
Materials & Design 208 (2021) 109937
Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier .com/locate /matdes
Inverse machine learning framework for optimizing lightweight
metamaterials
https://doi.org/10.1016/j.matdes.2021.109937
0264-1275/� 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: lguoqi1@lsu.edu (G. Li).
Adithya Challapalli a, Dhrumil Patel b, Gouqiang Li a,⇑
aDepartment of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
bDepartment of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
h i g h l i g h t s

� New inverse design ML framework for
the optimization of lattice unit cells is
proposed.

� Along with optimal lattice unit cells,
desired mechanical properties can be
obtained.

� compression strength of the new unit
cells shows 40–120% better than octet
unit cell.

� The lattice cored sandwiches show
excellent mechanical properties.

� This framework can be applied to
optimize other load bearing
structures.
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Structure scouting and design optimization for superior mechanical performance through inverse
machine learning is an emerging area of interest. Inverse machine learning can be a substantial approach
in structural design to explore complex and massive numbers of geometrical patterns within short peri-
ods of time. Here, an inverse design framework using generative adversarial networks (GANs) is proposed
to explore and optimize structural designs such as lightweight lattice unit cells. Lightweight lattice struc-
tures are widely accepted to have excellent mechanical properties and have found applications in various
engineering structures. Using the proposed framework, different lattice unit cells that are 40–120% better
in load carrying capacity than octet unit cell are discovered. These new lattice unit cells are analyzed
numerically and validated experimentally by testing 3D printed lattice unit cells and lattice cored sand-
wiches. The proposed inverse design framework can be applied to the design and optimization of other
types of load bearing structures.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Machine learning is being widely used in various engineering
applications such as discovery of new polymers, chemicals, and
structures. [1–5] Forward regression and classification in machine
learning are implemented in material, medical, chemical, and
structural engineering, which surpass highly expensive and time-
consuming simulations and experimental validations. Machine
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learning algorithms such as Convolutional Neural Network (CNN)
has been used to discover new thermoset shape memory polymers
with high recovery stress. [4] Kernel Ridge Regression (KRR) has
been used in the property predictions of polymers to handle non-
linear relations and to establish a material design protocol that
accelerates the discovery of new polymers. [6] Gaussian Process
Regression (GPR) has been studied, indicating that it is more suit-
able for predicting a better uncertain/confidence interval of poly-
mers and their properties. [7] The mechanical properties of
cement are predicted by using Support Vector Machines (SVM)
which are found to be very effective in real value function estima-
tion. [8,9] Several other machine learning techniques like Decision
Trees, K-nearest Neighbors, and Gradient Boosting Algorithms have
been proven to be effective in predicting structural properties with
great accuracy. [10] Stress distributions in the aortic wall based on
finite element analysis (FEA) results with an average discrepancy
of 0.492% are estimated using neural networks. [11] The longitudi-
nal and transverse elastic modulus and shear modulus of carbon
fibers are predicted by using the data generated from finite ele-
ment modeling. [12] Support Vector Regression models are used
to propose direct relationship between the input and output of
the elements. This avoids the complex numerical iterations
involved in finding the internal displacement field. [13]

In our previous studies, we demonstrated the advantage of
applying machine learning techniques to predict the structural
properties and propose novel biomimetic rods with better buckling
resistance and optimal lattice unit cells than their nature counter-
parts. [5] We proposed optimal rods inspired from their biological
counterparts based on plant stems and animal quills. Forward
machine learning was used to extract hidden features in the biomi-
metic rods and expedite the computation process. [5] In a similar
manner, we proposed symmetric optimal lattice unit cells. Using
a forward machine learning model, we predicted the structural
properties of a huge data set of lattice unit cells whose properties
were unknown. Later, this data set was filtered to select optimal
lattice unit cells. Although, through this forward machine learning
technique, superior rods and lattice unit cells were discovered,
there are certain limitations. The data filtering process is semi-
optimal and it is cumbersome to filter huge output datasets. The
procedure followed for fetching the optimized designs in the data
filtering process is similar to hard coding and involves a great deal
of manual efforts. This is time consuming and also it is observed
that, especially with huge data sets that contain millions of data
points, some of the optimal designs may be missed out. Through
this forward process it is also impossible to achieve the purpose
of ‘‘structures by design”, i.e., given the desired structural proper-
ties, find the optimal structures. That is, although optimal designs
can be proposed that are better than those in the training dataset,
it is not feasible to propose certain optimal designs that are within
a set of structural boundary conditions like mass, volume, strength,
etc. Hence, this demands a better machine learning technique that
is capable of handling huge datasets with minimal time consump-
tion and manual effort, and one that is able to predict targeted
optimal designs based on a set of desired design constraints.

For this purpose, an inverse machine learning framework using
Generative Adversarial Networks (GANs) is adopted in this study.
Unlike forward machine learning, where certain desired properties
of a chemical or physical structure are predicted, the idea of
inverse machine learning is to predict an optimal structure, given
the desired properties. While forward machine learning prediction
is a straight forward process where we predict numerical data
(output) based on categorical data (input), inverse machine learn-
ing is the vice versa of the previous process, but can be complicated.
Inverse design networks using two deep neural networks have led
to faster and accurate results compared to other numerical tech-
niques. [14] GANs are used to design photonic crystals based on
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the data from a supervised machine learning model. [14] Novelty
of 92.53% is achieved in designing hypothetical inorganic materials
using GANs in which 84.5% are chemically valid. [15] A new regres-
sion and conditional generative adversarial network (RCGAN) are
proposed for the inverse design of two-directional graphene and
boron-nitride hybrids. [16] The advantage of using RCGANs is the
application of supervised regressive networks which compensate
for the inability of GANs to generate data samples when fed with
continuous and quantitative labels. GANs are also used to design
meta-surfaces to match the required optical spectra by substituting
complex conventional prediction models. [17]

Although the application of machine learning techniques like
GANs and regression have been proven to be very advantageous
in discovering new patterns in various fields over the recent years,
application of inverse design in structural design optimization
based on mechanical properties has not been explored. For exam-
ple, sandwich structures with lightweight core such as lattice core
can be designed in numerous combinations to exhibit a wide vari-
ety of properties based on the connectivity and orientation of truss
elements they are made of. The lattice core plays an important role
in the overall load carrying capacity and lightweight feature of the
sandwich structures. Lattice unit cells like octet, Kagome and tetra-
hedron structures were designed with various advantages in struc-
tural performance, impact absorption, damping features and
acoustic insulation. [18–22] These structures were proposed based
on several thorough numerical and experimental validations by
various groups. Linear and nonlinear effective properties of lattice
structures using continuum theory models were proposed. [19,23–
26] With the advancement in manufacturing technologies like 3D
or 4D printing, lattice core with very complex geometrical config-
urations can be manufactured to amplify the performance of these
lightweight sandwich structures. [27]

Topology optimization technique was also used to develop new
optimal lattice unit cells (ORC, OQSO) which were 5% and 38% stif-
fer compared to octet lattice unit cell in standard (001) direction.
[21] Elastic and isotropic unit cells were designed by merging dif-
ferent basic unit cells such as simple cubic unit cell, octet unit cell,
etc., to compensate for the elastic anisotropic nature of octet lattice
unit cell. [22] Topology optimization techniques were developed to
design and automatically generate truss structures within given
design constraints. [28] Although classical topology optimization
has been used to optimize lattice unit cell, it may be difficult to
implement in designing and optimizing lattice structures with
given structural boundary conditions or constraints, or difficult to
conduct inverse design. This method relies on mass reduction to
design optimal structures which can overlook structures with sen-
sitive mass dependency. Therefore, although decent research con-
tributions in topology optimization have been made in proposing
novel optimal lattice unit cells, a wide range of unexplored space
in lattice unit cell designs is proven to exist and inverse design
remains a challenge.

In this paper, we propose the first inverse machine learning
framework to identify, predict and optimize targeted lattice unit
cell designs that can be used to manufacture high performance
sandwich structures. To create the inverse design framework,
GANs are used to generate many potential lattice unit cells and
the rest of the inverse design framework consists of the forward
regression model and boundary conditions. The combination of
all these components forms the single inverse design framework,
leading to design of lattice unit cells with desired properties. In this
study, we first generated a dataset of several lattice unit cells and
converted them in to fingerprints (numerical representation).
These fingerprints are used to 1) train forward regression models
to predict the structural properties of given lattice unit cells, and
2) input to the GANs to generate new lattice unit cells. The optimal
lattice unit cells predicted using the inverse design framework are
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then used to design sandwich structures and evaluated with
numerical and experimental methods. Detailed illustration on the
methods, results and discussion are presented in the following
sections.

The predicted lattice unit cells exhibit compression strength of
40–120% higher than octet unit cell with the same overall volume
under uniaxial compression. With minor adjustments in the initial
and boundary conditions, this framework can be easily imple-
mented in designing various structures with given properties.
The implementation of GANs and machine learning regression
models to optimize the structural performance of metamaterials
opens up new possibilities to discover novel optimal structures
with minimal computational time and effort through inverse
design. The optimized lattice unit cells and sandwich structures
can be used for lightweight applications in aerospace, automobile
and navel structural components.

2. Methods

2.1. Inverse machine learning framework

Fig. 1 shows the framework for inverse design of lattice unit
cells used in this study. The framework is composed of a training
dataset fed to the discriminator which trains to differentiate
between real and fake data generated by the generator. The real
data then passes through the set of initial conditions, boundary
conditions and forward regression to obtain a new set of lattice
unit cells with superior properties. This new dataset is used to dis-
cover further optimized lattice unit cells by iteratively training the
GAN network (manually updating the discriminator with latest
datasets). Here, once the inverse design framework is ready with
trained GAN network and regression models, the input will be
the desired properties in a lattice unit cell (for example, low mass,
high compression strength or symmetric truss distribution). The
output will be a set of optimal lattice unit cells in the form of fin-
gerprints that fall within the fixed input conditions. Therefore, the
desired inverse design, i.e., prediction of optimal lattice structures
as output with given properties as input, is achieved.

2.2. Data generation and fingerprinting

For any machine learning modeling, the data handling and fin-
gerprinting play a prominent role in effectively predicting the
Fig. 1. The pipeline of the in
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required attributes. In this study, the data consists of several 3D
lattice unit cells formed by using cylindrical elements with corre-
sponding cross-sectional areas. In order to maintain consistency
among all the data samples, a Representative Volume Element
(RVE) is considered with 27 vertices. All the lattice unit cells data
used in this study is generated by forming several combinations
of the cylindrical elements, whereas each element is formed by
connecting two neighboring vertices within the RVE (Refer to
Fig. A1). These lattice unit cells are tested for uni-axial compression
using ANSYS simulation software. [29] Uniform load is applied on
all the lattice unit cells by fixing one surface. Finally, a database of
around 1500 different lattice unit cells (Refer to Table S3 in Excel
file) with their mass and compression stresses obtained from the
ANSYS-Model interface. Once the dataset is formed, for the
machine learning algorithms to understand the data, each data
point, i.e., each lattice unit cell within the dataset must be con-
verted into a machine-readable format. For this purpose, initially,
all the 27 vertices in the RVE are numbered from 1 to 27 and each
element that is possible in the RVE is named by the two vertices it
connects. Now any lattice unit cell in the dataset is represented by
forming a vector of numbers consisting all the element names that
the particular unit cell is constructed from. This way of fingerprint-
ing the lattice unit cells will be convenient in designing the struc-
tures based on the element numbers and further interpretation of
designs predicted by the inverse design framework by any user. For
machine learning algorithms, these fingerprints are further con-
verted into a vector of 10s and 00s. By fixing one constant position
to each element, the fingerprint vector is formed by having 10s
where there is an element in the design and 00s for the rest of
the positions; see Table S3. While the vector representation of
the lattice unit cells by the names of the elements will be conve-
nient for human interpretation, further modification of these vec-
tors in 10s and 00s is more appropriate for AI systems.

Froward regression analysis is an integrated component in the
inverse design framework. Employing the fingerprints of the lattice
unit cells as input data, forward regression models are developed
to predict the mass and compression strength of untrained lattice
unit cell designs. The models developed in forward regression
can only predict the mechanical properties like the compression
strength, etc. It is not feasible to use the forward regression models
to predict new fingerprints, given the mechanical properties as
inputs. This is due to the few input variables, i.e., mass and com-
pression strength while the desired output will be a huge vector
verse design framework.
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of elements that can vary over a wide range of 20–100 variables.
The dataset size and the sensitive dependency of the mechanical
properties of the unit cell on its structural orientation makes it
extremely difficult to backpropagate a forward regression model.
Therefore, in order to predict new structures based on required
properties and other boundary conditions, inverse machine learn-
ing techniques should be developed. For this purpose, GANs, a new
class of machine learning technique is employed. GANs are a type
of machine learning which use two neural networks to generate
new data based on a given training data set. While one of the neu-
ral networks, the generator generates new data, the other neural
network, the discriminator, differentiates the newly generated
data from the existing training data. The GAN runs till the discrim-
inator neural network cannot identify the difference between the
existing training data and the newly generated data. This newly
generated data will be the desired output.

In this study, the data available in the training database of 1500
lattice unit cells is fed to the discriminator of the GANs system.
Based on this, the generator tries to learn from the discriminator
and keeps on generating new fingerprints until the discriminator
fails to identify fake data from real data. The final output will be
a set of unique fingerprints that have very close resemblance to
the fingerprints for the original 1500 training dataset. Now, the ini-
tial training datasets have several fingerprints of lattice unit cells
which are good structures in terms performance under uni-axial
compression while others perform poorly compared to octet lattice
or other superior structures. The GANs can only generate several
new structures based on the training data that have similar but
not the same features. Hence, once the GANs generate new data,
the new fingerprints should be validated if they satisfy the
required criteria. This includes optimal compression strength,
mass, whether the fingerprints generated can form an authentic
structure or not, and whether it is a bending dominated or stretch-
ing dominated structure. For this purpose, the newly generated
dataset is passed through several boundary conditions to check
for the above stated criteria. The mass and compression strength
of the generated fingerprints can be tested quickly by performing
forward regression using the model generated in the previous sec-
tion. Maxwell’s criterion can be used to differentiate if a structure
is bending or stretching dominated. [25] In this study, all the joints
are considered to be rigid. To validate whether a proposed lattice
unit cell form a structure or not, it is done by placing another con-
dition that only considers fingerprint for which at least one end of
each individual element is connected to any other element. This
will eliminate fingerprints with truss elements without joints.

2.3. Experimental and numerical validation

All the lattice unit cells predicted and evaluated in this study
are modeled using 3D CAD design software, SolidWorks. ANSYS
Workbench is used to simulate the compression behavior of these
CAD designs for linear and non-linear analysis. The CAD designs
from SolidWorks are converted into a vendor-neutral file format
(IGES) and imported into ANSYS platform for simulations. Veri-
Guide (tensile strength 28.5 MPa, elastic modulus 1.14GPa), a
commercially available photo-polymerizable and 3D printable
resin is used as the base material for all the numerical and exper-
imental validations. For simulations, the structures are meshed
using tetrahedron elements and large deflections is checked for
non-linear analysis. Mesh convergence is validated for various
mesh sizes and an adaptive sizing with resolution order 4
(~900,000 elements) is considered for balancing speed of simula-
tions and convergence (See Fig. A2 for meshed lattice unit cells
and deformed shapes under uniaxial compression loading). For
the experimental validation, stereolithographic (STL) files of the
three-dimensional lattice structures are generated using Solid-
4

Works. These STL files can be read by any type of 3D printers. A
professional 3D printer (Pico 2), which uses vat photopolymeriza-
tion technique to cure materials is used for manufacturing the lat-
tice structures (some of the printed unit cells can be found in
Fig. S1). All the unit cells are manufactured using VeriGuide, a com-
mercial polymer with an overall volume of 20 � 20 � 20 mm. Once
the postprocessing is complete, the mass of each unit cell is mea-
sured using a dual range XS105 balance and an MTS machine
(ADMET eXpert 2610 Table Top 5kN Universal Test System) is used
to conduct uniaxial compression test on all the samples. The com-
pression tests are conducted at a speed of 1 mm/min and the load
and displacement for each sample are recorded to get the load vs.
displacement curves. All the structures failed due to brittle fracture
at low strain. It can be observed from Fig. 2 that the simulation
results are in good agreement with the experimental data. The
slight deviation in the experimental and simulation results may
be due to imperfections in the 3D printed parts or due to improper
removal of uncured resin and support parts.

2.4. Comparison based on the Gibson-Ashby model

Gibson and Ashby [31] developed a model for the modulus of
cellular structures based on the linear-elastic properties at various
relative densities:

E�

Es
¼ c1

q�

qs

� �2

ð1Þ

where E� is the Young’s modulus of the porous structure, Esis the
Young’s modulus of the base material, q�/qsis the relative density
of the unit cell and c1 is the geometric constant of proportionality
that can be obtained from the experimental data. [31] c1 value for
octet, lattices A and B unit cells in Fig. 2 are found to be 0.09, 0.1
and 0.125 based on the experimental results at various densities
as shown in Fig. 3. Based on Fig. 3, it is clear that the relative mod-
ulus of the octet unit cell is less dependent on the relative density of
the unit cell. In other words, with the same relative density, the unit
cells A and B have higher modulus ratio. If the same material is used
for the unit cells octet, A, and B, this result translates to unit cells A
and B have higher stiffness than the octet unit cell, which is a
desired feature for load carrying structures.

3. Results and discussions

3.1. Forward regression analysis

MATLAB Regression Learner module containing various types of
regression models is used to correlate the data. [30] Multiple
machine learning algorithms like Random Forest, Support Vector
Models and Gaussian Process Regression models are tested with
the initial dataset for their performance. Rational Quadratic GPR
model performed best with a low root-mean-square deviation
(RMSE) of 0.20912. From the predicted vs. true response plots for
mass and compression strength (Fig. 4), it can be perceived that
the machine learning predictions match quite well with the true
values with the line being predictions and the dots being the obser-
vations. The plots should be interpreted by considering that the
closer the observations are to the prediction line, the better the
model is.

3.2. Inverse machine learning using GANs

By passing the fingerprints generated by the GANs through the
conditions defined in Section 2.2, we can filter as many structures
that perform better than a set datum point, octet lattice unit cell in
this case. All the fingerprints that pass the condition sets perform
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better than octet unit cell. As yet, the inverse design is used to gen-
erate structures that perform better than octet unit cell training on
the initial dataset of 1500 fingerprints. A few sample fingerprints
tested for uniaxial compression that pass the set conditions are
evaluated through ANSYS simulations in Fig. 5. It can be observed
that the predicted lattice unit cells vary at different range of com-
pression loads (40–120%) while all of them obeying the focus
objective, i.e., better than the octet unit cell. Although there is no
one common factor among the optimal structures that explains
their better performance than the octet lattice, several features
such as low mass in some lattices like lattices A and B, parallel ori-
entation of truss members in lattices B, C, and D, and stronger joint
5

connectivity in lattices C and D, could account for their better per-
formance as compared to the octet lattice.

Now, to obtain further optimized structures, the newly gener-
ated fingerprints that perform better than the octet unit cell shall
be considered. Using the above stated inverse design technique, a
new data of about 500 lattice unit cells that perform better than
the octet unit cells is formed. Now this latest dataset is fed to the
discriminator, and the generator is trained to generate new finger-
prints by training on the new dataset. The GAN will generate novel
fingerprints close to the new sample space and this data can be
passed through the set of boundary conditions. By setting the tar-
get for mass and compression strength to be much higher than
those from the previous learning cycles, i.e., even lower mass and
higher compressive strength than the octet unit cell, further opti-
mized lattice unit cells can be predicted that perform better than
the octet unit cell at a higher order. Table A1 lists the images of
16 optimized lattice unit cells.
3.3. Continuous optimization of the lattice unit cells by inverse design

The inverse design framework in this study allows continuous
optimization of the lattice unit cells by iteratively utilizing the
framework in Fig. 1. To quantify the capability of the inverse
machine learning framework, several cycles of optimized lattice
unit cells are generated by optimizing the structures for each cycle.
Four sets or generations of these unit cells and their performances
under uniaxial compression loading are presented in Fig. 6. Initially
the boundary conditions of the inverse design framework are set to
predict lattice unit cells that are better than the octet unit cell by
constraining the mass and compressive strength of the predicted
unit cells. As stated in the inverse machine learning section, each
new set of optimal lattice unit cells obtained is generated by train-
ing the GANs with new optimal dataset generated from the previ-



Fig. 4. True response by ANSYS finite element analysis versus prediction by GPR machine learning algorithm for (A) Uniaxial compression stress and (B) Mass.
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ous set. From the ANSYS simulation results in Fig. 6, the improve-
ment in the structural performance from the first generation (set 1)
to the fourth generation (set 4) can be clearly observed to be
increased by 50%. The results have been summarized in Table S1.
3.4. Compression analysis of lattice cored sandwich structures

One potential application of lattice unit cells is to construct lat-
tice cored sandwich panels. In this study, the optimal lattice unit
cells predicted by the inverse machine learning framework were
used to construct several sandwich structures with varying densi-
ties. Lattice core sandwich structures are constructed by sandwich-
ing the lattice core in between two thin plates on the top and
6

bottom. The core is made by stacking lattice unit cells side by side.
Thin sheets with 10% of the thickness of the core are used to lam-
inate the 4 by 4 unit cells, forming several sandwich structures
with varying dimensions (see Fig. S2 for several 3D printed lattice
cored sandwich panels). Testing procedures similar to the lattice
unit cells were performed on the sandwich structures and the
results can be observed in the comparison of compression strength
with densities in Fig. 7. The compressive strengths of the sandwich
structures are obtained by dividing the maximum compressive
loads of the unit cells by the cross-sectional area. The sandwich
structures performed in a similar pattern to those observed in
the single unit cell comparisons. Under uniaxial compression, the
sandwich structures constructed using optimal lattice unit cells
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perform 60% better as compared to the octet lattice cored sand-
wich structures.

4. Conclusion

The design space in metamaterials like lightweight and multi-
functional cellular structures is huge. With the advancement in
novel simulation and manufacturing techniques, bringing these
structures into practical applications is getting much easier.
Although remarkable work on studying various cellular structures
and their behavior has been done, there is still a vast volume unex-
plored in the design space. In this work, machine learning tech-
niques are used to propose an inverse design framework to
explore a wider range of structural designs. GANs and forward
regression techniques are used to propose novel lattice unit cells
that perform better than the octet unit cell. The predicted unit cells
are validated through numerical and experimental testing and
proved to be 40–120% better than the octet unit cell under uniaxial
compression. We also used the optimized unit cells as sandwich
cores, and compared favorably between the test results and simu-
lations. One feature of the inverse machine learning framework is
that it allows continuous optimization of the lattice unit cells, by
iteratively utilizing the newly created unit cells as training dataset
for next generation predictions. This framework can be used to
optimize other types of structural design and to propose novel
structures with a desired range of mechanical properties. Based
on the excellent performance of the optimized lattice unit cells
7

and adequate prediction accuracy of the regression models and
inverse design framework, it can be seen that this technique can
be applied to design and further optimize various biomimetic
metamaterials with different properties like shock absorption,
higher bending or buckling strengths and shape recovery. In our
future works, we intend to improve the prediction and generative



Fig. A1. Procedure to form different lattice unit cells based on representative
volume element (RVE).
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accuracy of the machine learning models by improving data gener-
ation and fingerprinting. These models shall be used to design
novel metamaterials with superior shock absorption capacities
compared to biomimetic counterparts like honeycomb and other
cellular structures.
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Appendix A

Here each point of the entire RVE is numbered from 1 to 27.
Each pair of numbers represents the element connecting the
respective points. For example (12) is an element formed by con-
necting point 1 and 2. Likewise all the elements in the RVE can
be represented by the two points it connects. Now by using the
‘‘combnk” function, various combinations of the elements can be
generated. To form direction dependent optimal asymmetric lat-
tice unit cells, the cuboid with 27 points is considered as a RVE.
Hence the number of elements to form a particular lattice unit cell
are predefined and various combinations are generated using the
same ‘‘combnk” function. For example (12 13 15 213 1314 1415
1015 910 39 519 1316 1625 1518 1827 911 1121 1922 2225
2526 2627 1920 2021 2124 2427 18 89 813 815 819 821 825
82,725 23 35 28 58 46 47 67 46 68 78 45 27) is a lattice unit cell
Fig. A2. ANSYS mesh and deformation

8

formed by the 43 elements represented in the fingerprint. Here ele-
ments with two digits (12, 13, 15 etc.) means the element is
formed by connecting two points, the first digit represents one
point and the second digit represents the other point. For the ele-
ments with three digits (213, 519, 911 etc.) the first digit repre-
sents one point and second two digits are the number of other
points. In case of elements with four digits (1314, 1415, 1015,
etc.), the first two digits represent one point and the second two
digits represent the other point forming the elements. These fin-
gerprints are further converted into vectors of 1’s and 0’s, for better
results while using the machine learning algorithms. For this pur-
pose, every element in the RVE is given a fixed position in the fin-
gerprint vector. Now for a particular fingerprint, all the positions
where there is an element is names as 1 and the rest of the posi-
contours of few lattice unit cells.



Table A1
Images of several optimal lattice unit cells.

Lattice 1 Lattice 2

Lattice 3 Lattice 4

Lattice 5 Lattice 6

Lattice 7 Lattice 8

Lattice 9 Lattice 10

Lattice 11 Lattice 12

Lattice 13 Lattice 14

Lattice 15 Lattice 16
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tions are names as 0. For example, assume a sample RVE consists of
only 10 element in total. Then a unit cell fingerprint consisting all
the 10 elements is represented as (1 1 1 1 1 1 1 1 1 1). For a unit cell
consisting of 4 elements whose positions are defined as 1, 3, 5 and
7 will look like (1 0 1 0 1 0 1 0 0 0). Example of a fingerprint from
the actual RVE defined in this study will look like (1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0).
Appendix B. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.matdes.2021.109937.
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