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A B S T R A C T   

Self-regulated learning (SRL) is essentially a complex dynamical system (CDS). However, no effort has been made 
to study SRL from a CDS approach in the context of science learning. In this study, we adopted the ideas and 
analytical techniques of complexity science to analyze SRL. Specifically, 74 ninth-grade students were asked to 
undertake an engineering design task in a computer-simulated environment. We compared the differences in the 
complexity of the SRL process and the regularity of SRL behaviors between the high and low performers. We 
found that the SRL processes of the high performers were more complex than those of the low performers. In 
general, the low performers demonstrated a higher degree of repetition of SRL behaviors than the high per
formers. The low performers were also more likely to exhibit a behavior repeatedly than the high performers. 
This study extends the literature on the dynamics of SRL in both theoretical and methodological dimensions.   

1. Introduction 

There has been a growing recognition that self-regulated learning 
(SRL) plays a central role in influencing students' performance across 
various learning or problem-solving contexts (Azevedo & Gašević, 2019; 
Boekaerts et al., 2005; Greene & Azevedo, 2007; Järvelä et al., 2020; 
Pintrich, 2004; Winne, 2019). In particular, SRL refers to a cyclical 
process whereby students purposefully govern when and how to use self- 
regulatory strategies to achieve learning goals, proactively monitor what 
and why specific strategies work or fail, and efficiently determine where 
to go next accordingly (Pintrich, 2000; Winne, 2019; Zimmerman, 
2000). The process of SRL is influenced by a wide range of factors, which 
include the characteristics of the learning context, an individual's de
mographic, cultural, or personality characteristics, and the individual's 
strategic regulation of their internal environments such as cognition, 
metacognition, motivation, and emotion (Pintrich, 2004). The emer
gence of SRL behaviors or products is an aggregate result of interactions 
between those factors. Therefore, SRL is essentially a complex dynam
ical system, comprising interdependent components whose roles and 
inter-component relations continuously emerge through internal and 
external feedback loops (Kaplan & Garner, 2020; Koopmans, 2020). 
Examining SRL as a complex dynamical system could provide insights 
that go beyond simple cause-effect relations between SRL components 

and performance. However, limited studies have investigated SRL from 
a complex dynamical system (CDS) approach, which is rooted in 
complexity science (Koopmans, 2020; Richardson et al., 2014). One 
reason is that the application of CDS in educational research is still 
nascent, and the other reason lies in the challenge of viewing the SRL 
process as emergent and not-fully-predictable, which requires an epis
temological shift from researchers (Kaplan & Garner, 2020). 

In addition, research in the SRL field has relied extensively on 
atemporal methods to study how specific SRL components relate to 
students' performance, focusing on the frequency, magnitude, quality, or 
interaction of such components (Coco & Dale, 2014; Järvelä et al., 
2020). Accordingly, researchers use summary statistics such as mean 
and standard deviation to describe SRL processes, leaving the temporal 
variations of SRL components largely unexplored (Azevedo & Gašević, 
2019; Paans et al., 2019; Winne, 2019). Moreover, the inferential sta
tistics for studying SRL phenomena are typically based on certain as
sumptions such as linearity assumption, homogeneity of variance, and 
normal distribution of data sets. In terms of the linearity assumption, 
which assumes that all causal inferences remain constant in direction 
throughout time (Xu et al., 2020), it is often violated when investigating 
variables with complex dynamics. SRL process is no exception since the 
interrelationships among SRL components are not necessarily linear, and 
the measured data may contain non-random fluctuations that are not 
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normally distributed (Richardson et al., 2014). Therefore, it is meth
odologically important to explore the complex nature of SRL processes 
through nonlinear analytic methods, among which recurrence quanti
fication analysis (RQA) is gaining popularity (Coco & Dale, 2014; 
Marwan & Webber, 2015; Wallot & Grabowski, 2019; Xu et al., 2020). 
As noticed by Richardson et al. (2014), ‘there is now substantial evi
dence that suggests it is potentially one of the most robust and generally 
applicable methods for assessing the dynamics of biological and human 
behavior’ (pp. 273–274). Specifically, RQA is a nonlinear analysis 
method that allows researchers to quantify the temporal structure and 
patterns of learning behaviors but requires no assumptions about line
arity and data distribution (Richardson et al., 2014; Wallot, 2019). To 
our knowledge, there has yet no effort to study SRL as a complex dy
namic system using the RQA method. Thus, the present study aims to 
fulfill this gap. The current literature on SRL is centered around students' 
interactions with computer-based learning environments, where 
learning or problem-solving behaviors can be recorded in real-time as 
they occur (Azevedo & Gašević, 2019; Coco & Dale, 2014; Greene et al., 
2019; Järvelä et al., 2020; Lajoie et al., 2019; Li et al., 2021). We also 
situate this study in a computer-based environment since learners' trace 
data is crucial to study SRL dynamics. This study provides researchers 
with methodological insights on the analysis of SRL dynamics. Findings 
from this study could also deepen our understandings of the complexity 
and regularity of SRL processes and consequently students' performance 
differences. 

2. Theoretical background 

2.1. Self-regulated learning as a complex dynamical system 

Self-regulated learning is a multidimensional process whereby stu
dents perceive, interpret, control, and monitor their internal and 
external conditions to achieve their predetermined goals (Greene & 
Azevedo, 2007; Hooshyar et al., 2019; Pintrich, 2004; Winne, 2019). In 
terms of internal conditions, the predominant SRL theories describe the 
process by referring to four main components (i.e., cognition, meta
cognition, motivation, and emotion) and their interactions (Azevedo & 
Gašević, 2019; Greene & Azevedo, 2007; Pintrich, 2000; Zimmerman, 
2000). Regarding external conditions, SRL researchers have recognized 
the influences of available resources, instructional cues, time, and the 
local context (Greene & Azevedo, 2007; Li et al., 2018). All of these 
factors can influence an individual's strategic regulation of learning 
process and their ability to achieve desirable goals. As such, the process 
of SRL exhibits the three key features of complex dynamical systems, i.e., 
interconnectedness, non-ergodicity, and nonlinear dynamics (Heino 
et al., 2020; Richardson et al., 2014). First of all, the many components 
of SRL are closely interconnected. SRL components such as cognition, 
emotion, and behaviors interact with each other over time, yielding the 
internal dynamics in the human mind and reflecting the very nature of 
the learning process (Engelmann & Bannert, 2021; Li, Chen, et al., 2020; 
Li et al., 2022). Furthermore, SRL process is non-ergodic, which means 
that students can vary significantly in their changes of SRL behaviors, 
and even the same individual could experience radical changes in 
cognition or emotions over time. It would be misleading and inaccurate 
to draw individual-level inferences from group-level data about SRL 
(Heino et al., 2020). In addition, SRL process also manifests the char
acteristic of nonlinear dynamics of any complex dynamical systems, 
considering that there are no clear linear causal relationships between 
SRL components. Although the patterns of interactions among SRL 
components are recognizable, none of these patterns alone can predict a 
determined outcome (Marchand & Hilpert, 2020). 

In an attempt to understand the complex SRL dynamics, researchers 
have been making a great effort to gather multidimensional data about 
SRL (Lajoie et al., 2019; Winne, 2019). In fact, a growing interest in SRL 
research is to unravel the temporal dynamics of SRL components by 
collecting and analyzing multimodal multichannel data with various 

methodologies such as physiological sensors, eye-tracking, facial ex
pressions of emotions, log files, concurrent think-aloud, and discourse 
analysis (Azevedo & Gašević, 2019). However, modeling multimodal 
multichannel data about SRL can be theoretically, methodologically, 
and practically challenging. To name a few of these challenges: 
embodiment of theoretical assumptions in data streams, temporal 
alignment of multimodal multichannel SRL data sources based on 
different sampling rates, and complexity in dealing with missing, noisy 
or messy data (Azevedo & Gašević, 2019). Moreover, as pointed out by 
Winne (2019), “a different model or theory may devalue or even 
disregard data instrumented according to another theory or model” (p. 
286). As a result, an important question naturally arises: Are there valid, 
reliable, and cost-effective methods to study the temporal dynamics of 
SRL that move beyond the multimodal multichannel approach? In the 
present paper, we argued that the CDS approach to SRL and corre
sponding analytical techniques have the potential to address this ques
tion. SRL is basically a complex dynamical system. Clearly, researchers 
can gain additional insights into the SRL process by adopting ideas and 
methods of complexity science. For instance, recurrence quantification 
analysis, a CDS method that is widely used in social and personality 
psychology, enables researchers to reveal the underlying dynamics of 
SRL process by describing the aggregated functioning of its components 
(Koopmans, 2020; Richardson et al., 2014; Wallot, 2017). 

2.2. Recurrence quantification analysis 

Recurrence quantification analysis (RQA) is a powerful technique 
used to quantify the complexity and regularity of the temporal patterns 
of a single or multiple time-series, especially when the time-series is the 
result of multiple interdependent variables (Marwan & Webber, 2015; 
Wallot, 2017; Wallot & Leonardi, 2018). In particular, RQA allows re
searchers to reveal information about the multiple underlying variables 
by analyzing the observable one-dimensional time-series. As such, RQA 
is applicable to analyze a SRL system, given that it consists of the in
terplays of multiple interdependent constructs (i.e., behavior, cognition, 
metacognition, emotion, and motivation) and the SRL behavioral 
sequence is usually directly observable. RQA has a solid mathematical 
foundation, which is the theorem of higher-dimensional reconstruction 
by the time-delayed embedding method proposed by Takens (1981). As 
observed by Webber and Zbilut (2005), ‘what this theorem states is that 
the topological features of any higher-dimensional system consisting of 
multiple coupled variables can be reconstructed from but a single 
measured variable of that system’ (pp. 33–34). This is done by recon
structing a multidimensional space where time-delayed copies of the 
one-dimensional time-series act as surrogate dimensions in that space 
(O'Brien et al., 2014; Wallot, 2019; Webber & Zbilut, 2005). Readers can 
find more details about the mathematical and computational founda
tions of RQA from the research of Marwan and Webber (2015). 

With regard to the time-delayed embedding method, there are two 
parameters that are essential for the reconstruction of a potentially 
multidimensional system from a single one-dimensional time-series 
(Wallot, 2019). One is the delay parameter τ, which refers to the lag at 
which the time-series is plotted against itself. The delay parameter is 
usually estimated through the mutual average information function to 
“ensure that reconstructed dimensions of the phase-space are relatively 
orthogonal and deliver non-confound information about the temporal 
structure in a time-series” (Wallot, 2017, p. 374). Once an appropriate 
delay parameter is obtained, it is further used to estimate the other 
parameter, i.e., the embedding dimension. The embedding dimension 
parameter indicates the number of times the time-series is plotted 
against itself (Wallot, 2019). It is an estimate of the dimensionality of a 
potentially multidimensional system (Wallot & Leonardi, 2018), while 
dimensionality represents the number of underlying subcomponents, 
with each subcomponent contributing to one reconstructed dimension. 
In the context of SRL, dimensionality refers to the number of SRL 
components activated in learning or problem-solving. For instance, 
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some students may actively manipulate more SRL components (e.g., self- 
instruction, attention focusing, self-evaluation, causal attribution, 
management of outcome expectations, and emotion regulation) than 
those who lack self-regulatory skills. As a result, the dimensionality of a 
SRL system for the competent self-regulated learners is assumed to be 
larger than that of those less competent. 

It is noteworthy that the overarching goal of RQA is to examine the 
repetition of elements or patterns in a time-series since recurrence is a 
fundamental property of dynamical systems. The examination of 
recurrence patterns can be more accurate when analyzing the co
ordinates in the reconstructed multidimensional system compared to the 
values of the observable time-series per se (Marwan & Webber, 2015; 
Wallot, 2019; Wallot & Leonardi, 2018). RQA can also be computed on 
categorical series of finite states. Therefore, it provides an analytic 
framework for studying the recurrence patterns of students' behavior 
sequences (Xu et al., 2020). Recurrence plot (RP) is a core concept of 
RQA, which is generated by plotting a time-series on both the x and y- 
axis of a two-dimensional grid. Specifically, RP is used to visualize 
repeating structure or patterns by comparing all the elements of a 
sequence with themselves (Wallot & Leonardi, 2018). As an illustration, 
Fig. 1 shows the recurrence plots of two participants. The x and y-axis 
are both a participant's behavior sequence, with recurrence points (i.e., 
dots marked with black color) in the RP indicating when the same 
behavior within the sequence reoccurs. That is, recurrence points do not 
represent specific values but rather show the position where a specific 
value repeats itself. Recurrence plot is symmetrical about its main di
agonal because each value within a behavior sequence is recurrent with 
itself (Wallot, 2017). In particular, the adjacent points forming vertical 
or horizontal lines suggest that an individual performs a repetitive 
behavior such as planning, whereas the diagonally adjacent points 
indicate that a behavioral pattern reoccurs. As shown in Fig. 1, the be
haviors of participant B are more structured than that of participant A 
since the RP of the prior contains more diagonal lines. 

In addition, RQA provides multiple metrics to quantify the recur
rence patterns. The most commonly used metrics are percent recurrence 
(%REC), percent determinism (%DET), average diagonal line length 
(ADL), laminarity (%LAM), and trapping time (TT) (Wallot, 2017; 
Webber & Zbilut, 2005). The definitions and meanings of these metrics 
are shown in Table 1. Plenty of terms have been used to describe these 
RQA measures, including but not limited to regularity, predictability, 
stability, flexibility, and complexity (Jenkins et al., 2020;Marwan et al., 
2002; Wallot, 2017). For the purpose of this paper, we used the term of 
regularity throughout. 

In the context of SRL, % REC denotes the proportional degree to 
which an individual performs the same behaviors over time (see 
Table 2). %DET is another measure of state regularity that, captures the 
degree to which the same sequences of SRL behaviors occur over time. In 
other words, a higher %DET value suggests a more structured or pre
dictable pattern of SRL behaviors (Jenkins et al., 2020). With regard to 
ADL, it is the average length of repeating patterns of SRL behaviors. In 
terms of % LAM, it measures the extent to which an individual gets stuck 
in a behavior. % LAM will increase if a student consecutively performs a 
specific behavior more often. The last RQA measure of TT, analogous to 
ADL, denotes the average length of repeating behaviors. For instance, 
the TT equals five if an individual conducts a behavior repeatedly for 
five times. In sum, researchers can gain a deep understanding of the 
temporal structure of SRL behaviors by describing and analyzing those 
RQA measures. 

2.3. The current study 

The purpose of this study is to examine the temporal structure of 

Recurrence Plot - Participant A Recurrence Plot - Participant B

Vertical or horizontal line indicating 

repetitive behaviors
Recurrence points Diagonal line indicating behavioral pattern

Fig. 1. Illustration of recurrence plots.  

Table 1 
The most common measures of recurrence quantification analysis.  

Variable Definition Meaning 

Percent recurrence 
(%REC) 

The density of recurrence 
points in a recurrence plot 
(RP). 

The repetitiveness of the 
elements in a sequence 

%REC = Sum of recurrent 
points in the RP / size of RP 

Percent 
determinism (% 
DET) 

Proportion of recurrent 
points forming diagonal lines 
in the RP. 

How many of the repetitions 
occur in connected 
trajectories 

%DET = Sum of diagonally 
adjacent recurrent points / 
sum of recurrent points 

Average diagonal 
line length 
(ADL) 

Average length of diagonal 
lines in the RP 

How long the average 
repeating trajectory is 

Laminarity (% 
LAM) 

Proportion of recurrent 
points forming vertical line 
structures. 

How many of the repetitions 
occur in vertically connected 
trajectories 

%LAM = Sum of vertically 
adjacent recurrent points / 
sum of recurrent points 

Trapping time (TT) Average length of vertical 
lines in the RP 

How long the average 
vertical line is 

Marwan et al. (2002) and Wallot (2017). 
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students' SRL processes and behaviors in STEM (Science, Technology, 
Engineering, and Mathematics) learning by leveraging the affordances 
of RQA. In particular, we situate our study in the context of engineering 
design, since we introduced a domain-specific SRL model to explain 
students' learning in engineering design in previous studies (Li, Du, 
et al., 2020; Zheng et al., 2020). The SRL model in engineering design, 
which was adapted from the three-phase model of SRL (Zimmerman, 
2000), was shown in Fig. 2. Specifically, students begin an engineering 
design task by developing an understanding of the task features and 
requirements in the forethought phase of SRL. For instance, an engi
neering design task may require students to build a green building (a 
type of building that generates the same amount of energy as it con
sumes) within a certain budget in a computer-aided design environment. 
Students need to familiarize themselves with the task environments and 
connect environment-relevant information with specific task re
quirements. Learning behaviors that occur in this phase are usually 
referred to as observation behaviors in the context of engineering 

design. In the performance phase, students generally conduct three 
types of behaviors (i.e., formulation, analysis, and reformulation) to 
accomplish their design goals (Howard et al., 2008; Li, Chen, et al., 
2020; Zheng et al., 2020). The formulation, analysis, and reformulation 
behaviors contribute to the processes of preliminary design, prototype 
analysis, and detailed design, respectively. In the self-reflection phase, 
students evaluate their design performance and determine how to pro
ceed for achieving predetermined goals. 

In the present study, we are interested in how high and low per
formers differ in the complexity of SRL process and the temporal pat
terns of SRL behaviors as they complete an engineering design task. 
Examining the differences between these two performance groups could 
enable researchers to make a direct comparison of SRL features and 
develop a clear understanding about how the differences in SRL features 
may lead to performance differences. Specifically, this study addresses 
the following research questions: (1) Do high performers differ from low 
performers in the complexity of their SRL processes when solving an 
engineering design task? (2) Are there differences in the temporal pat
terns of SRL behaviors between high and low performers? 

In line with the research of Wallot (2017), we consider the number of 
dimensions of an SRL system (i.e., dimensionality) as the operational 
definition of its complexity. To be specific, we use RQA to discern the 
number of dimensions that best capture the fluctuations observed in the 
time-ordered behavior durations. Time-ordered durations of behaviors 
reflect the continuous adjustments learners made in response to 
changing internal and external conditions (Greene et al., 2019). There
fore, the time-series data is suited for the analysis of SRL process to 
reconstructing a potentially multidimensional system. Moreover, when 
we mention the regularity of SRL behaviors, we refer to their temporal 
structure represented by the RQA measures. Based on SRL theory, we 
hypothesize that high performers would demonstrate a more complex 
SRL process than low performers, given that high performers are usually 
those who can effectively manage SRL components (e.g., attention- 
focusing, strategic planning, and emotion regulation) to accomplish 
learning tasks. In other words, we hypothesize that the dimensionality of 
the SRL systems of high performers will be significantly larger than that 
of low performers. Moreover, we assume that repeating behaviors 
indicate uncertainty in problem-solving; therefore, we hypothesize that 
the percent recurrence (%REC), trapping time (TT), and laminarity (% 
LAM) of high performers will be significantly smaller than that of low 
performers. However, high performers are expected to show more 
repeating behavioral patterns than low performers. For this reason, we 
hypothesize that the percent determinism (%DET) and the ADL of high 
performers will be significantly larger than that of low performers. This 
study is exploratory in nature. Nevertheless, this study has the potential 
to advance the research in SRL both theoretically and methodologically. 

3. Methods 

3.1. Participants 

The participants consisted of 74 ninth-grade students (39.2% fe
males) who came from a suburban high school in the Northeastern 

Table 2 
The RQA measures in the context of SRL.  

Variable Meaning in SRL Explanation 

Percent 
recurrence (% 
REC) 

How often does an individual 
show the same SRL 
behavior? 

The degree to which the same 
SRL behavior reoccurs over 
time. For instance, the SRL 
behavior of formulation may 
reoccur 20 times in a 
behavioral sequence, while 
the analysis behavior reoccurs 
30 times. %REC = Sum of 
recurrences / N (N − 1), 
where N refers to the length of 
the behavioral sequence. 

Percent 
determinism (% 
DET) 

To what extent do repetitions 
of SRL behaviors occur in the 
form of behavioral patterns? 

Examples of the SRL 
behavioral patterns include 
“FO-AN-RE-EV”, “RE-EV-RE- 
EV”, and “FO-AN-EV”. %DET 
captures the degree to which 
the SRL behavioral patterns 
reoccur over time. 

Average diagonal 
line length 
(ADL) 

How long is the average 
repeating pattern of SRL 
behaviors? 

Examples of the repeating 
patterns of SRL behaviors 
include “FO-AN-RE-EV” and 
“RE-EV-RE-EV”. ADL refers to 
the average length of these 
repeating patterns. 

Laminarity (% 
LAM) 

To what extent do repetitions 
of SRL behaviors occur in 
repeating sequences of the 
same behavior? 

Examples of the repeating 
sequences of the same SRL 
behavior are “FO-FO-FO-FO”, 
“RE-RE-RE-RE-RE”, and “AN- 
AN-AN”. %LAM captures the 
degree to which the repeating 
sequences of the same SRL 
behavior reoccur over time. 

Trapping time 
(TT) 

How long is the average 
repeating sequence of the 
same SRL behavior? 

TT refers to the average 
length of the repeating 
sequences of the same SRL 
behavior. 

Note: FO = formulation, RE = reformulation, AN = analysis, EV = evaluation. 

Fig. 2. The SRL model in engineering design.  
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United States. In terms of the racial demographics of the school, the 
majority viewed themselves as Caucasian (57.5%), with African Amer
ican comprising 25.7%, Hispanic 7.8%, Asian 6.1%, multi-race 2.8%, 
and Pacific Islander 0.2% of the whole population. Furthermore, 30% of 
the students were from economically disadvantaged backgrounds. Prior 
to the study, we had obtained research ethics approval from the insti
tutional review board. In addition, all parents provided consent for their 
children's participation in this study. Moreover, we explicitly explained 
the research purposes and procedures to the students; therefore, they 
were aware of the potential benefits and risks of the study. Students had 
free choice to quit the study whenever they wanted. They all partici
pated in this study in Fall 2019. However, eight students did not finish 
the task, and the data of 5 participants were not saved, leaving a sample 
of 61 for data analysis. 

3.2. Learning environment and task 

This study was part of a larger research project aiming to study the 
best practice to support science and engineering education in Aladdin, a 
simulation-based computer-aided design (CAD) environment (https: 
//intofuture.org/aladdin.html). Aladdin, previously known as the 
Energy3D platform (Xie et al., 2018), supports the design, simulation, 
and analysis of green buildings that harness solar energy for their 
maintenance. In Aladdin, students play the role of solar engineer to 
provide an optimal solution regarding the arrangements of solar panels 
and to meet customers' additional requirements such as annual energy 
production and payback period. 

In this study, students were given the task of Solarize Your School 
(SYS), which required them to turn their school buildings into a power 
generator. We first created a computer-simulated reality environment in 
Aladdin, whereby a physical, real-world environment of students' 
campus was replicated on computers (see Fig. 3). Students could interact 
with the computer-simulated reality environment using virtual tools 
such as show sun shadows, add solar panels, and simulate sun paths. 
Moreover, students were told that the task was for a competitive bid held 
by the town where the school was located in. The advertised require
ment for bidders was to design a solar array on the roofs of the school 

buildings. The solar array needed to generate more than 400,000 kWh of 
electricity per year with a payback period shorter than ten years. 
Therefore, the SYS task provided students with a deeply situated 
learning experience as it exploited the affordances of a real-world 
context, and it was designed to address an authentic meaningful prob
lem. During the task, students were asked to work individually on their 
own laptops for the bidding. 

3.3. Procedure 

Students were invited to participate in this study consecutively for 
six days during their regular school hours. We provided a training ses
sion to help students get familiar with the Aladdin environment on the 
first day of the study. The training session was approximately 45 min. In 
the following three days, students spent 45 min per day learning about 
important solar science concepts that are essential in understanding how 
to design an efficient solar array. These concepts include but are not 
limited to Sun path, projection effect, air mass, weather effect, and solar 
radiation pathways. Meanwhile, students used Aladdin to explore how 
the Sun moves across the sky as the Earth orbits the Sun and rotates 
around its own axis, how the Sun path changes from season to season, 
and how the length of the day varies. In addition, students investigated 
how the Sun's position relative to a surface on the Earth affects the in
tensity of sunlight and why the intensity depends on the time of the day 
and the weather. At the end of the science learning session, students 
were asked to apply what they had learned to solve a practical problem, 
i.e., find a position for a solar panel around a house that generates 
electricity the most throughout a year. 

Afterwards, students had another two days to work on the SYS task. 
As aforementioned, students played the role of solar engineers to design 
cost-effective solutions that power their school with solar energy under 
certain constraints. For instance, three different types of solar panels 
were available for engineering design activity. Nevertheless, students 
could only select one type of solar panel for their design. To optimize the 
return on investment (ROI), students needed to carefully choose solar 
panels given that different solar panels had different efficiencies, di
mensions, and costs. Students also needed to adjust the location and 

Fig. 3. The computer-simulated reality environment.  
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orientation of solar panels, as well as the distance between adjacent rows 
of tilted solar panels, since all of them could affect the output of solar 
energy. On average, students spent 135 min completing the task, with 
their design behaviors and corresponding timestamps being automati
cally recorded in the log files of Aladdin. Moreover, Aladdin stored the 
annual energy production and payback period into the log files for each 
student when they finished the task. 

3.4. SRL behaviors 

We examine students' engineering design behaviors within a SRL 
framework based on the following considerations. First, engineering 
design tasks are usually ill-structured problems with no clear procedural 
and predetermined solutions. The process of engineering design repre
sents a good example of SRL scenario where students purposefully 
control and monitor their behavioral, cognitive, metacognitive, and af
fective aspects of learning to fulfill personal goals (Pintrich, 2000; 
Winne, 2019; Zimmerman, 2000). Moreover, the outcome of STEM 
education includes not only the acquisition of domain-specific knowl
edge and skills but also the development of SRL competency to sup
porting long-term growth in students' STEM achievement. Examining 
students' engineering design behaviors through the lens of SRL theories 
would help researchers develop a deep understanding of the quality 
delivery of STEM education. Furthermore, we introduced a SRL model to 
illustrate how students' engineering design processes are superimposed 
over the SRL phases (Li, Chen, et al., 2020; Li, Du, et al., 2020; Zheng 
et al., 2020). We classified five types of SRL behaviors (i.e., observation, 
formulation, analysis, reformulation, and evaluation) in engineering 
design. The sample activities for each type of SRL behavior are shown in 
Table 3. It is noteworthy that the engineering design task involves the 
possible use of 38 types of activities, which were automatically recorded 
in the log files as students approached the task. Students conducted 325 
activities on average in the engineering design process. We extracted the 
information of SRL behaviors from the log files. 

3.5. Data processing and analysis 

To address our first research question, we created a series of behavior 
durations for each participant. In particular, the duration of each 
behavior was obtained by subtracting the timestamp of the behavior 
itself from the subsequent one. Considering that behavior duration is a 
continuous variable, and there exist complicated fluctuations in the 
dynamics of students' cognition, metacognition, emotion, and motiva
tion behind the observed series of behavior durations, we followed the 
time-delayed embedding procedure to reconstruct the time series' phase- 
space (Wallot, 2017; Wallot & Leonardi, 2018). In other words, we 
reconstructed the multidimensional dynamics from the one-dimensional 
series of behavior durations by plotting the time-series against itself at a 
certain time delay (Wallot, 2017). As behavior durations are not an 
equally sampled time-series, we set the delay parameter as 1 (i.e., d = 1) 
following the instructions of Wallot and Grabowski (2019). According to 
Wallot and Grabowski (2019), the interevent times do not contain 
redundant information that might be inherent in equally sampled sig
nals; therefore, a value of 1 for the delay parameter is sufficient to es
timate a correct dimensionality of the dynamics of the time-series. 

Specifically, the dimensionality of the phase-space was estimated for 
each student using the false-nearest-neighbor function (Wallot, 2017). 
The R packages of ‘tseriesChaos’, ‘nonlinearTseries’, and ‘crqa’ were 
used to perform the analyses. We then compared the difference in 
dimensionality between high- and low-performing groups. 

To answer the second question, we used categorical-RQA (Coco & 
Dale, 2014; Jenkins et al., 2020; Wallot, 2017) to explore the temporal 
structures of the one-dimensional behavioral sequence, which consisted 
of different categories of engineering design behaviors. We performed 
the analysis using the ‘crqa’ package (Coco & Dale, 2014). Afterward, 
we examined how high and low performers differed in the variables of 
interest, i.e., the RQA variables in Table 1. 

4. Results 

4.1. Do high performers differ from low performers in the complexity of 
their SRL processes when solving an engineering design task? 

We first applied the k-means algorithm to identify homogeneous 
subgroups of students based on their performance. Specifically, a stan
dard k-means algorithm was used on the two performance indices (i.e., 
annual energy production and payback period) to find centroids that 
minimize the total within-cluster variation. In this study, annual energy 
production refers to the total amount of electrical energy generated by 
solar arrays over a year, while payback period is the amount of time it 
takes to recover the cost of the investment in solar arrays. The number of 
clusters was set as two since we were interested in comparing the dif
ferences between low- and high-performing groups. In addition, we 
performed a series of exploratory data analyses to find that the cluster 
sizes became unbalanced as we increased the number of clusters. 
Therefore, the 2-cluster solution was optimal and conceptually mean
ingful. The results in Table 4 showed that there were 39 and 22 students 
that could be identified as low and high performers, respectively. Stu
dents in the low-performing group failed to reach the goal of engineering 
design in this study. Low performers produced a relatively smaller 
amount of annual energy compared to high performers, but they took a 
longer time than high performers to recoup the customers' investment. 

We then used the RQA to reconstruct the multidimensional system of 
SRL from the one-dimensional series of behavior durations, whereby the 
dimensionality of the reconstructed SRL system for each student was 
obtained. We then compared the difference in the dimensionality be
tween low and high performers. As shown in Table 5, the SRL system of 
high performers had a significantly larger dimensionality (M = 6.95) 
than that of low performers (M = 5.49), p < .05, suggesting that higher 
performers differed with low performers in the complexity of SRL pro
cesses when completing the engineering design activity. The effect size 
of the difference was medium to large with Cohen's d = 0.56 (Cohen, 
1988). 

4.2. Are there differences in the temporal patterns of SRL behaviors 
between high and low performers? 

We performed the categorical-RQA on the behavior sequence of each 
student. In doing so, the most commonly used RQA measures for 
quantifying the temporal patterns of a sequence were obtained for each 
student (Jenkins et al., 2020; Marwan et al., 2002; Wallot, 2017). In 
particular, the RQA measures included percent recurrence (%REC), 
percent determinism (%DET), average diagonal line length (ADL), Table 3 

Sample activities for each type of SRL behavior.  

SRL behaviors Sample activities 

Observation Rotate building; show shadow, axes, and heliodon 
Formulation Add foundation, rack, and solar panels 
Analysis Compute solar energy, net energy, and the total cost of the design; 

animate sun; generate energy graphs 
Reformulation Edit rack; change the azimuth and the base height for all racks 
Evaluation Make notes; make subjective and structural reflection  

Table 4 
The centroids of low- and high-performers regarding annual electricity and 
payback.  

Group Annual electricity Payback period Number 

Low performing  210,494.85  20.97  39 
High performing  484,484.86  13.60  22  
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laminarity (%LAM), and trapping time (TT). We used t-tests to compare 
the differences in these RQA measures between low and high per
formers. We found that high performers demonstrated a significantly 
lower recurrence rate of SRL behaviors (M = 25.93) than low performers 
(M = 33.11), p < .05, Cohen's d = 0.67. Similar to the recurrence rate, 
the determinism of SRL behaviors for high performers (M = 74.64) was 
also significantly lower than that of low performers (M = 80.01), p <
.05, Cohen's d = 0.60. Moreover, high performers were significantly 
lower in the measure of laminarity (M = 84.53) than low performers (M 
= 89.29), p < .05, Cohen's d = 0.60. The effect sizes for those differences 
were all medium to large (Cohen, 1988). In addition, the results showed 
that high and low performers had no significant differences in the RQA 
measures of ADL and TT (see Table 5). 

5. Discussion 

In this study, we found that the SRL processes of high performers 
were more complex than low performers, given the significant differ
ence in the dimensionality of SRL system between the two performance 
groups. In other words, a larger number of components made up the SRL 
system of high performers when compared with low performers. Such 
components may include different types of cognitive activities (e.g., 
insight, causation, tentativeness, or differentiation), motivations (e.g., 
self-efficacy, self-concept, achievement goal orientation, interest, or task 
values), and emotions, for instance, curiosity, enjoyment, boredom, or 
relief. It is quite possible that a different set of components act together 
to yield a unique SRL system for each student. For instance, the SRL 
system of an individual may consists of mainly strategic planning and 
self-reflection, while the SRL system of another student involves the 
processes of self-motivation and emotion regulation. Therefore, caution 
is needed in interpreting this result. Although RQA with the time-delay 
embedding method allows us to retrieve the multidimensional dynamics 
of SRL from time-ordered behavior durations, the concept of dimen
sionality only reflects the statical structure of the data rather than spe
cific SRL dimensions such as cognitive, metacognitive, motivational, and 
affective aspects of learning (Wallot, 2017). Clearly more research is 
needed to unravel the components of an SRL system and their relative 
importance to students' performance so that instructors can diagnose 
learning process in a comprehensive manner and deliver targeted in
terventions accordingly. This study shows for the first time that the 
number of SRL components can be referred through a novel analytical 
technique of RQA. But we acknowledge that this study is at the very 
early stage of this direction. Future research will benefit from advanced 
mathematical modeling techniques along with the collection and anal
ysis of multimodal multichannel data about SRL. 

Moreover, this study found that low performers showed a higher 
degree of both percent recurrence (%REC) and percent determinism (% 
DET) than high performers. Considering that %REC refers to the degree 
of repetition of SRL behaviors, this result suggests that low performers 
tended to repeat behaviors over time. Moreover, low performers 

demonstrated a more structured and predictable pattern of SRL behav
iors than high performers, since %DET captures the degree of repetition 
of SRL behavioral sequences (Jenkins et al., 2020). In sum, lack of 
regularity was observed in the behaviors of high performers, which 
could be well explained by the nature of engineering design. Engineer
ing design tasks are ill-structured problems that have no predetermined 
solutions. Furthermore, engineering design is an iterative process 
whereby students need to refine their designs through successive ver
sions. Students ultimately choose a version of a design that best meets 
design requirements and customers' needs. High-performing students 
may generate multiple, qualitatively different solutions during the 
iterative search for an optimal design. For this reason, the behaviors of 
high performers in engineering design are more creative and adaptive 
than low performers. Our explanation of this finding is in line with the 
contention of Koopmans (2020), who argued that the lack of regularity, 
in fact, creates opportunities for creativity and innovation. 

In addition, low performers were significantly higher in the RQA 
measure of laminarity (% LAM) than high performers, suggesting that 
low performers were more likely to get stuck in a behavior, i.e., con
ducting a specific behavior repeatedly before moving on to the other 
behaviors. This finding was partially in line with the research of Lajoie 
et al. (2019), who found that low performers tended to get stuck in the 
orienting phase of SRL for long periods of time. 

According to Lajoie et al. (2019), one explanation was that low 
performers were less successful at extracting meaningful information 
from the context so that they were unsure about the next steps in 
problem-solving. In a previous study (Li, Du, et al., 2020), we used a 
network approach to examine the differences in interaction patterns of 
SRL behaviors among three performance groups, i.e., unsuccessful, 
success-oriented, and mastery-oriented groups. We found that the un
successful group tended to perform the observation behavior repeti
tively in the design process. They were hesitant about how to proceed 
and consequently performed a behavior repeatedly until a decision was 
made, which corroborated the findings of the present study. 

In short, findings from this study contribute to the emerging litera
ture on the temporal structure of SRL by examining the complexity of 
SRL process and the regularity of SRL behaviors, specifically in the 
context of engineering design. This study informs future research on SRL 
and the design of scaffoldings for learners. First, researchers are 
encouraged to explore SRL using nonlinear analytic methods (e.g., RQA 
and network analysis) since they are on the rise in the field of educa
tional psychology and most importantly, SRL process manifests 
complexity characteristics (Koopmans, 2020; Li, Du, et al., 2020; Li 
et al., 2022; Wallot & Leonardi, 2018). The analytical techniques rooted 
in complexity science might be important alternatives to traditional 
linear statistical methods. For instance, the nonlinear analytic method of 
RQA enables researchers to reconstruct a multidimensional system of 
SRL and to examine its characteristics even though researchers have to 
limit the number of operating variables in their experiments due to 
various constraints. At a practical level, the RQA method and our 

Table 5 
Group differences in the variables of interest between low- and high-performers.   

Group M SD t df p Cohen's d 

Dimension Low  5.49  2.71  −2.096  59  0.040*  0.56 
High  6.95  2.46     

%REC Low  33.11  13.01  2.346  59  0.022*  0.67 
High  25.93  7.99     

%DET Low  80.01  8.22  2.295  59  0.025*  0.60 
High  74.64  9.70     

ADL Low  3.82  0.91  0.801  59  0.426  0.22 
High  3.62  0.89     

%LAM Low  89.29  5.49  2.101  28.62  0.045*  0.60 
High  84.53  9.79     

TT Low  5.39  1.86  0.811  59  0.421  0.22 
High  5.01  1.55      

* p < .05. 
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interpretations of the RQA measures in SRL can be easily transferred to 
other research contexts, given that researchers only need to collect the 
information of SRL behaviors and the time-ordered durations of those 
behaviors. There is also abundant of resources in the literature that 
support the implementation of the RQA method. As an illustration, 
Wallot (2017) developed a step-by-step tutorial in R to illustrate the 
processes and products of RQA. Moreover, this study informs the design 
of instructional interventions, early warning systems, and learning an
alytic dashboards. For example, instructors can offer timely in
terventions based on the RQA measures if they find the percent 
recurrence of an individual's learning behaviors exceeds a cut-off value. 
RQA also provides a useful visualization of students' SRL behaviors (i.e., 
recurrence plot), which can be implemented in learning analytic dash
board to increase students' awareness of the regularity of their problem- 
solving behaviors. 

6. Conclusion 

In this study, SRL is conceptualized as a complex dynamical system. 
Therefore, we adopted the ideas and analytical techniques of complexity 
science to analyze SRL phenomenon accordingly. In particular, we used 
RQA to examine the differences in the complexity of SRL processes and 
the regularity of SRL behaviors between high and low performers as they 
accomplished an engineering design task in a computer-simulated 
environment. We found that the SRL processes of high performers 
were more complex than low performers. The behaviors of high per
formers lacked regularity, whereas low performers were more likely to 
conduct a behavior repeatedly in the process of engineering design. This 
study extends the literature on the dynamics of SRL in both theoretical 
and methodological dimensions. Theoretically, this study provides re
searchers with a new perspective of SRL process that is complex, 
nonlinear, dynamically emerging, and continuously updated by internal 
and external feedback inputs. By introducing the CDS approach to the 
field of SRL, this study also opens up many fruitful lines of research that 
can potentially advance the development of SRL theories. For instance, it 
would be interesting to examine the shift of SRL components and their 
roles to performance at a fine-grained size, which could help understand 
how students adaptively manage the many components of SRL to suc
ceed in learning or problem-solving. Moreover, the research on SRL will 
be more complete if researchers consider the overall features of a SRL 
system and the quality of SRL processes and behaviors simultaneously in 
a study. In addition, this study has significant methodological insights. 
Specifically, this study is the first to demonstrate how RQA can be used 
to analyze the temporal structure of SRL behaviors and how RQA 
measures can add new information about students' performance differ
ences. Nevertheless, this study has several limitations that must be 
acknowledged. First, the nature of nonlinear analytic methods prevents 
us from making causal conclusions about how the regularity of SRL 
behaviors is related to task performance. A second limitation is the 
homogeneity of participants. They were all ninth-grade students, so we 
cannot make a conclusive argument that findings from this study apply 
to other populations. Finally, we relied on system log files and did not 
take into account any subjective data. Regardless of these limitations, 
this study offers a promising direction for the examination of the regu
larity of SRL behaviors and for the extensions of SRL theories, i.e., the 
development of a complex dynamical model of SRL. This study takes the 
first step toward this direction and implores SRL researchers to provide 
more theoretical insights and empirical evidence. 
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