the iso-contour. The first
of these points, kx,1, corresponds to the value of kx at which the
iso-contour intercepts the kx-axis. The other one, kx,2, as shown
by the blue dashed lines in the right panels of Figure 4a, is
located near the corners of the iso-contour. Figure 4b shows
the value of kx,1 and kx,2 as a function of wavelength. As
expected from the shape of the iso-contours, kx,1 and kx,2 take
identical values for wavelengths near the onset of the lattice
resonance at the Γ point (i.e., λ = 832 nm). However, as λ
grows, their values become increasingly different. Importantly,
the value of kx,2 saturates as the wavelength approaches the
cutoff of the lattice resonance at the M point (i.e., λ = 1138
nm). These limits at the Γ and M points are indicated with
yellow dashed lines in Figure 4b, as well as in the insets of
Figure 1c. It is important to mention that, in our analysis, we
only consider the kx,1 and kx,2 located in the negative part of the
kx-axis. The reason is that the lowest order lattice resonance
has a negative group velocity, as can be seen in Figure 1c, and
therefore, only the components with negative kx contribute to
the Green tensor connecting the points rμ = (0, 0, 2R) and r =
(Δx, 0, 2R) for positive values of Δx. This is confirmed
numerically in Figure S5 of the Supporting Information.
The analytical approximation given in eq 5 predicts two

different oscillatory behaviors. First, the exponential factor
oscillates as the value of (kx,1 + kx,2)Δx/2 changes with
wavelength. Since, as can be inferred from Figure 4b, the value
of (kx,1 + kx,2)/2 is very similar to 2π/a − k (solid gray curve),
especially for wavelengths below ∼1050 nm, this factor
explains the fast oscillation of the real and imaginary parts of
GEE(r, rμ) observed in Figure 2. Second, the cosine factor
produces a slower oscillation determined by the change of (kx,1
− kx,2)Δx/2 with λ. As we analyze in Figure 4c, this oscillation
reproduces that of the amplitude of the Green tensor of the
array discussed in Figures 2 and 3. In particular, the green
curve (right scale) displays the value of |cos[(kx,1 − kx,2)Δx/2
+ ϕ]|, with kx,1 and kx,2 taken from panel b, Δx = 100a, and ϕ =
0.8, while the red curve (left scale) shows |Gzz

EE(r, rμ)|/|G0,zz
EE (r

− rμ)|. Comparing these two curves, we observe that the cosine
factor of eq 5 perfectly matches the oscillations of the
amplitude of the Green tensor above the onset of the lattice
resonance (i.e., λ = 832 nm). Furthermore, since kx,2 saturates
at λ = 1138 nm, it is expected that these oscillations disappear
beyond that cutoff. This prediction is confirmed by the results
plotted in Figure 4d, which extend those of panel c to the
wavelength range around 1138 nm. Clearly, the oscillations of
the amplitude of the Green tensor vanish as the wavelength
approaches the cutoff indicated by the yellow dashed line, a
behavior that is perfectly captured by the analytical
approximation.
Then, from the results discussed in Figure 4 and the

analytical approximation of eq 5, we conclude that the
contribution of the lowest-order lattice resonance to the
Green tensor of the array occurs through a combination of
parallel wavevectors. One of them is always pointing along the
direction connecting r with rμ, while the value of the other
varies with the wavelength. When the wavevectors are equal, as
is the case for λ ∼ 880 nm, the amplitude of the Green tensor
reaches its maximum value. However, as they become different,
their contributions interfere, resulting in the oscillation of the
amplitude of the Green tensor. Although these conclusions

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.1c01463
ACS Photonics 2022, 9, 540−550

545

https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01463/suppl_file/ph1c01463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01463/suppl_file/ph1c01463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.1c01463/suppl_file/ph1c01463_si_001.pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.1c01463?urlappend=?ref=PDF&jav=VoR&rel=cite-as


arise from the analysis of a particular set of rμ and r, they can
be readily extended to other configurations using symmetry
arguments.
In order to complete our characterization of the Green

tensor of the array, we analyze, in Figure 5a, its dependence

with the distance between rμ and r. Specifically, we consider an
array with a = 800 nm and R = 100 nm, and take rμ = (0, 0,
2R) and r = (Δx, 0, 2R). We use black dots to plot the value of
|Gzz

EE(r, rμ)| as a function of Δx. For each value of Δx, we
evaluate |Gzz

EE(r, rμ)| at the wavelength for which it reaches its
maximum value. As a reference, we also plot, using gray dots,
the value of the amplitude of the Green tensor of vacuum
|G0,zz

EE (r − rμ)|, evaluated at the same positions and wave-
lengths. Analyzing these results, we observe that, while the
Green tensor of vacuum always decays as (Δx)−1, as expected
from the far-field character of the distances under consid-

eration, |Gzz
EE(r, rμ)| displays two distinct behaviors. For Δx ≲

400a, it decays at a much slower rate, following an approximate
dependence of ∼(Δx)−1/4. However, for Δx ≳ 400a, the decay
accelerates to ∼(Δx)−1, similar to that of the Green tensor of
vacuum. This change of behavior can be understood by
looking at the spectra of |Gzz

EE(r, rμ)| plotted in Figure 5b.
There we see how, as Δx increases, the first minimum caused
by the oscillations of the Green tensor shifts toward smaller
wavelengths. For Δx ≳ 400a, this minimum reaches the
wavelengths at which the amplitude of the Green tensor
achieves its maximum value (λ ∼ 880 nm) and forces it to
decrease, thus, producing the faster decay rate observed in
panel a.
The results shown in panel a demonstrate that the

contribution of the lattice resonance produces a large
enhancement of the Green tensor of the array as compared
with its vacuum counterpart. This enhancement can mediate
the transfer of energy between dipole emitters placed in the
vicinity of the array. In order to quantify this effect, we plot, in
Figure 5c, the normalized energy transfer rate, defined as87,88

=
| |

| − |
μ

μ

G

G

r r

r r
nETR

( , )

( )
zz
EE 2

0,zz
EE 2

This quantity measures the enhancement of the energy transfer
between two electric dipole emitters located at rμ and r
provided by the array. We assume that both dipoles are
oriented along the z-axis since, as discussed before, that is the
optimum configuration to maximize the contribution of the
array. The results shown in Figure 5c clearly demonstrate that,
thanks to the contribution of the lattice resonance, the array
under investigation produces a nETR with values in the range
of 103 to 104 for distances of hundreds to thousands of periods.
These distances are completely consistent with an estimation
of the propagation length of the lattice resonance L, which can
be obtained from the inverse of its fwhm extracted from the
results of Figure 1c for a fixed value of λ (i.e., from a horizontal
cut). By doing so, for a wavelength of λ = 880 nm, we obtain L
∼ 700a. All of these results confirm that periodic arrays of
metallic nanostructures are capable of enhancing the long-
range coupling between dipole emitters.

■ CONCLUSIONS
In summary, we have performed a detailed investigation of the
coupling between dipole emitters mediated by the lattice
resonances of a periodic array of metallic nanoparticles. To do
so, we have derived a closed expression for the Green tensor of
the array using a rigorous coupled dipole model and used it to
analyze its spectral and spatial characteristics. We have focused
on the electric-electric term of the Green tensor, which
represents the electric field produced by the array when excited
by a unit electric dipole, and analyzed both its yy and the zz
components. By doing so, we have found that the latter reaches
much larger values due to the contribution of the out-of-plane
lattice resonance, which displays much lower radiative losses
than its in-plane counterpart. Through the analysis of the
spectrum of the Green tensor connecting different pairs of
points rμ and r, we have found that, in addition to a fast
oscillation of its real and imaginary parts arising from its far-
field nature, the amplitude of the Green tensor displays a
slower oscillation. This oscillation depends on |r − rμ|, but not
on the position of these points within the unit cells in which
they are located. We have explained this behavior as the result

Figure 5. Analysis of the dependence with |r − rμ| of the Green tensor
of a periodic array with a = 800 nm and R = 100 nm. The black dots
in panel (a) show |Gzz

EE(r, rμ)|, for rμ = (0, 0, 2R) and r = (Δx, 0, 2R)
as a function of Δx. For each Δx, we calculate |Gzz

EE(r, rμ)| at the
wavelength that produces the largest value. For comparison, the gray
dots represent |G0,zz

EE (r − rμ)|, evaluated at the same positions and
wavelengths. The dashed lines mark different scaling functions as
indicated by the corresponding labels. (b) Spectrum of |Gzz

EE(r, rμ)| for
the different values of Δx shown in the legend. (c) Normalized energy
transfer rate calculated from the data shown in panel (a) as nETR =
|Gzz

EE(r, rμ)|2/|G0,zz
EE (r − rμ)|2.
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of an interference process produced by the excitation of a
lattice resonance with different parallel wavevectors. By
comparing the Green tensor of the array with its vacuum
counterpart, we have found that the contribution of the lattice
resonance results in extraordinarily large values that decay with
|r − rμ| at a much slower rate. This demonstrates that the
lattice resonances of periodic arrays of metallic nanoparticles
can mediate an efficient long-range coupling between dipole
emitters placed in their vicinity. Although, in this Article, we
have focused on arrays of metallic nanoparticles, our
theoretical approach is also valid for investigating other
systems, such as arrays of dielectric nanostructures.89

Furthermore, our analysis can be readily applied to periodic
arrays of atoms by using the appropriate polarizability.90−94

The results of this Article expand the fundamental knowledge
of lattice resonances and pave the way for the use of periodic
arrays of metallic nanostructures as platforms to enhance the
long-range coupling between dipole emitters.

■ METHODS
Derivation of the Polarizability of the Array. As stated

in the main text, we use a coupled dipole model1,3,19,75,77 and
describe each of the nanoparticles of the array as a point dipole
with both electric p and magnetic m components. The dipole
induced in the nanoparticle of the array located at Ri, when
excited by an external electromagnetic field with electric and
magnetic amplitudes Ei and Bi, respectively, can be written asc
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Here, αE and αM are the electric and magnetic polarizability
t e n s o r s o f t h e n a n o p a r t i c l e s , w h i l e
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3 3
ik0 and G0

EM(r) =
−G0

ME(r) = ik∇ × eik|r|/|r| represent the different components
of the Green tensor of vacuum, with k = 2π/λ being the
wavenumber of light (notice that we use Gaussian units).
Taking advantage of the periodicity of the array and using the

Fourier transform defined as ∫= π
·v v ek kd ( )i

a ik R
4 1BZ

i
2

2 ,
where a is the array period and 1BZ stands for the first
Brillouin zone, we can write the following self-consistent
equation for the k∥ components of the dipole induced in the
nanoparticlesc
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In this expression, = ∑′ +ν ν − ·ek r G R r( , ) ( )i i
ik R

0
i. with ν =

EE, EM and the prime in the summation indicates that, if a
term satisfies Ri + r = 0, it is to be excluded. Equation 6 can be
solved asc
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is the polarizability of the array.
Derivation of the k∥ Components of the Electro-

magnetic Field of a Point Dipole. Given a unit dipole with
electric μ̂E and magnetic μ̂M components, oscillating at
frequency ω and located at rμ, we can use the array scanning
method76,95 to write its associated current asc
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Then, taking into account that the electromagnetic field
produced by the dipole current at the position of one of the
nanoparticles of the array can be written asc
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and using eq 9, we obtainc
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Derivation of the Electromagnetic Field Produced by
a Periodic Array of Dipoles. We can write the electro-
magnetic field produced at a point r outside of the array by a
periodic array of dipoles asc
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Then, expressing the dipoles in terms of their k∥ components,
we havec
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Finally, substituting eqs 7 and 10 into the expression above, we
obtain eq 1.
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