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Abstract  

Polymer molecular weight, or chain length distributions, are a core characteristic of a 

polymer system, with the distribution being intimately tied to the properties and performance of 

the polymer material. A model is developed for the ideal distribution of polymers made using 

reversible activation/deactivation of chain ends, with monomer added to the active form of the 

chain end. The ideal distribution focuses on living chains, with the system having minimal impact 

from irreversible termination or transfer. This model was applied to ATRP, RAFT, and cationic 



polymerizations, and was also used to describe complex systems such as blended polymers and 

block copolymers. The model can easily and accurately be fitted to molecular weight distributions, 

giving information on the ratio of propagation to deactivation, as well as the mean number of times 

a chain is activated/deactivated under the polymerization conditions. The mean number of 

activation cycles per chain is otherwise difficult to assess from conversion data or molecular 

weight distributions. Since this model can be applied to wide range of polymerizations, giving 

useful information on the underlying polymerization process, it can be used to give fundamental 

insights into macromolecular synthesis and reaction outcomes. 

 

Introduction 

Polymerizations are powerful processes that can generate macromolecules with molecular 

weights well into the millions. In the past few decades, polymerizations subject to reversible 

activation and deactivation have received significant attention, as they allow polymers with living-

like characteristics to be made under a range of reaction conditions,1-3 including radical and 

cationic ,polymerizations.4 This ability to reversibly activate a chain from a dormant state to a 

propagating chain end capable of adding monomer, with efficient reformation of the dormant form 

of the chain, enables well-controlled polymers to be formed, with clearly defined end-group 

control over the chain length. However, within this process of reversible activation and 

deactivation, there also is substantial kinetic information on the history of the chains, and this 

dictates the shape of the molecular weight distribution, as well as its moments, such as average 

chain lengths and the ratio of moment that gives chain length dispersity.5 Developing kinetic 

models can both predict the shapes of molecular weight distributions, or conversely extract useful 



information from experimental distributions, such as relative rates of propagation and deactivation 

or mean number of times a chain has been activated.6-8 

Modeling is a useful tool to guide understanding of processes at the microscopic and 

submicroscopic levels in chemical systems and serve as predictive tools. There have been many 

publications in the field of polymer modeling, but many are limited by either the type of systems 

they can accurately predict and/or a lack of experimental data. Arguably, the simplest type of 

polymer modeling is a scaling model or scaling law that requires fewer input parameters, and relies 

on a greater number of assumptions.9, 10 Such scaling laws or scaling models can provide trends 

and evaluate the impact of experimental variables on polymer properties or performance. For 

instance, scaling laws have been applied to predict the impact of radical initiator concentration on 

the polymerization rates of reactions such as reversible addition-fragmentation chain transfer 

(RAFT),11, 12, or photoinduced electron/energy transfer RAFT (PET-RAFT).13 Scaling laws have 

also been applied to activator complexes, deactivator complexes and alkyl halide in atom transfer 

radical polymerization (ATRP),14-16 as well as radical initiators for continuous activator 

regeneration (ICAR) ATRP.17 Similar equations exist to predict parameters, such as number 

average molecular weight or dispersity, as a function of initiator or deactivator.1 Other ‘simple’ 

models for network formation created by Tobita and Hamielec, were designed when previous 

statistical theories were unsatisfactory.18 The model applies a pseudokinetic rate constant to 

generate models for both pre- and post-gelation periods. However, this scaling law approach is 

unable to describe many important experimental features, such as the shape of the molecular 

weight distribution, fraction of uninitiated chains, or the properties of more complex polymers, 

like block copolymers or blended polymers. 



At the other end of the spectrum, advanced and highly parameterized models have been 

developed. These models break out complex reactions into their elementary steps, associating each 

with a rate coefficient or equilibrium constant. Examples of such full kinetic modelling include 

PREDICI models applied to RAFT and ATRP,19-22 methods of moments approaches to RAFT and 

ATRP,23, 24 multichambered models for electrochemically mediated ATRP,25 ATRP simulations 

in the presence of Cu0,26, 27 photochemical reactions,28 and detailed models for retardation in RAFT 

polymerization.29-35  Such detailed kinetic models have the ability to provide excellent insights 

into the underlying chemical processes, and can enable discrimination between several proposed 

pathways for polymerization processes and chemical transformations. However, the large number 

of kinetic parameters requires either substantial fitting of theory to experimental data, or a very 

large number of model experiments carefully designed to extract key parameters.26, 27, 36-38 

Coupling kinetic modelling with quantum chemistry can lead to many important insights and can 

either bypass or supplement model experiments;39-44 however, quantum calculations can also be 

computationally expensive, especially for larger systems, such as polymers. 

The last type of modeling in the polymer field lies in between the complex and simple 

models. These types of models use a limited number of parameters to predict kinetic data or 

products of a reaction. In addition, fewer experiments are needed to verify the model than in a 

complex model. However, such models can provide substantially more information than simple 

scaling laws. 

        In the case of polymerizations subject to reversible deactivation, several related models have 

been developed. For instance, Tobita developed a model for the molecular weight or chain length 

distribution of polymers made with reversible deactivation radical polymerization (RDRP).45, 46 

Goto and Fukuda considered kinetic models for the distribution of polymers made by of nitroxide 



mediated polymerization47 which could be adapted to other approaches.1 Harrisson used a model 

based on intermittent activation and deactivation in RDRP to predict the chain length distribution 

of polymers made under various conditions.48 This model uses assumptions to simplify 

calculations, but the distributions can be graphed and understood easily.48  A model for the chain 

length distribution was developed to describe the reversible activation deactivation processes in 

RAFT polymers49. This model was based on the mean number of activation cycles that the polymer 

chain undergoes (𝜇!"#$%), the probability of the chain being activated, the likelihood of adding a 

given number of monomers in an activation cycle as the ratio of propagation to deactivation rate 

coefficients (k*), and the targeted degree of polymerization. The presence of side reactions 

(termination and irreversible chain transfer) may result in significant deviations from the ideal 

case. Although these models are based on relatively simple and well-understood concepts, such as 

reversible deactivation, and addition of monomer to an active chain end, these models have not 

been broadly applied to a range of polymer systems.  

 In earlier work, a model for RAFT was developed and applied to short polymers.49  

However, broad testing of such a model against a range of complex polymerizations and 

macromolecules with complex structures has not been performed. Here, a MATLAB approach is 

taken, where experimental data can be input, and the model matched to the experimental molecular 

weight distribution, mean and molar mass dispersity. Trends within the model and limitations of 

the model are considered, and the model is applied to a range of polymerization methods including: 

RAFT targeting tunable dispersities,50 PET-RAFT systems,51 photochemical ATRP,52 and cationic 

polymerization,53 since each reaction is governed by reversible deactivation.54 Additionally, one 

of the advantages of RDRP and other living-like polymerization is the ability to form block 

copolymers. Therefore this model is extended to more complex systems including block 



copolymers,51, 55, 56 and polymers with tailored molecular weight distributions made by blending 

two distinct polymers together.57  

 

Scheme 1. Schematic description of polymerization with intermittent activation-deactivation 

cycles, and the parameters that govern the resulting chain length distribution. 

 

Results and Discussion 

Modeling Approach and Connection to Experimental Data 

The modelling approach is given in the theoretical section. The model takes advantage of the 

reversible activation and deactivation of chains that occurs in the studied polymerizations, to 

predict polymer molecular weight distributions. Experimental parameters of mean chain length 

(𝐷𝑃&), dispersity (Đ) and the size exclusion chromatography distribution (𝑤(𝑙𝑜𝑔𝑛)) are used in 

conjunction with known values such as concentration of monomer [M]0, concentration of chain 

initiator or reversible chain transfer agent [P–X] and deactivator concentration [D]. When 

comparing to experimental size exclusion chromatography data, band broadening is not explicitly 

accounted for in this model,58, 59 but could be included with a subsequent broadening function, 

although this would increase the complexity of the model. The model is parameterized by two free 

parameters k*, the ratio of propagation to deactivation rate coefficients, and 𝜇!"#$%, the mean 

number of decapping events. These two parameters, k* and µdecap, are fitted to the experimental 

𝐷𝑃&, Đ and 𝑤(𝑙𝑜𝑔𝑛)  to obtain estimates of the ratio of propagation to deactivation rates and 
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number of activation-deactivation cycles. The modelling approach here, captures all kinetic effects 

such as temperature or reaction time within the parameters k* and µdecap, simplifying the system in 

the process. 

Behavior of the model and sensitivity to model parameters 

The theoretical section shows that the mean (𝐷𝑃&), dispersity (Đ) and distributions 

(𝑤(𝑙𝑜𝑔𝑛)) are functions of two model parameters, k* and µdecap, as well as experimental variables 

such as monomer, chain-end and deactivator concentrations. Therefore, it is essential to explore 

how these two model parameters k* and 𝜇!"#$% impact the outcomes of the model, before applying 

the model to a wide range of experiments. In particular, correlations of these two parameters must 

be explored, to ensure that meaningful and unique fits to the experimental data are possible. 

Figure 1 demonstrates the changes in the model molecular weight distribution when 𝜇decap 

and k* are altered. The top row of Figure 1 considers the number distribution, p(logn), while the 

bottom row shows the corresponding weight distribution, w(logn). The w(logn) curves correspond 

to the distributions derived from size exclusion chromatography under ideal conditions. Both the 

p(logn) and the w(logn) curves are normalized to a peak height of 1 as is commonly done in 

experimental work. Alternative approaches to normalization of the various polymer chain length 

and molecular weight distributions exist,60 although the peak height comparison method allows 

rapid qualitative comparison between different simulated polymers. Quantitative comparison 

however, would be better performed by area normalization as outlined in recent work,60 although 

the focus of Figure 1 is qualitative analysis.  With a constant k* of 0.1, the increase in 𝜇decap 

decreased the dispersity, narrowing the curve. As the 𝜇decap increased, the degree of polymerization 

increased, shifting the curve to the right in Figure 1a and 1b. The larger number of decapping 

events at a constant ratio of propagation to deactivation allows chains to continue to grow longer. 



With subsequent decapping events, chains which lagged behind after just one or two decapping 

events are able to grow. Although the chains that were shorter after one to two decapping events 

will likely have a lower chain length after subsequent decapping events, the relative discrepancy 

in chain length between shorter and longer chains decreases with more decapping events. This 

leads to an overall shift in the distribution to longer chain length and overall lower dispersities, as 

seen in Figure 2a. Of particular note is that after just one or two decapping events, there is a 

substantial fraction of unreacted initiator, found at chain length 1, which is particularly pronounced 

in the number distribution, but somewhat obscured in the weight distribution. 

 

 

Figure 1. a) p(logn) distributions with constant k* = 0.1 with changing 𝜇decap. b) w(logn) 

distributions with constant k* = 0.1 with changing 𝜇decap. c) p(logn) distributions with constant 

𝜇decap = 5 with changing k*. d) w(logn) distributions with constant 𝜇decap = 5 with changing k*. e) 
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p(logn) distributions with constant product of k*´𝜇decap = 1. f) w(logn) distributions with constant 

product of k*´𝜇decap = 1. In all cases [M]0 = 4 M, [P-X] = [D] = 0.04 M. 

 

At a constant 𝜇decap of 5, the increase in k* increased the degree of polymerization and the 

dispersity. The curves broadened and shifted to the right in Figure 1c and 1d. This is due to the 

higher ratio of propagation to deactivation leading to more monomers being added per activation 

cycle. This results in both a higher degree of polymerization at a constant mean number of 

decapping events, but also a broader distribution, as seen in Figure 2b. The latter stems from the 

idea that more monomers added per decapping also lead a higher variability of monomers added 

per chain, since this deviates further from the ideal reversible deactivation polymerization where 

many activation-deactivation cycles are performed with only a few monomers added per cycle. 

In Figure 1e and 1f, both k* and	𝜇decap are varied while maintaining a constant product of 

near unity. As k* increased and 𝜇decap decreased, the dispersity increased, while the mean degree 

of polymerization remained close to constant. This can be most clearly seen in the number 

distribution p(logn) in Figure 1e, where higher k* and lower 𝜇decap leads to broadening of the 

distribution while maintaining the peak at approximately the same chain length, as seen in Figure 

2c. Additionally, with just one or two decapping events on average, there remains a substantial 

amount of unreacted initiator at chain length 1, which is clearly visible in the number distribution, 

but obscured in the weight distribution due to the dominance of the higher chain length polymers.  

The results in Figure 1e and 1f show that both the product and absolute value of k* and 𝜇decap are 

important in the distribution shape. The product of the two values contributes to the breadth of the 

curve, while the absolute value shifts the curve right or left. This implies that unique solutions can 



be found by solving for absolute value of either k* and 𝜇decap to match the mean chain length, with 

the of k* and 𝜇decap varied to match the breadth of the distribution as quantified by the dispersity.  

 

Figure 2. a) DPn and Đ with constant k* = 0.1 and changing 𝜇decap b) DPn and Đ with constant 

𝜇decap = 5 with changing k*. c) DPn and Đ with constant product of k* ´ 𝜇decap = 1. In all cases [M]0 

= 4 M, [P-X] = [D] = 0.04 M. 

 

The general trends observed in Figures 1 and 2 are that both k* and µdecap increase the 

average chain length, DPn, towards the targeted chain length of [M]0/[P-X]+1, and that higher k* 
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values correlate with generally broader distributions. The advantages of the approach developed 

here are that the whole distribution is evaluated and predicted, rather than just moments of the 

distribution such as the mean or variance, the latter of which is correlated with the dispersity.61 

Figure S1 compares the results of this model, against the predictions of existing equations for 

dispersity:  

Đ = 1 + '
()!

+ 0*+#,&-"./0,&
#,&-"./0,&

1 0𝑘∗ [)+3]
[(]

1     (1) 

In all cases the product of k* and µdecap was sufficiently large that the model predicts DPn » [M]0/[P-

X]+1, allowing the polymerization to be considered near quantitative and conversion»1. In general 

the model correctly predicted chain length as a function of the ratio [M]0/[P-X], indicating that the 

model is able to correctly identify the polymer’s average chain length. Comparing the predictions 

of the developed model with those of equation 1 as given in Figure S1. The developed model tends 

to predict somewhat lower dispersities than those predicted by equation 1 across a range of 

systems. These include RAFT where the k* value is altered, ATRP where the deactivator and k* 

is altered and cationic where chain length and k* is varied. In general the discrepancy is relatively 

small, often comparable to experimental uncertainties, and is especially small at the extremes of 

low dispersity (Đ»1) and high dispersity (Đ»2). Since the general trends of the model developed 

in this work and the  established approaches outlined by Goto et al. are similar, the developed 

model is subsequently applied to a range of polymer systems. 

 

Application to RAFT Polymerization. 

Recently, a general approach to synthesize RAFT polymers with tunable dispersity has 

been developed.50, 51 This approach combines a chain transfer agent (CTA) exhibiting a high 

transfer constant with a RAFT agent that has a relatively low transfer constant. In this scenario, a 



system with a high transfer constant should have a low k* value, since in RAFT, the deactivation 

occurs through the degenerative transfer mechanism in Equations 2 and 3. In RAFT systems k* is 

essentially the reciprocal of the apparent RAFT transfer constant.1 Scheme 2 shows the RAFT 

polymerization of methyl acrylate (MA) and methyl methacrylate (MMA) in the presence of CTAs 

capable of giving low dispersity and high dispersity for each monomer. Note that in both cases, 

the medium dispersity polymer is generated by combining a 0.35 fraction of the CTA that gives 

low dispersity and 0.65 fraction of the CTA that gives the high dispersity polymers. Figure 3a and 

3b demonstrate good agreement between the experimental chain length distribution data, derived 

from SEC, and the model for both MA and MMA systems. This agreement was good for the system 

targeting low dispersity, high dispersity, and a mixed CTA system that led to intermediate 

dispersity.  

Interestingly, the medium-dispersity polymer, which is made with a mixture of an active 

CTA leading to narrow chain length distributions and a low-activity CTA leading to broad chain 

length distributions, could be approximated by a convolution of a polymer made under the 

conditions for the narrow and the broad fits to as seen in Figure S2. The direct fit of the medium 

dispersity data set by varying k* and µdecap given in Figure 3a. In the convolution approach, since 

the medium dispersity polymer was made with a fraction of 0.35 of the high activity CTA, and 

0.65 of the low activity CTA, two polymer chain length distributions were simulated. The first 

polymer used the same k* and	𝜇decap as the narrow MMA RAFT in Table 1, but targeted a chain 

length 35% of the medium dispersity chain length. The other polymer used the same k* and 𝜇decap 

as the broad MMA RAFT in Table 1 but targeted a chain length 65% of the medium dispersity 

chain length. These two were convolved as outlined in the supporting information and gave 

acceptable agreement with the experimental chain length distribution. This convolution is used to 



capture the fact that a polymer can switch from high to low activity chain end multiple times during 

the polymerization with mixed RAFT agents. However, the agreement between the convolved 

curve and the experiment was poorer than the one where the model was fit with an average k* and 

𝜇decap to the experiment, as shown in Figure S2. Therefore, in all future cases, the RAFT system is 

fit with k* and 𝜇decap and [P-X]=[D]=[CTA], where [CTA] is the sum of all CTAs in the reaction 

medium. 
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Scheme 2. RAFT polymerization of MMA and MA using thermal RAFT and PET-RAFT 

polymerization in the presence of CTAs with distinct activity. Note the medium dispersity system 

used a 0.35 fraction of the high activity CTA and 0.65 fraction of the low activity CTA in each 

case. 
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Figure 3. a) Molecular weight distributions from the PMMA thermal-RAFT polymer system and 

model predictions. B) Molecular weight distributions from the PMA thermal-RAFT polymer 

system and model predictions. 

 

 As seen in Table 1, k* increased as the dispersity increased for both the RAFT MA and 

MMA polymer systems. The increase in k* is perfectly in line with the anticipated changes in the 

RAFT transfer constant. Systems with high RAFT transfer constants, which leads to small values 

of k*, should give narrow molecular weight distributions. Conversely, a low transfer constant leads 

to a high value of k*, and leads to many monomers added in one activation cycle and broad 

molecular weight distributions. Interestingly, the k* value for the medium dispersity system is 

similar to taking a weighted average of 0.35 of the narrow and 0.65 of the broad k*, consistent 

with loading of the more active and less active CTAs used. 

As the dispersity and k* values increased, the 𝜇decap for the MA system decreases. This is 

consistent with the predictions in Figure 2c. However, this same trend is not observed for the MMA 

system. The medium dispersity distribution had a higher 𝜇decap than the narrow dispersity 

distribution. This diversion from the trend can be attributed to the relationship between conversion, 

chain length, and 𝜇decap. The MMA medium dispersity system reached 99% conversion, while the 

MMA low dispersity system only reached 83% conversion.50 Since 𝜇decap increases with reaction 

time and conversion, the observed 𝜇decap value for the MMA medium dispersity system can be 

interpreted as a system that simply was allowed to reach higher conversion, and thereby requiring 

the chain to undergo more activation deactivation cycles. As the 𝜇decap increases, the chain length 

increases at a diminishing rate. The optimization algorithm searches for improved fits, however as 

seen in Figure S3, the model fit the experimental MMA medium dispersity system data similarly 



at a 𝜇decap of 10 and 30, although observable variation was found at a 𝜇decap of 3 or 5. Beyond a 

particular 𝜇decap value, the model’s fit to the experiment undergoes minor variation. Overall, the 

model was able to accurately describe trends in dispersity both as the activity of the CTA was 

changed across a range of monomers, as well as for systems with mixed RAFT agents. For the 

mixed CTA systems, the model shows that k* value is similar to the mole fraction average of the 

individual CTA k* values. 

Going beyond the thermal RAFT system, the applicability of the model to photoinitiated 

RAFT was also explored.51 In this case, the PET-RAFT system62, 63 was explored for the same two 

monomers, MA and MMA, except that the photocatalyst, Eosin Y, was used to generate radicals 

under mild visible light irradiation. The schematic representation of PET-RAFT polymerization is 

given in Scheme 2. Figure 4A and 4B demonstrate the excellent agreement between the 

experimental PET-RAFT SEC data and the model for both MA and MMA systems. As seen in 

Figure 4 and Table 1 the results of the PET-RAFT closely mimic those found in thermally initiated 

RAFT. The value of k* increased as dispersity increased for both the PET-RAFT MA and MMA 

systems. Also, the 𝜇decap decreased as the dispersity of these systems increased. There is some 

variation in the values of k* and 𝜇decap between the PET-RAFT of MA, but this is relatively small, 

and could be due to temperature effects. In the case of PMMA, the values of k* were consistently 

smaller in PET-RAFT than in thermal system, although this difference was relatively minor in all 

but the narrow MMA PET-RAFT system. The consistency of the parameters, in particular k*, 

obtained by thermally initiated RAFT and PET-RAFT indicate that the RAFT degenerative 

transfer mechanism dominates the control over polymer chain length and deactivation of radicals, 

even in PET-RAFT. This is consistent with the findings of Xu et al.64 where a calculation showed 

that control by reversible termination was not feasible in single unit monomer insertion PET-



RAFT. Importantly, the analysis performed on PET-RAFT broadens the model’s use against 

various RAFT systems, as well as identifying that degenerative transfer, not reversible termination, 

dominate control in PET-RAFT. 
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Figure 4. a) Molecular weight distributions from the PMMA PET-RAFT polymer system and 

model predictions. b) Molecular weight distributions from the PMA PET-RAFT polymer system 

and model predictions.   

 

Application to ATRP reactions 

In addition to RAFT polymerization, ATRP has emerged has a powerful tool to control 

polymers and molecular weight distributions. Using transition metal catalysts, the halogen-capped 

chain can be reversibly activated and deactivated to a propagating radical form, as shown in 

Equations 4 and 5. The deactivation occurs through the high oxidation state metal catalyst, and is 

decoupled from chain initiation, which occurs from the initially added alkyl halide. This offers the 

advantage of controlling the polymer chain dispersity by modulating the concentration of transition 

metal catalyst,52, 65 rather than using a mixture of CTAs of different activities. As seen in Figure 

5, the model can accurately capture the trend in the data as the catalyst loading is decreased. With 

lower catalyst loading, the distribution broadens and the dispersity increases, as seen in Table 1 

and Figure 5. As expected with the lower catalyst loading, the transient radical lifetime increases, 

and therefore, to reach similar conversion and chain length to the systems with higher catalyst 

loading, the typical polymer undergoes fewer activation deactivation cycles. This results in lower 

𝜇decap values, but more monomers are also added once the chain is activated. Ideally, the ratio of 

propagation to deactivation rate coefficients should be constant and independent of the catalyst 

loading. However, similar to the simpler dispersity-based analysis, variations in the k*, or ratio of 

propagation to deactivation rate coefficients are found, with the k* value increasing at the lower 

dispersity or higher catalyst loadings. One factor that could influence the observed values is that 

most polymer molecular weight distributions are determined by SEC, which is often affected by 



band broadening.66, 67 This additional dispersity may cause a relatively large broadening of narrow 

chains, while for highly disperse polymers the added breadth in the distribution is likely to be 

relatively small. Nevertheless, good fits to the ATRP synthesized polymers were possible with this 

approach. 

 

Scheme 3. ATRP photopolymerization of methyl acrylate using a CuBr2/Me6TREN photocatalytic 

system. 

 

 

Figure 5. Molecular weight distributions from the PMA ATRP polymer system and model 

predictions. 
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explore this limit of chain dispersity possible, the deactivator concentration was changed in the 

context of the ATRP system described above. For the model to perform properly, the deactivation 

of the chain must dominate propagation. Thus, the ratio of k*[)+3]
[(]

 must be below one in the model. 

Figure S4 shows the molecular weight distribution produced when the ratio above is set to equal 

0.99, or just below unity. If this ratio were to equal or exceed 1, deactivation no longer dominates 

propagation, and the model cannot function properly. In this case the polymer generated had a Đ 

of 2.03 (1.97 if neglecting the unreacted initiating unit at chain length 1), simulated under the 

conditions 𝜇decap = 3.6, k*=0.0004. The results obtained here indicate that the model for the MWD 

can be expanded to ATRP and other systems with decoupled chain initiation and deactivation. The 

model was able to capture key trends in MWD obtained by varying the deactivator concentration, 

within limits of experimental methods. 

 

Application of the model to cationic polymerizations 

Cationic polymerization is also a technique that participates in reversible 

activation/deactivation processes of chain ends.53 In the case of a recent cationic polymerization 

with tunable dispersity, the simplest model involves the chain end reversibly binding to a Lewis 

acid, creating an active chain end with cationic character. This chain end can add monomer, before 

reversibly deactivating through the unimolecular loss of the Lewis acid. As seen in Scheme 4, two 

distinct end groups can be accessed in this cationic polymerization, with one end group being 

‘open’ DTE (O) and the other being ‘closed’ DTE (C). The open-DTE end group generally leads 

to higher dispersity than the closed-DTE end group.53 

As seen in Figure 6, the auxiliary group (Z=OMe, H, or CN) can modulate the range of 

dispersities accessed. All systems have mean chain lengths close to the target of DPn»100. In 



general, the open form leads to similar molecular weight distributions and dispersities in the order 

of Đ = 1.25. However, the auxiliary group, X, leads to notable changes in the closed form, with 

the OMe group giving dispersities in the order of 1.17, followed by the H giving dispersities in the 

order of 1.15 while CN gave a dispersity of approximately 1.10. This is reflected in the k* values 

obtained, with all open systems having large k* values of ca. 70-80, while the closed system having 

k* values that decreased from k*=53, 37, and 24 for X=OMe, H, and CN, respectively (Table 1). 

A significant advantage of the general model developed here, is that it can be applied to a system 

with knowledge only of the chain length distribution and its moments, which give DPn and Đ to 

gain insights to the chain length distribution. This is especially useful in systems like cationic 

polymerization, where knowledge of the absolute rate coefficients is not always as well established 

as in radical polymerization, implying that tools which require minimal inputs can be used in such 

systems to gain important insights into the underlying process. The application of the model to 

cationic systems indicates the generality of the model towards systems with reversible activation. 

The studied cationic system identified trends in the control over MWD, and shows the generality 

of high k* being correlated with broader MWDs, across a range of polymerization systems. 

 

Scheme 4. Cationic polymerization scheme of isobutylvinylether using both open and closed DTE. 

X group is where substitution of substituents occurs (X= CN, H or OMe). 
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Figure 6. a) Data and model fit to OMe-DTE-COOH open and closed cationic polymer systems. 

b) Data and model fit to H-DTE-COOH open and closed cationic polymer systems. b) Data and 

model fit to CN-DTE-COOH open and closed cationic polymer systems. 
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Table 1. Summary of all experimental and fitted results studied in this system across RAFT, PET-

RAFT, ATRP and cationic polymerization. 

System Label [M]:[P-X]:[D] k* 𝜇decap DPn-Ex ĐEx DPn-Th ĐTh 
RAFT MA Narrow 300:1:1 0.058 32 230 1.09 260 1.05 
 Medium 200:1:1 0.48 5.1 190 1.37 190 1.36 
 Broad 200:1:1 0.64 2.6 180 1.63 180 1.64 
RAFT MMA Narrow 300:1:1 0.13 15 250 1.13 260 1.10 
 Medium 200:1:1 0.56 30 200 1.39 200 1.39 
 Broad 200:1:1 0.73 2.6 190 1.65 190 1.65 
PET-RAFT MA Narrow 300:1:1 0.084 36 280 1.10 290 1.05 
 Medium 200:1:1 0.57 29 210 1.36 200 1.40 
 Broad 200:1:1 0.69 7.3 210 1.51 200 1.53 
PET-RAFT MMA Narrow 300:1:1 0.060 20 210 1.09 220 1.07 
 Medium 200:1:1 0.39 3.2 160 1.40 160 1.41 
 Broad 200:1:1 0.59 1.9 160 1.71 160 1.76 
ATRP Narrow 150:1:0.02 0.0019 33 150 1.06 150 1.06 
 Medium 1 150:1:0.002 0.00071 8.2 140 1.20 150 1.24 
 Medium 2 150:1:0.001 0.00055 4.8 140 1.33 150 1.41 
 Broad 150:1:0.0005 0.00047 3.6 140 1.48 150 1.64 
Cationic MeO-DTE-COOH (O) 0.5:0.005:1 74 55 94 1.26 100 1.23 
 MeO-DTE-COOH (C) 0.5:0.005:1 59 54 100 1.17 100 1.18 
 H-DTE-COOH (O) 0.5:0.005:1 82 56 100 1.25 100 1.26 
 H-DTE-COOH (C) 0.5:0.005:1 37 10 91 1.15 89 1.14 
 CN-DTE-COOH (O) 0.5:0.005:1 83 39 100 1.26 100 1.27 
 CN-DTE-COOH (C) 0.5:0.005:1 24 22 110 1.10 95 1.08 

 

Application to Complex Polymer Systems 

Recently, polymers with tunable dispersities of exceptional precision could be generated 

by taking two polymers of distinct dispersities, but similar Mn values, and blending them together 

as demonstrated in Scheme 5.57 For instance, polymers of low and high dispersity can be 

synthesized by ATRP, and the distribution approximated well by the model developed above. As 

seen in Figure 7, distributions of blended polymers can be predicted by combining the modelled 

narrow and broad distribution through a weighted summation, where the weighting is the fraction 

of broad and narrow polymer respectively.57 The modelled blended polymers agree well with the 

experimentally evaluated distribution for the blended systems. As anticipated, systems with a 

higher ratio of the broad polymer also have broader distribution. 



  

Scheme 5. Visual representation of a blending mechanism, where the narrow and broad MWD 

polymers are blended together in specific ratios. 

 

 

Figure 7. Data from a blended polymer system. P1 is a high dispersity polymer and P2 is a low 

dispersity polymer. Experiment and model are given for the narrow, the broad and blended 

polymers with a fraction of 0.3 or 0.7 of the broad distribution. 
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block. These can be treated as a blended system, with one polymer being treated as the living block 

polymer generated by convolution of the two individual chain length distributions, and the other 

being the dead chain, which can be approximated by the chain length distribution of the first block. 

As seen in Figure 8, the model can give good predictions of the homopolymers and block 

copolymer of 3 polymerization systems. The first is an ATRP polymer, where the first block of 

PMMA was chain extended with ethyl acrylate (EA).55 Excellent agreement between the model 

and the experiment is seen in the PMMA homopolymer, and acceptable agreement is observed 

when considering the overall experimental block copolymer and the living chains, as seen in Figure 

8a. However, including 4% of the PMMA homopolymer as dead chains improves the fit, especially 

at lower chain lengths. The parameters used to fit the two blocks are given in Table S4. 

A similar result was observed in the RAFT block copolymerizatiom phenylvinylketone 

(PVK) and butyl acrylate (BA), as depicted in Figure 8b. Both blocks targeted 50 units. The PPVK 

homopolymer is described well by the model, and since the BA chain is similarly controlled, the 

theoretical distribution of BA chain lengths shown in yellow was similar to the PPVK block. The 

overall block copolymer is well-described by the model, although a notable fraction (11%) of the 

dead chains from PPVK were needed to describe the experimental molecular weight distribution. 

In ideal RAFT, the  formation dead chains is correlated from new chains generated in the system, 

and therefore [P–X] should remain constant in ideal RAFT. Certain kinetic models, such as the 

intermediate radical termination model,69, 70 do lead to decreases in the [P–X] from cross-

termination reactions although this is beyond the scope of this model. It is important to note that 

the experimental PPVK-b-BA block copolymer molecular weight and chain length was corrected 

by the Mark-Houwink parameters for BA as derived by Barner-Kowoillik and co-workers.71 



Additional discrepancies between model and experiment are likely to be caused by deviations 

between the solution dimensions of PMMA calibrants and the complex block copolymer. 

 

 

 
Figure 8: a) ATRP block copolymer of MMA and EA, b) RAFT block copolymer of PVK and 

BA, c) RAFT copolymer where the two blocks are both MMA. Blue describes the homopolymer 

or first block (experimental-solid and theoretical-dashed), yellow dotted gives the theoretical chain 

length distribution of the second block, and green gives the block copolymer (experimental-solid, 

overall theoretical-dashed and only live block copolymer-dotted). 
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Finally, Figure 8c shows the mixed CTA chain extension of PMMA. The PMMA 

homopolymer was synthesized with 35% of the dithiobenzoate CTA which led to low dispersity 

and 65% of the CTA which leads to high dispersity. As seen in Table S4, the k* value of 0.44 was 

obtained for the first block along with a 𝜇decap of 10. In order to fit the block copolymer, a 

substantially smaller k* of 0.17 was required with 𝜇decap of only 1.4. Higher k* values caused the 

peak of the molecular weight distribution to be shifted too high, due to the chain extension being 

performed with 400 equivalents of monomer cut off at a low conversion.51 The likely reason for 

the substantially smaller k* and 𝜇decap in the chain extension is the cessation of the reaction at low 

conversion, combined with the fact that some chain ends are capped with the more active 

dithiobenzoate, and others with the less active dithiocarbamate. RAFT exchange is most efficient 

through the dithiobenzoate groups, therefore the chains containing dithiobenozates are most likely 

to exchange and grow. This reduces the apparent k* since chain extension is primarily occurring 

through the more active dithiobenzoates which will have lower k* values. The low 𝜇decap is related 

to this, since the dithiocarbamate capped chains are less likely to have chain extended and therefore 

not all chains will have undergone multiple activation cycles. The application of the model against 

complex polymer systems such as blended and block structures show the versatility of the 

approach. In particular, the block polymer system shows how the overall block polymer MWD 

can be described as a convolution or combination of the individual MWDs, gaining information 

into the characteristics of each individual polymer distribution, in a way that is nearly impossible 

from a purely experimental perspective. 

 

Conclusion 



 The model developed fits a range experimental data to two variables; k* and 𝜇decap. 

𝜇decap  represents the average number of decapping events occur for a polymer chain and k* 

represents the ratio of propagation to deactivation rate coefficients for the active chain. k* is an 

important kinetic measure as well controlled polymerizations add only a few monomers per 

decapping cycle. Thus, the smaller the k* value, the narrower the molecular weight distribution 

and the more uniform the chains will be. Interestingly, relatively well controlled chains, with 

dispersity in the order of 1.10 can be synthesized with 𝜇decap of 5, or 5 activation/deactivation 

cycles on average. Higher numbers of activation cycles will increase conversion and chain length, 

with a commensurate decrease in dispersity. The model was used to describe molecular weight 

distributions of polymers made by a variety of systems including ATRP, RAFT, PET-RAFT, and 

cationic polymerization. Importantly, the model was able to capture trends in dispersity by 

increasing k* in RAFT and cationic systems or capturing the increase in dispersity through lower 

deactivator concentrations in ATRP. Additionally, the model could describe complex block and 

blended polymers, with good agreement between the model and the experimental data. The most 

substantial benefit of this model is its simplicity. It can be applied to most polymer systems 

subjected to reversible activation/deactivation, and with just the molecular weight distribution, the 

mean and molar mass dispersity, kinetic parameters, and history of the polymerization can be 

extracted for new polymer systems. 

 

Theoretical Section and Model Derivation 

In general, the model developed below applies to any process which involves a reversible 

activation-deactivation of polymer chain ends. In the dormant state, the monomers are unable to 

react with the polymer chain, while in the active state, which is typically short-lived, monomers 



are added to the chain end. It is important to note that the methodology developed below applies 

to the living chains of a polymerization with intermittent activation and deactivation. Chains 

derived from irreversible transfer events or chains subjected to termination are not captured in 

the model. Therefore, the system is best applied to living-like polymers where the fraction of 

chains affected by transfer or termination is relatively small. In the following paragraphs, the 

general forms of RAFT, ATRP and cationic polymerization are outlined and summarized in 

terms of their activation, propagation and deactivation processes. Although the model is applied 

to cationic, RAFT and ATRP system, it could be used more broadly, including anionic or 

nitroxide mediated polymerization which can also show intermittent activation, propagation and 

deactivation.72, 73 Subsequently, the model is derived in a general way such that it can be applied 

to any one of these or other polymerization systems. 

In the case of RAFT polymerization, the deactivation occurs through degenerative 

exchange of thiocarbonylthio groups. This can be represented by equations 2 and 3 below, where 

𝑃5• and 𝑃7• are propagating radicals and 𝑃7 − 𝑋 and 𝑃5 − 𝑋 are dormant chain transfer agent (CTA) 

capped chains. In this case both chain initiation and deactivation occur through the RAFT CTA. 

In this way, RAFT can be thought of as having simultaneous activation of a propagating radical, 

with deactivation of the propagating chain, assuming the RAFT intermediate radical is short 

lived.74 

𝑃5•	+𝑃7 − 𝑋  
7"#$%5⎯⎯7 𝑃5 − 𝑋 + 𝑃7•           (2) 

𝑃5 − 𝑋 + 𝑃7•  
7"#$%5⎯⎯7 𝑃5•	+𝑃7 − 𝑋         (3) 

In the case of ATRP, the activation-deactivation equilibrium can be described by the 

processes below. The activation occurs from the 𝐶𝑢8/𝐿  complex, or any other low-valent metal 

capable of activating (pseudo)alkyl halides, while deactivation occurs by 𝑋 − 𝐶𝑢88/𝐿 or any other 



high-valent metal capable of deactivating propagating radicals. These processes are given in 

Equations 4 and 5 below.14 

𝑃7 − 𝑋 +𝑀&/𝐿  
7&'#%"(5⎯⎯⎯⎯7 𝑃7• + 𝑋 −𝑀&9'/𝐿      (4) 

𝑃7• + 𝑋 −𝑀&9'/𝐿  
7)'#%"(5⎯⎯⎯⎯7 𝑃7 − 𝑋 +𝑀&/𝐿      (5) 

Similarly, in the simplest case, reversible deactivation cationic polymerization can be 

thought of as a Lewis acid coordination-based activation of the propagating chain end. This can 

be captured by the processes in Equations 6 and 7 below:53 

𝑃7 − 𝑋 + 𝐿𝐴  
7&'*#%5⎯⎯⎯7 𝑃7:9–𝑋– 𝐿𝐴       (6) 

𝑃7:9–𝑋– 𝐿𝐴
7)'*#%5⎯⎯⎯7 𝑃7 − 𝑋 + 𝐿𝐴       (7) 

In general monomer propagation follows the pathways given in Equation 8 for radical 

reactions or Equation 9 for cationic reactions. Both processes follow the key ideas in addition 

polymerization. 

𝑃7• +𝑀
7+
57 𝑃79'•                 (8)            

𝑃7:9–𝑋– 𝐿𝐴 +𝑀
7+
57 𝑃79':9 –𝑋– 𝐿𝐴             (9)       

In developing a general model for polymerization with intermittent polymer chain 

activation and deactivation, it is important to consider two factors: the mean number of activation 

cycles experienced by the chain-end and the number of monomers added in an activation cycle. 

The first factor is the mean number of chain-end activation cycles that the average polymer chain 

undergoes. In the model these are referred to as decapping cycles, wherein the chain cap is removed 

to produce an active chain end. This mean number of decapping events is given by 𝜇!"#$%. 

Although there is a distribution of the number of decapping events per chain, each polymer will 

have a unique number of activation or decapping cycles. The likelihood of a given polymer 



undergoing precisely j decapping events, is assumed to follow a Poisson distribution, with a mean 

𝜇!"#$% as given below:49  

𝑃!"#$%?𝑗|𝜇!"#$%B =
;<=	(+@),-&+)(@),-&+).

B!
      (10) 

Equation 10 holds regardless of the underlying polymerization mechanism. The Poisson 

distribution is applied here, as the decapping events are assumed to be independent of each other, 

with the Poisson distribution often being used to describe the probability of a given number of 

independent ‘rare’ events occurring in a given time frame, assuming the time to the next event, 

such as a decapping, is independent of the prior one.75 In this case of a polymerization that would 

be the total polymerization time. 

Upon polymer chain activation, monomers may be added to the system. Monomers will 

continue to be added with rate coefficient 𝑘% until the chain is deactivated. In a well-controlled 

reaction, as is assumed to occur in the model, the dominant modes of chain deactivation are either 

reversible termination or degenerative transfer, with minimal irreversible chain ending events, 

such as irreversible chain transfer or irreversible termination. Following the deactivation steps in 

Equations 2, 3, 5, and 7 the mean number of monomers added during an activation cycle can be 

estimated as follows for RAFT, ATRP, and cationic processes, respectively, given a concentration 

of monomer [M]:49 

𝜇$!! =
7+[D]

7"#$%[)/+3]
        (11) 

𝜇$!! =
7+[D]

7)'#"%([3–D!01/G]
       (12) 

𝜇$!! =
7+[D]
7)'*#%

         (13) 

Note that in equation 11, [𝑃B − 𝑋] is the concentration of thiocarbonylthio chain transfer 

agents, typically equal to the total concentration of RAFT agent added at the start of the reaction. 



In this way, the general format for the mean number of monomers added per activation-

deactivation cycles is given by: 

𝜇$!! =
7+[D]
72[(]

         (14) 

where [M] is the monomer concentration at that deactivation, [D] is the concentration of 

deactivating species, and 𝑘( is the rate coefficient for deactivation. In the case of RAFT, 

deactivation occurs by reversible chain transfer; hence, [D] is the initial concentration of RAFT 

agent and 𝑘( = 𝑘HIJK, while for ATRP the [D] is the concentration of the high oxidation state 

deactivator and 𝑘( = 𝑘!+IKH). In the case of cationic polymerization, deactivation has been 

proposed to occur by the loss of the Lewis acid, which occurs with rate coefficient 𝑘( = 𝑘!+LIK . 

Although there is no bimolecular deactivation in cationic polymerization, the unimolecular aspect 

can be captured by for by setting [D]=1 in eq 14 for cationic species, thereby transforming 

deactivation to a unimolecular process.  

Given that the mean number of monomer units added for an activation-deactivation cycle 

is equal to 𝜇$!!, the probability of adding precisely i units during that activation-deactivation cycle 

can be given by the following distribution:49 

𝑃$!!(𝑖|𝜇$!!) = 𝑢0(1 − 𝑢)       (15) 

Where: 

𝑢 = @&))
'9@&))

         (16) 

The geometric distribution in equation 15 essentially accounts for the probability of adding 

i monomers before the deactivation or capping event. This models the probability of i independent 

monomer addition events,46 which each occur with probability u, before the successful recapping 

of the chain. 



It is important to consider that as incorporation of monomer in an earlier activation-

deactivation cycles across the population of all chains will deplete available monomer in 

subsequent decapping events for a given polymer. Given the living-like properties of the polymers, 

with linear growth of average chain length with conversion, this will cause 𝜇$!! to decrease as the 

polymerization progresses. In this way, the chain length after the average chain has experienced j 

decappings is given by: 

𝐷𝑃B =
[D]3+[D].
[)+3]

        (17) 

Where [𝑀]M is the initial monomer concentration, [𝑀]B is the monomer concentration after 

the average chain has undergone j decapping events and [𝑃 − 𝑋] is the concentration of active or 

living chain ends. Although this considers the typical or average chain and its effect on chain 

length and monomer concentration, which enables simplification of the calculation, there will be 

variations in the number of times different chains have been activated in a given timeframe. 

 In RAFT, [𝑃 − 𝑋] is equal to the initial CTA concentration, assuming negligible 

degradation of the CTA; in ATRP [𝑃 − 𝑋] is the alkyl halide concentration; and in cationic 

polymerizations [𝑃 − 𝑋] is the concentration of cationic initiating groups. This enables the mean 

number of monomers added after the typical chain has undergone j decapping event to be written 

as shown in Equation 18. 

𝜇$!!,B =
7+
72

[D].
[(]

        (18) 

Combining equation 18 with equation 17 gives: 

𝜇$!!,B =
7+O[D]3+().[)+3]P

72[(]
       (19) 



Recognizing that the polymer starts with chain length equal to 0, this equation can be solved 

to yield the general form below for the mean number of monomers added to a chain end (𝜇$!!,B), 

after the average chain has undergone j decappings: 

𝜇$!!,B(𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]) = 𝑘∗ [D]3
[)+3]

01 − 𝑘∗ [)+3]
[(]

1
B+'

   (20) 

Where k* is the ratio of monomer addition to chain deactivation rate coefficients: 

𝑘∗ = 7+
72

         (21) 

It is important to note that within the framework of the developed model, the ratio 𝑘∗ [)+3]
[(]

 

must be less than 1. Although in principle the ratio can be greater than 1, this will lead to a system 

where only a few chains contain monomer, and most of the chain ends did not initiate efficiently. 

Since the polymer initiates from a linear chain with one unit (the initiating unit) and zero 

monomer units incorporated. This gives the linear chain distribution of polymers with precisely 0 

decapping cycles of: 

𝑃#Q$0&(𝑛|𝑘∗, 0, [𝑀]M, [𝑃 − 𝑋], [𝐷]) = I	 1		𝑖𝑓	𝑛 = 1
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (22)  

Where n represents the chain length or degree of polymerization of the macromolecule. 

Note that this considers the initiating unit to be a macromolecule of chain length 1. 

As the polymer chain undergoes subsequent decapping, or chain-end activation, events the 

linear chain length distribution grows by adding monomer. The probability of adding precisely i 

monomer units after j decapping cycles is given by 𝑃$!!?𝑖|𝜇$!!,BB, as given in Equation 15. 

Therefore, after the average chain has undergone the jth decapping, the probability of the linear 

polymer having exactly n units is given by the equation below: 

𝑃#Q$0&(𝑛|𝑘∗, 𝑗, [𝑀]M, [𝑃 − 𝑋], [𝐷]) 

= ∑ 𝑃#Q$0&(𝑛 − 𝑖|𝑘∗, 𝑗 − 1, , [𝑀]M, [𝑃 − 𝑋], [𝐷])&+'
0RM ´𝑃$!!(𝑖|𝜇$!!,B , [𝑀]M, [𝑃 − 𝑋], [𝐷])  (23) 



The probability of finding a chain with length n after the jth decapping is given by the sum 

of probability of finding a polymer with n unit in the prior decapping multiplied by the probability 

of adding no monomers in the jth decapping, plus the probability of a chain having n–1 units 

multiplied by the probability of adding one monomer in the jth decapping, plus the probability of 

a chain having n–2 units multiplied by the probability of adding two monomers in the jth decapping, 

etc. Finally, to account for the fact that distinct polymers will have undergone different numbers 

of decapping cycles, the number distribution of polymer chain lengths, given a particular value of 

k* and 𝜇!"#$%, is given by adding the probability of a chain of length n being obtained after 0 

decappings multiplied by the probability of the polymer undergoing 0 decappings, plus the 

probability of a chain of length n being obtained after 1 decappings multiplied by the probability 

of the polymer undergoing 1 decappings, etc. This yields the approximate solution to the polymers 

chain length distribution: 

𝑃LG(?𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B = 

∑ 𝑃!"#$%(𝑗|𝜇!"#$%)	𝑃#Q$0&(𝑛|𝑘∗, 𝑗, [𝑀]M, [𝑃 − 𝑋], [𝐷])S
BRM     (24) 

This theoretical molecular chain length distribution is a function of two parameters of the 

model: 𝜇!"#$% the mean number of decapping cycles; and 𝑘∗ the ratio of propagation to 

deactivation rate coefficients; as well as three experimental parameters: [𝑀]M the initial monomer 

concentration; [𝑃 − 𝑋] the concentration of living chain ends; and [𝐷] the concentration of 

deactivator. 

It is important to note that several simplifying assumptions were applied to derive equation 

24. Firstly, the model focuses only on living chains, and assumes that chain ending transfer and 

termination are negligible, implying that most chains are living. A substantial fraction of dead 

chains would lead to broadening of the distribution that would not be captured by the model 



without some modifications, as discussed in the section on block copolymers. Additionally, in 

deriving the model the number of monomers added in a given decapping was derived from the 

average monomer concentration after the typical chain underwent a set number of activation-

deactivation cycles. This assumption neglects the fact that some chains may undergo more than 

the mean number of decapping events, and deplete monomer from chains that may have undergone 

fewer than the mean number of decapping events at a given point in the polymerization.  

 From the number distribution given in Equation 24, the mean chain length (𝐷𝑃&) and the 

chain length dispersity (Đ) can be estimated as follows: 

𝐷𝑃&?𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B = ∑ 𝑛𝑃LG(?𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]BS
&R'  (25) 

Đ?𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B =
∑ &4)*52O&|@),-&+,7∗,[D]3,[)+3],[(]P7
!81

()!O@),-&+,7∗,[D]3,[)+3],[(]P
4    (26) 

Finally, since most polymer distributions are measured by size exclusion chromatography 

(SEC), the SEC-based weight distribution can be calculated as follows: 

𝑤?𝑙𝑜𝑔𝑛Q𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B 

= '
L
0𝑛* × 𝑃LG(?𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B1      (27) 

Where C is a normalization factor, either the peak value of w(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 −

𝑋], [𝐷]) to normalize to a height of 1, or the area under 𝑤(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]) to 

give area normalized w(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]). Additionally, a number distribution 

in log chain length (log n) can be represented as shown below: 

𝑝(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]) =
'
V
0𝑛 × 𝑃LG(?𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]B1 (28) 

Where E is a normalization factor, either the peak value of 𝑝(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 −

𝑋], [𝐷]) to normalize to a height of 1, or the area under 𝑝(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]) to 

give area normalized 𝑝(𝑙𝑜𝑔𝑛|𝜇!"#$%, 𝑘∗, [𝑀]M, [𝑃 − 𝑋], [𝐷]).  



To fit an experimental SEC data set to the model, 3 parameters are considered and equally 

balanced: the mean chain length (DPn), the dispersity (Đ), and the overall shape of the molecular 

weight distribution (w(logn)). Considering all three parameters: DPn; Đ; and w(logn), in the 

optimization reduces the sensitivity to experimental noise in any one parameter. Therefore, when 

optimizing against an experimental data set the following c2 parameter is minimized by 

optimization of k* and µdecap. 

c*(𝜇!"#$%, 𝑘∗) =
W()!'9:–()!'%;O@),-&+,7∗,[D]3,[)+3],[(]PX

4

(()!'9:)4
+

WĐ9:–Đ%;O@),-&+,7∗,[D]3,[)+3],[(]PX
4

(Đ9:)4
+

∑ WZ,:(5,[0)–Z<;O5,[0|@),-&+,7∗,[D]3,[)+3],[(]PX
4!=>?

@81
∑ (Z,:(5,[0))4
!A&:
@81

 (29) 

Where i is each available experimental data point in the SEC derived chain length 

distribution up to the final chain length available (nmax). To make the system numerically tractable, 

the infinite summations in the number of decappings and chain length are capped. The maximum 

chain length considered in numerical calculations is taken as 20 times the ratio of [M]0 to [P–X], 

or 20 times the targeted chain length. The maximum number of decappings is taken to be nearest 

integer to µdecap+5µdecap0.5. This is corresponds to µdecap + 5 standard deviations of the Poisson 

distribution. 

Finally, when combining two existing chain length distributions, such as in a block 

copolymer or a polymer made of mixed RAFT agents, a convolution approach can be used as given 

below: 

𝑃BCD"𝑛$𝜇EFBGH,J, 𝜇EFBGH,K, 𝑘J∗, 𝑘K∗, [𝑀]L,J, [𝑀]L,K, [𝑃 − 𝑋]J, [𝑃 − 𝑋]K, [𝐷]J, [𝐷]K. = 

∑ 𝑃J(𝑛 − 𝑖 + 1|𝜇EFBGH,J, 𝑘J∗, [𝑀]L,J, [𝑃 − 𝑋]J, [𝐷]J)𝑃K(𝑖|𝜇EFBGH,K, 𝑘K∗, [𝑀]L,K, [𝑃 − 𝑋]K, [𝐷]K)D
MNJ   (30) 

Where P1(𝜇!"#$%,', 𝑘'∗, [𝑀]M,', [𝑃 − 𝑋]', [𝐷]') and P2(𝜇!"#$%,*, 𝑘*∗ , [𝑀]M,*, [𝑃 − 𝑋]*, [𝐷]*) 

are the constituent polymer (number) chain length distributions with the parameters having the 



same meaning as in equation 24. Note that this convolution approach is distinct from a blending 

approach, where blending two polymers P1 and P2 in fraction f  by and 1-f is given by: 

𝑃OPFDE"𝑛$𝜇EFBGH,J, 𝜇EFBGH,K, 𝑘J∗, 𝑘K∗, [𝑀]L,J, [𝑀]L,K, [𝑃 − 𝑋]J, [𝑃 − 𝑋]K, [𝐷]J, [𝐷]K. =  

𝑓	𝑃J(𝑛|𝜇EFBGH,J, 𝑘J∗, [𝑀]L,J, [𝑃 − 𝑋]J, [𝐷]J)	+	(1 − 𝑓)	𝑃K(𝑛|𝜇EFBGH,K, 𝑘K∗, [𝑀]L,K, [𝑃 − 𝑋]K, [𝐷]K) (31) 

The convolved or blended distribution can be then transformed to a weight distribution for 

comparison with SEC by applying the same approach as given in equation 27.  
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