
Proceedings of Machine Learning Research 157, 2021 ACML 2021

Penalty Method for Inversion-Free Deep Bilevel Optimization

Akshay Mehra amehra@tulane.edu
Jihun Hamm jhamm3@tulane.edu
Tulane University, New Orleans, LA, USA

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract
Solving a bilevel optimization problem is at the core of several machine learning problems
such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-
data poisoning. Different from simultaneous or multi-objective optimization, the steepest
descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse
of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving
bilevel optimization problems based on the classical penalty function approach. Our method
avoids computing the Hessian inverse and can handle constrained bilevel problems easily.
We prove the convergence of the method under mild conditions and show that the exact
hypergradient is obtained asymptotically. Our method’s simplicity and small space and
time complexities enable us to effectively solve large-scale bilevel problems involving deep
neural networks. We present results on data denoising, few-shot learning, and training-data
poisoning problems in a large-scale setting. Our results show that our approach outperforms
or is comparable to previously proposed methods based on automatic differentiation and
approximate inversion in terms of accuracy, run-time, and convergence speed.
Keywords: Bilevel optimization; data denoising; few-shot learning; data poisoning.

1. Introduction

Bilevel optimization problems appear in the fields of study involving a competition between
two parties or two objectives. Particularly, a bilevel problem arises if one party makes its
choice first affecting the optimal choice for the second party, known as the Stackelberg model
[von Stackelberg (2010)]. The general form of a bilevel optimization problem is as follows

min
u∈U

f(u, v∗) s.t. v∗ = arg min
v∈V(u)

g(u, v) (1)

The ‘upper-level’ problem minu∈U f(u, v∗) is a usual minimization problem except that v∗

is constrained to be the solution to the ‘lower-level’ problem minv∈V(u) g(u, v) which is in
turn dependent on u (see [Bard (2013)] for a review of bilevel optimization). In this work,
we propose and analyze a new algorithm for solving bilevel problems based on the classical
penalty function approach. We demonstrate the effectiveness of our algorithm on several
important machine learning applications including gradient-based hyperparameter tuning
[Domke (2012); Maclaurin et al. (2015); Luketina et al. (2016); Pedregosa (2016); Franceschi
et al. (2017, 2018); Lorraine et al. (2020)], data denoising by importance learning [Liu and
Tao (2016); Yu et al. (2017); Ren et al. (2018); Shu et al. (2019)], meta/few-shot learning
[Ravi and Larochelle (2017); Santoro et al. (2016); Vinyals et al. (2016); Franceschi et al.
(2017); Mishra et al. (2017); Snell et al. (2017); Franceschi et al. (2018); Rajeswaran et al.

© 2021 A. Mehra & J. Hamm.

ar
X

iv
:1

91
1.

03
43

2v
6

 [c
s.L

G
]

5
O

ct
 2

02
1

Mehra Hamm

(2019)], and training-data poisoning [Mei and Zhu (2015); Muñoz-González et al. (2017);
Koh and Liang (2017); Shafahi et al. (2018)].

Gradient-based hyperparameter tuning. Hyperparameter tuning is essential for
any learning problem and grid search is a popular method when domain of the hyperpa-
rameters is a discrete set or a range. However, when losses are differentiable functions of
the hyperparameter(s), a continuous bilevel optimization problem can help find the optimal
hyperparameters. Let u and w be hyperparameter(s) and parameter(s) for a class of learning
algorithms, h(x;u,w) be the hypothesis, Lval(u,w) = 1

Nval

∑
(xi,yi)∈Dval

l(h(xi;u,w), yi) and
Ltrain(u,w) = 1

Ntrain

∑
(xi,yi)∈Dtrain

l(h(xi;u,w), yi) be the loss on validation and training sets,
respectively. Then the best hyperparameter(s) u is the solution to

min
u

Lval(u,w
∗) s.t. w∗ = arg min

w
Ltrain(u,w). (2)

Data denoising by importance learning. Most learning algorithms assume that
the training set is an i.i.d. sample from the same distribution as the test set. However, if
train and test distributions are not identical or if the training set is corrupted by noise or
modified by adversaries, this assumption is violated. In such cases, changing the importance
of each training example, before training, can reduce the discrepancy between the two
distributions. For example, importance of the examples from the same distribution can
be up-weighted in comparison to other examples. Determining the importance of each
training example can be formulated as a bilevel problem. Let u be the vector of non-negative
importance values u = [u1, · · · , uN]T where N is the number of training examples, w be the
parameter(s) of a classifier h(x;w). Assuming access to a small set of validation data, from
the same distribution as test data, Lval(u,w) = 1

Nval

∑
(xi,yi)∈Dval

l(h(xi;u,w), yi) be the loss
on validation set and Lw_train(u,w) := 1∑

i ui

∑
(xi,yi)∈Dtrain

uil(h(xi;w), yi) be the weighted
training error. The problem of learning the importance of each training example is as follows

min
u

Lval(u,w
∗) s.t. w∗ = arg min

w
Lw_train(u,w). (3)

Meta-learning. This problem involves learning a prior on the hypothesis classes (a.k.a.
inductive bias) for a given set of tasks. Few-shot learning is an example of meta-learning,
where a learner is trained on several related tasks, during the meta-training phase, so that it
generalizes well on unseen (but related) tasks during the meta-testing phase. An effective
approach to this problem is to learn a common representation for various tasks and train
task specific classifiers over this representation. Let T be the map that takes raw features to
a common representation T : X → Rd for all tasks and hi be the classifier for the i-th task,
i ∈ {1, · · · ,M} where M is the total number of tasks for training. The goal is to learn both
the representation map T (· ;u) parameterized by u and the set of classifiers {h1, · · · , hM} pa-
rameterized by w = {w1, · · · , wM}. Let Lval(u,wi) := 1

Nval

∑
(xi,yi)∈Dval

l(hi(T (xi;u);wi), yi)
be the validation loss of task i and Ltrain(u,wi) be the training loss defined similarly. Then
the bilevel problem for few-shot learning is as follows

min
u

∑
i

Lval(u,w
∗
i) s.t. w∗i = arg min

wi

Ltrain(u,wi), i = 1, · · · ,M. (4)

At test time the common representation T (· ;u) is kept fixed and the classifiers h′
i for the

new tasks are trained i.e. min
w

′
i
Ltest(u,w

′
i) i = 1, · · · , N where N is the total number of

tasks for testing.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Training-data poisoning. This problem refers to the setting in which an adversary
can modify the training data so that the model trained on the altered data performs
poorly/differently compared to one trained on the unaltered data. Attacker adds one or more
‘poisoned’ examples u = {u1, · · · , uM} to the original training data X = {x1, · · · , xN} i.e.,
X ′ = X

⋃
u with arbitrary labels. Additionally, to evade detection, an attacker can generate

poisoned images starting from existing clean images (called base images) with a bound on
the maximum perturbation allowed. Let Lpoison(u,w) := 1

N

∑
(xi,yi)∈X′×Y ′ l(h(xi;u,w), yi)

be the loss on the poisoned training data, ε be the bound on the maximum perturbation
allowed for poisoned points and the validation set consists of target images that an attacker
wants the model to misclassify. Then the problem of generating poisoning data is as follows

min
u

Lval(u,w
∗) s.t. w∗ = arg min

w
Lpoison(u,w) and ‖xibase − ui‖2 < ε for i = 1, ...,M. (5)

Challenges of deep bilevel optimization. General bilevel optimization problems
cannot be solved using simultaneous optimization of the upper- and lower-level cost and
are in fact, shown to be NP-hard even in cases with linear upper-level and quadratic lower-
level functions [Bard (1991)]. To make the analyses tractable many previous works require
assumptions such as convexity of the lower-level objective and lower-level solution set being
a singleton1. Moreover, for solving bilevel problems involving deep neural networks, with
millions of variables, only first-order methods such as gradient descent are feasible. However,
the steepest descent direction (Hypergradient in Sec. 2.1) using the first-order methods for
bilevel problems requires the computation of the inverse Hessian–gradient product. Since
direct inversion of the Hessian is impractical even for moderate-sized problems, previous
approaches approximate the hypergradient using either forward/reverse-mode differentiation
[Maclaurin et al. (2015); Franceschi et al. (2017); Shaban et al. (2018)] or by approximately
solving a linear system [Domke (2012); Pedregosa (2016); Rajeswaran et al. (2019); Lorraine
et al. (2020)]. However, some of these approaches have high space and time complexities
which can be problematic, especially for deep learning settings.

Contributions. We propose an algorithm (Alg. 1) based on the classical penalty function
approach for solving large-scale bilevel optimization problems. We prove convergence of the
method (Theorem 2) and present its complexity analysis showing that it has linear time and
constant space complexity (Table 1). This makes our approach superior to forward/reverse-
mode differentiation and similar to the approximate inversion-based methods. The small
space and time complexities of the method make it an effective solver for large-scale bilevel
problems involving deep neural networks as shown by our experiments on data denoising,
few-shot learning, and training-data poisoning problems. In addition to being able to solve
constrained problems, our method performs competitively to the state-of-the-art methods on
simpler problems (with convex lower-level cost) and significantly outperforms other methods
on complex problems (with non-convex lower-level cost), in terms of accuracy (Sec. 3),
convergence speed (Sec. 3.5) and run-time (Appendix D.3).

The rest of the paper is organized as follows. We present and analyze the main algorithm in
Sec. 2, present experiments in Sec. 3, and conclude in Sec. 4. Proofs, experimental settings, and
additional results are presented in the supplementary material. The scripts used to generate
the results in this paper are available at https://github.com/jihunhamm/bilevel-penalty.

1. Recently, Liu et al. (2021) presented an analysis of bilevel problems without requiring these assumptions.

https://github.com/jihunhamm/bilevel-penalty

Mehra Hamm

2. Inversion-Free Penalty Method

We assume the upper- and lower-level costs f and g are twice continuously differentiable and
the upper-level constraint function h is continuously differentiable in both u and v. Let ∇uf
and ∇vf denote the gradient vectors, ∇2

uvf denote the Jacobian matrix
[

∂2f
∂ui∂vj

]
, and ∇2

vvf

denote the Hessian matrix
[

∂2f
∂vi∂vj

]
. Following previous works, we also assume the lower-level

solution v∗(u) := arg minv g(u, v) is unique for all u and ∇2
vvg is invertible everywhere.

2.1. Background

A bilevel problem is a constrained optimization problem with the lower-level optimality
v∗(u) = arg minv g(u, v) being a constraint. Additionally, it can also have other constraints
in the upper- and lower-level problems2.

min
u

f(u, v∗), s.t. h(u, v∗) ≤ 0 and v∗(u) = arg min
v
g(u, v). (6)

Inequality constraints h(u, v) ≤ 0 can be converted into equality constraints, e.g., h(u, v) +
s2 = 0 by using a slack variables s, resulting in the following problem

min
u

f(u, v∗), s.t. h(u, v∗) = 0 and v∗(u) = arg min
v
g(u, v). (7)

The assumption about the uniqueness of the lower-level solution for each u allows us to
convert the bilevel problem in Eq. (7) into the following single-level constrained problem:

min
u,v

f(u, v), s.t. h(u, v) = 0 and ∇vg = 0. (8)

For general bilevel problems, Eq. (7) and Eq. (8) are not the same [Dempe and Dutta
(2012)]. But, for simpler problems where the lower-level cost g is convex in v for each u,
the lower-level solution is unique for each u and the upper-level problem does not have any
additional constraints, the problems in Eq. (8) and Eq. (7) are equivalent.

Hypergradient for bilevel optimization. For such simpler problems, we can use
the gradient-based approaches on the single-level problem in Eq. (8) to compute the total
derivative df

du(u, v∗(u)), also known as the hypergradient. By the chain rule, we have df
du =

∇uf + dv
du · ∇vf at (u, v∗(u)). Even if v∗(u) cannot be found explicitly, we can still compute

dv
du using the implicit function theorem. As ∇vg = 0 at v = v∗(u) and ∇2

vvg is invertible, we
get du · ∇2

uvg + dv · ∇2
vvg = 0, and dv

du = −∇2
uvg(∇2

vvg)−1. Thus the hypergradient is

df

du
= ∇uf −∇2

uvg(∇2
vvg)−1∇vf at (u, v∗(u)). (9)

Existing approaches [Domke (2012); Maclaurin et al. (2015); Pedregosa (2016); Franceschi
et al. (2017); Shaban et al. (2018); Rajeswaran et al. (2019); Lorraine et al. (2020)] can be
viewed as implicit methods of approximating the hypergradient, with distinct efficiency and
iteration complexity trade-offs [Grazzi et al. (2020)].

2. Problems with lower-level constraints are less common in machine learning and are left for future work.

Penalty Method for Inversion-Free Deep Bilevel Optimization

2.2. Penalty function approach

The penalty function method is a well-known approach for solving constrained optimization
problems as in Eq. (8) [Bertsekas (1997)]. It has been previously applied to solve bilevel
problems described in Eq. (6) under strict assumptions and only high-level descriptions of
the algorithm were presented [Aiyoshi and Shimizu (1984); Ishizuka and Aiyoshi (1992)]. The
corresponding penalty function that is minimized to solve Eq. (8) has the form f̃(u, v; γ) :=
f(u, v) + γk

2 (Ψ(‖h(u, v)‖) + ‖∇vg(u, v)‖2) which is the sum of the original cost f and the
penalty terms for constraint satisfaction and first-order stationarity of the lower-level problem.
The function Ψ is an interior or exterior penalty function depending on whether h(u, v) is
an equality or inequality constraint. The following result for obtaining a solution to the
inequality constrained problem in Eq. (6) by solving Eq. (10) is known.

(ûk, v̂k) = arg min
u,v

f̃(u, v; γk) = arg min
u,v

f(u, v) +
γk
2

(Ψ(‖h(u, v)‖) + ‖∇vg(u, v)‖2). (10)

Theorem 1 (Simplified Theorem 8.3.1 [Bard (2013)]). Assume f and g are convex in v
for any fixed u, Let {γk} be any positive (γk > 0) and divergent (γk → ∞) sequence. If
{(ûk, v̂k)} is the corresponding sequence of the optimal solutions to Eq. (10), then the
sequence {(ûk, v̂k)} has limit points any one of which is a solution to Eq. (6).

2.3. Our algorithm

Theorem 1 presents a strong result, however, it is not very practical, especially for bilevel
problems involving deep neural networks due to the following reasons. Firstly, the minimizer
(ûk, v̂k) for Eq. (10) cannot be computed exactly for each γk and it is not computationally
possible to increase γk →∞. Secondly, the upper- and lower-level costs f and g may not be
convex in v for any u. To overcome some of these limitations and guarantee convergence
in deep learning settings, we allow εk-optimal (instead of exact) solution to Eq. (10) at
each k. Our Theorem 2 below (for equality constrained problems Eq. (7)), shows that the
solution found by allowing εk-optimal solution to Eq. (10) converges to a KKT point of
Eq. (8), assuming that linear independence constraint qualification (LICQ) is satisfied at
the optimum (i.e., linear independence of the gradients of the constraints, h and ∇vg). We
handle inequality constraints using slack variables and use Ψ(‖ · ‖) = ‖ · ‖2. Using the penalty
function approach, we propose an algorithm for solving large-scale bilevel problems in Alg. 1.

Theorem 2. Suppose {εk} is a positive (εk > 0) and convergent (εk → 0) sequence, {γk} is
a positive (γk > 0), non-decreasing (γ1 ≤ γ2 ≤ · · ·), and divergent (γk →∞) sequence. Let
{(uk, vk)} be the sequence of approximate solutions to Eq. (10) with tolerance (∇uf̃(uk, vk))2+
(∇vf̃(uk, vk))

2 ≤ ε2k for all k = 0, 1, · · · and LICQ is satisfied at the optimum. Then any
limit point of {(uk, vk)} satisfies the KKT conditions of the problem in Eq. (8).

The proof for Theorem 2 is based on the standard proof for penalty function methods
(See [Nocedal and Wright (2006)]) and is presented in the Appendix A. Alg. 1 describes
our method where we minimize the penalty function in Eq. (10), alternatively over v and u.
This greatly reduces the complexity of solving a bilevel problem since in each iteration we
only approximately solve a single-level problem over the penalty function f̃ with guaranteed
convergence to KKT point of Eq. (8). Moreover, for unconstrained problems (h ≡ 0),

Mehra Hamm

Algorithm 1 Our algorithm for solving bilevel problems (Penalty).
Input: K,T, {σk}, {ρk,t}, γ0, ε0, cγ(=1.1), cε(=0.9)
Output: (uK , vT)
Initialize u0, v0 randomly
Begin
for k = 0, · · · ,K-1 do
while ‖∇uf̃‖2 + ‖∇vf̃‖2 > ε2k do
for t = 0, · · · , T -1 do
vt+1 ← vt − ρk,t∇vf̃ (from Eq. (10))

end for
uk+1 ← uk − σk∇uf̃ (from Eq. (10))

end while
γk+1 ← cγγk, εk+1 ← cεεk

end for

Lemma 3 below shows that the approximate gradient direction ∇uf̃ , computed from Alg. 1
becomes the exact hypergradient Eq. (9) asymptotically.

Lemma 3. Assume h ≡ 0. Given u, let v̂ be v̂ := arg minv f̃(u, v; γ) from Eq. (10). Then,
∇uf̃(u, v̂; γ) = df

du(u, v̂) as in Eq. (9).

Thus if we find the minimizer v̂ of the penalty function for given u and γ, Alg. 1 computes
the exact hypergradient for unconstrained problems (Eq. (9)) at (u, v̂). A similar theoretical
analysis of the penalty method for non-bilevel problems was recently presented in [Shi and
Hong (2020)] using a different stopping condition and a weaker constraint quantification
condition. Although we have a similar theoretical result, [Shi and Hong (2020)] shows results
on small-scale experiments on non-bilevel problems whereas we demonstrate our Alg. 1 on
large-scale bilevel problems appearing in machine learning involving deep neural networks.

Comparison of Penalty with other algorithms. Previous algorithms for solving
bilevel optimization problems rely on computing an approximation to the hypergradient
using forward/reverse-mode differentiation (FMD/RMD) or approximately solving a linear
system (ApproxGrad) (See Appendix B for a summary). Unlike these methods, Penalty
does not require an explicit computation of the hypergradient in each iteration and obtains
the exact hypergradient asymptotically, leading to better run-times for the experiments
(Sec. 3.5 and Appendix D.3). Secondly, Penalty provides an easy way to incorporate
upper-level constraints for various problems, unlike other methods which have to rely on
projection to satisfy the constraints. Although projection is a reasonable method for convex
constraints but for non-convex constraints, where computing the projection is intractable,
Penalty has a significant computational advantage. Thirdly, for problems with multiple
lower-level solutions, Penalty converges to the optimistic case solution without modification
(Appendix C.3) whereas convergence of other methods is unknown because the hypergradient
is dependent on the choice of the particular minimizer of the lower-level cost. Lastly, for
unconstrained problems, we show the trade-offs of the different methods for computing the
hypergradient in Table 1 and see that as T (total number of v-updates per one hypergradient
computation) increases, FMD and RMD become impractical due to O(cUT) time complexity

Penalty Method for Inversion-Free Deep Bilevel Optimization

Table 1: Complexity analysis of various bilevel methods (Appendix B) on unconstrained problems.
U is the size of u, V is the size of v, T is the number of v-updates per one hypergradient
computation. P , p and q are variables of size U × V , U × 1, V × 1 used to compute the
hypergradient. We assume gradient of f , g, Hessian-vector product ∇2

vvg and Jacobian-
vector product ∇2

uvg can be computed in time c = c(U, V). (We use gradient descent as
the process for FMD and RMD.)

Method v-update Intermediate updates Time Space

FMD v ← v − ρ∇vg P ← P (I - ρ∇2
vvg)− ρ∇2

uvg O(cUT) O(UV)

RMD v ← v − ρ∇vg
p← p− ρ∇2

uvg · q O(cT) O(U + V T)
q ← q − ρ∇2

vvg · q

ApproxGrad v ← v − ρ∇vg q ← q − ρ∇2
vvg[∇2

vvg · q −∇vf] O(cT) O(U+V)

Penalty v ← v − ρ[∇vf + γ∇2
vvg∇vg] Not required O(cT) O(U+V)

and O(U + V T) space complexity, respectively, whereas ApproxGrad and Penalty, have
the same linear time complexity and constant space complexity. Recently, Lorraine et al.
(2020) proposed an implicit gradient-based method similar to ApproxGrad where the Hessian
inverse term in the hypergradient is approximated using the terms of the Neumann series.
Another recent method, BVFIM, Liu et al. (2021), solves the bilevel problem by using a
regularized value function of the lower-level problem in the upper-level objective and then
solves a sequence of unconstrained problems. The time and space complexity of both these
methods are the same as those of Penalty. Since the complexity analysis does not show
the quality of the hypergradient approximation of these methods, we extensively compare
Penalty against existing bilevel solvers (Sec. 3) and show its superiority on synthetic and
real problems. We present a detailed comparison between ApproxGrad and Penalty since
they have the same complexities and show that Penalty has better performance, run-time,
and convergence speed (Fig. 4 and Fig. 5 in Appendix D).

Improvements. Some of the assumptions made for analysis such as unique lower-level
solution may not hold in practice. Here, we discuss some techniques to address these issues
and improve Alg. 1. The first problem is non-convexity of the lower-level cost g, which leads
to the problem that a local minimum of ‖∇vg‖ can be either minima, maxima, or a saddle
point of g. To address this we modify the v-update in Eq. (10) by adding a ‘regularization’
term λkg to the cost. The minimization over v becomes minv(f̃ + λkg). This affects the
optimization in the beginning; but as λk → 0 the final solution remains unaffected with or
without regularization. The second problem is that the tolerance ∇(u,v)f̃(uk, vk; γk) ≤ εk
may not be satisfied in a limited time and the optimization may terminate before γk becomes
large enough. The method of multipliers and augmented Lagrangian [Bertsekas (1976)] can
help the penalty method to find a solution with a finite γk. Thus we add the term ∇vgT ν to
the penalty function in Eq. (10) to get minu,v(f̃ +∇vgT ν) and use the method of multipliers
to update ν. In summary, we use the following update rules. uk+1 ← uk− ρ∇u(f̃ +∇vgT νk),
vk+1 ← vk − σ∇v(f̃ +∇vgT νk + λkg), νk+1 ← νk + γk∇vg. Practically, the improvement
due to these changes is moderate and problem-dependent (see Appendix C for details).

Mehra Hamm

3. Experiments

In this section, we evaluate the performance of the proposed method (Penalty) on machine
learning problems discussed earlier. Since previous bilevel methods in machine learning
dealt only with unconstrained problems, we evaluate Penalty on unconstrained problems in
Sec. 3.1-Sec. 3.3 and show its effectiveness in solving constrained problems in Sec. 3.4.

3.1. Synthetic problems

We compare Penalty against gradient descent (GD), reverse-mode differentiation (RMD),
and approximate hypergradient method (ApproxGrad) on synthetic examples. We omit
the comparison with forward-mode differentiation (FMD) because of its impractical time
complexity for larger problems (Table 1). GD refers to the alternating minimization: u←
u − ρ∇uf , v ← v − σ∇vg. For RMD, we used the version with gradient descent as the
lower-level process. For ApproxGrad experiments, we used Adam for all updates including
solving the linear system. We found that Adam performs similar to the conjugate gradient
method for solving the linear system with enough iterations. Since Adam uses the GPU
effectively we used it for all experiments with ApproxGrad with a large number of iterations
and added regularization to improve the ill-conditioning when solving the linear systems.
Using simple quadratic surfaces for f and g, we compare all the algorithms by observing
their convergence as a function of the number of upper-level iterations for a different number
of lower-level updates (T). We measure the convergence using the Euclidean distance of the
current iterate (u, v) from the closest optimal solution (u∗, v∗). Since the synthetic examples
are not learning problems, we can only measure the distance of the iterates to an optimal
solution (‖(u, v)− (u∗, v∗)‖22). Fig. 1 shows the performance of two 10-dimensional examples
described in the caption (see Appendix E.1). As one would expect, increasing the number
T of v-updates makes all the algorithms, except GD, better since doing more lower-level
iterations makes the hypergradient estimation more accurate but it increases the run time of
the methods. However, even for these examples, only Penalty and ApproxGrad converge to
the optimal solution and GD and RMD converge to non-solution points. A large T (eg. 100)
makes RMD converge too but for large-scale experiments, it’s impractical to have such a
large T. From Fig. 1(b), we see that Penalty converges even with T=1 while ApproxGrad
requires at least T=10 and RMD needs an even higher T to converge. This translates to
smaller run-time for our method since run-time is directly proportional to T (Table 1).

In Fig. 2 we show examples with ill-conditioned or singular Hessian for the lower-level
problem (∇2

vvg). The ill-conditioning poses difficulty for the methods since the implicit
function theorem requires the invertibility of the Hessian at the solution point. Fig. 2
shows that only Penalty converges to the true solution even though we added regularization
(∇2

vvg + λI) while solving the linear system in ApproxGrad. Additionally, we report the
wall clock times for different methods on the four examples tested here in Table 4 in the
Appendix. We can see that as we increase the number of lower-level iterations all methods
get slower but Penalty is still faster than both RMD and ApproxGrad. Although GD is the
fastest but as seen in Fig. 1 and 2, GD does not converge to optima since not all bilevel
solutions are saddle points. Moreover, for bilevel problems such as in Eq. (3) and Eq. (5) the
upper-level costs are not directly dependent on the upper-level variable, thus the comparison
with GD is omitted for large-scale bilevel problems.

Penalty Method for Inversion-Free Deep Bilevel Optimization

0 20000 40000
0
5

10
15
20

T=1

GD

0 20000 40000
0
5

10
15
20

RMD

0 20000 40000
0
5

10
15
20

ApproxGrad

0 20000 40000
0
5

10
15
20

Penalty

0 20000 40000
0
5

10
15
20

T=5

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

T=10

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

(a)

0 20000 40000
0

10
20
30
40

T=1

GD

0 20000 40000
0

10
20
30
40

RMD

0 20000 40000
0

10
20
30
40

ApproxGrad

0 20000 40000
0

10
20
30
40

Penalty

0 20000 40000
0

10
20
30
40

T=5

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

T=10

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

(b)
Figure 1: Convergence of GD, RMD, ApproxGrad, and Penalty vs upper-level epochs (x-

axis) on synthetic problems: f(u, v) = ‖u‖2 + ‖v‖2, g(u, v) = ‖1-u-v‖2 (a) and
f(u, v) = ‖v‖2 - ‖u−v‖2, g(u, v) = ‖u-v‖2 (b). Mean curve (blue) is superimposed
on 20 independent trials (yellow).

0 20000 40000
0
5

10
15
20

T=1

GD

0 20000 40000
0
5

10
15
20

RMD

0 20000 40000
0
5

10
15
20

ApproxGrad

0 20000 40000
0
5

10
15
20

Penalty

0 20000 40000
0
5

10
15
20

T=5

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

T=10

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

0 20000 40000
0
5

10
15
20

(a)

0 20000 40000
0

10
20
30
40

T=1

GD

0 20000 40000
0

10
20
30
40

RMD

0 20000 40000
0

10
20
30
40

ApproxGrad

0 20000 40000
0

10
20
30
40

Penalty

0 20000 40000
0

10
20
30
40

T=5

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

T=10

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

0 20000 40000
0

10
20
30
40

(b)
Figure 2: Convergence of GD, RMD, ApproxGrad, and Penalty vs upper-level epochs (x-

axis) for synthetic problems: f(u, v)=‖u‖2 + ‖v‖2, g(u, v)=(1-u-v)TATA(1-u-v)
(a) and f(u, v)=‖v‖2-(u-v)TATA(u-v), g(u, v)=(u-v)TATA(u-v) (b), where ATA
is a rank-deficient random matrix. Mean curve (blue) is superimposed on 20
independent trials (yellow).

3.2. Data denoising by importance learning

Table 2: Test accuracy (%) of the classifier learned after
data denoising using importance learning. (Mean
± s.d. of 5 runs)

Dataset Bilevel Approaches
(Noise%) Oracle Val-Only Train+Val ApproxGrad Penalty

MNIST (25) 99.3±0.1 94.6±0.3 83.9±1.3 98.11±0.08 98.89±0.04
MNIST (50) 99.3±0.1 94.6±0.3 60.8±2.5 97.27±0.15 97.51±0.07
CIFAR10 (25) 82.9±1.1 70.3±1.8 79.1±0.8 71.59±0.87 79.67±1.01
CIFAR10 (50) 80.7±1.2 70.3±1.8 72.2±1.8 68.08±0.83 79.03±1.19
SVHN (25) 91.1±0.5 70.6±1.5 71.6±1.4 80.05±1.37 88.12±0.16
SVHN (50) 89.8±0.6 70.6±1.5 47.9±1.3 74.18±1.05 85.21±0.34

We evaluate the performance of
Penalty on learning a classifier
from a dataset with corrupted
labels by posing the problem as
an importance learning problem
(Eq. (3)). The performance of the
learned classifier using Penalty,
with 20 lower-level updates (T),
is evaluated against the following
classifiers: Oracle: classifier trained on the portion of the training data with clean labels and
the validation data, Val-only: classifier trained only on the validation data, Train+Val:
classifier trained on the entire training and validation data, ApproxGrad: classifier trained
with our implementation of ApproxGrad, with 20 lower-level and 20 linear system updates.
We evaluate the performance on MNIST, CIFAR10, and SVHN datasets with the validation
set sizes of 1000, 10000, and 1000 points respectively. We used convolutional neural networks

Mehra Hamm

Table 3: Few-shot classification accuracy (%) on Omniglot and Mini-ImageNet. We report mean±s.d.
for Omniglot and 95% confidence intervals for Mini-Imagenet over five trials. Results for
learning a common representation using Penalty, ApproxGrad and RMD [Franceschi et al.
(2018)] are averaged over 600 randomly sampled tasks from the meta-test set. Results
for previous methods using similar models are also reported (MAML [Finn et al. (2017)],
iMAML [Rajeswaran et al. (2019)], Prototypical Networks (Proto Net) [Snell et al. (2017)],
Relation Networks (Rel Net) [Sung et al. (2018)], SNAIL [Mishra et al. (2017)]).

Learning a common representation
MAML iMAML Proto Net Rel Net SNAIL RMD ApproxGrad Penalty

Omniglot

5-way 1-shot 98.7 99.50±0.26 98.8 99.6±0.2 99.1 98.6 97.75±0.06 97.83±0.35
5-way 5-shot 99.9 99.74 ± 0.11 99.7 99.8±0.1 99.8 99.5 99.51±0.05 99.45±0.05
20-way 1-shot 95.8 96.18 ± 0.36 96.0 97.6±0.2 97.6 95.5 94.69±0.22 94.06±0.17
20-way 5-shot 98.9 99.14 ± 0.10 98.9 99.1±0.1 99.4 98.4 98.46±0.08 98.47±0.08

Mini-Imagenet

5-way 1-shot 48.70±1.75 49.30 ± 1.88 49.42±0.78 50.44±0.82 55.71±0.99 50.54±0.85 43.74±1.75 53.17±0.96
5-way 5-shot 63.11±0.92 - 68.20±0.66 65.32±0.82 68.88±0.92 64.53±0.68 65.56±0.67 67.74±0.71

(architectures described in Appendix E.2) at the lower-level for this task. Table 2 summarizes
our results for this problem and shows that Penalty outperforms Val-only, Train+Val, and
ApproxGrad by significant margins and in fact performs very close to the Oracle classifier
(which is the ideal classifier), even for high noise levels. This demonstrates that Penalty is
extremely effective in solving bilevel problems involving several million variables (see Table 7
in Appendix) and shows its effectiveness at handling non-convex problems. Along with the
improvement in terms of accuracy over ApproxGrad, Penalty also gives better run-time
per upper-level iteration and higher convergence speed leading to a decrease in the overall
wall-clock time of the experiments (Fig. 4(a) and Fig. 5(a) in Appendix D.3).

Next, evaluate Penalty against recent methods [Ren et al. (2018); Shu et al. (2019)] which
use a meta-learning-based approach to assigns weights to the examples. We used the same
setting as Ren et al.’s uniform flip experiment with 36% label noise on the CIFAR10 dataset
and Wide ResNet 28-10 (WRN-28-10) model (see Appendix D.1). Using T = 1 for Penalty
and 1000 validation points, we get an accuracy of 87.41 ± 0.26 (mean ± s.d. of 5 trials)
comparable to 86.92 (Ren et al.) and 89.27 (Shu et al.). Thus, Penalty achieves comparable
performance to these specialized methods designed for the data denoising problem. The
enormous size of WRN-28-10, restricted us to use T = 1 but we expect larger T to improve
the results (Fig. 5(a) in Appendix D.3). We also compared Penalty against an RMD-based
method [Franceschi et al. (2017)], using the same setting as their Sec. 5.1, on a subset
of MNIST data corrupted with 50% label noise and softmax regression as the model (see
Appendix D.1). The accuracy of the classifier trained on a subset of the data with points
having importance values greater than 0.9 (as computed by Penalty with T = 20) along with
the validation set is 90.77% better than 90.09% reported by the RMD-based method.

3.3. Few-shot learning

Next, we evaluate the performance of Penalty on the task of learning a common representation
for the few-shot learning problem. We use the formulation presented in Eq. (4) and use

Penalty Method for Inversion-Free Deep Bilevel Optimization

Omniglot [Lake et al. (2015)] and Mini-ImageNet [Vinyals et al. (2016)] datasets for our
experiments. Following the protocol proposed by [Vinyals et al. (2016)] for N -way K-shot
classification, we generate meta-training and meta-testing datasets. Each meta-set is built
using images from disjoint classes. For Omniglot, our meta-training set comprises of images
from the first 1200 classes and the remaining 423 classes are used in the meta-testing dataset.
We also augment the meta-datasets with three different rotations (90, 180, and 270 degrees)
of the images as used by [Santoro et al. (2016)]. For the experiments with Mini-Imagenet,
we used the split of 64 classes in meta-training, 16 classes in meta-validation, and 20 classes
in meta-testing as used by [Ravi and Larochelle (2017)].

Each meta-batch of the meta-training and meta-testing dataset comprises of a number
of tasks which is called the meta-batch-size. Each task in the meta-batch consists of a
training set with K images and a testing set consists of 15 images from N classes. We
train Penalty using a meta-batch-size of 30 for 5 way and 15 for 20-way classification for
Omniglot and with a meta-batch-size of 2 for Mini-ImageNet experiments. The training
sets of the meta-train-batch are used to train the lower-level problem and the test sets
are used as validation sets for the upper-level problem in Eq. (4). The final accuracy is
reported using the meta-test-set, for which we fix the common representation learned during
meta-training. We then train the classifiers at the lower-level for 100 steps using the training
sets from the meta-test-batch and evaluate the performance of each task on the associated
test set from the meta-test-batch. The average performance of Penalty and ApproxGrad
over 600 tasks is reported in Table 3. Penalty outperforms other bilevel methods namely the
ApproxGrad (trained with 20 lower-level iterations and 20 updates for the linear system)
and the RMD-based method [Franceschi et al. (2018)] on Mini-Imagenet and is comparable
to them on Omniglot. We demonstrate the convergence speed of Penalty in comparison
to ApproxGrad (Fig. 4(b)) and the trade-off between using higher T and time for the two
methods (see Fig. 5 and Appendix D.3 for a detailed evaluation of the impact of T on the
performance of Penalty) and show that Penalty converges much faster than ApproxGrad.
In comparison to non-bilevel approaches that used models of a similar size as ours, Penalty
is comparable to most approaches and is only slightly worse than [Mishra et al. (2017)]
which makes use of temporal convolutions and soft attention. We used convolutional neural
networks and a residual network for learning the common task representation (upper-level) for
Omniglot and Mini-ImageNet, respectively, and use logistic regression to learn task-specific
classifiers (lower-level).

3.4. Training-data poisoning

Here, we evaluate Penalty on the clean label data poisoning attack problem. We use the setting
presented in [Shafahi et al. (2018)] which adds a single poison point to misclassify a particular
target image from the test set. We use the dog vs. fish dataset and InceptionV3 network as
the representation map. We choose a target image t and a base image b from the test set
such that the representation of the base is closest to that of the target but has a different
label. The poison point is initialized from the base image. Unlike the original approach
[Shafahi et al. (2018)], we use a bilevel formulation along with a constraint on the maximum
perturbation. We solve the bilevel problem in Eq. (5) with an additional feature collision
term (‖r(t)− r(u)‖22) from [Shafahi et al. (2018)] which is shown to be helpful in practice

Mehra Hamm

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

A
tt

ac
k

Su
cc

e
ss

 (
%

)

Average distortion

Penalty
Shafahi et. al

Figure 3: Penalty finds clean label poi-
soning data with smaller dis-
tortion compared to Shafahi
et al. (2018) making the attack
stealthier.

where r(·) is the 2048-dimensional representation
map. The lower-level problem trains a softmax
classifier on top of this representation. (The full
problem is in Eq. (12) of Appendix E.4). We
evaluate the attack success by retraining the soft-
max classifier on the clean dataset augmented
with the poison point. The attack is considered
successful if the target point is misclassified af-
ter retraining. Choosing each correctly classified
point from the test set as the target we search
for the smallest ε ∈ {1, 2, ..., 16} that when used
as the upper bound for the perturbation of the
poison image, leads to misclassification of that target. For comparison, we use the Alg. 1
from [Shafahi et al. (2018)] using `2 projection after each step to constrain the amount of
perturbation. Similar to Penalty, the smallest ε that causes misclassification is recorded for
each target (see Appendix E.4 for details). Fig. 3 shows that Penalty achieves higher attack
success with the same amount of distortion, or in another view, achieves the same attack
success with much less distortion. We ascribe this benefit to the use of the bilevel method
as opposed to a non-bilevel approach in [Shafahi et al. (2018)]. Poison points generated by
Penalty are shown in Fig. 6 in Appendix. Lastly, we also test Penalty on a data poisoning
problem without upper-level constraint (Appendix D.2). We compare it with RMD and
ApproxGrad and show that Penalty outperforms RMD and is comparable to ApproxGrad.

3.5. Convergence speed comparison of Penalty and ApproxGrad

Here, we compare the accuracy and wall clock time for Penalty and ApproxGrad on real
(Fig. 4) and synthetic (Table 4 in Appendix) problems and show that Penalty converges faster
than ApproxGrad. We use the data denoising and few-shot learning problems discussed
earlier for this comparison. In Fig. 4, the training accuracy is indicative of the optimality
of the lower-level problem and the validation/meta-train-test accuracy shows how well the
upper-level problem is being solved during bilevel training. For data denoising, the test
accuracy is a measure of how well the classifier learned using the importance values obtained
from the bilevel training generalizes on the test set. On the other hand, for few-shot learning,
the test accuracy on the tasks in the meta-test set is a measure of how well the common
representation, learned from bilevel training, generalizes to new unseen tasks after training
the softmax classifier on the training set of the meta-test dataset.

We see that for the importance learning problem Penalty quickly reaches a training
accuracy of roughly 75% which is desirable since the dataset contains 25% noise. High test
and validation accuracy are indicative that the importance values learned for the training
data indeed helps to learn a good classifier. To report the performance for few-shot learning
we train the softmax classifier on top of the common representation using the data from the
meta-train-train and meta-test-train sets and then evaluate their performance on meta-train-
test and meta-test-test sets. The results in Fig. 4(b) are an average of over 600 tasks. The
performance on the meta-train-test is indicative of how well the upper-level problem is being
solved. Accuracy on meta-test-test indicates the performance of the learned representation
on new tasks which have not been observed during training. In both the experiments we see

Penalty Method for Inversion-Free Deep Bilevel Optimization

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

A
cc
u
ra
cy
 (
%
)

Wall Clock Time (sec)

Train accuracy

Penalty
ApproxGrad

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

A
cc
u
ra
cy
 (
%
)

Wall Clock Time (sec)

Validation accuracy

Penalty
ApproxGrad

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

A
cc
u
ra
cy
 (
%
)

Wall Clock Time (sec)

Test accuracy

Penalty
ApproxGrad

(a) Data denoising for MNIST with 25% label noise and 1000 validation points. Figures show the
performance of the classifier learned using the importance re-weighted dataset during bilevel
training. 75% train accuracy and 100% validation accuracy is an indication that the bilevel
problem is correctly solved. We see that Penalty reaches this point earlier than ApproxGrad
signifying better convergence speed. High test accuracy indicates the importance values are
enabling good generalization properties on the test set.

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

(%
)

Wall Clock Time (sec)

Test accuracy on tasks in metatest

Penalty

ApproxGrad0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy
 (%

)

Wall Clock Time (sec)

Test accuracy on tasks in metatrain

Penalty
ApproxGrad

(b) 5-way 5-shot learning on Miniimagenet. Figures show the average performance
of the softmax classifier trained using the train sets of meta-train and meta-test
sets, respectively, on top of the common representation which is learned during
bilevel training. The accuracy on the test set of meta-train indicates how well
the upper-level problem is being solved. High performance on test sets of
meta-test shows that the common representation generalizes to new tasks not
observed during training.

Figure 4: Comparison of accuracy and wall clock time (convergence speed) during bilevel training
with Penalty and ApproxGrad on the data denoising problem (Sec. 3.2) and the few-shot
learning problem (Sec. 3.3).

Penalty has a better convergence speed than ApproxGrad. This directly translates to shorter
running times for Penalty, making it a significantly more practical algorithm in comparison
to existing bilevel solvers used for machine learning problems.

4. Conclusion

A wide range of important machine learning problems can be expressed as bilevel optimization
problems, and new applications are still being discovered. So far, the difficulty of solving
bilevel optimization has limited its widespread use for solving large problems involving deep
models. In this work, we presented an efficient algorithm based on penalty function which is
simple and has practical advantages over existing methods. Compared to previous methods
we demonstrated our method’s ability to handle constraints, achieve competitive performance
on problems with convex lower-level costs, and get significant improvements on problems
with non-convex lower-level costs in terms of accuracy and convergence speed, highlighting
its effectiveness in deep learning settings. In future works, we plan to tackle other challenges
in bilevel optimization such as handling problems with non-unique lower-level solutions.

Mehra Hamm

5. Acknowledgement

We thank the anonymous reviewers for their insightful comments and suggestions. This work
was supported by the NSF EPSCoR-Louisiana Materials Design Alliance (LAMDA) program
#OIA-1946231.

References

Eitaro Aiyoshi and Kiyotaka Shimizu. A solution method for the static constrained stackelberg
problem via penalty method. IEEE Transactions on Automatic Control, 29(12):1111–1114,
1984.

Jonathan F Bard. Some properties of the bilevel programming problem. Journal of opti-
mization theory and applications, 68(2):371–378, 1991.

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30.
Springer Science & Business Media, 2013.

Dimitri P Bertsekas. On penalty and multiplier methods for constrained minimization. SIAM
Journal on Control and Optimization, 14(2):216–235, 1976.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

Stephan Dempe and Joydeep Dutta. Is bilevel programming a special case of a mathematical
program with complementarity constraints? Mathematical programming, 131(1-2):37–48,
2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence
and Statistics, pages 318–326, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, pages
1126–1135, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on
Machine Learning, pages 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1563–1572, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. International Conference on Machine Learning,
2020.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Jihun Hamm and Yung-Kyun Noh. K-beam minimax: Efficient optimization for deep
adversarial learning. International Conference on Machine Learning (ICML), 2018.

Yo Ishizuka and Eitaro Aiyoshi. Double penalty method for bilevel optimization problems.
Annals of Operations Research, 34(1):73–88, 1992.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning, pages 1885–1894, 2017.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-
function-based interior-point method for non-convex bi-level optimization. arXiv preprint
arXiv:2106.07991, 2021.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting.
IEEE Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2016.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and
Statistics, pages 1540–1552. PMLR, 2020.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based
tuning of continuous regularization hyperparameters. In International Conference on
Machine Learning, pages 2952–2960, 2016.

Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. Cosine
normalization: Using cosine similarity instead of dot product in neural networks. In
International Conference on Artificial Neural Networks, pages 382–391. Springer, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International Conference on Machine Learning,
pages 2113–2122, 2015.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In AAAI, pages 2871–2877, 2015.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141, 2017.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms
with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 27–38. ACM, 2017.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

Mehra Hamm

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737–746, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems, pages 113–124,
2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. International
Conference on Learning Representations (ICLR), 2017.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In ICML, 2018.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lil-
licrap. One-shot learning with memory-augmented neural networks. arXiv preprint
arXiv:1605.06065, 2016.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. arXiv preprint arXiv:1810.10667, 2018.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor
Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on
neural networks. In Advances in Neural Information Processing Systems, pages 6103–6113,
2018.

Q. Shi and M. Hong. Penalty dual decomposition method for nonsmooth nonconvex opti-
mization—part i: Algorithms and convergence analysis. IEEE Transactions on Signal
Processing, 68:4108–4122, 2020.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
Meta-weight-net: Learning an explicit mapping for sample weighting. In NeurIPS, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, pages 4080–4090, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1199–1208, 2018.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for
one shot learning. In Advances in Neural Information Processing Systems, pages 3630–3638,
2016.

Heinrich von Stackelberg. Market structure and equilibrium. Springer Science & Business
Media, 2010.

Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang, and Dacheng Tao. Transfer learning
with label noise. arXiv preprint arXiv:1707.09724, 2017.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Appendix
We provide the missing proofs in Appendix A, review other methods for solving bilevel
problems in Appendix B. We discuss the modifications to improve the Alg. 1 in Appendix C,
show additional experiment results in Appendix D and conclude by providing experiment
details in Appendix E.

Appendix A. Proofs

Theorem 2. Suppose {εk} is a positive (εk > 0) and convergent (εk → 0) sequence, {γk} is
a positive (γk > 0), non-decreasing (γ1 ≤ γ2 ≤ · · ·), and divergent (γk →∞) sequence. Let
{(uk, vk)} be the sequence of approximate solutions to Eq. (10) with tolerance (∇uf̃(uk, vk))2+
(∇vf̃(uk, vk))

2 ≤ ε2k for all k = 0, 1, · · · and LICQ is satisfied at the optimum. Then any
limit point of {(uk, vk)} satisfies the KKT conditions of the problem in Eq. (8).

Proof. The proof follows the standard proof for penalty function methods, e.g., [Nocedal and
Wright (2006)]. Let w := (u, v) refer to the pair, and let w := (u, v) be any limit point of the
sequence {wk := (uk, vk)}, and

g̃ :=

(
h(u, v)
∇vg(u, v)

)
then there is a subsequence K such that limk∈K wk = w. From the tolerance condition

‖∇wf̃(wk; γk)‖ = ‖∇wf(wk) + γkJ
T
w (g̃(wk))g̃(wk)‖ ≤ εk

we have

‖JTw (g̃(wk))g̃(wk)‖ ≤
1

γk
[‖∇wf(wk)‖+ εk]

Take the limit with respect to the subsequence K on both sides to get JTw (g̃(w))g̃(w) = 0.
Assuming linear independence constraint quantification (LICQ) we have that the columns

of the JTw g̃ =

(
JTu h ∇2

uvg
JTv h ∇2

vvg

)
are linearly independent. Therefore g̃(w) = 0, which is

the primary feasibility condition for Eq. (8). Furthermore, let µk := −γkg̃(wk), then by
definition,

∇wf̃(wk; γk) = ∇wf(wk)− JTw (g̃(wk))µk

We can write[
Jw(g̃(wk))J

T
w (g̃(wk))

]
µk = Jw(g̃(wk))

[
∇wf(wk)−∇wf̃(wk; γk)

]
The corresponding limit µ can be found by taking the limit of the subsequence K

µ := lim
k∈K

µk =
[
Jw(g̃(w))JTw (g̃(w))

]−1
Jw(g̃(wk))∇wf(w)

Since limk∈K∇wf̃(wk; γk) = 0 from the condition εk → 0, we get

∇wf(w)− JTw (g̃(w))µ = 0

at the limit w, which is the stationarity condition of Eq. (8). Together with the feasibility
condition g̃(w) = 0, the two KKT conditions of Eq. (8) are satisfied at the limit point.

Mehra Hamm

Lemma 3. Assume h ≡ 0.
Given u, let v̂ be v̂ := arg minv f̃(u, v; γ) from Eq. (10). Then, ∇uf̃(u, v̂; γ) = df

du(u, v̂) as in
Eq. (9).

Proof. At the minimum v̂ the gradient ∇vf̃ vanishes, that is ∇vf + γ∇2
vvg∇vg = 0.

Equivalently, ∇vg = −γ−1(∇2
vvg)−1∇vf . Then,

∇uf̃(v̂) = ∇uf(v̂) + γ∇2
uvg(v̂)∇vg(v̂) = ∇uf(v̂)−∇2

uvg(v̂)∇2
vvg
−1(v̂)∇vf(v̂),

where γ disappears, which is the hypergradient df
du(u, v̂) as in Eq. (9).

That is, if we find the minimum v̂ of the penalty function for given u and γ, we get the
hypergradient Eq. (9) at (u, v̂). Furthermore, under the conditions of Theorem 1, v̂(u)→
v∗(u) as γ → ∞ (see Lemma 8.3.1 of [Bard (2013)]), and we get the exact hypergradient
asymptotically.

Appendix B. Review of other bilevel optimization methods for
unconstrained problems

Several methods have been proposed to solve bilevel optimization problems appearing in
machine learning, including forward/reverse-mode differentiation [Maclaurin et al. (2015);
Franceschi et al. (2017)] and approximate gradient [Domke (2012); Pedregosa (2016)] described
briefly here.

Forward-mode (FMD) and Reverse-mode differentiation (RMD). Domke [Domke
(2012)], Maclaurin et al.[Maclaurin et al. (2015)], Franceschi et al. [Franceschi et al. (2017)],
and Shaban et al. [Shaban et al. (2018)] studied forward and reverse-mode differentiation
to solve the minimization problem minu f(u, v) where the lower-level variable v follows a
dynamical system vt+1 = Φt+1(vt;u), t = 0, 1, 2, · · · , T − 1. This setting is more general
than that of a bilevel problem. However, a stable dynamical system is one that converges to
a steady state and thus, the process Φt+1(·) can be considered as minimizing an energy or a
potential function.

Define At+1 := ∇vΦt+1(vt) and Bt+1 := ∇uΦt+1(vt), then the hypergradient Eq. (9) can
be computed by

df

du
= ∇uf(u, vT) +

T∑
t=0

BtAt+1 × · · · × AT∇vf(u, vT)

When the lower-level process is one step of gradient descent on a cost function g, that is,

Φt+1(vt;u) = vt − ρ∇vg(u, vt)

we get
At+1 = I − ρ∇2

vvg(u, vt), Bt+1 = −ρ∇2
uvg(u, vt).

At is of dimension V × V and Bt is of dimension V × U . The sequences {At} and {Bt}
can be computed in forward or reverse mode.

Penalty Method for Inversion-Free Deep Bilevel Optimization

For reverse-mode differentiation, first compute

vt+1 = Φt+1(vt), t = 0, 1, · · · , T -1,

then compute

qT ← ∇vf(u, vT), pT ← ∇uf(u, vT)

pt−1 ← pt +Btqt, qt−1 ← Atqt, t = T, T -1, · · · , 1.

Time and space Complexity for computing pt is O(c) since the Jacobian vector product can
be computed in O(c) time and space. The final hypergradient for RMD is df

du = p0.
Hence the final time complexity for RMD is O(cT) and space complexity is O(U + V T).

For forward-mode differentiation, simultaneously compute vt, At, Bt and

P0 ← 0, Pt+1 ← PtAt+1 +Bt+1, t = 0, 1, · · · , T -1.

Time complexity for computing Pt is O(Uc) since PtAt+1 can be computed using U Hessian
vector products each needing O(c) and Bt+1 also needs O(Uc) time for unit vectors ei for
i = 1...U . The space complexity for each Pt is O(UV). The final hypergradient for FMD is

df

du
= ∇uf(u, vT) + PT∇vf(vT).

Hence the final time complexity for FMD is O(cUT) and space complexity is O(U + UV) =
O(UV).

Approximate hypergradient (ApproxGrad). Since computing the inverse of the Hes-
sian (∇2

vvg)−1 directly is difficult even for moderately-sized neural networks, Domke [Domke
(2012)] proposed to find an approximate solution to q = (∇2

vvg)−1∇vf by solving the linear
system of equations ∇2

vvg · q ≈ ∇vf . This can be done by solving

min
q
‖∇2

vvg · q −∇vf‖

using gradient descent, conjugate gradient descent, or any other iterative solver. Note that
the minimization requires evaluation of the Hessian-vector product, which can be done in
linear time [Pearlmutter (1994)]. Hence the time complexity of the method is O(cT) and
space complexity is O(U + V) since we only need to store a single copy of u and v same as
Penalty. The asymptotic convergence with approximate solutions was shown by [Pedregosa
(2016)]. In our experiments we use T steps to solve the linear system.

Appendix C. Improvements to Algorithm 1

Here we discuss the details of the modifications to Alg. 1 presented in the main text which
can be added to improve the performance of the algorithm in practice.

Mehra Hamm

C.1. Improving local convexity by regularization

One of the common assumptions of this and previous works is that ∇2
vvg is invertible

and locally positive definite. Neither invertibility nor positive definiteness hold in general
for bilevel problems, involving deep neural networks, and this causes difficulties in the
optimization. Note that if g is non-convex in v, minimizing the penalty term ‖∇vg‖ does
not necessarily lower the cost g but instead just moves the variable towards a stationary
point – which is a known problem even for Newton’s method. Thus we propose the following
modification to the v-update:

min
v

[
f̃ + λkg

]
keeping the u-update intact. To see how this affects the optimization, note that v-update
becomes

v ← v − ρ
[
∇vf + γk∇2

vvg∇vg + λk∇vg
]

After v converges to a stationary point, we get ∇vg = −(γk∇2
vvg + λkI)−1∇vf , and after

plugging this into u-update, we get

u← u− σ

[
∇uf −∇2

uvg

(
∇2
vvg +

λk
γk
I

)−1
∇vf

]

that is, the Hessian inverse ∇2
vvg
−1 is replaced by a regularized version (∇2

vvg + λk
γk
I)−1 to

improve the positive definiteness of the Hessian. With a decreasing or constant sequence
{λk} such that λk/γk → 0 the regularization does not change to solution.

C.2. Convergence with finite γk

The penalty function method is intuitive and easy to implement, but the sequence {(ûk, v̂k)}
is guaranteed to converge to an optimal solution only in the limit with γ →∞, which may
not be achieved in practice in a limited time. It is known that the penalty method can be
improved by introducing an additional term into the function, which is called the augmented
Lagrangian (penalty) method [Bertsekas (1976)]:

min
u,v

[
f̃ +∇vgT ν

]
.

This new term ∇vgT ν allows convergence to the optimal solution (u∗, v∗) even when γk is
finite. Furthermore, using the update rule ν ← ν + γ∇vg, called the method of multipliers,
it is known that ν converges to the true Lagrange multiplier of this problem corresponding
to the equality constraints ∇vg = 0.

C.3. Non-unique lower-level solution

Most existing methods have assumed that the lower-level solution arg minv g(u, v) is unique
for all u. Regularization from the previous section can improve the ill-conditioning of the
Hessian ∇2

vvg but it does not address the case of multiple disconnected global minima of g.

Penalty Method for Inversion-Free Deep Bilevel Optimization

With multiple lower-level solutions Z(u) = {v | v = arg min g(u, v)}, there is an ambiguity
in defining the upper-level problem. If we assume that v ∈ Z(u) is chosen adversarially (or
pessimistically), then the upper-level problem should be defined as

min
u

max
v∈Z(u)

f(u, v).

If v ∈ Z(u) is chosen cooperatively (or optimistically), then the upper-level problem should
be defined as

min
u

min
v∈Z(u)

f(u, v),

and the results can be quite different between these two cases. Note that the proposed
penalty function method is naturally solving the optimistic case, as Alg. 1 is solving the
problem of minu,v f̃(u, v) by alternating gradient descent. However, with a gradient-based
method, we cannot hope to find all disconnected multiple solutions. In a related problem
of min-max optimization, which is a special case of bilevel optimization, an algorithm for
handling non-unique solutions was proposed recently [Hamm and Noh (2018)]. This idea of
keeping multiple candidate solutions may be applicable to bilevel problems too and further
analysis of the non-unique lower-level problem is left as future work.

C.4. Modified algorithm

Here we present the modified algorithm which incorporates regularization (Appendix. C.1) and
augmented Lagrangian (Appendix. C.2) as discussed previously. The augmented Lagrangian
term ∇vgT ν applies to both u- and v-update, but the regularization term λg applies to only
the v-update as its purpose is to improve the ill-conditioning of ∇2

vvg during v-update. The
modified penalized functions f̃1 for u-update and f̃2 for v-update are

f̃1(u, v; γ, ν) := f̃ +∇vgT ν,
f̃2(u, v; γ, λ, ν) := f̃ +∇vgT ν + λg

The new algorithm (Alg. 2) is similar to Alg. 1 with additional steps for updating λk and
νk.

Appendix D. Additional experiments

D.1. Additional comparison of Penalty on the data denoising problem

D.1.1. Comparison with [Franceschi et al. (2017)]

For comparison of Penalty against the RMD-based method presented in [Franceschi et al.
(2017)], we used their setting from Sec. 5.1, which is a smaller version of this data denoising
task. For this, we choose a sample of 5000 training, 5000 validation and 10000 test points
from MNIST and randomly corrupted labels of 50% of the training points and used softmax
regression in the lower-level of the bilevel formulation (Eq. (3)). The accuracy of the classifier
trained on a subset of the dataset comprising only of points with importance values greater
than 0.9 (as computed by Penalty) along with the validation set is 90.77%. This is better

Mehra Hamm

Algorithm 2 Modified Alg. 1 with regularization and augmented Lagrangian
Input: K,T, {σk}, {ρk,t}, γ0, ε0, λ0, ν0, cγ(=1.1),
cε(=0.9), cλ(=0.9)
Output: (uK , vT)
Initialize u0, v0 randomly
Begin
for k = 0, · · · ,K-1 do
while ‖∇uf̃1‖2 + ‖∇vf̃2‖2 > ε2k do
for t = 0, · · · , T -1 do
vt+1 ← vt − ρk,t∇vf̃2(uk, vt) (Appendix C.4)

end for
uk+1 ← uk − σk∇uf̃1(uk, vT) (Appendix C.4)

end while
γk+1 ← cγγk
εk+1 ← cεεk
λk+1 ← cλλk
νk+1 ← νk + γk∇vg

end for

Table 4: Mean wall-clock time (sec) for 10,000 upper-level iterations for synthetic experiments.
Boldface is the smallest among RMD, ApproxGrad, and Penalty. (Mean ± s.d. of
10 runs)

Example 1 GD RMD ApproxGrad Penalty

T=1 7.4±0.3 15.0±0.1 17.4±0.2 17.2±0.1
T=5 14.3±0.1 51.4±0.3 39.3±2.3 34.3±0.3
T=10 23.2±0.1 95.4±0.2 60.9±0.3 57.0±1.0

Example 2 GD RMD ApproxGrad Penalty

T=1 7.7±0.1 18.5±0.1 17.2±0.3 17.4±0.2
T=5 17.3±0.1 62.7±0.1 37.9±0.1 35.0±0.2
T=10 22.4±2.6 115.0±0.4 64.2±0.3 52.7±1.4

Example 3 GD RMD ApproxGrad Penalty

T=1 8.2±0.2 18.8±0.1 19.8±0.1 19.1±0.1
T=5 17.4±0.1 72.4±0.1 47.1±0.4 38.6±0.4
T=10 28.7±0.6 125.0±9.3 80.6±0.3 62.7±0.1

Example 4 GD RMD ApproxGrad Penalty

T=1 7.9±0.1 19.5±0.1 20.4±0.0 19.6±0.1
T=5 16.9±0.2 72.8±0.5 48.4±0.6 40.2±0.1
T=10 28.3±0.2 138.0±0.2 81.2±1.6 58.0±4.3

than the accuracy obtained by Val-only (90.54%), Train+Val (86.25%) and the RMD-based
method (90.09%) used by [Franceschi et al. (2017)] and is close to the accuracy achieved
by the Oracle classifier (91.06%). The bilevel training uses K = 100 and T = 20, σ0=3,
ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0 with batch-size of 200

Penalty Method for Inversion-Free Deep Bilevel Optimization

90
92
94
96
98

100

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy
 (%

)

Number of lower level iterations (T)

Penalty ApproxGrad

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(a) Importance learning

95
96
97
98
99

100

0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Number of lower level iterations (T)

Penalty ApproxGrad

0

2

4

6

0 10 20

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(b) Few-shot learning

60
63
66
69
72
75

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy
 (

%
)

Number of lower level iterations (T)

Penalty ApproxGrad

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(c) Untargeted data poisoning

Figure 5: Comparison of the final accuracy for different number of lower-level iterations T and
wall-clock time required for single upper-level iteration for different values of T for Penalty
and ApproxGrad (with T updates for the linear system) on data denoising problem
(Sec. 3.2 with 25% noise on MNIST) and few-shot learning problem (Sec. 3.3 with 20 way
5 shot classification on Omniglot) and untargeted data poisoning (Appendix. D.2 with 60
poisoned points on MNIST) .

D.1.2. Comparison with [Ren et al. (2018)]

To demonstrate the effectiveness of the penalty in solving the importance learning problem
with bigger models, we compared its performance against the recent method proposed by
[Ren et al. (2018)], which uses a meta-learning approach to find the weights for each example
in the noisy training set based on their gradient directions. We use the same setting as
their uniform flip experiment with 36% label noise on the CIFAR10 dataset. We also use
our own implementation of the Wide Resnet 28-10 (WRN-28-10) which achieves roughly
93% accuracy without any label noise. For comparison, we used the validation set of 1000
points and training set of 44000 points with labels of 36% points corrupted, same as used by
[Ren et al. (2018)]. We use Penalty with T = 1 since using larger T was not possible due to
extremely high computational needs. However, using a larger value T is expected to improve
the results further based on Fig. 5(a). Different from other experiments in this section we
did not use the arctangent conversion to restrict importance values between 0 and 1 but
instead just normalize the important values in a batch, similar to the method used by [Ren

Mehra Hamm

(a) Clean label poisoning attack on dogfish dataset. The top and middle rows show
the target and base instances from the test set and the last row shows the poisoned
instances obtained from Penalty. Notice that poisoned images (bottom row) are
visually indistinguishable from the base images (middle row) and can evade visual
detection.

(b) Untargeted data poisoning attack on MNIST. The top row shows the learned
poisoned image using Penalty, starting from the images in the bottom row as
initial poisoned images. The column number represents the fixed label of the
image, i.e. the label of the images in the first column is digit 0, the second column
is digit 1, etc.

(c) Targeted data poisoning attack on MNIST. The top row shows the learned
poisoned images using Penalty, starting from the images in the bottom row as
initial poisoned images. Images in the first 5 columns have the fixed label of digit
3, and in the next 5 columns are images with the fixed label of digit 8.

Figure 6: Poisoning points for clean label and simple data poisoning attacks

et al. (2018)], for proper comparison. We used K = 200 and T = 1, σ0=3, ρ0=0.0001, γ0=1,
ε0=1, λ0=10, ν0=0.0 with batch-size of 75 and used data augmentation during training. We
achieve an accuracy of 87.41 ± 0.26.

D.2. Simple data poisoning attack

Here we discuss a simple data poisoning attack problem that does not involve any constraint
on the amount of perturbation on the poisoned data. We solve the following bilevel problem

max
u

Lval(u,w
∗) s.t. w∗ = arg min

w
Lpoison(u,w), (11)

Here, we evaluate Penalty on the task of generating poisoned training data, such that models
trained on this data, perform poorly/differently as compared to the models trained on the
clean data. We use the same setting as Sec. 4.2 of [Muñoz-González et al. (2017)] and
test both untargeted and targeted data poisoning on MNIST using the data augmentation
technique. We assume regularized logistic regression will be the classifier used for training.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Table 5: Test accuracy (%) of untargeted poisoning attack (TOP) and success rate (%) of
targeted attack (BOTTOM), using MNIST (Mean ± s.d. of 5 runs). Results for
RMD are from [Muñoz-González et al. (2017)].

Untargeted Attacks (lower accuracy is better) Targeted Attacks (higher accuracy is better)

Poisoned
points

Label
flipping RMD ApproxGrad Penalty Label

flipping RMD ApproxGrad Penalty

1% 86.71±0.32 85 82.09±0.84 83.29±0.43 7.76±1.07 10 18.84±1.90 17.40±3.00
2% 86.23± 0.98 83 77.54±0.57 78.14±0.53 12.08±2.13 15 39.64±3.72 41.64±4.43
3% 85.17±0.96 82 74.41±1.14 75.14±1.09 18.36±1.23 25 52.76±2.69 51.40±2.72
4% 84.93±0.55 81 71.88±0.40 72.70±0.46 24.41±2.05 35 60.01±1.61 61.16±1.34
5% 84.39±1.06 80 68.69±0.86 69.48±1.93 30.41±4.24 - 65.61±4.01 65.52±2.85
6% 84.64±0.69 79 66.91±0.89 67.59±1.17 32.88±3.47 - 71.48±4.24 70.01±2.95

The poisoned points obtained after solving Eq. (11) by various methods are added to the
clean training set and the performance of a new classifier trained on this data is used to
report the results in Table 5. For untargeted attacks, our aim is to generally lower the
performance of the classifier on the clean test set. For this experiment, we select a random
subset of 1000 training, 1000 validation, and 8000 testing points from MNIST and initialize
the poisoning points with random instances from the training set but assign them incorrect
random labels. We use these poisoned points along with clean training data to train logistic
regression, in the lower-level problem of Eq. (11). For targeted attacks, we aim to misclassify
images of eights as threes. For this, we selected a balanced subset (each of the 10 classes are
represented equally in the subset) of 1000 training, 4000 validation, and 5000 testing points
from the MNIST dataset. Then we select images of class 8 from the validation set and label
them as 3 and use only these images for the upper-level problem in Eq. (11) with a difference
that now we want to minimize the error in the upper level instead of maximizing. To evaluate
the performance we selected images of 8 from the test set and labeled them as 3 and report
the performance on this modified subset of the original test set in the targeted attack section
of Table 5. For this experiment, the poisoned points are initialized with images of classes 3
and 8 from the training set, with flipped labels. This is because images of threes and eights
are the only ones involved in the poisoning. We compare the performance of Penalty against
the performance reported using RMD in [Muñoz-González et al. (2017)] and ApproxGrad.
For ApproxGrad, we used 20 lower-level and 20 linear system updates to report the results in
Table 5. We see that Penalty significantly outperforms the RMD based method and performs
similar to ApproxGrad. However, in terms of wall-clock time Penalty has an advantage over
ApproxGrad (see Fig. 5(c) in Appendix D.3). We also compared the methods against a label
flipping baseline where we select poisoned points from the validation sets and change their
labels (randomly for untargeted attacks and mislabel threes as 8 and eights as 3 for targeted
attacks). All bilevel methods are able to beat this baseline showing that solving the bilevel
problem generates better poisoning points. Examples of the poisoned points for untargeted
and targeted attacks generated by Penalty are shown in Fig. 6. For this experiment, we
used l2-regularized logistic regression implemented as a single layer neural network with the
cross entropy loss and a weight regularization term with a coefficient of 0.05. The model is
trained for 10000 epochs using the Adam optimizer with learning rate of 0.001 for training

Mehra Hamm

with and without poisoned data. We pre-train the lower-level with clean training data for
5000 epochs with the Adam optimizer and learning rate 0.001 before starting bilevel training.
For untargeted attacks, we optimized Penalty with K = 5000, T = 20, σ0=0.1, ρ0 = 0.001,
γ0=10, ε0=1, λ0=100, ν0=0.0. The test accuracy of this model trained on clean data is
87%. For targeted attack, Penalty is optimized with K = 5000, T = 20, σ0=0.1, ρ0 = 0.001,
γ0=10, ε0=1, λ0=1, ν0=0.0.

D.3. Impact of T on accuracy and run-time

Here, we compare the accuracy and time for Penalty and ApproxGrad (Fig. 5 and Table 4) as
we vary the number of lower-level iterations T for different experiments. Intuitively, a larger
T corresponds to a more accurate approximation of the hypergradient and therefore improves
the results for both methods. But this improvement comes with a significant increase in
time. Moreover, Fig. 5 shows that relative improvement after T = 20 is small in comparison
to the increased run-time for Penalty and especially for ApproxGrad. Based on these results
we used T = 20 for all our experiments on real data for both methods. The figure also shows
that even though Penalty and ApproxGrad have the same linear time complexity (Table 1),
Penalty is about twice as fast ApproxGrad in wall-clock time on real experiments.

D.4. Impact of various hyperparameters and terms

Here we evaluate the impact of different initial values for the hyperparameters and the
impact of different terms added in the modified algorithm (Algorithm 2). In particular,
we examine the effect of using different initial values of λ0 for synthetic experiments and
λ0, γ0 for untargeted data poisoning with 60 points and also test the effect of having the λkg
and ∇vgT ν (Fig. 7 and Table 6). Based on the results we find that the initial value of the
regularization parameter λ0 does not influence the results too much and the absence of λkg
(λk = 0) also does not change the results too much. We also don’t see significant gains from
using the augmented Lagrangian term and method of multipliers on these simple problems.
However, the initial value of the parameter γ0 does influence the results since starting from
very large γ0 makes the algorithm focus only on satisfying the necessary condition at the
lower level ignoring the f whereas with small γ0 it can take a large number of iterations for
the penalty term to have influence. Apart from these, we also tested the effects of the rate
of tolerance decrease (cε) and penalty increase (cγ), and initial value for ε0. Within certain
ranges, the results do not change much.

Appendix E. Details of the experiments

All codes are written in Python using Tensorflow/Keras and were run on Intel CORE i9-
7920X CPU with 128 GB of RAM and dual NVIDIA TITAN RTX. Implementation and
hyperparameters of the algorithms are experiment-dependent and described separately below.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Table 6: Effect of using different initial values for various hyper-parameters with Penalty on untar-
geted data poisoning attacks, Appendix D.2 (lower accuracy is better) with 60 poisoning
points (Mean ± s.d. of 5 runs with T = 20 (lower-level iterations)). We used the parameters
corresponding to the bold values for the results reported in Table 5.

Hyper-
parameters Different initial values of various hyperparameters

λ0

λ0 = 0 λ0 = 1 λ0 = 10 λ0 = 100

67.87±1.35 68.21±1.78 68.18±1.04 67.59±1.17

ν
with ν without ν

67.59±1.17 68.82±0.75

γ0

γ0 = 1 γ0 = 10 γ0 = 100

73.38±4.98 67.59±1.17 71.96±3.56

0 20000 40000
0

5

10

15

20

T=1

= 0.0000

0 20000 40000
0

5

10

15

20
= 0.0001

0 20000 40000
0

5

10

15

20
= 0.0100

0 20000 40000
0

5

10

15

20
= 1.0000

0 20000 40000
0

5

10

15

20

T=5

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=10

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=1

= 0.0000

0 20000 40000
0

5

10

15

20
= 0.0001

0 20000 40000
0

5

10

15

20
= 0.0100

0 20000 40000
0

5

10

15

20
= 1.0000

0 20000 40000
0

5

10

15

20

T=5

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=10

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

Figure 7: Penalty method for T=1,5,10 and λ0 = 0, 10−4, 10−2, 1 for Example 1 of Sec.3.1.
Top: with ν. Bottom: without ν. Averaged over 5 trials.

E.1. Synthetic problems

In this experiment, four simple bilevel problems with known optimal solutions are used to
check the convergence of different algorithms. The two problems in Fig. 1 are

min
u,v
‖u‖2 + ‖v‖2, s.t. v = arg min

v
‖1− u− v‖2,

and

min
u,v
‖v‖2 − ‖u− v‖2, s.t. v = arg min

v
‖u− v‖2,

where u = [u1, · · · , u10]T , |ui| ≤ 5 and v = [v1, · · · , v10]T , |vi| ≤ 5. The optimal solutions
are ui = vi = 0.5, i = 1, · · · , 10 for the former and ui = vi = 0, i = 1, · · · , 10 for the
latter. Since there are unique solutions, convergence is measured by the Euclidean distance√
‖u− u∗‖2 + ‖v − v∗‖2 of the current iterate (u, v) and the optimal solution (u∗, v∗).
The two problems in Fig. 2 are

min
u,v
‖u‖2 + ‖v‖2, s.t. v = arg min

v
(1− u− v)TATA(1− u− v)

Mehra Hamm

Table 7: Upper- and lower-level variable sizes for different experiments

Experiment Dataset Upper-level
variable

Lower-level
variable

Data
denoising

MNIST 59K 1.4M
CIFAR10 (Alexnet) 40K 1.2M

CIFAR10 (WRN-28-10) 44K 36M
SVHN 72K 1.3M

Few-shot
learning

Omniglot 111K 39K
Mini-Imagenet 3.8M 5K

Data
poisoning

MNIST (Augment 60
poison points) 47K 8K

ImageNet (Clean
label attack) 268K 4K

and

min
u,v
‖v‖2 − (u− v)TATA(u− v), s.t. v = arg min

v
(u− v)TATA(u− v),

where A is a 5×10 real matrix such that ATA is rank-deficient, and the domains are the same
as before. These problems are ill-conditioned versions of the previous two problems and are
more challenging. The optimal solutions to these two example problems are not unique. For
the former, the solutions are u = 0.5 + p and v = 0.5 + p for any vector p ∈ Null(A). For the
latter, u = p and v = 0 for any vector p ∈ Null(A). Since they are non-unique, convergence
is measured by the residual distance

√
‖P (u− 0.5)‖2 + ‖P (v − 0.5)‖2 for the former and√

‖Pu‖2 + ‖v‖2 for the latter, where P = AT (AAT)−1A is the orthogonal projection to the
row-space of A.

The algorithms used in this experiment are GD, RMD, ApproxGrad, and Penalty. Adam
optimizer is used for minimization everywhere except RMD which uses gradient descent for
a simpler implementation. The learning rates common to all algorithms are σ0 = 10−3 for
u-update and ρ0 = 10−4 for v- and p-updates. For Penalty, the values γ0 = 1, λ0 = 10, and
ε0 = 1 are used. For each problem and algorithm, 20 independent trials are performed with
random initial locations (u0, v0) sampled uniformly in the domain, and random entries of A
sampled from independent Gaussian distributions. We test with T = 1, 5, 10. Each run was
stopped after K = 40000 iterations of u-updates.

E.2. Data denoising by importance learning

Following the formulation for data denoising presented in Eq. (3), we associate an importance
value (denoted by ui) with each point in the training data. Our goal is to find the correct
values for these ui’s such that the noisy points are given lower importance values and clean
points are given higher importance values. In our experiments, we allow the importance
values to be between 0 and 1. We use the change of variable technique to achieve this.
We set u′i = 0.5(tanh(ui) + 1) and since −1 ≤ tanh(ui) ≤ 1, u′i is automatically scaled
between 0 and 1. We use a warm start for the bilevel methods (Penalty and ApproxGrad)
by pre-training the network using the validation set and initializing the importance values
with the predicted output probability from the pre-trained network. We see an advantage in

Penalty Method for Inversion-Free Deep Bilevel Optimization

the convergence speed of the bilevel methods with this pre-training. Below we describe the
network architectures used for our experiments.

For the experiments on the MNIST dataset, our network consists of a convolution layer
with a kernel size of 5x5, 64 filters, and ReLU activation, followed by a max-pooling layer of
size 2x2 and a dropout layer with a drop rate of 0.25. This is followed by another convolution
layer with a 5x5 kernel, 128 filters, and ReLU activation followed by similar max pooling
and dropout layers. Then we have 2 fully connected layers with ReLU activation of sizes 512
and 256 respectively, each followed by a dropout layer with a drop rate of 0.5. Lastly, we
have a softmax layer with 10 classes. We used the Adam optimizer with a learning rate of
0.00001, batch size of 200, and 100 epochs to report the accuracy of Oracle, Val-Only, and
Train+Val classifiers. For bilevel training using Penalty we used K = 100, T = 20, σ0=3,
ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.000001 as per Alg. 2.

For the experiments on the CIFAR10 dataset, our network consists of 3 convolution
blocks with filter sizes of 48, 96, and 192. Each convolution block consists of two convolution
layers, each with a kernel size of 3x3 and ReLU activation. This is followed by a max-pooling
layer of size 2x2 and a drop-out layer with a drop rate of 0.25. After these 3 blocks, we have
2 dense layers with ReLU activation of sizes 512 and 256 respectively, each followed by a
dropout layer with a rate of 0.5. Finally, we have a softmax layer with 10 classes. This is
optimized with the Adam optimizer using a learning rate of 0.001 for 200 epochs with a
batch size of 200 to report the accuracy of Oracle, Val-Only, and Train+Val classifiers. For
this experiment, we used data augmentation during our training. For the bilevel training
using Penalty we used K = 200, T = 20, σ0=3, ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01,
ν0=0.0001 with mini-batches of size 200. We also use data augmentation for bilevel training.

For the experiments on the SVHN dataset, our network consists of 3 blocks each with 2
convolution layers with a kernel size of 3x3 and ReLU activation followed by a max-pooling
and drop out layer (drop rate = 0.3). The two convolution layers of the first block have 32
filters, the second block has 64 filters and the last block has 128 filters. This is followed
by a dense layer of size 512 with ReLU activation and a dropout layer with a drop rate =
0.3. Finally, we have a softmax layer with 10 classes. This is optimized with the Adam
optimizer and learning rate of 0.001 for 100 epochs to report results of Oracle, Val-Only, and
Train+Val classifiers. The bilevel training uses K = 100 and T = 20, σ0=3, ρ0=0.00001,
γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0 with batch-size of 200. The test accuracy of these models,
when trained on the entire training data without any label corruption, is 99.5% for MNIST,
86.2% for CIFAR10, and 91.23% for SVHN. For all the experiments with ApproxGrad, we
used 20 updates for the lower-level and 20 updates for the linear system and did the same
number of epochs as for Penalty (i.e. 100 for MNIST and SVHN and 200 for CIFAR), with a
mini-batch-size 200.

E.3. Few-shot learning

For these experiments, we used the Omniglot [Lake et al. (2015)] dataset consisting of 20
instances (size 28 × 28) of 1623 characters from 50 different alphabets and the Mini-ImageNet
[Vinyals et al. (2016)] dataset consisting of 60000 images (size 84 × 84) from 100 different
classes of the ImageNet [Deng et al. (2009)] dataset. For the experiments on the Omniglot
dataset, we used a network with 4 convolution layers to learn the common representation for

Mehra Hamm

the tasks. The first three layers of the network have 64 filters, batch normalization, ReLU
activation, and a 2 × 2 max-pooling. The final layer is the same as the previous ones with
the exception that it does not have any activation function. The final representation size is
64. For the Mini-ImageNet experiments, we used a residual network with 4 residual blocks
consisting of 64, 96, 128, and 256 filters followed by a 1 × 1 convolution block with 2048
filters, average pooling, and finally a 1 × 1 convolution block with 384 filters. Each residual
block consists of 3 blocks of 1 × 1 convolution, batch normalization, leaky ReLU with leak
= 0.1, before the residual connection and is followed by dropout with rate = 0.9. The last
convolution block does not have any activation function. The final representation size is 384.
Similar architectures have been used itefranceschi2018bilevel in their work with the difference
that we don’t use any activation function in the last layers of the representation in our
experiments. For both the datasets, the lower-level problem is a softmax regression with a
difference that we normalize the dot product of the input representation and the weights with
the l2-norm of the weights and the l2-norm of the input representation, similar to the cosine
normalization proposed by [Luo et al. (2018)]. For N way classification, the dimension of the
weights in the lower-level are 64 × N for Omniglot and 384 × N for Mini-ImageNet. For our
Omniglot experiments we use a meta-batch-size 30 for 5-way and 20-way classification and a
meta-batch-size of 2 for 5-way classification with Mini-ImageNet. We use T = 20 iterations
for the lower-level in all experiments and ran them for K=10000. The hyper-parameters
used for Penalty are σ0=0.001, ρ0=0.001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0001.

E.4. Clean label data poisoning attack

We solve the following problem for clean label poisoning:

min
u

Lt(u,w
∗) + ‖r(t)− r(u)‖ s.t. ‖xbase − u‖2 ≤ ε and w∗ = arg min

w
Lpoison(u,w), (12)

We use the dog vs. fish image dataset as used by [Koh and Liang (2017)], consisting of 900
training and 300 testing examples from each of the two classes. The size of the images in
the dataset is 299 × 299 with pixel values scaled between -1 and 1. Following the setting in
Sec. 5.2 of [Koh and Liang (2017)], we use the InceptionV3 model with weights pre-trained
on ImageNet. We train a dense layer on top of these pre-trained features using the RMSProp
optimizer and a learning rate of 0.001 optimized for 1000 epochs before starting bilevel
training. Test accuracy obtained with training on clean training data is 98.33. We repeat
the same procedure as training during evaluation and train the dense layer with training
data augmented with a poisoned point. For solving the Eq. (12) with Penalty we converted
the inequality constraint to an equality constraint by adding a non-negative slack variable.
Penalty is optimized with K = 200, T = 10, σ0=0.01, ρ0 = 0.001, γ0=1, ε0=1, λ0=1.

The experiment shown in Fig. 3 is done on the correctly classified instances from the test
set. For a fair comparison with Alg. 1 in [Shafahi et al. (2018)] we choose the same target
and base instance for both the algorithms and generate the poison points. We modify Alg.
1 of [Shafahi et al. (2018)] in order to constrain the amount of perturbation it adds to the
base image to generate the poison point. We achieve this by projecting the perturbation
back onto the l2 ball of radius ε whenever it exceeds. This is a standard trick used by several
methods which generate adversarial examples for test time attacks. We use β = 0.1, λ = 0.01
for Alg. 1 of [Shafahi et al. (2018)] and run it for 2000 epochs in this experiment. For both

Penalty Method for Inversion-Free Deep Bilevel Optimization

the algorithms we aim to find the smallest ε that causes misclassification. We incrementally
search for the ε ∈ {1, 2, ..., 16} and record the minimum one that misclassifies the particular
target. These are then used to report the average distortion in Fig. 3.

	1 Introduction
	2 Inversion-Free Penalty Method
	2.1 Background
	2.2 Penalty function approach
	2.3 Our algorithm

	3 Experiments
	3.1 Synthetic problems
	3.2 Data denoising by importance learning
	3.3 Few-shot learning
	3.4 Training-data poisoning
	3.5 Convergence speed comparison of Penalty and ApproxGrad

	4 Conclusion
	5 Acknowledgement
	A Proofs
	B Review of other bilevel optimization methods for unconstrained problems
	C Improvements to Algorithm 1
	C.1 Improving local convexity by regularization
	C.2 Convergence with finite k
	C.3 Non-unique lower-level solution
	C.4 Modified algorithm

	D Additional experiments
	D.1 Additional comparison of Penalty on the data denoising problem
	D.1.1 Comparison with [franceschi2017forward]
	D.1.2 Comparison with [ren18l2rw]

	D.2 Simple data poisoning attack
	D.3 Impact of T on accuracy and run-time
	D.4 Impact of various hyperparameters and terms

	E Details of the experiments
	E.1 Synthetic problems
	E.2 Data denoising by importance learning
	E.3 Few-shot learning
	E.4 Clean label data poisoning attack

