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Abstract

Neutrality tests such as Tajima’s D (Tajima 1989) and Fay and Wu’s H (Fay and Wu 2000) are standard implements in the population genetics
toolbox. One of their most common uses is to scan the genome for signals of natural selection. However, it is well understood that D and H
are confounded by other evolutionary forces—in particular, population expansion—that may be unrelated to selection. Because they are not
model-based, it is not clear how to deconfound these tests in a principled way.

In this paper we derive new likelihood-based methods for detecting natural selection, which are robust to fluctuations in effective population
size. At the core of our method is a novel probabilistic model of tree imbalance, which generalizes Kingman’s coalescent to allow certain
aberrant tree topologies to arise more frequently than is expected under neutrality. We derive a frequency spectrum-based estimator which
can be used in place of D, and also extend to the case where genealogies are first estimated. We benchmark our methods on real and

simulated data, and provide an open source software implementation.
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Introduction

Understanding how species adapt to their surroundings has
been a defining challenge in biology for centuries. One of the
primary drivers of adaptation is, of course, natural selection.
Recently, as genomic data has become much easier to obtain,
significant efforts have been made to study natural selection
using patterns of population genetic variation. In addition to
advancing our general knowledge of evolution, this research
has the potential to improve health and reduce disease by pin-
pointing the molecular basis for certain complex, adaptive phe-
notypes.

Because natural selection exerts a strong influence on the tra-
jectory (frequency over time) of a selected allele, the ideal data
for studying selection are time series of allele frequencies ob-
served across many generations. Unfortunately, such data are
rare except in laboratory settings. In order to study selection
in natural populations, research has focused on devising meth-
ods for inferring selection from contemporaneous samples of
polymorphism data. This is a challenging problem, because we
have to make inferences about complex selection mechanisms
using just a snapshot of genetic variation taken at a single point
in time. Theoretical models are essential in order to decipher
these convoluted signals in a principled manner.

One way to reason about signals of natural selection is by
considering its effect on genealogies. Relative to a neutral
baseline, natural selection induces certain genealogical distor-
tions. For example, a positively-selected variant sweeping to-
wards fixation induces unbalanced, “star-like” genealogies, re-
sulting in excesses of linkage disequilibrium and low- and high-
frequency variants in the vicinity of the selected allele (Tajima

1989; Fu and Li 1993; Fay and Wu 2000; Kim and Nielsen 2004).
Another form, balancing selection, produces genealogies which
outwardly resemble those found in a structured population (Ka-
plan et al. 1988). These distortions are then manifested in data
as altered patterns of genetic variation. By fitting a statistical
model of this process, we can learn about natural selection us-
ing observed polymorphisms.

Our contribution

In this article, we derive new procedures for detecting natu-
ral selection in genetic variation data. Our approach is based
on a probabilistic model of genealogical imbalance which is de-
signed to capture certain hallmark signals of selection described
above. It generalizes Kingman'’s ubiquitous coalescent process
(Kingman 1982a,b), and builds on earlier attempts in phyloge-
netics to model the process of speciation (Aldous 1996; Blum
and Frangois 2006). Although more principled and correct mod-
els of the coalescent process under selection have been studied
previously (Krone and Neuhauser 1997; Neuhauser and Krone
1997), owing to their complexity, they are not widely used for
inference. As we will see, ours is a simple approximation which
retains much of the tractability of neutral coalescent; the result-
ing estimators are fast, model-based, and easy to understand
and implement. An important feature of our method is that
it explicitly models variation in effective population size, lead-
ing to a “demographically corrected” neutrality test that has
demonstrable advantages when population size indeed varies
over time. Finally, because our method is based on a generative
model of tree formation, it can be extended with little effort to
cases where gene trees or ancestral recombination graphs have
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already been inferred, as is becoming increasingly common in
population genetics (Kelleher et al. 2019a; Speidel et al. 2019).

Related work

We lack space to survey the panoply of methods that have been
developed to study natural selection using genomic data; see
recent reviews by Vitti et al. (2013) and Stern and Nielsen (2019).
We focus here on several classes of methods for detecting nat-
ural selection which are most closely related to our proposed
approach.

The first class is frequency spectrum-based methods, which op-
erate on the principle that natural selection distorts equilibrium
allele frequencies relative to what is observed under neutral-
ity. The most widely used frequency spectrum-based statistic
is Tajima’s D (Tajima 1989):
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where 8,; and éw are, respectively, Tajima’s and Watterson’s es-
timators of the population-scaled mutation rate 6, and § is an
estimate of the standard deviation of their difference. Both es-
timators are unbiased for § under neutrality, but have different
biases for non-neutral evolution, such that ED # 0 when ex-
amining allele frequencies obtained from a region that is under
selection. Other related statistics include Fu and Li’s D (Fu and
Li 1993), and Fay and Wu's H (Fay and Wu 2000). A unifying
interpretation of the various frequency spectrum-based statis-
tics was given by Achaz (2009) who showed that each can be
written as a certain weighted sum of entries of the SFS.

As suggested by (1), a common feature shared by all of the
above-mentioned tests is that they are based on measures of
deviance. That is, under neutrality each test statistic has zero
mean, and larger magnitudes of the statistic suggest larger de-
viations from neutrality. However, beyond this general feature,
interpretation of these measures can be subtle. For example,
Tajima’s D is sensitive to deviations at all locations of the fre-
quency spectrum, whereas Fay and Wu’s H only has power to
detect a large excess of high frequency variants (Achaz 2009).
Negative values of D might indicate either directional selection
or population growth, while positive D can alternatively indi-
cate either balancing selection or population structure (Ferretti
et al. 2017). More generally, deviance statistics based on the SFS
are confounded by other evolutionary forces, in particular fluc-
tuating historical effective population size, and there is not an
obvious way to compensate for this (One standard practice is
to subtract the genome-wide mean of the test statistic from local
estimates. But this assumes that the bulk of the genome is evolv-
ing neutrally, and recent work has questioned the validity of
this assumption (McVicker et al. 2009; Cai ef al. 2009; Lohmueller
et al. 2011)). Finally, because they operate using only marginal
allele frequency information, these methods do not incorporate
haplotype information or patterns of allele sharing, which can
be a valuable auxiliary signal of natural selection.

A related line of work aims to detect deviations of certain
topological moments from the neutral expectation. Li (2011) is
a simulation-based approach for detecting natural selection by
examining imbalance in the basal (top-most) split in a recon-
structed coalescent tree. Li and Wiehe (2013) utilizes a moment-
matched normal approximation to the distribution of a tree im-
balance statistic in order to test for natural selection by analyz-
ing the several of the highest splits in a coalescent tree. Yang
et al. (2018) utilizes a reconstructed tree as well as the first few

entries of the SFS in order to test whether a given data set was
generated under the neutral coalescent. Because these methods
analyze topological information, they are also robust to poten-
tial confounding by population history. However, our method
is different in that it a) allows for both estimation and testing;
b) allows for specifying a demographic model, and c) utilizes,
we believe, a more accurate probabilistic approximation. We
compare these methods with ours in greater detail below.

A third group of methods for detecting selection can be de-
scribed as haplotype-based methods. These are designed to ex-
ploit characteristic signatures of linkage disequilibrium that are
deposited in the genome in the wake of a selective event (May-
nard Smith and Haigh 1974; Kaplan et al. 1989). Among the
best-known of this class of methods are the so-called extended
haplotype homozygosity (EHH) score (Sabeti et al. 2006), the
integrated haplotype score (iHS; Voight et al. 2006), and the
singleton density score (SDS; Field et al. 2016). Each of these
scores is derived via population genetic and/or genealogical
arguments about how variation is altered in the vicinity of a se-
lected variant. For example, SDS is designed to detect regions of
the genome where the terminal branches of the underlying ge-
nealogy are shorter than usual, as is expected under recent pos-
itive selection. However, although each of these statistics has
been shown to work well in certain settings, ultimately these
methods are heuristic, and not based on a concrete evolution-
ary model.

Given the profusion of ad hoc methods that have been pro-
posed for detecting natural selection, it is natural to wonder
why likelihood-based methods are not more common. The ad-
vantages of likelihood-based testing and estimation are well
known (Neyman and Pearson 1933; Lehmann and Casella 2006).
However, likelihood-based methods in population genetics are,
in general, difficult: computing the likelihood of a sample of
genomes, even under a simple neutral model, requires integrat-
ing over all of the possible ancestry scenarios that could have
generated a given data set, a massive computational undertak-
ing (Stern and Nielsen 2019).

Nevertheless, there has been some recent progress. Berg and
Coop (2015) studied an approximate likelihood model for selec-
tion at a single locus, and very recently, a noteworthy contribu-
tion was made by Stern et al. (2019), who proposed an approx-
imate full-likelihood method for inferring natural selection us-
ing recombining sequence data. Building on earlier work (Ras-
mussen et al. 2014), their method (approximately) integrates
over the space of all possible allele genealogies and allele fre-
quency trajectories for the selected allele.

Although these likelihood-based methods achieve state-of-
the-art results, a potential downside is that they are computa-
tionally expensive. The method of Stern et al., for example, de-
pends on obtaining a posterior sample of local trees from the
program ARGweaver (Rasmussen et al. 2014), which can take
many hours to generate even for moderate sample sizes. In
practice, this makes it less likely that such methods would be
employed in the exploratory phase of an analysis, as is rou-
tinely done with e.g. Tajima’s D. It seems that there is scope
for a method that is easy to deploy while also mitigating some
of the confounding issues described above.

Methods

Our starting point is the standard n-coalescent (Kingman
1982b,a) which is defined as a stochastic process on the set of
partitions of the set {1, ..., n}. The process begins at time t = 0



in state C(0) = {{1},...,{n}}. The instantaneous transition

rate at time ¢ is (‘Cgt)‘), where 1 < |C(t)| < n denotes the num-
ber of blocks in the partition remaining at time t. When a tran-
sition occurs, the new state is obtained by choosing two parti-
tion blocks uniformly at random and merging them. Thus, the
number of partition blocks decreases monotonically over time,
continuing until it reaches the absorbing state {{1,...,n}}. The
trajectory of states {C(t) : t > 0} can be straightforwardly iden-
tified with a bifurcating tree on n leaves, with internal nodes
occurring upon each block merger. For this reason, Kingman'’s
coalescent is often described as a distribution on binary trees.

An algorithm for drawing from Kingman'’s coalescent fol-
lows directly from the above description. It is listed in the
supplement (Algorithm S1) for completeness, though it is quite
well-known. In this paper, we focus on an equivalent, but less
common, method of sampling from Kingman’s coalescent, with
the goal of obtaining a generalization which will prove use-
ful for studying natural selection. It is shown in Algorithm 1.
The main distinction is that the algorithm proceeds forwards
in time (i.e.,, from past up to present), as opposed to King-
man'’s original, retrospective formulation. In these algorithms,
Ck = {Bk1,- - -, Bi} represents the partition-valued state of the
coalescent (resp. splitting) process at level k in the coalescent
tree; each By ; represents a set of nodes that have the same an-
cestor at level k. It is easy to see that both the forwards- and
backwards-in-time algorithms are equivalent. For example, at
the top-most level of the tree, m is uniformly distributed on
{1,...,n —1} (Algorithm 1, line 5), as has been shown for the
coalescent (Tajima 1983). More formally, the equivalence fol-
lows from e.g. Durrett (2008, Theorem 1.8).

Finally, while Kingman’s original model assumes that size
of the population is constant, the coalescent can be generalized
to allow the effective population size to vary over time by re-
placing the exponentially-distributed intercoalescence times Tj
(line 3 of Algorithm S1) with draws from the waiting time distri-
bution of a point process with rate function (g) /N, (t) (Griffiths
and Tavaré 1994). By defining time on the forwards, as opposed
to reverse, axis, the same generalization applies to Algorithm 1.
We return to this point in Expected site frequency spectrum.

Algorithm 1 Kingman'’s coalescent (forward-time version).

: Cl = {{1, .,Tl}},k =1
: while k < n do

Tiy1 ~ Exp(k(k+1)/2).

Sample By ; from Cy = {By1,..., By} with probability
proportional to (|By;| —1)/(n — k).

m ~ Uniform({1,2,...,|By;| — 1}).

Randomly partition By; into non-empty subsets A, A’
such that |A] = m and |A’| = |By ;| — m.

Cry1 < (CrU{A A'})\By.

8: k+— k-+1.
return Ty, ..., T5,Cy, ..., Co.

SRS

The B-splitting family

We are motivated to consider Algorithm 1 because it can be
generalized to produce alternative distributions on tree topolo-
gies. Observe that in line 5 of Algorithm 1, we could re-
place the uniform distribution with some other distribution on
{1,...,|Bi| — 1}. For example, a distribution which, for each
|Bi|, placed mass 1/2 on 1 and |B;| — 1, would produce un-
balanced “caterpillar” trees with a large portion of external
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Algorithm 2 g-splitting coalescent model.

: Cl = {{1,,11}},]( =1
while k < n do
Tiy1 ~ Exp(k(k+1)/2).
Sample By ; from Cy = {By1,..., By} with probability
proportional to (|By ;| —1)/(n — k).
m ~ BetaBinomial(|By;|; 8,8 | 1 < m < |By;| —1).
6: Randomly partition By; into non-empty subsets A, A’
such that |A] = m and |A’| = |By ;| — m.
7 Crpr < (CrU{A A'})\By.

k< k+1.
return Ty, ..., T5,Cy, ..., Co.
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branches. Similarly, a distribution which placed all mass on (or
near) |B;|/2 would produce trees which tend to be more “bal-
anced” than is observed under Kingman’s coalescent. These
two extremes produce the types of trees that we expect to form
under certain types of natural selection, in particular directional
and balancing selection (A third type of selection, background
selection, alters genetic diversity in a way that is indistinguish-
able from shrinking the effective population size (Charlesworth
et al. 1993), and is therefore not captured by our approach).
Such a generalization is shown in Algorithm 2, which is
based on a model of cladogenesis proposed by Aldous (1996).
Aldous defined a one-parameter family of distributions which
he called the B-splitting model(This model should not be con-
fused with the B-coalescent (Schweinsberg 2003), which is a
more general type of coalescent model that allows for multiple
merger events. We discuss possible connections between gen-
eralized coalescent processes and our model in Discussion). In
this model, a clade of size # is randomly split into subclades of
sizes {i,n — i}, where now i is distributed according to a sym-
metric beta-binomial distribution with shape parameter j, con-
ditioned on i ¢ {0,n}. Concretely, this distribution is given by

P =at @) (]) [ Ka-0ripwan 1<isa-t,
@

where
fp(x) s xP(1 - x)P @)

is the symmetric beta density with shape parameter g, and

1
wm(B) = [[[1-¥" = (1= x)"]fp() dx
is the normalizing constant. Integrating out x in (2), one obtains

F(ﬁ—l—l—l—.l)l“(ﬁji-n—z—&-l), l<i<n-1.
il(n—1i)!
(4)
The beta density (3) is integrable for B > —1 (note that Al-
dous’ parameterization differs by 1 from the usual convention.)
However, up to normalization, (4) defines a valid probability
distribution whenever min(f +i+1,8+n—1+1) > 0; that
is, for p > —2. For B = 0, pn(i; B) « 1 and the distribution
reduces to Kingman'’s coalescent. By examining the ratio

ph(i) _ (i+1)(n+p—i)

phi+1)  (Bri+1)(n—i)

we see that letting B — oo causes pg to place most of its mass
near n/2, leading trees which are more “balanced” than un-
der the usual coalescent. If B — —2, ratio in (5) diverges for

phi) = a;'(B)

©)
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ie{l,n—-1},so pﬁ places mass on i € {1,n — 1}, resulting in
maximally unbalanced splits and a “caterpillar” tree.

The reader may wonder why the beta-binomial distribution
was chosen, when we could conceivably have used any dis-
tribution on {1,...,n — 1}. For example, Disanto et al. (2013)
propose a similar class of forward-time Yule models indexed
by a discrete parameter «w which bounds the minimal size of
any subtree. We prefer the symmetric beta-binomial model
because of interpretability, parsimony (it adds only one real-
valued—and hence, optimizable—parameter), and because it
preserves some desirable properties of tree distributions such
as exchangeability. Also, its usage has precedent in the related
field of phylogenetics, where it has been proposed as a model
for speciation (Blum and Frangois 2006). Other authors have re-
cently studied further generalizations of this process to the case
where the shape parameters are not symmetric (Sainudiin and
Véber 2016). A disadvantage of this model is that, in contrast to
Kingman’s coalescent, the forward-splitting process does not
seem to have any evolutionary interpretation (Aldous 1996).
We choose to view it empirically as a useful tool for studying
natural selection using coalescent-based methods.

Expected site frequency spectrum

Given a sample of n individuals, the expected site frequency
spectrum (ESFS) is the distribution of the number of individu-
alsi € {1,2,...,n — 1} bearing the derived allele at a randomly
selected segregating site. (We assume that the identity of the
ancestral allele is known.) In this section we show how to de-
termine the ESFS under the B-splitting model.

We denote the ESFS by [E;; ¢, where the site frequency spec-
trum ¢ € A" 1ig the sample version of ESFS, i.e. a vector whose
ith entry denotes the proportion of segregating sites where i
members of the sample bear the derived allele. Here A" 1 de-
notes the (n — 1)-dimensional probability simplex, i.e. the set
of all numbers x1,...,x,; > 0such that x;y +--- 4+ x, = 1. The
expectation is taken with respect to genealogies generated un-
der a given evolutionary model 7. Although # could in princi-
ple be quite general, efficient methods for computing [E, ¢ are
only known when 7 describes neutral evolution under either
constant or variable effective population size. Therefore, from
this point on we take # to represent a function representing the
historical size of the population.

Under an “infinite sites” model with low rates of mutation,
Griffiths and Tavaré (1998) have shown the following key re-

sult:
n

(Ey&)p o< Y Pukp - KEy Tk (6)
k=2
In the preceding display, [E; T} is the average amount of time
(under the evolutionary model 1) during which there are k lin-
eages ancestral to a sample of size 1, and p,;, is the probability
that a branch at level k in an n-coalescent tree has b sampled
descendants in the present.
In Kingman’s coalescent,

’ (7)

Pukb =

which can be derived by a combinatorial “stars-and-bars” ar-
gument (Durrett 2008). If the effective population size is con-

-1
stant, then ET,;; = (g) , from which follows the well known
result that (E¢);, o 1/b for Kingman’s coalescent. If population

size varies through time according to some size history function
11(t), then a simple expression for IE; T,x no longer exists, but
Polanski and Kimmel (2003) have shown that it may be com-
puted as a certain linear transformation of the vector of first co-
alescent times IEy, Tjj, j=2,...,n. We return to this fact below.

Although Kingman’s coalescent and its generalization to
variable effective population size are the two best-known ap-
plications of Griffiths and Tavare’s formula (6), in fact their
argument holds more generally for any distribution on trees,
assuming (crucially) that the branch lengths and topology of
those trees are independent. Since this is true for the g-splitting
model defined above, we can use a generalization of (6) to de-
rive its expected SFS.

Let[E (4 ) denote expectation with respect to trees generated
under the B-splitting model. Since the B-splitting model alters
tree topology only, we have

n
(Eg)8)p Y Pfkb - kEy Tk (8)
k=2

where the vector pgk = (pf/k/l, o .,p’:/k/nfl) has the same in-
terpretation as above. Observe that in the preceding equation,
the calculation of the expected SFS decomposes into two inde-
pendent sources of variation: topological variation, captured by

B

p,,; and depending only on  and combinatorial aspects of the
coalescent, and branch length variation, captured by [E, T, and
depending on the underlying demographic model. In the next
subsections, we discuss how to compute these quantities.

Dynamic programming algorithm for pfk A simple expression
like (7) does not seem to exist when B # 0. Instead, we derive
a dynamic programming algorithm for calculating the combi-

natorial factors p'Zk e R"™ 1k =2,...,ndefined in the preced-
ing section. The method applies to any forward-splitting model
and includes B-splitting as a special case.

Define ff ijto be the probability that a size-i block at level k

splits into blocks of size j and i — j. From the preceding section,
we know that under Kingman'’s coalescent,

(p=0) , i—1
Fiij T

and for the general B-splitting model,

i

L [P+ P - )

fhij o
where pf.% (+) was defined in equation (4).

For each level k let Sk € Z" be a row vector such that S’lj is
number of nodes at level k which subtend b = 1,...,n leaves
at the bottom of the coalescent tree. Also let eq,...,e,; € R" be
the standard basis (row-)vectors. Under the forward-splitting
model described above, the sequence s, 82,...,S" forms a
Markov chain, with transition probabilities

]Pﬁ(Sk =s—e;+ g1 + e_j | Sk71 = S)
i—1 B B
T h—k+1’ [fkfl,z',j +fk—1,i,(i—j)]'

The starting state of the Markov chain is sl = 0,0,...,1) = ey.
Focusing on an individual entry S;.H'l and summing over all



possible events that would cause it to increase, we obtain

1

k_ o k=1 _ oy _
P(S; =sj+ 187 =s) = S~

n

Y (-vs X ff, O

l=j+1 ge{jl—j}

Similarly, a decrease can occur only if a size-j block was chosen
to split in the preceding level:

j—1

s A

P(Sf=s;—1|8""=5)=

In matrix notation, (9) and (10) combine to yield

E(sk| sk 1 =s)=s(1I,+ 7Q§k
n—k+1

where I, € R"*" is the identity matrix, and

Qﬁk = (ka - In)Ln
L, = diag(0,1,...,n—1)

P e R
B _ B B
(Fudij = fij + fiiinj):
Hence,
‘ - Qh
— - n
E(S") = E(S )(In+ k+1)
1 k Q/S
— — ni
= E(S )g I, + =
k Qﬁ
— ni
—eng<ln+n_l+1>
Finally,

Computing the expected branch lengths Next we discuss how
to compute the other necessary quantity E; T, in equation
(8). Let Ty = (Ty, Ty3, ..., Tun) be the vector of these times.
Polanski et al. (2003) have shown the following relationship for
a general size history function #:

]E;7Tn = A']Ean (11)

where E,, T, is the vector of first coalescent times,

E”Tnj:/()wexp{—(i)RW(t)}dt, i=2...n (12

.t S
Ry(t) = [ %,

and A,, € R=1*(1-1) hag entries

1
T2 ()
; —.
Mg [6) = )]
As in the preceding section, this result holds for any tree dis-

tribution in which branch lengths and topology are indepen-
dent, so it can be applied to our model.

Ankj =
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Readers who are familiar with this area may notice that, for
Kingman'’s coalescent, the expected SFS is typically not calcu-
lated via equation (8). Instead, by another result of Polanski
and Kimmel (2003), interchanging the order of summations in
equations (8) and (11) allows the (unnormalized) ESFS to be
expressed as a linear transformation of E,T,. Unfortunately,
this trick does not lead to simplifications in our more general
model, so we first compute the expected intercoalescence times
and then plug them into (8). For large #, the matrix-vector prod-
uct (11) is numerically unstable, so we use a high precision nu-
merical library to evaluate the integral (12) and then (11). This
approach is less efficient than using hardware floating point op-
erations, but it only needs to be performed once per given de-
mography, so it is suitable for genome-wide analysis.

Estimating

Given the probabilistic model defined above, how can we es-
timate it in order to infer ? In this section, we propose two
methods depending on the type of data that are available.

From the SFSTo perform inference using the SFS we rely on
the so-called Poisson random field (PRF) approximation (Sawyer
and Hartl 1992), which assumes the coalescent tree at every seg-
regating site is independent of all others. Assuming also that
mutations are rare—formally, that 6 — 0, as is reasonable for
humans and many other species—then we may approximate
the mutation process on a coalescent tree by a Poisson process.

Given an empirical frequency spectrum ¢ € Z"~!, where ¢;
is the number of segregating sites where i copies of the derived
allele were observed, the PRF log-likelihood is

L(B,0¢) =
<¢/]E17,/S,>

”]Er],ﬂ, 1

. (13)

@l 1og(BI[Ey,p.ll1) — 61[Ey,p.ll1 +

where the ESFS E, 5, is calculated using the procedure derived
in Expected site frequency spectrum. If the mutation rate 6
is not known, then the maximum likelihood estimate can be
shown to equal

5 ¢l

&} = .
MUE T E, .10

Substituting this back into (13), and setting p = ¢/||¢|1,
q(B) = E;p./[IEy p.ll1, we obtain that the profile likelihood

L(B|¢) = L(B,Omre | ¢) = —Dxr(pllq(B)) + const.

In order words, maximizing the likelihood is equivalent to mini-
mizing the KL divergence between the categorical distributions
p and q(pB) (Bhaskar et al. 2015).

From inferred trees The ESFS is obtained by integrating over
all possible genealogies at a given site, and then fit to data by
assuming independence between sites. An alternative strategy
is to try to estimate those genealogies, and then do inference
conditioned on them. Recently in population genetics, there
have been methodological breakthroughs that enable the esti-
mation of ancestral recombination graphs using large numbers
of genomes (Kelleher ef al. 2019a; Speidel et al. 2019). In the
future, as algorithms and computational capabilities continue
to improve, this may become the dominant mode of popula-
tion genetic analysis. We therefore explored extensions of our
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methods to the case where genealogies are estimated instead of
integrated out.

Because of the probabilistic nature of our model, it is easy to
extend it to the case where the genealogy is observed instead of
latent. Moreover, estimating  conditional on a collection of in-
ferred genealogies simplifies the problem considerably. If we as-
sume a bifurcating tree, the sizes of children nodes can be mod-
eled by the beta-binomial distribution as previously described.
Just like the preceding section, we proceed level by level in the
(now observed) genealogy. At each level k = 2,...,n of the
tree, let the size of the internal node which splits into two child
nodes be denoted By, and the sizes of its child nodes c; and
By — cx. We model the probability of an the observed tree 7 as

P(T|B) =TT (), 14)
k=2

with pgk defined as in (4), so that ,B is obtained by numerical

optimization.

Weighted likelihood When experimenting with this method,
we observed a small but consistent performance improvement
by reweighting the likelihood (14):

P(T | B) = [TIPE (e[,

where w(k) is a weighting function. For detecting directional
selection, we found that setting the weights proportional to the
size of the internal node, w(k) = By, worked well. For detect-
ing balancing selection, we found that it helped to weight the
various terms by total amount of branch length at their respec-
tive level in the tree: w(k) = kt;, where #; is the amount of
branch length at level k in the tree (see Topological variance
analysis). Using weights improved the method’s performance
of detecting the imbalance of the tree. The effect of the different
weighting methods is shown in Figures S9 and S10. The gain
was around 0.01-0.04 AUC in each scenario.

Related tree imbalance statistics The Colless statistic (Mooers
and Heard (1997)) is a measure of the imbalance of a binary
tree, defined as

I(T) = nlﬁ Z Ity —tol, (15)
( 2 )teT

where the summation is over all internal nodes t of the tree, and
t;, to are the sizes of the two child nodes descending from t. We
used the Colless’ statistic as a baseline for comparing the perfor-
mance of our f statistic when fitted to inferred trees. The exact
relationship between 3 and I.(7") is somewhat opaque, but in
general we can note that I is maximized for a caterpillar tree,
and is zero for a perfectly balanced tree with an even number
of leaves. Hence it is negatively associated with B. In the next
section, we compare the ability of these two measures to detect
signals of selection.

We also compared our results with the () statistic suggested

by Li and Wiehe (2013). Specifically, we used Tésum), where;

[2 & ~ 1
T3(sum): Z;}(Q;ﬁ_i), (16)

(cf. equation (14) in their paper), which the authors found to
have good power to detect selection.

Polytomies  In practice, we found that current tree inference
software often generates multifurcating trees. Since our method
assumes a bifurcating tree, we first resolved these polytomies
by arbitrarily breaking them into sequences of bifurcation
events. Specifically, for each polytomy, we randomly ordered
the descendant nodes, and then replaced that polytomy with a
sequence of bifurcations in that order. Other methods for break-
ing polytomies which are biased towards greater or lesser split
imbalance are also possible; we verified that our results were
not sensitive to this choice (Figures S11 and S12). Of course,
polytomies could well represent additional signals of selection.
Our current implementation ignores this, but we discuss poten-
tial extensions in Discussion.

Alternative parameterization

We conclude this section with a note on implementation. When
fitting our model to data, we observed that the parameteriza-
tion (4) exhibited some numerical instability when performing
gradient-based optimization. The problem arises when comput-
ing the normalizing constant for the range —2 < f < —1 which,
as mentioned in The B-splitting family, can no longer be inter-
preted as a draw from a conditioned beta-binomial distribution.
To work around this, we restrict § > —1 and then perform a
log transformation. Specifically, in all of the results reported be-
low, the following alternative definition of the symmetric beta-
binomial distribution is used:

T(n+1) T(i+eP)T(n—i+ef) T(2eP)

BBUIA) = fi Dt —i11)  Tn+2h)  T()
Then we restricted i tobe in {1,2,...,n —1};

b BB(iln, )

puli) = 1—BB(0|n, ) — BB(n|n, B) @)

wherei € {0,1,...,n—1},n € N" and B € R. The trans-
formed distribution has the following properties: when = 0,
this becomes a uniform distribution so the model recovers the
usual Kingman’s Coalescent. When f — —oco, most of the
weights of the distribution will be at the tails, so correspond-
ing tree will be similar to a caterpillar tree. And when p — oo,
the weights will be accumulated around the center and lead to
a balanced tree.

Data analysis pipeline

A description of the pipeline used to analyze data and run
our methods is contained in the supplement (Data analysis
pipeline).

Results

In this section, we study various characteristics of the methods
we derived in the preceding sections using simulations, before
concluding with applications to real data.

Topological variance analysis

Recently Ferretti et al. (2017) gave an interpretation of several
frequency spectrum-based neutrality tests in terms of tree im-
balance. In this section we study our model using some of their
results. This helps clarify the connection between some existing
neutrality tests and our work.

Following Ferretti et al., we define dy to be the size (num-
ber of leaf nodes subtended by) a randomly selected lineage at



level k in a genealogy. Averaged over genealogies under the
B-splitting model, we have

n—k+1

Z & Pnkb

n— k+1

Z bzpnkb <%>2

Varﬁ dk ]Elgdk)z

B

where p,, was defined in Dynamic programming algorithm for

p’gk, and the second inequality holds because [Ed; = n/k under
any leaf-exchangeable tree distribution. Computing varg(dy)
in closed form for our model is challenging due to the fact that

p

p!,; is recursively defined. Here we focus on a few special cases
where we can derive a precise answer, and study the general
relationship using simulations.

For B — —2, corresponding to the caterpillar tree, it is easy
to show that

ﬁgnjzvarﬁ(dk) = (k—1) <E _ 1) , (18)

as already noted by Ferretti et al.. Also, for Kingman’s coales-
cent, B =0,

”flbzc’ 2 (1) = mnRBE=1)
G K R+ 1)
(19)
For B — oo, we were unable to derive a closed-form expression
for limg o, varg(dy). However, Ferretti ef al. showed that the
dominant contribution to topological variance comes from level
k = 2, for which

Varﬁ 0 dk

varg(dy) = var(X [1< X <n-1)

where X ~ BetaBinomial(n; B, B).

If n and B are both large, the condition 1 < X < n —1 has
probability near one and can be ignored. Using the variance
formula for the beta-binomial distribution, we have

< lim n,82(n+2,3)

ﬁli_rgovar!;(dz) fm ) Z for large n.
We further define
Varﬁ(d ‘ T Z kfk Varﬁ(dk)

=2

which is the topological variance of a given genealogy,
weighted by the relative proportion of branch length at each
level (see equation (4) in Ferretti et al.). Substituting t; and I by
their expected values in equations (18) and (19), as n — oo,

— -~ n—k) 7'[2—9 7’12
varg—o(d) = H, - ; KRk+1)~ 6 logn

_ -6 n?
ﬁlinlz"arﬁ Z (7 ) 6 logn’

where H,, is the nth harmonic number.

Now let T be a neutrality test statistic (for example, Tajima’s
D or Fay and Wu’s H). Since the parameter § only affects tree
topology, we obtain from formula (17) of Ferretti et al.,

EgT = EgT — Eg—oT = ay <Var5(d) - Varﬁzo(d)) ,
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where ar (1) is a test-specific constant which depends on 1, and
for simplicity we ignored the normalization term fq (61).

To show an example of how the topological variance affects
neutrality tests such as Tajima’s D, we simulated genealogies
under various settings of 8, assuming constant population size
with no recombination (Figure S1). The box plots are empirical
distributions of two neutrality tests (Tajima’s D and Fay and
Wu’s H) for various settings of B € [—2,00). The dashed red
lines represent the limiting values predicted by the calculations
shown above. The figure shows how different values of these
statistics can be interpreted in terms of B, and vice versa. We
see, for example, that D and H appear to be more sensitive to
B < 0, in the sense that their distributions at f = 0 are closer to
the B — co limit than the  — —2 limit.

Simulated data

To benchmark our methods on simulated data, we studied their
ability to classify simulated genomic regions as being either
neutral or under some form of selection. The receiver operat-
ing characteristic (ROC) curve, and associated area under curve
(AUC) statistic, are standard ways to measure the performance
of a classifier. For each experiment described below, we gener-
ated data under two different models, and then plotted ROC
curves for each method. The two possible models are printed
at the top of each ROC curve. The legend lists each method that
was compared, along with its AUC score.

The classification procedures derived from our methods are
denoted btree and bsfs. The bsfs results were obtained by maxi-
mizing (13) over B with respect to the observed frequency spec-
trum. btree is the tree-sequence based estimate, obtained by
maximizing the conditional likelihood defined in (14) over
conditional on a given tree. As a baseline, we also compared
our method to Colless’ statistic, Li and Wiehe’'s Omega (see
From inferred trees) and Tajima’s D. Finally, ROC curves were
computed by thresholding the empirical null distributions of
each test statistic. We also use these neutrally evolved simu-
lations to infer population size histories (17(¢)) that we use for
bsfs. Our simulation process is explained in detail in Simula-
tion studies.

Directional selection We simulated a single population with
constant population size N = 2 x 10*. The simulated region
was L = 10° base pairs (bp), with recombination and muta-
tion rates of 1.25 x 1078 and 2.5 x 10~8 per bp per generation,
respectively. When each simulation terminated, we randomly
sampled n = 50 haploid genomes and computed the relevant
test statistics. We introduced a beneficial mutation 250 gen-
erations before present into the middle of the region, and we
restarted the simulation if the mutation was lost or fixed. Fol-
lowing Stern et al. (2019), we varied two parameters: the selec-
tion coefficient s € {.001,.003,.01,.02}, and the allele frequency
F € {0.25,0.5,0.75} of the mutation when the simulation termi-
nated. Genic selection was assumed, i.e. the relative fitnesses
of the wild-type homozygotes, heterozygotes, and derived ho-
mozygotes were 1, 1 +5/2, and 1 + s, respectively.

Figure 1 displays ROC curves and AUC scores when s =
0.01. (Results for all scenarios are shown in Figure S6.) In gen-
eral, we observed that tree-sequence based methods are better
at detecting strong selection compared to SFS-based methods.
This is expected, because a recent hard sweep leaves a signal
of elevated linkage disequilibrium that is invisible in the fre-
quency spectrum (Kaplan et al. 1989). Among the frequency
spectrum-based methods, ours (btree) achieves the best AUC
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Figure 1 ROC curves for positive genic selection. s represents the selection coefficient and F represents allele frequency of the muta-
tion in the sample. AUC is shown in parentheses. bsfs and btree are our SFS- and tree-based methods, respectively. TajD is Tajima’s
D. Colless’ and Omega are defined in Related tree imbalance statistics.

across all settings of F. Omega has low AUC when the benefi-
cial mutation has low sample frequency (F = 0.25). bsfs out-
performs Tajima’s D in all settings. The results were consistent
across other selection coefficients (Figure S6). btree achieves at
least 0.8 AUC for s > 0.003 and F > 0.5. It has significantly
higher AUC than Colless’ and Omega (vs Colless’: p = .0048; vs
Omega: p = .023, Wilcoxon signed rank test), but the overall
gain is small (vs Colless mean AAUC = 0.0051, vs Omega:
mean AAUC = 0.023). Among the SFS-based statistics, our
method (bsfs) achieved significantly higher AUC scores (p =
.0014, Wilcoxon signed rank test) than Tajima’s D, and the aver-
age gain is notable (mean AAUC = 0.049).

Finally, in Table S3 we computed the type I error at the nom-
inal level &« = 0.05 for each method on the set of neutral simula-
tions, with p-values computed using the normal approximation
described below. If we knew the exact distribution of each test
statistic under the null, then all of these entries would be ap-
proximately « = 0.05, so this table measures the adequacy of
our approximation. The table indicates that the p-values are
fairly well calibrated, with bsfs and Omega having slightly in-
flated type I error, while the other methods are slightly conser-
vative.

Balancing selection Next we studied our methods’ ability to
detect long-term balancing selection. Since this type of se-
lection acts on a longer time scale than directional selection
(Charlesworth 2006), it is necessary to forward simulate for
many more generations. To speed up the simulations, we re-
duced the population size by a factor of 10 to N = 2 x 10%, and
increased the mutation and recombination rates to 1.25 x 1077
and 2.5 x 1077, The simulated region was 2500 base pairs.
When each simulation terminated we randomly sampled n =
250 haploid genomes and computed the relevant test statistics
using them. Starting at 4000 generations before the end of the
simulation, heterozygous advantageous mutations were intro-
duced at a constant rate. We varied two parameters: t; €
{2 x 10%,3 x 10%,4 x 10%,5 x 103} which represents the num-
ber of generations before present when beneficial mutations
began, and selection coefficient s € {.0004,.0008,.002}. The
dominance parameter was set to 1 = 25 in all cases. Thus
the fitnesses of the homo- and heterozygote were ~ 1 and
s-h € {.01,.02,.05}, respectively.

Figure 2 shows ROC and AUC scores for each of the meth-
ods. In contrast to the case of directional selection, SFS-based
statistics did better than tree-based statistics in this example.

bsfs has higher AUC values for all three simulations. All tree-
based statistics perform similarly. The results were consistent
if we varied the starting generation when mutations were in-
troduced (Figure S8). btree outperforms Colless’ statistic, but
not the Omega, however, the differences are slight (vs. Colless”
mean AAUC = 0.0028, vs. Omega: mean AAUC = —0.0076)
and not significant (vs Colless p = .38; vs Omega: p = 91,
Wilcoxon signed rank test). Among the SFS-based statistics,
bsfs achieved significantly higher AUC (p = 0.0011, Wilcoxon
signed rank test) than Tajima’s D with a mean AAUC = 0.022.
We performed some additional analysis to better understand
why SFS-based statistics are better than the tree-based ones for
detecting balancing selection. We found that long branches near
the root of the tree that occur in genealogies under long-term
balancing selection have a pronounced impact on the SFS, but
do not affect the topology of inferred trees.

Effect of variable population sizelt is well known that, when
used to detect natural selection, Tajima’s D is confounded by
population structure and changes in effective population size
(Stajich and Hahn 2005; Biswas and Akey 2006). In the single-
population case, one interpretation of this phenomenon is that
D measures both topological and branch length distortions
compared to the neutral coalescent (Ferretti et al. 2017), and pop-
ulation size changes also distort branch lengths. In contrast, our
SFS-based estimator is designed to detect topological changes
only, and it can be modified to take into account population
size history (Expected site frequency spectrum).

We compared the ability of D and bsfs to detect directional
selection under four scenarios:

¢ Constant population size under neutrality;

¢ Exponential growth under neutrality;

¢ Constant population size with directional selection;
* Exponential growth directional selection.

For the selective scenarios, we introduced a single mutation 250
generations before present to the middle of the 10° base pair re-
gion, restarting the simulation if the mutation was lost or fixed.
The sample size was n = 250 haploids. The recombination and
mutation rates were again 1.25 x 1077 and 2.5 x 10~7. For the
bsfs method, we first estimated the underlying population size
history #(t) using 25Mb of neutral data simulated under the
corresponding demography. Other varying parameters for the
experiments can be seen at Table S1. In the table, N,(0) is the
population size at the time simulation starts, g is the growth
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Figure 2 ROC curves for advantageous heterozygote mutation simulations. s is the selection coefficient, / is the dominance factor,
and t( is the number of generations before present when the mutation was introduced into the sample. Other abbreviations are the

same as in Figure 1.

rate of exponential growth, s is the selective coefficient of the
beneficial mutation and & is the dominance parameter.

In Figure 3a, our method has higher AUC than D for distin-
guishing a neutral model from selection for both constant pop-
ulation size and exponential growth (left and center panels). To
illustrate the pitfalls of using D without correcting for demog-
raphy, we also considered a third scenario (rightmost panel)
in which there is no selection; the only difference between the
two models is that one of them underwent exponential growth,
while effective population size in the other was constant. In this
plot, a “true positive” signifies that the constant-sized model
is rejected in favor of the exponential growth model when the
latter model generated the data, and similarly for a false pos-
itive. As expected, the plot shows that D has high power to
detect exponential growth—however, if the analyst were un-
aware that the population had experienced growth, then this
could wrongly be interpreted as evidence for selection. In con-
trast, after adjusting the expected frequency spectrum to com-
pensate for this effect, our estimator does no better than a coin-
toss (AUC = 0.5) at distinguishing between the two régimes.

Another way to see this result is in Figure 3b, which shows
the empirical distributions of D and f obtained from bsfs. After
correcting for demography, the two neutral simulations (orange
and blue) have roughly the same empirical distribution using
our method, even though they are generated under quite dif-
ferent growth models. In contrast, the distribution of D under
neutral exponential growth closely matches that of directional
selection under exponential growth, and is very different from
the distribution under neutrality and constant population size.

We repeated this experiment under simulated balancing se-
lection by simulating four scenarios:

1. Constant size with no advantageous mutation;
2. Exponential growth with no advantageous mutation;
3. Constant size with heterozygote advantage and;

4. Exponential growth with heterozygote advantage.

For the exponential growth scenarios, the growth began 250
generations ago. Detailed settings for each type of simulation
are shown in Table S2. Results were similar to the directional
selection experiment. In Figure 4b, we see that selection and
growth “cancel out” in Tajima’s D: it has a similar distribu-
tion under exponential growth and balancing selection as under
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Figure 3 Classifying directional selection under different
growth scenarios: Constant vs. Exponential and Neutral

vs. Directional. (a) bsfs is better at detecting true signals in the
first two figures. In the third panel, D conflates exponential
growth with selection. (b) Under neutrality, bsfs has a zero-
centered empirical distribution regardless of growth scenario,
whereas the distribution of D is shifted.
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Figure 4 Classifying balancing selection under different
growth scenarios. Abbreviations follow the same conven-
tion as in Figure 3. (a) bsfs performs better for detecting true
signals in the first two figures. In the third figure Tajima’s D
fails to detect selection. (b) Under neutrality, bsfs has a zero-
centered empirical distribution and balancing selection shifts
the distribution upward. Balancing selection shifts D to posi-
tive values, but exponential growth pulls it downward.

neutrality with constant size. In contrast, the null distribution
of bsfs is invariant after correcting for demography.

Testing procedure Finally, to give intuition for how the testing
procedure used in Real data analysis works, we simulated a
longer chromosome (L = 2.5 x 107 bp) with a beneficial mu-
tation introduced in the middle position. The population size,
the mutation rate and the recombination rate were the same as
in the previous simulations. We only focused on the case where
the selection coefficient s = 0.01 and sample allele frequency
of the mutation was F = 0.75. As detailed in Data analysis
pipeline, we applied a change point detection algorithm to cre-
ate segments of estimates along the genome (Combining $ from
multiple segments). This has the effect of smoothing nearby
similar estimates, thereby reducing noise and false discoveries.
We then computed approximate p-values using a Gaussian ap-
proximation (Significance testing).

Figure 5 (excerpted from Figure S7) shows the segments re-
sulting from this procedure over 250 simulations for bsfs and
Tajima’s D. Both methods are enriched for small p-values near
the site of the mutation (highlighted in gray), but moreso with
bsfs. After performing the segmentation, we classified all those
segments which overlapped the selected locus as “under selec-
tion”, and all other segments were classified as “neutral”. Neu-
tral segments below the rejection threshold therefore represent
false discoveries. In Figure S3, we varied the p-values for each
method to see how many true discoveries result as a function
of the number of false discoveries. Tree-based methods yield
consistently better results overall.

p-value

100 -

10—3 4

10—‘) 4

10—12 4
mm= hsfs — Selection Region

o n-mi-|—q*-,*m

10715 4 .
bsfs — Neutral Region

10°
10—3 4
10—6 4
1079 A

107[2 .
TajD — Selection Region

10712 4 . .
TajD — Neutral Region

T
1.5 2.0 2.5

x107

1.0
Genomic Position

0.0 0.5

Figure 5 Scan statistics for 250 simulations with a single bene-
ficial mutation at the middle position (highlighted in gray and
enlarged for clarity) with selection coefficient s = 0.01 and
sample allele frequency F = 0.75. Both bsfs and Tajima’s D
have smaller p-values around the mutation, but the signal in
bsfs is more pronounced. Neutral segments are shown with
transparency to reduce overplotting.

Real data analysis

We applied our models to data from the 1000 Genomes Project
(The 1000 Genomes Project Consortium 2015), using tree se-
quences that were inferred by Kelleher et al. (2019b). To under-
stand how our model works compared to other known statis-
tics, we focused on 7 regions which are known to experience
selection: LCT in chromosome 2, SLC45A2 in chromosome 5,
HERC2 in chromosome 15 for European populations; SLC44A5
in chromosome 1, EDAR in chromosome 2, ADH1 in chromo-
some 4 for East Asian populations; MHC in chromosome 6 for
all populations. For LCT, SLC45A2, HERC2, SLC44A5, EDAR,
ADHI1 we used the btree statistic to investigate directional selec-
tion since it is sensitive to linkage disequilibrium. For MHC
we used bsfs since our simulation results show that our fre-
quency spectrum-based methods are better at detecting long-
term balancing selection. We performed one-sided testing: for
directional selection, p-values were calculated by p~, and for
balancing selection by p (cf. eqn. 20).

Directional selection Lactose is the principle sugar in milk.
Like other mammals, humans historically lost the intestinal en-
zyme lactase after infancy, and with it the ability to digest milk.
But between 5,000 to 10,000 years ago, a genetic mutation arose
that confers lactase persistence in adults. Today it is found in a
majority of the adult populations of Northern and Central Eu-
rope. The location of this mutation in the gene LCT displays
one of the strongest signals of directional selection in the hu-
man genome (Bersaglieri ef al. 2004).

In Figure 6a, as expected we have a very small p-value for
the European populations around LCT. This indicates our es-
timated B-splitting parameters are negative, as expected for
strong directional selection (The B-splitting family). Specifically,



Utah Residents with Northern and Western European Ancestry
(CEU), British in England and Scotland (GBR) and Finnish in
Finland (FIN) have significantly negative 3. Southern European
populations such as Toscani in Italia (TSI) and Iberian Popula-
tion in Spain (IBS) also show evidence of selection, though the
signal is weaker, reflecting the fact that the strength of selection
may be lower in these populations (Gerbault ef al. 2011).

SLC45A2 is a gene related to pigmentation (Branicki et al.
2008). It encodes a transporter protein that mediates melanin
synthesis. In humans, it has been identified as a factor in the
light skin of Europeans. As shown in Figure 6b, selection sig-
nals tended to be noisier in this region, and our median cen-
tered btree statistic does not see a pronounced peak in this gene.
The segments around this gene have small p-values for only
TSI and CEU. However, the p-values are not above the genome-
wide Bonferroni threshold, and are eclipsed by other nearby re-
gions.

Figure 6¢ shows results for HERC2, which is associated with
eye and skin pigmentation (Donnelly et al. 2012). Around this
region there are blue-eye associated alleles found at high fre-
quencies in European populations. In our results, the lowest
p-value belongs to FIN, followed by GBR and CEU.

Turning to East Asian populations, we first studied
SLC44A5, which is associated with neurological diseases and
has been reported in several recent papers to be under selec-
tion in Japanese and Chinese populations (Liu et al. 2013; Zhao
et al. 2019; Yasumizu et al. 2020). Our method confirms these
findings (Figure 6), with highly significant hits centered on this
gene for Japanese in Tokyo, Japan (JPT) and Han Chinese in
Beijing, China (CHB).

We also found significant hits for all East Asian popula-
tions near EDAR (Figure 6e), again confirming earlier studies
(Botchkarev and Fessing 2005; Hlusko et al. 2018).

Finally, we examined the ADH1 family. Alcohol is degraded
primarily by alcohol dehydrogenase, and genetic variation af-
fecting the rate of alcohol degradation found at ADH1B and
ADHIC. Variants of these genes are thought to be associated
with alcohol drinking habits and alcoholism. Our results (Fig-
ure 6f) confirm earlier findings (Han ef al. 2007) that this family
is under directional selection in Kinh in Ho Chi Minh City, Viet-
nam (KHV); Japanese in Tokyo, Japan (JPT); and Southern Han
Chinese (CHS).

Estimates of the raw j values corresponding to these Man-
hattan plots are given in the supplement (see Figures 513 and
S14).

Balancing selection Next, we used our method to study long-
term balancing selection in the major histocompatibility com-
plex (MHC). MHC is a large region of the vertebrate genome
with immune-related functionality. Because evolution favors
allelic diversity in this region (Takahata 1993), we expect to de-
tect signals of balancing selection in all populations. Our results
(Figure 7) confirm this expectation; we observed highly signif-
icant signals across all 1000 Genomes subpopulations. Impor-
tantly, since this is an upper tail test for bsfs, we reject the null
hypothesis that B = 0 in favor of the alternative § > 0. Thus,
our method correctly infers that MHC is under balancing selec-
tion.

Results of genome-wide scan In Supplemental Tables, we list
the genome-wide top hits (in terms of p-value) for the five major
superpopulations in the 1000 Genomes dataset. They include a
number of loci that are known to be under selection; such as
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LCT, ALDH; the HLA complex; and various pigmentation, and
eye color-related genes. There are also other hits that, as far as
we can tell, have not yet been implicated by natural selection.
Note that, due to linkage, many more genes are tagged than are
likely under selection, but the genes should be proximal to a
selected locus. A browser which can be used to explore all of
our results, and compare them with classical tests of neutrality,
is provided at the URL shown below.

Discussion

In this paper, we presented some new methods to detect natu-
ral selection by generalizing Kingman’s coalescent to allow for
systematic topological imbalance. We showed how this leads to
relatively simple estimators of selection that can be applied to
frequency spectrum data, or just as easily to sequences of esti-
mated genealogies. An important feature of our method is its
ability to incorporate demographic information. Using simu-
lations, we recapitulated the tendency, already well known in
the literature, of widely used deviance statistics like Tajima’s
D to conflate variations in effective population size with natu-
ral selection. We showed that our method can correct for this
tendency, by incorporating demographic estimates into its gen-
erative model of tree formation.

Our method is an example, albeit a basic one, of a recent
trend towards likelihood-based methods for inferring natural
selection from polymorphism data. We stress that our method
will generally not be as sensitive as more elaborate and correct
approximations to the coalescent under selection—compare, for
example, the results of our Figures S6 and S8 with Figures 3 and
4 of Stern et al. (2019). However, an advantage of our method
is that it is easy to understand and interpret, and also fast, re-
quiring only to solve a univariate optimization problem. This
can be done in only fractions of a second even for large sam-
ple sizes (Figure S2). Running our method on the entire 1000
Genomes dataset takes a few hours on a cluster. We see our
work as adding to the toolbox of exploratory procedures that
the analyst performs when studying a new dataset. Large hits
from our method can flag a region for subsequent analysis, per-
haps using more advanced and computationally expensive full-
likelihood procedures. To this end, we have created an open
source software package that makes it easy to run our methods.
Researchers can also access our 1000 Genomes Project results
with the browser we developed for this purpose. It enables
searching through genome-wide scans performed using our
estimates, along with classical neutrality tests, across all popu-
lations.

There are several ways our model could be improved. We
focused on the beta-binomial distribution because of its earlier
usages in phylogenetics. However, as noted earlier, other distri-
butions are possible, and perhaps some other model produces
tree topology distributions that are more suited to studying nat-
ural selection. A drawback of our method is that the current im-
plementation cannot model ancestral population structure. In
particular, barriers to gene flow between ancestral populations
could be confused with balancing selection. Using techniques
developed by Kamm et al. (2017, 2020), our method could po-
tentially be extended to model this, though such an extension
would be non-trivial. Another, related, criticism of our model
is that it assumes that B is constant over time. This seems
most appropriate for highly variable regions like HLA, where
there is a continual introduction of new selected alleles. For
regions that came under sudden directional selection as the re-
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sult of the introduction of a beneficial allele, it would be better
to use a model where the topological distribution of subtrees
varies over time. This could allow for estimating the age of a
selected variant, or understanding whether selection occurred
on standing variation or because of the introduction of a new
allele, both topics of longstanding interest in population genet-
ics (Malaspinas et al. 2012; Hedrick 2013; Barrett and Schluter
2008; Feder et al. 2014; Terhorst et al. 2015; Palamara et al. 2018).
Incorporating this feature into our SFS-based model would be
challenging, as it creates dependence between the “time” and
“topology” components of the expected frequency spectrum,
thus invalidating equation (6). But it is easily added to the tree-
based estimator in From inferred trees. We experimented with
this, but found that the branch lengths from the current gener-
ation of tree sequence estimation programs are not yet reliable
enough to support this kind of inference. As these methods con-
tinue to improve, this could be a future extension of our work.

On a similar note, when running our method on tree se-
quence data, we observed that the estimated trees contained
many polytomies. Since trees generated under Kingman’s coa-
lescent are almost surely bifurcating, we broke these polytomies
arbitrarily in order to perform inference. However, polytomies
could comprise another signal of selection, particularly in the
case of recent positive selection. Incorporating a probabilistic
model of node size into our method could potentially make use
of this signal. The A-coalescent (Sagitov 1999; Pitman 1999) is
a generalization of Kingman’s coalescent which allows for var-
ious forms of multiple-merger events. Research on inference
methods under generalized coalescents is ongoing (Spence et al.
2016; Blath et al. 2016). In the future, our method could be ex-
tended to work under this more general model.

Data and code availability

All of the data analyzed in this paper are publicly available.
An open source implementation of our methods is available
at https://github.com/jthlab/bim. Notebooks which reproduce our
analyses are available at https:/github.com/jthlab/bim-paper.
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