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Cellular materials have been widely used in load carrying lightweight structures. Although
lightweight increases natural frequency, low stiffness of cellular structures reduces natural
frequency. Designing structures with higher natural frequency can usually avoid
resonance. In addition, because of the less amount of materials used in cellular
structures, the energy absorption capability usually decreases such as under impact
loading. Therefore, designing cellular structures with higher natural frequency and higher
energy absorption capability is highly desired. In this study, machine learning and novel
inverse design techniques enable to search a huge space of unexplored structural designs.
In this study, machine learning regression and Generative Neural Networks (GANs) were
used to form an inverse design framework. Optimal cellular unit cells that surpass the
performance of biomimetic structures inspired from honeycomb, plant stems and
trabecular bone in terms of natural frequency and impact resistance were discovered
using machine learning. The discovered optimal cellular unit cells exhibited 30–100%
higher natural frequency and 300% higher energy absorption than those of the biomimetic
counterparts. The discovered optimal unit cells were validated through experimental and
simulation comparisons. The machine learning framework in this study would help in
designing load carrying engineering structures with increased natural frequency and
enhanced energy absorption capability.

Keywords: cellular structures, optimization, machine learning, Gans, inverse design, natural frequency, energy
absorption, 3D printing

INTRODUCTION

Lightweight structures such as lattice cored sandwich have been widely used in load bearing
engineering structures such as fuselage and wing of aircraft, wind turbine blade, ship hull, bridge
deck, offshore oil platform, etc. One concern with these lightweight structures persists in their
resonance to dynamic load and vulnerability to impact load. Increasing the natural frequency to
avoid resonance and enhancing energy absorption are viable ways to improve the performance of
these lightweight structures. To this end, biomimetic design has been a driving force for discovering
optimal lattice structures.

Biomimetic cellular structures inspired from nature such as honeycombs, plant stems, luffa-
sponges, trabecular bones, muscles, beetle wings, etc., are widely studied for their excellent specific
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stiffness, strength, and energy absorption properties (Gibson and
Ashby, 1997; Zhang et al., 2015; Xiyue and Fan, 2016; Tsang and
Raza, 2018; Tsang et al., 2019; Yu et al., 2019; Challapalli and Li,
2020; Ha and Lu, 2020). Hexagon shaped cellular structures
inspired from honeycombs have been extensively studied and
optimized for their superior energy absorption capacities (Zhang
et al., 2015). Different plant stems like bamboo, rice and square
stems have been mimicked to design cylindrical rods with the
buckling strength seven times higher than solid and hollow
cylinders (Challapalli and Li, 2020; Ha and Lu, 2020). The
hierarchical bio-cellular structure of luffa sponge with micro
and macro pores is mimicked to manufacture foam cylinders
reinforced by stiff thin-walled carbon fiber reinforced polymer
(CFRP) tubes with good energy absorption properties (Xiyue and
Fan, 2016). The hierarchical inner structures of tabular bones and
muscles are taken as inspiration to design energy absorbing and
impact resistant tubular sections that exhibited 176% increase in
the energy absorption for the third order hierarchy compared to
the first order (Tsang and Raza, 2018; Tsang et al., 2019). Highly
efficient energy absorbent properties of beetle electra provide
inspiration to design trabecular honeycomb structures that are
five times better than conventional quadrilateral tubes used in the
crash box beams of modern devices and vehicles (Yu et al., 2019).
Frequency optimization of macroscopic structures is studied to be
an important criterion to avoid destructive response (Zhang et al.,
2020). Natural frequency is optimized by 40% to aid structures
subjected to dynamic loading (Huang et al., 2010).

Apart from biomimicry of cellular structures, topology
optimization has been widely used to propose and optimize
novel cellular structures for superior performance in various
applications (Huang et al., 2010; Huang et al., 2018; Zhang et al.,
2020; Li et al., 2021; Lu and Tong, 2021). Inhomogeneous cellular
materials with higher natural frequencies are designed using a
multiscale topology optimization method (Zhang et al., 2020).
Topology optimization is also used to optimize the
microstructure orientation of cellular materials, cellular
structures with zero Poisson’s ratio and non-uniform cellular
structures (Huang et al., 2018; Li et al., 2021; Lu and Tong,
2021). One disadvantage of topology optimization is that it can
only optimize an already existing structure bymass reduction or can
only produce a few optimal structures based on the required criteria.
It is believed that there exists a huge unexplored space of cellular
structures that can perform better than their biomimetic
counterparts. In our previous studies, we demonstrated inverse
structural design techniques by using machine learning regression
and Generative Neural Networks (GANs) to optimize several
lightweight lattice unit cell structures with superior load carrying
capacity compared to octet lattice unit cell (Challapalli et al., 2021).
Machine learning techniques like forward regression with adequate
training data can drastically reduce the computational time for
calibrating the structural properties of cellular structures while
GANs can be used to generate many new structures based on
the training data. These machine learning techniques have been
successfully used to assist the discovery of various new polymers,
materials, and chemical compounds and predict structural
properties (Aru et al., 2016; Chen et al., 2018; Wu et al., 2019;
Challapalli et al., 2021; Challapalli and Li, 2021; Guo et al., 2021).

Nonlinear relations in the polymer property predictions have been
handled using Kernel Ridge Regression (KRR) that accelerates the
discovery of new polymers (Aru et al., 2016). It has been studied and
indicated that Gaussian Process Regression (GPR) is more suitable
for predicting a better uncertain/confidence interval of polymers
and their properties (Wu et al., 2019). GPR models have been used
to predict the structural properties of lattice unit cells under uniaxial
compression and assisted in their structural optimization, which
exhibits 57% increase in the compression strength and 160%
increase in their buckling strength (Challapalli and Li, 2021).
The mechanical properties of cement have been predicted by
using Support Vector Machines (SVM) which are found to be
very effective in real value function estimation (Chen et al., 2018).

In this study, we implemented the inverse design framework
similar to our previous study (Challapalli et al., 2021) to propose
novel cellular structures that exhibit superior energy absorption
properties compared to the widely accepted honeycomb structure
and other biomimetic cellular structures. This was done by first
considering a representative volume element (RVE) which can be
used to form a huge datasets of new cellular structure designs.
ANSYS workbench was initially used to create a dataset
consisting of around 2,000 cellular unit cell structure designs
to calibrate their mass, compression strength and natural
frequencies. Using this training data set, forward regression
models to estimate the structural properties and GANs to
propose new designs were established. Finally, optimal cellular
structures with superior natural frequencies and equivalent
specific strength compared to biomimetic honeycomb
structures were proposed by combining the GANs and
forward regression models into an inverse design framework.
Considering these structures, uniaxial compression, Dynamic
Mechanical Analysis (DMA) and impact tests were conducted
to compare their compression strength and energy absorption
capacities. Detailed discussions on the methods used, results and
validations are presented in the following sections.

METHODS

Dataset Generation and Fingerprinting
Data generation and fingerprinting are crucial parts in any study
involving machine learning application. In order to train a

FIGURE 1 | (A) Representative volume element (RVE), (B) quarter of the
cellular structure design formed using the RVE and (C) complete cellular
structure formed by mirroring the RVE in horizontal and vertical axis (top view).
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regression model to predict the mass, compression load and
natural frequency of various cellular unit cells, a training
dataset needs to be formed. In this study, the structures in
focus are thin-wall cellular unit cell structures that exhibit
higher natural frequencies compared to honeycomb and other
biomimetic structures. The height of all the unit cells and their
wall thickness is constant for simplicity in generating new
designs. A representative volume element (RVE) as shown in
Figure 1Awith 9 vertices is formed in a 2D format. Using vertices
of the RVE, several lines can be drawn connecting any two
neighboring vertices. Combining a few lines that connect
different neighboring vertices will form a quarter of the unit
cell. Now bymirroring this combination of lines in horizontal and
vertical axis can form a 2D image. By assigning thickness to the
lines and extruding them in the third dimension form a full 3D
unit cell.

Fingerprinting is the process of converting the designs into a
consistent machine-readable format. Since all the designs are
formed by mirroring the RVE in horizontal and vertical axis and
have the same wall thickness and height, these features do not
contribute to the machine learning process and can be omitted
from the fingerprints. This reduces the fingerprinting process to
the initial RVE which only consists of thin lines connecting the 9
vertices in the 3 by 3matrix. For the fingerprinting, all the vertices
are named from 1 to 9 and each line formed by connecting the
neighboring vertices is named after the two vertices it connects.
Now the fingerprint of a single unit cell is formed by combining
the names of all the lines forming that unit cell. For example, in
Figure 1B the lines connecting vertices 1 and 4, 1 and 5, and 2 and
4 are named as 14, 15 and 24, respectively. The rest of the lines are
named in a similar manner and the combination of all the line
names (14 15 23 24 47 59 78 89) will be the fingerprint of a single
unit cell. While designing the unit cell for numerical simulations,
the fingerprint design from the RVE is mirrored into the
horizontal and vertical axis to form a complete unit cell as
stated earlier. Using this fingerprinting process, a design can
be easily inferred from a fingerprint, or a design can be easily
converted into a fingerprint. For forward regression and inverse
design, these fingerprints are further converted into a vector of 1’s
and 0’s for more accurate machine learning predictions. This is
done by assigning a 20-vector space (12 14 15 23 24 25 26 35 36
45 47 48 56 57 58 59 68 69 78 89) for all the possible lines of the
RVE in a vector and by placing “1” in the vector if a particular
fingerprint consists of that line and by placing “0s” in the rest of
the spaces. For example, the final fingerprint of the design in
Figure 1Bwill be of the form (0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1).
Consistent boundary conditions should be set for generating all
the data points and the same technique should be adopted to
fingerprint all the designs for logical forward regression and
inverse design.

Forward Regression
Once the data generation and fingerprinting process is ready, a
training dataset of 2,000 fingerprints are considered to train
machine learning models for forward regression (Refer to
Supplementary Material Table 1 for training dataset
fingerprints). ANSYS workbench tools are used to predict the

mass, load, and first natural frequency of each fingerprint under
uniaxial compression from the training dataset (Refer to
Supplementary Material S7, S8 for numerical simulations).
As discussed earlier, natural frequency plays a prominent role
in dynamic structural loading (Huang et al., 2010). Here only the
first natural frequencies of the cellular unit cells are considered as
the rest of the natural frequencies follow similar trend as the first
one and it simplifies the regression process. MATLAB regression
analysis tool (MATLAB, 2020) is used to test the accuracy of
various regression models like ensemble trees, Gaussian Process
Regression (GPR) and Support Vector Machines (SVM) to
predict the mass, maximum load, and natural frequency of
new cellular structures. The quadratic SVM model was able to
do the mass predictions with a root mean squared error (RMSE)
of 0.0048 Kg while the GPR models gave the best accuracy in
predicting the maximum load and natural frequency of cellular
unit cell structures with a RMSE of 0.16628 N and 0.8031 Hz,
respectively. Figure 2 shows the prediction vs. response plots for
the best performing regression models. The roughly symmetric
scattering of the points along the diagonal line implicates good
models.

Though the forward regression models exhibit good results
and can be used to estimate the structural properties of the
cellular unit cells within a very short period and minimal
computational effort, it is hard to pick the desired optimal
structures from the datasets consisting of hundreds of
thousands of designs. Handling huge datasets and manually
filtering them are not ideal. Hence, GANs are used to generate
optimal structures that consists of the desired properties. An
inverse design framework constructed using GANs, forward
regression and training datasets to generate optimal cellular
unit cells based on their natural frequency is presented in the
next section.

Optimization Through Inverse Design
Once the best regression models are identified, an inverse design
framework is developed, which is able to predict optimal cellular
unit cells compared to honeycomb unit cell and to predict unit
cells with desired structural properties. The inverse design
framework is constructed by combining GANs with forward
regression and other desired boundary conditions. GANs are a
type of machine learning technique that is formed by combining
two neural networks. A generative neural network that generates
random noise and feeds it to the discriminator that trains on the
input data to discriminate fake data from the generator that
doesn’t match the input data. These two neural networks
iteratively train until the discriminator couldn’t distinguish
fake or real data, i.e., the generator neural network only
generates data that is very close to the input data fed to the
discriminator. GANs have been used widely. For example, GANs
were used to produce 121 new crystalline porous materials by
considering energy and material dimensions (Kim et al., 2020).
GANs have also been used to discover new meta-surfaces with
better control over optical properties of light (Liu et al., 2018). A
novelty of 92.83% is achieved in designing new materials using
GANs in which 84.5% percentage of the samples are chemically
valid (Dan et al., 2020). GANs have been successfully used to
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design complex architecture porous materials with Hashin-
Shtrikman upper bounds on isotropic elastic stiffness (Mao
et al., 2020). The mechanical response of non-uniform
geometrical patterns is predicted by using a DNN (Deep
Neural Network) system with an NMSE (Normalized Mean
Square Error) of 0–0.3 (Ma et al., 2020). In this study, to train
the GAN system, a subset of 300 cellular unit cells that have better
natural frequency as compared to honeycomb unit cell are
extracted from the initial training dataset and are fed to the
discriminator of the GAN system. The discriminator iteratively
trains with the generator until the generator generates new
fingerprints that are very similar but not the same as the

subset of cellular unit cells fed to the discriminator. Thus, new
untrained fingerprints are generated using the GANs and the
cellular unit cell properties like the mass and natural frequency
are predicted using the forward regression models. Combined,
the inverse design framework consists of GANs, forward
regression models, initial conditions, and boundary conditions.
Design constraints like the required mass, maximum load or
natural frequency can be set as the boundary conditions to
generate new cellular unit cells with desired structural
properties. The input to this framework will be the desired
properties in a cellular unit cell in the form of boundary
conditions and the output will be a set of novel cellular unit

FIGURE 2 | True Vs. Prediction responses of mass (Quadratic SVM), load (Cubic GPR) and natural frequency (Rational quadratic GPR) from left to right respectively.

FIGURE 3 | Framework for inverse design of optimal cellular unit cells. Step 1. The GAN system is trained to generate novel cellular unit cell fingerprints. Step 2.
Desired properties (high natural frequency, low mass) are fed as inputs to the boundary conditions. Step 3. The newly generated fingerprints from the GAN system are
passed through the boundary conditions and forward regression model for mass and natural frequency predictions. Step 4. Optimal cellular unit cell fingerprints that
satisfy the boundary conditions are produced.
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cells as shown in Figure 3. Here, to predict optimal cellular unit
cells that perform better than biomimetic cellular structures,
honeycomb unit cell structural properties are set as boundary
conditions along with the regression models. Novel optimal
cellular unit cell fingerprints that have higher natural
frequencies without compromising the mass and strength
compared to the honeycomb unit cell are generated using the
inverse design framework. Simulation comparisons for natural
frequencies of the proposed models are presented in the following
sections.

Uniaxial Compression
A few fingerprints of optimal cellular unit cell structures based on
their superior performance in natural frequency compared to
honeycomb structured unit cell are selected to observe their
uniaxial compression behavior. These structures are designed
into 3D models using a CAD design software (Solidworks
(BIOVIA, 2021)). All the 3D models were converted into STL
files and are 3D printed using a stereolithographic 3D printer and
photopolymer procured from Formlabs as shown in Figure 4A
(Refer to S1 for material properties). Figure 4B shows a specimen
under uniaxial compression test. After postprocessing, a Q-TEST
150 machine is used to conduct uniaxial compression tests on all
the samples. The maximum load before failure for each sample is
recorded for comparisons and validations. ANSYS design
modeler and simulation software were used for the numerical
analysis. The 3D models from Solidworks were converted into
XML format and imported to the ANSYS design (ANSYS, 2021)
modeler for pre-processing. The bulk material properties like the
density, Poisson’s ratio, and stress—strain curves from uniaxial
compression were uploaded directly into the software. These bulk
material properties are obtained from the uniaxial compression
test of 3D printed cylinders (12.7 × 12.7 × 25.4) by following the
ASTM D695-15 standard (ASTM D695-15, 2015) for 3D

printable polymers. Constant printing orientation for
calibrating the material properties and manufacturing the
cellular structures is followed. A mesh convergence test is
conducted for the design to obtain consistent results without
too much affecting the computational time (Refer to
Supplementary Materials S1, S9 for details).

Dynamic Compression Analysis
To observe the behavior of the proposed unit cells under cyclic
loading, several designs were 3D printed using the same SLA
printer and clear photopolymer mentioned in the uniaxial
compression section. An RSA-G2 Dynamic Mechanical
Analyzer is used to conduct dynamic analysis on all the
specimens at a constant room temperature with varying
frequency as shown in Figure 5. The storage modulus, loss

FIGURE 4 | Additively manufactured (A) cellular unit cells and (B) Uniaxial compression.

FIGURE 5 | RSA-G2 Dynamic Mechanical Analyzer with honeycomb
unit cell specimen.
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modulus and damping (tan (delta)) properties of the specimen
are obtained for an angular frequency range of 1–62 rad/s
(0.16–10 Hz) and 0.125% strain under compression (Refer to
S10 (c) for theoretical background). All the specimens are
designed to have similar overall volume (2 mm × 1.2 mm ×
1.15 mm).

Impact Test
The optimal cellular unit cells obtained through inverse design
framework are used to fabricate cellular core sandwich
structures. Extrusion based 3D printing is used to
manufacture all the samples using PLA as raw material as
shown in Figure 6B. Instron Dynatup 8250 H V impact
tester was used to conduct the low velocity impact tests with
a hammer weight of 11.2 kg and impact velocity of 2 m/s
(Konlan et al., 2020) as shown in Figure 6A. Solidworks is
used to design all sandwich structures and ANSYS LS-DYNA
was used to conduct the explicit non-linear finite element
simulations of the low velocity impact tests. The sandwich
structures are designed to be of the same overall volume
(120 mm × 25.4 mm × 4 mm).

THEORETICAL BACKGROUND

Vibration Theory of Cellular Structures
To evaluate the natural frequencies of the cellular unit cells, the
structures are assumed to have constant stiffness and mass with
no damping, time varying force, displacement or pressures
applied. The natural circular frequency (ωi) derived from the
solution of equation of motion (Refer to SupplementaryMaterial
S10, (a) for governing equations) can be calculated using the
following equation (Singiresu, 2018):

ωi �
����
[K]
[M]

√
(1)

fi � ωi

2π
(2)

where fi � ith natural frequency, [K] � structural stiffness
matrix, and [M] � structural mass matrix.

From Eq. 1, it can be observed that the natural frequency of a
structure depends upon the effective properties of the structure
and mass. To calibrate the effective properties of the cellular
structures, the computational homogeneous technique (CHT)
based on the Hooke’s law (Autar, 2006; Cheng et al., 2017) has
been used and proved to be effective. Based on the CHT, the
generalized Hooke’s law can be used to determine the stiffness
matrix of cellular unit cells. In this study, all the unit cells are
designed with a twofold rotational symmetry. Hence the Hooke’s
law will be of the form (Refer to Supplementary Material S10B
for background),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�σ11
�σ22
σ33
�σ23
�σ13
�σ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

C44 0 0
0 C55 0
0 0 C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ε11
�ε22
�ε33
�c23
�c13
�c12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Cij � Cji and �c � 2�ε

(3)

here �σ and �ε are the equivalent stress and strain tensors of the
cellular unit cell, respectively. Considering that only one
component of the strain tensor is not zero, and six boundary
conditions with three uni-axial compressions and three shear
deformations, the effective stiffness matrix of each unit cell can be
determined as following,

FIGURE 6 | (A) Instron Dynatup impact tester, (B) Extrusion based 3D printer (upper right), Additively manufactured of sandwich structures (lower right).
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C11 � �σ11
�ε11

, C21 � �σ22

�ε11
, C31 � �σ33

�ε11
, where �ε11 ≠ 0;

C22 � �σ22
�ε22

, C23 � �σ33

�ε22
, where �ε22 ≠ 0;C33 � �σ33

�ε33
, , where �ε33 ≠ 0;

C44 � �σ23
�c23

, where �c23 ≠ 0;C55 � �σ13

�c13
, where �c13 ≠ 0;C66 � �σ12

�c12
, where �c12 ≠ 0;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

From the above model (Refer to Supplementary Material
S10B for more details on CHT) it can be observed that the
stiffness properties of the cellular unit cells depend on the
geometry of individual unit cell as

�σ ij � ∑Fij

A
(5)

where Fij � corresponding force, and A � Area of cross section.
Since the training dataset in this study consists of several

complex designs, it is hard and time consuming to adopt these
models for each design. Hence, numerical simulation was
adopted to generate the training dataset. Further, the machine
learning regression models were trained and they were much
faster and simpler than the theoretical model in predicting the
structural properties.

Machine Learning Models
In this study, MATLAB regression learner toolbox was used to
predict the mass, load, and natural frequency of each cellular
unit cell in this study. Support Vector Regression models
(SVM) were used to predict the mass values of the cellular
structures. SVM model tries to find a best hyperplane that fits
within a threshold value rather than trying to minimize the
error between real and predicted values. The MATLAB
toolbox implements the inbuilt linear epsilon-insensitive
SVM (ε − SVM) regression. The objective of this model is
to find a function f(x) for which the observed response values
(yn) do not deviate greater than ε for each training point x.
SVM uses the following function to predict new values
(Vapnik, 1995):

f(x) � ∑ N
n�1(an − apn)(xn x) + b (6)

where N � number of observations, xn � set of observation, n �
number of observations, and an, apn � non-negative multiplier for
observations xn.

The Gaussian Process Regression (GPR) model used to predict
the load and natural frequency is a kernel-based probabilistic
model. A set of random latent variables for which any finite
number of them have a Gaussian distribution is used by the GPR
models to get the response. The function for the GPR model is as
follows (Rasmussen and Williams, 2006):

P(yn

∣∣∣∣f(xn), xn) ∼ N(y∣∣∣∣h(xn)Tβ + f(xn), σ2) (7)

where yn � response variables, f(xn) � zero mean GP with
covariance function, k(x, x′), h(xn)T � function to transform
the original feature vectors xn into new feature vectors, and
σ2, β � error variance and coefficients estimated from the data
respectively.

RESULTS

Natural Frequency
ANSYS workbench—design modeler is used to design the cellular
structures and the model analysis tool using mechanical APDL
solver is employed to simulate the natural frequency of each
cellular unit cell with fixed support on one end and uniform
displacement of 20% on the other end for all the designs. The
optimized unit cells are compared for their natural frequency.
The comparisons are made by designing several unit cells with
varying wall thickness and the calibrated normalized first natural
frequencies. Here, honeycomb unit cells are considered as the
datum structure, hence the normalized natural frequencies are
calculated with the following equation:

f1 normalized � f1,j

f1,H
(8)

wheref1,j � first natural frequency of jth unit cell, andf1,H � first
natural frequency of honeycomb unit cell.

It can be seen from Figure 7 that the normalized natural
frequency of the optimized cellular unit cells is about 10–50%
higher than the biomimetic unit cells like honeycomb, bamboo
and trabecular bone structures that are widely studied for their
high natural frequency and energy absorption properties. The
honeycomb structure can be seen to perform better than other
biomimetic structures like the bamboo stem and trabecular bone
within the same overall volume. It is seen that, within the same
mass range, Models 1 to 4 all have higher natural frequency than
that of the biomimetic counterparts. Once the mass exceeds about
2g, Model 5 also shows higher natural frequency (Refer to
Supplementary Material S2A for Mass vs. Load and
Supplementary Material S2B for Mass vs. Natural Frequency
comparisons). The higher natural frequency makes Models 1 to 5
better choice as cellular unit cells. Hence these structures are
considered for further experimental and simulation validations to
observe their behavior under uniaxial compression, DMA, and
impact tests.

Experimental and Simulation Validation for
Uniaxial Compression of Optimal Cellular
Unit Cells
Figure 8 shows the performance of the optimized cellular unit
cells in terms of normalized load plotted with changing wall
thickness compared with honeycomb structure. Here, the wall
thickness on the x-axis is incremented for all the designs
identically.

Here,

Specific loadnormalized � Specific load of individual unit cell

Specific load of individual unit cell

(9)

Hence, the normalized loads of honeycomb unit cells appear to
be 1 for all the wall thicknesses and the performance of the
optimal cellular unit cells can be clearly seen to be ranging from
50–250% better than honeycomb unit cell, except for Model 5.
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The experimental and simulation results can be seen to be in good
agreement and the slight difference can be attributed to the minor
imperfections in the 3D printed parts caused during the support
removal process or part handling. It can be observed that the load
range of optimal cellular unit cells like Models 1, 2 and 3 is much
higher compared to honeycomb unit cell with the same overall

volume and wall thickness. From Supplementary Material S2,
the Mass vs. Load comparisons, it is seen that the optimal unit
cells can be designed with much wider range of mass, as
compared to the honeycomb unit cell. It is known that the
natural frequency is inversely proportional with the square
root of the mass. Here we show in Supplementary Material

FIGURE 7 | Numerical simulations for Wall thickness versus Normalized natural frequency of optimal cellular unit cells compared with biomimetic cellular unit cells,
(b-1) Honeycomb, (b-2) Model 1, (b-3) Model 2, (b-4) Model 3, (b-5) Model 4, (b-6) Model 5, (b-7) Bamboo (Bionic tube) and (b-8). Trabecular bone.

FIGURE 8 | Experimental and simulation Wall Thickness versus Normalized Specific load comparison for several cellular structures under uniaxial compression.
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S2 that the optimal unit cells with higher mass have higher
natural frequency, instead of lower natural frequency. The reason
is that the stiffness for these optimal unit cells grows faster than
the increase in mass, leading to increasing natural frequency.
Supplementary Material S3 shows Porosity vs. Normalized load
comparisons. It is seen that within the same porosity range from
90 to 98%, the optimal unit cells have higher load carrying
capacity than the honeycomb unit cell, except for Model 1
when the porosity is 90%. From Supplementary Material S2,
it is observed that within the same mass range about 0.2–0.4 g, all
the optimal cellular unit cells perform similar to the honeycomb
structures under uniaxial compression.

DMA Test Results
Figure 9A shows the storage modulus of different optimized
cellular structures compared to honeycomb structures with
frequency sweep at room temperature. It can be observed that
the storage modulus of the cellular structures trend to gradually
increase with higher frequency. Figure 9B shows the variations in
normalized tan (delta) with wall thicknesses for different optimal

cellular unit cell designs compared to honeycomb unit cell. The
normalized tan (delta) in Figure 9B is obtained in a similar
manner to the normalized specific load in the uniaxial
compression comparisons.

tan (delta)normalized �
(tan (delta)/specific density)j(tan (delta)/specific density)H (10)

where j � each individual unit cell, and H � honeycomb unit cell.
The optimal cellular unit cells like Models 1, 2 and 3 can be

seen to perform decently in comparison to honeycomb unit
cell in terms of tan (delta). It can be observed that all the
structures follow similar trends and the storage modulus and
tan (delta) increase with mass and frequency, except Model 1
in storage modulus and Model 3 in tan (delta). With the same
overall volume, structures like Model 1 and Model 2 exhibit a
wider range of damping properties because of their higher
natural frequencies and mass (Refer to Supplementary
Material S4A,B for storage modulus and tan (delta)
comparisons).

FIGURE 9 | (A) Storage modulus plotted with angular frequency, (B) Normalized Tan (delta) plotted with Wall thickness for different cellular structures.
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Simulation and Experimental Results of Low
Velocity Impact Tests
The optimal unit cells proposed through the inverse design are
tested for their energy absorption capacities. The normalized
energy for impact energy comparisons is calculated by,

Energynormalized �
(energy/specific density)j(energy/specific density)H (11)

where j � each individual unit cell, and H � honeycomb unit cell.
It can be seen from Figure 10A that the optimal cellular

structures when oriented flat (i.e., the walls of the structures
perpendicular to surface) perform 300–800% better than
honeycomb structure in terms of normalized energy (Refer to
Supplementary Material S8 for numerical impact test
comparisons). This is due to the huge voids (porosity) in the

honeycomb structures unlike the optimal cellular unit cells
which mostly have weblike designs that can cover the impact
region of the sandwich structure. In vertical orientations (i.e., the
walls of the structures parallel to surface), it is observed that the
optimal structures perform 50–350% of the honeycomb structure
(Figure 10B). Experimental tests (Figure 10C) conducted on
sandwich structures made of the optimal cellular lattice core
shows the superior performance of the optimal cellular
structures. The gradual decline can be noticed in the normalized
energies of the optimal sandwich panels with the increase in wall
thickness of the unit cells in Figure 10C. The reason behind this is,
as the wall thickness of the unit cells increases, the mass of the
structures also increases. Since the impact is localized at the central
unit cell of the sandwich structure, the mass increase in the rest of
the unit cells within the sandwich structure do not contribute to the
overall performance (normalized energy) of the sandwich structure.

FIGURE 10 | Numerical simulations for low velocity impact test on various optimal cellular structures in (A) flat, (B) vertical orientations and (C) experimental results
in flat orientation.

Frontiers in Mechanical Engineering | www.frontiersin.org November 2021 | Volume 7 | Article 77909810

Challapalli et al. Discovery of Cellular Unit Cells

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


As a result, this increase in the mass of the sandwich structure
affects the normalized energy when compared with wall thickness.
More comparison relative to mass can be seen in Supplementary
Material S5. The experimental results for the impact test in vertical
orientation are not presented in this study because the optimization
through machine learning is only done with the unit cells in flat
orientation. The difference in the normalized energies between the
numerical and experimental analysis in the flat direction (Figures
10A, C) is due to the number of unit cells used in the sandwich
structures in both the methods. Only a single cellular unit cell is
used in the analytical study to compensate for the computational
time and power of the dynamic analysis, whilemultiple unit cells are
used in the experimental study to meet the minimum dimensional
requirements for specimens (120 mm × 25.4 mm × 4mm) when
using the impact testing machine.

CONCLUSION

New inverse machine learning technique to design optimal cellular
unit cells that perform better than biomimetic structures is
proposed. Through this technique, a vast unexplored space of
optimal designs (nearly 750,000) was explored to propose novel
designs with superior structural properties. The optimal cellular
unit cells proposed through this technique exhibit 30–100% higher
normalized natural frequencies, 50–250% better normalized load
carrying capacity, and 300% better normalized impact energy
absorption compared to biomimetic honeycomb structures. The
machine learning discovered unit cells are validated by both
numerical simulation and experimental testing. We believe that
the inverse machine learning framework would be a strong design
tools for discovering other types of structures.
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