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Self-regulated learning (SRL) is essentially a complex dynamical system (CDS). However, no effort has been made
to study SRL from a CDS approach in the context of science learning. In this study, we adopted the ideas and
analytical techniques of complexity science to analyze SRL. Specifically, 74 ninth-grade students were asked to
undertake an engineering design task in a computer-simulated environment. We compared the differences in the
complexity of the SRL process and the regularity of SRL behaviors between the high and low performers. We

found that the SRL processes of the high performers were more complex than those of the low performers. In
general, the low performers demonstrated a higher degree of repetition of SRL behaviors than the high per-
formers. The low performers were also more likely to exhibit a behavior repeatedly than the high performers.
This study extends the literature on the dynamics of SRL in both theoretical and methodological dimensions.

1. Introduction

There has been a growing recognition that self-regulated learning
(SRL) plays a central role in influencing students' performance across
various learning or problem-solving contexts (Azevedo & Gasevic, 2019;
Boekaerts et al., 2005; Greene & Azevedo, 2007; Jarvela et al., 2020;
Pintrich, 2004; Winne, 2019). In particular, SRL refers to a cyclical
process whereby students purposefully govern when and how to use self-
regulatory strategies to achieve learning goals, proactively monitor what
and why specific strategies work or fail, and efficiently determine where
to go next accordingly (Pintrich, 2000; Winne, 2019; Zimmerman,
2000). The process of SRL is influenced by a wide range of factors, which
include the characteristics of the learning context, an individual's de-
mographic, cultural, or personality characteristics, and the individual's
strategic regulation of their internal environments such as cognition,
metacognition, motivation, and emotion (Pintrich, 2004). The emer-
gence of SRL behaviors or products is an aggregate result of interactions
between those factors. Therefore, SRL is essentially a complex dynam-
ical system, comprising interdependent components whose roles and
inter-component relations continuously emerge through internal and
external feedback loops (Kaplan & Garner, 2020; Koopmans, 2020).
Examining SRL as a complex dynamical system could provide insights
that go beyond simple cause-effect relations between SRL components

and performance. However, limited studies have investigated SRL from
a complex dynamical system (CDS) approach, which is rooted in
complexity science (Koopmans, 2020; Richardson et al., 2014). One
reason is that the application of CDS in educational research is still
nascent, and the other reason lies in the challenge of viewing the SRL
process as emergent and not-fully-predictable, which requires an epis-
temological shift from researchers (Kaplan & Garner, 2020).

In addition, research in the SRL field has relied extensively on
atemporal methods to study how specific SRL components relate to
students' performance, focusing on the frequency, magnitude, quality, or
interaction of such components (Coco & Dale, 2014; Jarvela et al.,
2020). Accordingly, researchers use summary statistics such as mean
and standard deviation to describe SRL processes, leaving the temporal
variations of SRL components largely unexplored (Azevedo & Gasevic,
2019; Paans et al., 2019; Winne, 2019). Moreover, the inferential sta-
tistics for studying SRL phenomena are typically based on certain as-
sumptions such as linearity assumption, homogeneity of variance, and
normal distribution of data sets. In terms of the linearity assumption,
which assumes that all causal inferences remain constant in direction
throughout time (Xu et al., 2020), it is often violated when investigating
variables with complex dynamics. SRL process is no exception since the
interrelationships among SRL components are not necessarily linear, and
the measured data may contain non-random fluctuations that are not
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normally distributed (Richardson et al., 2014). Therefore, it is meth-
odologically important to explore the complex nature of SRL processes
through nonlinear analytic methods, among which recurrence quanti-
fication analysis (RQA) is gaining popularity (Coco & Dale, 2014;
Marwan & Webber, 2015; Wallot & Grabowski, 2019; Xu et al., 2020).
As noticed by Richardson et al. (2014), ‘there is now substantial evi-
dence that suggests it is potentially one of the most robust and generally
applicable methods for assessing the dynamics of biological and human
behavior’ (pp. 273-274). Specifically, RQA is a nonlinear analysis
method that allows researchers to quantify the temporal structure and
patterns of learning behaviors but requires no assumptions about line-
arity and data distribution (Richardson et al., 2014; Wallot, 2019). To
our knowledge, there has yet no effort to study SRL as a complex dy-
namic system using the RQA method. Thus, the present study aims to
fulfill this gap. The current literature on SRL is centered around students'
interactions with computer-based learning environments, where
learning or problem-solving behaviors can be recorded in real-time as
they occur (Azevedo & Gasevic, 2019; Coco & Dale, 2014; Greene et al.,
2019; Jarvela et al., 2020; Lajoie et al., 2019; Li et al., 2021). We also
situate this study in a computer-based environment since learners' trace
data is crucial to study SRL dynamics. This study provides researchers
with methodological insights on the analysis of SRL dynamics. Findings
from this study could also deepen our understandings of the complexity
and regularity of SRL processes and consequently students' performance
differences.

2. Theoretical background
2.1. Self-regulated learning as a complex dynamical system

Self-regulated learning is a multidimensional process whereby stu-
dents perceive, interpret, control, and monitor their internal and
external conditions to achieve their predetermined goals (Greene &
Azevedo, 2007; Hooshyar et al., 2019; Pintrich, 2004; Winne, 2019). In
terms of internal conditions, the predominant SRL theories describe the
process by referring to four main components (i.e., cognition, meta-
cognition, motivation, and emotion) and their interactions (Azevedo &
Gasevi¢, 2019; Greene & Azevedo, 2007; Pintrich, 2000; Zimmerman,
2000). Regarding external conditions, SRL researchers have recognized
the influences of available resources, instructional cues, time, and the
local context (Greene & Azevedo, 2007; Li et al., 2018). All of these
factors can influence an individual's strategic regulation of learning
process and their ability to achieve desirable goals. As such, the process
of SRL exhibits the three key features of complex dynamical systems, i.e.,
interconnectedness, non-ergodicity, and nonlinear dynamics (Heino
et al., 2020; Richardson et al., 2014). First of all, the many components
of SRL are closely interconnected. SRL components such as cognition,
emotion, and behaviors interact with each other over time, yielding the
internal dynamics in the human mind and reflecting the very nature of
the learning process (Engelmann & Bannert, 2021; Li, Chen, et al., 2020;
Li et al., 2022). Furthermore, SRL process is non-ergodic, which means
that students can vary significantly in their changes of SRL behaviors,
and even the same individual could experience radical changes in
cognition or emotions over time. It would be misleading and inaccurate
to draw individual-level inferences from group-level data about SRL
(Heino et al., 2020). In addition, SRL process also manifests the char-
acteristic of nonlinear dynamics of any complex dynamical systems,
considering that there are no clear linear causal relationships between
SRL components. Although the patterns of interactions among SRL
components are recognizable, none of these patterns alone can predict a
determined outcome (Marchand & Hilpert, 2020).

In an attempt to understand the complex SRL dynamics, researchers
have been making a great effort to gather multidimensional data about
SRL (Lajoie et al., 2019; Winne, 2019). In fact, a growing interest in SRL
research is to unravel the temporal dynamics of SRL components by
collecting and analyzing multimodal multichannel data with various
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methodologies such as physiological sensors, eye-tracking, facial ex-
pressions of emotions, log files, concurrent think-aloud, and discourse
analysis (Azevedo & Gasevic, 2019). However, modeling multimodal
multichannel data about SRL can be theoretically, methodologically,
and practically challenging. To name a few of these challenges:
embodiment of theoretical assumptions in data streams, temporal
alignment of multimodal multichannel SRL data sources based on
different sampling rates, and complexity in dealing with missing, noisy
or messy data (Azevedo & Gasevic, 2019). Moreover, as pointed out by
Winne (2019), “a different model or theory may devalue or even
disregard data instrumented according to another theory or model” (p.
286). As a result, an important question naturally arises: Are there valid,
reliable, and cost-effective methods to study the temporal dynamics of
SRL that move beyond the multimodal multichannel approach? In the
present paper, we argued that the CDS approach to SRL and corre-
sponding analytical techniques have the potential to address this ques-
tion. SRL is basically a complex dynamical system. Clearly, researchers
can gain additional insights into the SRL process by adopting ideas and
methods of complexity science. For instance, recurrence quantification
analysis, a CDS method that is widely used in social and personality
psychology, enables researchers to reveal the underlying dynamics of
SRL process by describing the aggregated functioning of its components
(Koopmans, 2020; Richardson et al., 2014; Wallot, 2017).

2.2. Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a powerful technique
used to quantify the complexity and regularity of the temporal patterns
of a single or multiple time-series, especially when the time-series is the
result of multiple interdependent variables (Marwan & Webber, 2015;
Wallot, 2017; Wallot & Leonardi, 2018). In particular, RQA allows re-
searchers to reveal information about the multiple underlying variables
by analyzing the observable one-dimensional time-series. As such, RQA
is applicable to analyze a SRL system, given that it consists of the in-
terplays of multiple interdependent constructs (i.e., behavior, cognition,
metacognition, emotion, and motivation) and the SRL behavioral
sequence is usually directly observable. RQA has a solid mathematical
foundation, which is the theorem of higher-dimensional reconstruction
by the time-delayed embedding method proposed by Takens (1981). As
observed by Webber and Zbilut (2005), ‘what this theorem states is that
the topological features of any higher-dimensional system consisting of
multiple coupled variables can be reconstructed from but a single
measured variable of that system’ (pp. 33-34). This is done by recon-
structing a multidimensional space where time-delayed copies of the
one-dimensional time-series act as surrogate dimensions in that space
(O'Brien et al., 2014; Wallot, 2019; Webber & Zbilut, 2005). Readers can
find more details about the mathematical and computational founda-
tions of RQA from the research of Marwan and Webber (2015).

With regard to the time-delayed embedding method, there are two
parameters that are essential for the reconstruction of a potentially
multidimensional system from a single one-dimensional time-series
(Wallot, 2019). One is the delay parameter t, which refers to the lag at
which the time-series is plotted against itself. The delay parameter is
usually estimated through the mutual average information function to
“ensure that reconstructed dimensions of the phase-space are relatively
orthogonal and deliver non-confound information about the temporal
structure in a time-series” (Wallot, 2017, p. 374). Once an appropriate
delay parameter is obtained, it is further used to estimate the other
parameter, i.e., the embedding dimension. The embedding dimension
parameter indicates the number of times the time-series is plotted
against itself (Wallot, 2019). It is an estimate of the dimensionality of a
potentially multidimensional system (Wallot & Leonardi, 2018), while
dimensionality represents the number of underlying subcomponents,
with each subcomponent contributing to one reconstructed dimension.
In the context of SRL, dimensionality refers to the number of SRL
components activated in learning or problem-solving. For instance,
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some students may actively manipulate more SRL components (e.g., self-
instruction, attention focusing, self-evaluation, causal attribution,
management of outcome expectations, and emotion regulation) than
those who lack self-regulatory skills. As a result, the dimensionality of a
SRL system for the competent self-regulated learners is assumed to be
larger than that of those less competent.

It is noteworthy that the overarching goal of RQA is to examine the
repetition of elements or patterns in a time-series since recurrence is a
fundamental property of dynamical systems. The examination of
recurrence patterns can be more accurate when analyzing the co-
ordinates in the reconstructed multidimensional system compared to the
values of the observable time-series per se (Marwan & Webber, 2015;
Wallot, 2019; Wallot & Leonardi, 2018). RQA can also be computed on
categorical series of finite states. Therefore, it provides an analytic
framework for studying the recurrence patterns of students' behavior
sequences (Xu et al., 2020). Recurrence plot (RP) is a core concept of
RQA, which is generated by plotting a time-series on both the x and y-
axis of a two-dimensional grid. Specifically, RP is used to visualize
repeating structure or patterns by comparing all the elements of a
sequence with themselves (Wallot & Leonardi, 2018). As an illustration,
Fig. 1 shows the recurrence plots of two participants. The x and y-axis
are both a participant's behavior sequence, with recurrence points (i.e.,
dots marked with black color) in the RP indicating when the same
behavior within the sequence reoccurs. That is, recurrence points do not
represent specific values but rather show the position where a specific
value repeats itself. Recurrence plot is symmetrical about its main di-
agonal because each value within a behavior sequence is recurrent with
itself (Wallot, 2017). In particular, the adjacent points forming vertical
or horizontal lines suggest that an individual performs a repetitive
behavior such as planning, whereas the diagonally adjacent points
indicate that a behavioral pattern reoccurs. As shown in Fig. 1, the be-
haviors of participant B are more structured than that of participant A
since the RP of the prior contains more diagonal lines.

In addition, RQA provides multiple metrics to quantify the recur-
rence patterns. The most commonly used metrics are percent recurrence
(%REC), percent determinism (%DET), average diagonal line length
(ADL), laminarity (%LAM), and trapping time (TT) (Wallot, 2017;
Webber & Zbilut, 2005). The definitions and meanings of these metrics
are shown in Table 1. Plenty of terms have been used to describe these
RQA measures, including but not limited to regularity, predictability,
stability, flexibility, and complexity (Jenkins et al., 2020;Marwan et al.,
2002; Wallot, 2017). For the purpose of this paper, we used the term of
regularity throughout.

Vertical or horizontal line indicating

Table 1
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The most common measures of recurrence quantification analysis.

Variable

Definition

Meaning

Percent recurrence
(%REC)

Percent
determinism (%
DET)

Average diagonal
line length
(ADL)

Laminarity (%
LAM)

The density of recurrence
points in a recurrence plot
(RP).

%REC = Sum of recurrent
points in the RP / size of RP
Proportion of recurrent
points forming diagonal lines
in the RP.

%DET = Sum of diagonally
adjacent recurrent points /
sum of recurrent points
Average length of diagonal
lines in the RP

Proportion of recurrent
points forming vertical line
structures.

The repetitiveness of the
elements in a sequence

How many of the repetitions
occur in connected
trajectories

How long the average
repeating trajectory is

How many of the repetitions
occur in vertically connected
trajectories

Recurrence points

%LAM = Sum of vertically
adjacent recurrent points /
sum of recurrent points
Average length of vertical
lines in the RP

Trapping time (TT) How long the average

vertical line is

Marwan et al. (2002) and Wallot (2017).

In the context of SRL, % REC denotes the proportional degree to
which an individual performs the same behaviors over time (see
Table 2). %DET is another measure of state regularity that, captures the
degree to which the same sequences of SRL behaviors occur over time. In
other words, a higher %DET value suggests a more structured or pre-
dictable pattern of SRL behaviors (Jenkins et al., 2020). With regard to
ADL, it is the average length of repeating patterns of SRL behaviors. In
terms of % LAM, it measures the extent to which an individual gets stuck
in a behavior. % LAM will increase if a student consecutively performs a
specific behavior more often. The last RQA measure of TT, analogous to
ADL, denotes the average length of repeating behaviors. For instance,
the TT equals five if an individual conducts a behavior repeatedly for
five times. In sum, researchers can gain a deep understanding of the
temporal structure of SRL behaviors by describing and analyzing those
RQA measures.

2.3. The current study

The purpose of this study is to examine the temporal structure of

Diagonal line indicating behavioral pattern

repetitive behaviors
. CELLTL] IIJ - -

Recurrence Plot - Participant A

Recurrence Plot - Participant B

Fig. 1. Illustration of recurrence plots.
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Table 2
The RQA measures in the context of SRL.
Variable Meaning in SRL Explanation
Percent How often does an individual =~ The degree to which the same
recurrence (% show the same SRL SRL behavior reoccurs over
REC) behavior? time. For instance, the SRL
behavior of formulation may
reoccur 20 times in a
behavioral sequence, while
the analysis behavior reoccurs
30 times. %REC = Sum of
recurrences / N (N — 1),
where N refers to the length of
the behavioral sequence.
Percent To what extent do repetitions ~ Examples of the SRL
determinism (%  of SRL behaviors occur inthe  behavioral patterns include
DET) form of behavioral patterns? “FO-AN-RE-EV”, “RE-EV-RE-

EV”, and “FO-AN-EV”. %DET
captures the degree to which
the SRL behavioral patterns
reoccur over time.

Examples of the repeating
patterns of SRL behaviors
include “FO-AN-RE-EV” and
“RE-EV-RE-EV”. ADL refers to
the average length of these
repeating patterns.

Examples of the repeating
sequences of the same SRL
behavior are “FO-FO-FO-FO”,
“RE-RE-RE-RE-RE”, and “AN-
AN-AN". %LAM captures the
degree to which the repeating
sequences of the same SRL
behavior reoccur over time.
TT refers to the average
length of the repeating
sequences of the same SRL
behavior.

Average diagonal
line length
(ADL)

How long is the average
repeating pattern of SRL
behaviors?

Laminarity (%
LAM)

To what extent do repetitions
of SRL behaviors occur in
repeating sequences of the
same behavior?

Trapping time
(D)

How long is the average
repeating sequence of the
same SRL behavior?

Note: FO = formulation, RE = reformulation, AN = analysis, EV = evaluation.

students' SRL processes and behaviors in STEM (Science, Technology,
Engineering, and Mathematics) learning by leveraging the affordances
of RQA. In particular, we situate our study in the context of engineering
design, since we introduced a domain-specific SRL model to explain
students' learning in engineering design in previous studies (Li, Du,
et al., 2020; Zheng et al., 2020). The SRL model in engineering design,
which was adapted from the three-phase model of SRL (Zimmerman,
2000), was shown in Fig. 2. Specifically, students begin an engineering
design task by developing an understanding of the task features and
requirements in the forethought phase of SRL. For instance, an engi-
neering design task may require students to build a green building (a
type of building that generates the same amount of energy as it con-
sumes) within a certain budget in a computer-aided design environment.
Students need to familiarize themselves with the task environments and
connect environment-relevant information with specific task re-
quirements. Learning behaviors that occur in this phase are usually
referred to as observation behaviors in the context of engineering
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design. In the performance phase, students generally conduct three
types of behaviors (i.e., formulation, analysis, and reformulation) to
accomplish their design goals (Howard et al., 2008; Li, Chen, et al.,
2020; Zheng et al., 2020). The formulation, analysis, and reformulation
behaviors contribute to the processes of preliminary design, prototype
analysis, and detailed design, respectively. In the self-reflection phase,
students evaluate their design performance and determine how to pro-
ceed for achieving predetermined goals.

In the present study, we are interested in how high and low per-
formers differ in the complexity of SRL process and the temporal pat-
terns of SRL behaviors as they complete an engineering design task.
Examining the differences between these two performance groups could
enable researchers to make a direct comparison of SRL features and
develop a clear understanding about how the differences in SRL features
may lead to performance differences. Specifically, this study addresses
the following research questions: (1) Do high performers differ from low
performers in the complexity of their SRL processes when solving an
engineering design task? (2) Are there differences in the temporal pat-
terns of SRL behaviors between high and low performers?

In line with the research of Wallot (2017), we consider the number of
dimensions of an SRL system (i.e., dimensionality) as the operational
definition of its complexity. To be specific, we use RQA to discern the
number of dimensions that best capture the fluctuations observed in the
time-ordered behavior durations. Time-ordered durations of behaviors
reflect the continuous adjustments learners made in response to
changing internal and external conditions (Greene et al., 2019). There-
fore, the time-series data is suited for the analysis of SRL process to
reconstructing a potentially multidimensional system. Moreover, when
we mention the regularity of SRL behaviors, we refer to their temporal
structure represented by the RQA measures. Based on SRL theory, we
hypothesize that high performers would demonstrate a more complex
SRL process than low performers, given that high performers are usually
those who can effectively manage SRL components (e.g., attention-
focusing, strategic planning, and emotion regulation) to accomplish
learning tasks. In other words, we hypothesize that the dimensionality of
the SRL systems of high performers will be significantly larger than that
of low performers. Moreover, we assume that repeating behaviors
indicate uncertainty in problem-solving; therefore, we hypothesize that
the percent recurrence (%REC), trapping time (TT), and laminarity (%
LAM) of high performers will be significantly smaller than that of low
performers. However, high performers are expected to show more
repeating behavioral patterns than low performers. For this reason, we
hypothesize that the percent determinism (%DET) and the ADL of high
performers will be significantly larger than that of low performers. This
study is exploratory in nature. Nevertheless, this study has the potential
to advance the research in SRL both theoretically and methodologically.

3. Methods
3.1. Participants

The participants consisted of 74 ninth-grade students (39.2% fe-
males) who came from a suburban high school in the Northeastern

SRL phases Forethought E Performance E Self-reflection
SRI.J | Observation | i | Formulation l I Analysis | | Reformulation ‘ i I Evaluation l
behaviors ! !
. A4 E v v v E \
ftfll'lizll)‘:toe '; Information |} ( Preliminary Prototype Detailed : Reflective
interpreting ) | design analysis design i thinking

Fig. 2. The SRL model in engineering design.
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United States. In terms of the racial demographics of the school, the
majority viewed themselves as Caucasian (57.5%), with African Amer-
ican comprising 25.7%, Hispanic 7.8%, Asian 6.1%, multi-race 2.8%,
and Pacific Islander 0.2% of the whole population. Furthermore, 30% of
the students were from economically disadvantaged backgrounds. Prior
to the study, we had obtained research ethics approval from the insti-
tutional review board. In addition, all parents provided consent for their
children's participation in this study. Moreover, we explicitly explained
the research purposes and procedures to the students; therefore, they
were aware of the potential benefits and risks of the study. Students had
free choice to quit the study whenever they wanted. They all partici-
pated in this study in Fall 2019. However, eight students did not finish
the task, and the data of 5 participants were not saved, leaving a sample
of 61 for data analysis.

3.2. Learning environment and task

This study was part of a larger research project aiming to study the
best practice to support science and engineering education in Aladdin, a
simulation-based computer-aided design (CAD) environment (https:
//intofuture.org/aladdin.html). Aladdin, previously known as the
Energy3D platform (Xie et al., 2018), supports the design, simulation,
and analysis of green buildings that harness solar energy for their
maintenance. In Aladdin, students play the role of solar engineer to
provide an optimal solution regarding the arrangements of solar panels
and to meet customers' additional requirements such as annual energy
production and payback period.

In this study, students were given the task of Solarize Your School
(SYS), which required them to turn their school buildings into a power
generator. We first created a computer-simulated reality environment in
Aladdin, whereby a physical, real-world environment of students'
campus was replicated on computers (see Fig. 3). Students could interact
with the computer-simulated reality environment using virtual tools
such as show sun shadows, add solar panels, and simulate sun paths.
Moreover, students were told that the task was for a competitive bid held
by the town where the school was located in. The advertised require-
ment for bidders was to design a solar array on the roofs of the school
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buildings. The solar array needed to generate more than 400,000 kWh of
electricity per year with a payback period shorter than ten years.
Therefore, the SYS task provided students with a deeply situated
learning experience as it exploited the affordances of a real-world
context, and it was designed to address an authentic meaningful prob-
lem. During the task, students were asked to work individually on their
own laptops for the bidding.

3.3. Procedure

Students were invited to participate in this study consecutively for
six days during their regular school hours. We provided a training ses-
sion to help students get familiar with the Aladdin environment on the
first day of the study. The training session was approximately 45 min. In
the following three days, students spent 45 min per day learning about
important solar science concepts that are essential in understanding how
to design an efficient solar array. These concepts include but are not
limited to Sun path, projection effect, air mass, weather effect, and solar
radiation pathways. Meanwhile, students used Aladdin to explore how
the Sun moves across the sky as the Earth orbits the Sun and rotates
around its own axis, how the Sun path changes from season to season,
and how the length of the day varies. In addition, students investigated
how the Sun's position relative to a surface on the Earth affects the in-
tensity of sunlight and why the intensity depends on the time of the day
and the weather. At the end of the science learning session, students
were asked to apply what they had learned to solve a practical problem,
i.e., find a position for a solar panel around a house that generates
electricity the most throughout a year.

Afterwards, students had another two days to work on the SYS task.
As aforementioned, students played the role of solar engineers to design
cost-effective solutions that power their school with solar energy under
certain constraints. For instance, three different types of solar panels
were available for engineering design activity. Nevertheless, students
could only select one type of solar panel for their design. To optimize the
return on investment (ROI), students needed to carefully choose solar
panels given that different solar panels had different efficiencies, di-
mensions, and costs. Students also needed to adjust the location and

XRQeRE 9@ O-E->-H B 055G
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Fig. 3. The computer-simulated reality environment.
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orientation of solar panels, as well as the distance between adjacent rows
of tilted solar panels, since all of them could affect the output of solar
energy. On average, students spent 135 min completing the task, with
their design behaviors and corresponding timestamps being automati-
cally recorded in the log files of Aladdin. Moreover, Aladdin stored the
annual energy production and payback period into the log files for each
student when they finished the task.

3.4. SRL behaviors

We examine students' engineering design behaviors within a SRL
framework based on the following considerations. First, engineering
design tasks are usually ill-structured problems with no clear procedural
and predetermined solutions. The process of engineering design repre-
sents a good example of SRL scenario where students purposefully
control and monitor their behavioral, cognitive, metacognitive, and af-
fective aspects of learning to fulfill personal goals (Pintrich, 2000;
Winne, 2019; Zimmerman, 2000). Moreover, the outcome of STEM
education includes not only the acquisition of domain-specific knowl-
edge and skills but also the development of SRL competency to sup-
porting long-term growth in students' STEM achievement. Examining
students' engineering design behaviors through the lens of SRL theories
would help researchers develop a deep understanding of the quality
delivery of STEM education. Furthermore, we introduced a SRL model to
illustrate how students' engineering design processes are superimposed
over the SRL phases (Li, Chen, et al., 2020; Li, Du, et al., 2020; Zheng
et al., 2020). We classified five types of SRL behaviors (i.e., observation,
formulation, analysis, reformulation, and evaluation) in engineering
design. The sample activities for each type of SRL behavior are shown in
Table 3. It is noteworthy that the engineering design task involves the
possible use of 38 types of activities, which were automatically recorded
in the log files as students approached the task. Students conducted 325
activities on average in the engineering design process. We extracted the
information of SRL behaviors from the log files.

3.5. Data processing and analysis

To address our first research question, we created a series of behavior
durations for each participant. In particular, the duration of each
behavior was obtained by subtracting the timestamp of the behavior
itself from the subsequent one. Considering that behavior duration is a
continuous variable, and there exist complicated fluctuations in the
dynamics of students' cognition, metacognition, emotion, and motiva-
tion behind the observed series of behavior durations, we followed the
time-delayed embedding procedure to reconstruct the time series' phase-
space (Wallot, 2017; Wallot & Leonardi, 2018). In other words, we
reconstructed the multidimensional dynamics from the one-dimensional
series of behavior durations by plotting the time-series against itself at a
certain time delay (Wallot, 2017). As behavior durations are not an
equally sampled time-series, we set the delay parameter as 1 (i.e.,d =1)
following the instructions of Wallot and Grabowski (2019). According to
Wallot and Grabowski (2019), the interevent times do not contain
redundant information that might be inherent in equally sampled sig-
nals; therefore, a value of 1 for the delay parameter is sufficient to es-
timate a correct dimensionality of the dynamics of the time-series.

Table 3
Sample activities for each type of SRL behavior.

SRL behaviors ~ Sample activities

Observation Rotate building; show shadow, axes, and heliodon

Formulation Add foundation, rack, and solar panels

Analysis Compute solar energy, net energy, and the total cost of the design;
animate sun; generate energy graphs

Reformulation  Edit rack; change the azimuth and the base height for all racks

Evaluation Make notes; make subjective and structural reflection
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Specifically, the dimensionality of the phase-space was estimated for
each student using the false-nearest-neighbor function (Wallot, 2017).
The R packages of ‘tseriesChaos’, ‘nonlinearTseries’, and ‘crqa’ were
used to perform the analyses. We then compared the difference in
dimensionality between high- and low-performing groups.

To answer the second question, we used categorical-RQA (Coco &
Dale, 2014; Jenkins et al., 2020; Wallot, 2017) to explore the temporal
structures of the one-dimensional behavioral sequence, which consisted
of different categories of engineering design behaviors. We performed
the analysis using the ‘crqa’ package (Coco & Dale, 2014). Afterward,
we examined how high and low performers differed in the variables of
interest, i.e., the RQA variables in Table 1.

4. Results

4.1. Do high performers differ from low performers in the complexity of
their SRL processes when solving an engineering design task?

We first applied the k-means algorithm to identify homogeneous
subgroups of students based on their performance. Specifically, a stan-
dard k-means algorithm was used on the two performance indices (i.e.,
annual energy production and payback period) to find centroids that
minimize the total within-cluster variation. In this study, annual energy
production refers to the total amount of electrical energy generated by
solar arrays over a year, while payback period is the amount of time it
takes to recover the cost of the investment in solar arrays. The number of
clusters was set as two since we were interested in comparing the dif-
ferences between low- and high-performing groups. In addition, we
performed a series of exploratory data analyses to find that the cluster
sizes became unbalanced as we increased the number of clusters.
Therefore, the 2-cluster solution was optimal and conceptually mean-
ingful. The results in Table 4 showed that there were 39 and 22 students
that could be identified as low and high performers, respectively. Stu-
dents in the low-performing group failed to reach the goal of engineering
design in this study. Low performers produced a relatively smaller
amount of annual energy compared to high performers, but they took a
longer time than high performers to recoup the customers' investment.

We then used the RQA to reconstruct the multidimensional system of
SRL from the one-dimensional series of behavior durations, whereby the
dimensionality of the reconstructed SRL system for each student was
obtained. We then compared the difference in the dimensionality be-
tween low and high performers. As shown in Table 5, the SRL system of
high performers had a significantly larger dimensionality (M = 6.95)
than that of low performers (M = 5.49), p < .05, suggesting that higher
performers differed with low performers in the complexity of SRL pro-
cesses when completing the engineering design activity. The effect size
of the difference was medium to large with Cohen's d = 0.56 (Cohen,
1988).

4.2. Are there differences in the temporal patterns of SRL behaviors
between high and low performers?

We performed the categorical-RQA on the behavior sequence of each
student. In doing so, the most commonly used RQA measures for
quantifying the temporal patterns of a sequence were obtained for each
student (Jenkins et al., 2020; Marwan et al., 2002; Wallot, 2017). In
particular, the RQA measures included percent recurrence (%REC),
percent determinism (%DET), average diagonal line length (ADL),

Table 4
The centroids of low- and high-performers regarding annual electricity and
payback.

Group Annual electricity Payback period Number
Low performing 210,494.85 20.97 39
High performing 484,484.86 13.60 22
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Table 5
Group differences in the variables of interest between low- and high-performers.
Group M SD t df P Cohen's d
Dimension Low 5.49 2.71 —2.096 59 0.040* 0.56
High 6.95 2.46
%REC Low 33.11 13.01 2.346 59 0.022* 0.67
High 25.93 7.99
%DET Low 80.01 8.22 2.295 59 0.025* 0.60
High 74.64 9.70
ADL Low 3.82 0.91 0.801 59 0.426 0.22
High 3.62 0.89
%LAM Low 89.29 5.49 2.101 28.62 0.045* 0.60
High 84.53 9.79
TT Low 5.39 1.86 0.811 59 0.421 0.22
High 5.01 1.55

" p<.05.

laminarity (%LAM), and trapping time (TT). We used t-tests to compare
the differences in these RQA measures between low and high per-
formers. We found that high performers demonstrated a significantly
lower recurrence rate of SRL behaviors (M = 25.93) than low performers
(M = 33.11), p < .05, Cohen's d = 0.67. Similar to the recurrence rate,
the determinism of SRL behaviors for high performers (M = 74.64) was
also significantly lower than that of low performers (M = 80.01), p <
.05, Cohen's d = 0.60. Moreover, high performers were significantly
lower in the measure of laminarity (M = 84.53) than low performers (M
=89.29), p < .05, Cohen's d = 0.60. The effect sizes for those differences
were all medium to large (Cohen, 1988). In addition, the results showed
that high and low performers had no significant differences in the RQA
measures of ADL and TT (see Table 5).

5. Discussion

In this study, we found that the SRL processes of high performers
were more complex than low performers, given the significant differ-
ence in the dimensionality of SRL system between the two performance
groups. In other words, a larger number of components made up the SRL
system of high performers when compared with low performers. Such
components may include different types of cognitive activities (e.g.,
insight, causation, tentativeness, or differentiation), motivations (e.g.,
self-efficacy, self-concept, achievement goal orientation, interest, or task
values), and emotions, for instance, curiosity, enjoyment, boredom, or
relief. It is quite possible that a different set of components act together
to yield a unique SRL system for each student. For instance, the SRL
system of an individual may consists of mainly strategic planning and
self-reflection, while the SRL system of another student involves the
processes of self-motivation and emotion regulation. Therefore, caution
is needed in interpreting this result. Although RQA with the time-delay
embedding method allows us to retrieve the multidimensional dynamics
of SRL from time-ordered behavior durations, the concept of dimen-
sionality only reflects the statical structure of the data rather than spe-
cific SRL dimensions such as cognitive, metacognitive, motivational, and
affective aspects of learning (Wallot, 2017). Clearly more research is
needed to unravel the components of an SRL system and their relative
importance to students' performance so that instructors can diagnose
learning process in a comprehensive manner and deliver targeted in-
terventions accordingly. This study shows for the first time that the
number of SRL components can be referred through a novel analytical
technique of RQA. But we acknowledge that this study is at the very
early stage of this direction. Future research will benefit from advanced
mathematical modeling techniques along with the collection and anal-
ysis of multimodal multichannel data about SRL.

Moreover, this study found that low performers showed a higher
degree of both percent recurrence (%REC) and percent determinism (%
DET) than high performers. Considering that %REC refers to the degree
of repetition of SRL behaviors, this result suggests that low performers
tended to repeat behaviors over time. Moreover, low performers

demonstrated a more structured and predictable pattern of SRL behav-
iors than high performers, since %DET captures the degree of repetition
of SRL behavioral sequences (Jenkins et al., 2020). In sum, lack of
regularity was observed in the behaviors of high performers, which
could be well explained by the nature of engineering design. Engineer-
ing design tasks are ill-structured problems that have no predetermined
solutions. Furthermore, engineering design is an iterative process
whereby students need to refine their designs through successive ver-
sions. Students ultimately choose a version of a design that best meets
design requirements and customers' needs. High-performing students
may generate multiple, qualitatively different solutions during the
iterative search for an optimal design. For this reason, the behaviors of
high performers in engineering design are more creative and adaptive
than low performers. Our explanation of this finding is in line with the
contention of Koopmans (2020), who argued that the lack of regularity,
in fact, creates opportunities for creativity and innovation.

In addition, low performers were significantly higher in the RQA
measure of laminarity (% LAM) than high performers, suggesting that
low performers were more likely to get stuck in a behavior, i.e., con-
ducting a specific behavior repeatedly before moving on to the other
behaviors. This finding was partially in line with the research of Lajoie
et al. (2019), who found that low performers tended to get stuck in the
orienting phase of SRL for long periods of time.

According to Lajoie et al. (2019), one explanation was that low
performers were less successful at extracting meaningful information
from the context so that they were unsure about the next steps in
problem-solving. In a previous study (Li, Du, et al., 2020), we used a
network approach to examine the differences in interaction patterns of
SRL behaviors among three performance groups, i.e., unsuccessful,
success-oriented, and mastery-oriented groups. We found that the un-
successful group tended to perform the observation behavior repeti-
tively in the design process. They were hesitant about how to proceed
and consequently performed a behavior repeatedly until a decision was
made, which corroborated the findings of the present study.

In short, findings from this study contribute to the emerging litera-
ture on the temporal structure of SRL by examining the complexity of
SRL process and the regularity of SRL behaviors, specifically in the
context of engineering design. This study informs future research on SRL
and the design of scaffoldings for learners. First, researchers are
encouraged to explore SRL using nonlinear analytic methods (e.g., RQA
and network analysis) since they are on the rise in the field of educa-
tional psychology and most importantly, SRL process manifests
complexity characteristics (Koopmans, 2020; Li, Du, et al., 2020; Li
etal., 2022; Wallot & Leonardi, 2018). The analytical techniques rooted
in complexity science might be important alternatives to traditional
linear statistical methods. For instance, the nonlinear analytic method of
RQA enables researchers to reconstruct a multidimensional system of
SRL and to examine its characteristics even though researchers have to
limit the number of operating variables in their experiments due to
various constraints. At a practical level, the RQA method and our
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interpretations of the RQA measures in SRL can be easily transferred to
other research contexts, given that researchers only need to collect the
information of SRL behaviors and the time-ordered durations of those
behaviors. There is also abundant of resources in the literature that
support the implementation of the RQA method. As an illustration,
Wallot (2017) developed a step-by-step tutorial in R to illustrate the
processes and products of RQA. Moreover, this study informs the design
of instructional interventions, early warning systems, and learning an-
alytic dashboards. For example, instructors can offer timely in-
terventions based on the RQA measures if they find the percent
recurrence of an individual's learning behaviors exceeds a cut-off value.
RQA also provides a useful visualization of students' SRL behaviors (i.e.,
recurrence plot), which can be implemented in learning analytic dash-
board to increase students' awareness of the regularity of their problem-
solving behaviors.

6. Conclusion

In this study, SRL is conceptualized as a complex dynamical system.
Therefore, we adopted the ideas and analytical techniques of complexity
science to analyze SRL phenomenon accordingly. In particular, we used
RQA to examine the differences in the complexity of SRL processes and
the regularity of SRL behaviors between high and low performers as they
accomplished an engineering design task in a computer-simulated
environment. We found that the SRL processes of high performers
were more complex than low performers. The behaviors of high per-
formers lacked regularity, whereas low performers were more likely to
conduct a behavior repeatedly in the process of engineering design. This
study extends the literature on the dynamics of SRL in both theoretical
and methodological dimensions. Theoretically, this study provides re-
searchers with a new perspective of SRL process that is complex,
nonlinear, dynamically emerging, and continuously updated by internal
and external feedback inputs. By introducing the CDS approach to the
field of SRL, this study also opens up many fruitful lines of research that
can potentially advance the development of SRL theories. For instance, it
would be interesting to examine the shift of SRL components and their
roles to performance at a fine-grained size, which could help understand
how students adaptively manage the many components of SRL to suc-
ceed in learning or problem-solving. Moreover, the research on SRL will
be more complete if researchers consider the overall features of a SRL
system and the quality of SRL processes and behaviors simultaneously in
a study. In addition, this study has significant methodological insights.
Specifically, this study is the first to demonstrate how RQA can be used
to analyze the temporal structure of SRL behaviors and how RQA
measures can add new information about students' performance differ-
ences. Nevertheless, this study has several limitations that must be
acknowledged. First, the nature of nonlinear analytic methods prevents
us from making causal conclusions about how the regularity of SRL
behaviors is related to task performance. A second limitation is the
homogeneity of participants. They were all ninth-grade students, so we
cannot make a conclusive argument that findings from this study apply
to other populations. Finally, we relied on system log files and did not
take into account any subjective data. Regardless of these limitations,
this study offers a promising direction for the examination of the regu-
larity of SRL behaviors and for the extensions of SRL theories, i.e., the
development of a complex dynamical model of SRL. This study takes the
first step toward this direction and implores SRL researchers to provide
more theoretical insights and empirical evidence.
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