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Abstract

New technologies that enhance soil biodiversity and minimize the use of scarce resources
while boosting crop production are highly sought to mitigate the increasing threats that
climate change, population growth, and desertification pose on the food infrastructure. In
particular, solutions based on plant growth promoting bacteria (PGPBs) bring merits of
self-replication, low environmental impact, protection from biotic and abiotic stressors and
reduction of inputs such as fertilizers. However, challenges in facilitating PGPBs delivery
in the soil still persist and include survival to desiccation, precise delivery, programmable
resuscitation, competition with the indigenous rhizosphere and soil structure. These
factors play a critical role in microbial root association and development of a beneficial
plant microbiome. Engineering the seed microenvironment with protein and
polysaccharides is one proposed way to deliver PGPBs precisely and effectively in the
seed spermosphere. In this review, we will cover new advancements in the precise and
scalable delivery of microbial inoculants, also highlighting the latest development of multi-
functional rhizobacteria solutions that have beneficial impact not only on legumes but also
on cereals. To conclude, we will discuss the role that legislators and policymakers play in
promoting the adoption of new technologies that can enhance the sustainability of crop

production.
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1. Introduction

Population growth, climate change, desertification and salinization of the earth soils have
led to the necessity to build resilient food systems while increasing agricultural output.'*
Chemically-derived synthetic fertilizers and pesticides have been used for decades to
boost plant growth.5¢ It is well known that plants primarily require nitrogen, phosphorus
and potassium (NPK), for their nutrition. However, these nutrients tend to be the limiting
resource in plant growth, thus decreasing the yields.” Synthetic fertilizers are responsible
for 40 to 60% of the world’s food production and are primarily constituted of NPK. Stewart
et al 8 reviewed data representing 362 seasons of crop production and reported that a
minimum of 30 to 50% of the crop yields can be attributed to synthetic fertilizer use,
highlighting the major importance of fertilizer to humanity.® Nitrogen based fertilizer
production accounts for about 1% of the world's energy consumption while emitting about
1.2% of the global anthropogenic CO: emissions that reinforce climate change
effects’®'". In addition poor fertilizer usage and runoff lead not only to degradation and
salinization of soils, but also to eutrophication of our water sources.'-'* Therefore,
upscaling new means to ensure environmentally friendly and sustainable solutions for soil
management and agricultural production is required.'® Furthermore, phosphate is a non-
renewable resource’®. Morocco hosts by far the largest reserve, holding 80% of global
rock phosphate'®. This makes supply a conceivable problem as China, USA and India
(the largest food demanders) will runout of phosphate by 2040."” Microbes have the
potential to increase phosphorus plant intake as most phosphate is held in inorganic
insoluble form [e.g., Ca3(POa4)?] and organic insoluble/soluble form (e.g., phytate and

nucleic acid) which microbes can make available to plants and therefore limit the synthetic
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phosphorus fertilizer application.'® The exploitation of microbes has proven to provide
environmentally friendly and sustainable solutions that should be pursued, yet it shows

some constraints.1419

Chemical fertilizer attributes such as quick and nonspecific action, low-cost production
and ease of storage made them widely acceptable.?’ However, their detrimental effects
to soils, plants and animals when they are not used efficiently motivate us to find
complementary alternatives to optimize their use and, thereby, lowering their impact on
soil fertility and biodiversity.2'-2® Further, pests’ resistance and high concentration
used/overuse are an unresolved problems that generate an increasing demand for
sustainable solutions. Therefore, there is a growing interest in the use of microbial
fertilizers as complements to synthetic fertilizers and agrochemicals.?* Nitrogen and
phosphorus are the two most important nutrients to plants and applied nutrients in
agriculture. Therefore, to secure food supply and farm sustainability, microbial
alternatives are necessary to optimize their use. Nitrogen fixing and phosphate
solubilizing microbes can be used in co-inoculations (individually or as consortiums)
which result in greater plant growth promotion by providing these essential macronutrients

while lowering our carbon footprint.

Naturally derived nutrients and soil stressor alleviators have existed for centuries for
integrated nutrient and disease management and soil biodiversity for rhizobia and now,
they are used for other plant growth promoting microbes.?® Initially, farmers knew that the

soil taken from previous legume-sown field to non-legume field often improved the yield.
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The soil transfer approach was followed till the end of the nineteenth century for legume
seed inoculation.?® Advances in the understanding of plant-microorganisms interactions
are now well-known and have led to the discovery and exploitation of plant growth
promoting microorganisms (PGPMs), which include archaea, bacteria and fungi.
However, some can be a biohazard.?” Plant microbes provide the nutrients that plants
require and regulate plant growth. PGPMs facilitate this directly through nitrogen fixation,
phosphate solubilization and phytohormone production?® (Figure 1), and indirectly by
preventing the negative effects of phytopathogenic organisms through the production of
antimicrobial compounds or the elicitation of induced systemic resistance.?® PGPMs
pertain to the following classes: the rhizospheric microbes found around the soil in the
plants rhizhosphere (root system), phyllosphere (aerial parts of plants), rhizoplane (root
surface) and endophytes found inside the plants root, stem and leaf system.30
Implementing solutions that can be used in agricultural practices is crucial. Our focus in
this review will be on bacteria given that archaea are still an under-detected and scarcely
studied part of the plant microbiome while fungi (which are eukaryotic) are only able to
obtain fixed nitrogen through symbiotic interactions with nitrogen-fixing prokaryotes and
we believe cannot fix nitrogen. Nevertheless, a recent study showed potential for nitrogen

fixation in the fungus-growing termite gut.3'-33
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Figure 1. Mechanism of plant growth promoting microbes.

Emerging technologies such as proteomics, metabolomics, transcriptomics and next-
generation sequencing and data science has made and will make the discovery of useful
compounds, microbe interaction understanding and identification and characterization of
microbial inoculants fast and easier.?” Microbes are very specific to the plant and use
case. Therefore, the gathering of data on microbial interactions and learning from this
data is essential in the use and delivery of plant microbes. Furthermore, the interplay of
microbes in a consortium needs to be better understood as some have synergistic effects
as singular strains but may have detrimental or beneficial effects when used in a
consortium. The inoculation of plants with a microbial consortium provides better benefits

to a plant than with a single isolate.3*3 This could be because microbial consortia may
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have synergistic interactions to provide nutrients, remove inhibitory products and trigger
each other through biochemical and physical activities that might enhance beneficial
effects on plant physiology.®® Recently, a large-scale genomic comparison of PGPMs
discovered that the dominant bacteria associated with plants are Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria, which had also been suggested in
previous studies.3”3® Microbiologists are working on better understanding microbial
communities and this will be essential in understanding how to deliver microbes in
different soils that possess different microbial communities and nutrients. It was
suggested that inoculated bacteria are actively influenced by the plant genotype, cropping
conditions and by co-inoculated or residing bacterial populations which can considerably
influence the resulting PGPB-effects.3%40

Microbes can be classified as either gram negative or gram positive. Gram positive
bacteria possess a thick (20-80 nm) cell wall as outer shell of the cell. In contrast gram
negative bacteria have a relatively thin (<10nm) layer of cell wall, but harbor an additional
outer membrane with several pores and appendices.*' The relatively thin cell wall makes
gram negative microbes delicate to dry, handle, resuscitate and deliver. Currently, there
are several means to deliver microbes in the soil but they are not efficient and lack ease
of implementation in remote regions of the world, where agriculture practices cannot

account for handling of living bacteria.

Plant growth promoting bacteria (PGPBs) are endophytic or rhizospheric and are known
to associate with a variety of crops in plant root structures, leaves and surrounding soils.*?

In an effort to better understand the microbial delivery tools that are currently used to
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deliver PGPBs effectively, it is first necessary to take into account the best strain of
microbe or a microbial consortium for the intended effect on the target crop. Then, the
formulation of the inoculant should be addressed and, finally, the delivery method (Figure
2).43 Currently, delivery happens through biopriming, which is a biological process of seed
treatment that mixes seed hydration and seed inoculation with plant beneficial
microorganisms in order to improve seed’s germination and their protection against soil
borne pathogens, achieving seedling and vegetative growth.** However, given it is labor
intensive nature, this process is mostly appropriate for low-medium volumes of high value
crops.*® Soil inoculation is also used as an alternative. However, it requires high volumes
of inoculant and is labor intensive thus expensive and may be restricted by local
environmental regulation and health concerns.*® Seed coating has the potential to be a
cost-competitive and time-saving approach for crop production and protection.
Nonetheless, microbial seed coating is hindered by low performance and

standardization, which limit its broader use.*®
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Figure 2. From identification to formulation and application of microbial fertilizers.
Application procedure and formulation control the desiccation process.

2. Challenges

Several challenges such as unpredictability of results, difficulties in the identification and
isolation of bacterial strains in field experiments, poor understanding of specific
mechanisms that regulate the interplay between microorganisms, plants and soil have
limited the use and effectiveness of PGPBs.*” In this context, two key aspects that
dominate the effectiveness of inoculation are the microbial isolation and the application
technologies.** The design and delivery of microbial consortia through inoculation is
challenging and requires the understanding of their modes of interaction, microbial
adhesion to seeds, plant root colonization and antagonistic relationship interactions, if

present.*® Differences in root communities have been attributed to plant host effects and
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microbial host preferences, as well as to factors pertaining to soil conditions, microbial
biogeography and the presence of viable microbial propagules.*® The unprotected,
inoculated bacteria must compete with the often better-adapted native microflora and
withstand predation by soil microfauna.*® The environmental conditions also affect the
inoculant efficacy and adverse abiotic stresses (hot, dry and saline conditions) can cause
rapid decrease in PGPBs populations.®®! The following challenges are important in

improving PGPBs performance:

Desiccation

Microbial desiccation affects viability of microorganisms. The number of metabolically or
physically active microbes is the leading factor towards the efficacy of PGPBs when
applied to the seed surface.®? Desiccation is the process of water removal from (or
extreme drying of) an organism, therefore drought stress affects microbial biodiversity in
soils. Microbial viability is important as it increases the effectiveness of microbe infection,
permitting PGPBs to induce a positive effect in plants. Therefore, desiccation tolerant
microbes are highly desirable because they can remain in soils and inoculant formulations
for a longer time than those that are not desiccation tolerant.3* A recent study reported
that 95% of PGPBs does not survive in the time intercurring between inoculation of the
seed and planting (considering a 4 hour time window) and that 83% of the surviving
microorganisms dyes in soil within 22 hrs.%? In nature, there are anhydrobiotic organisms
that are able to survive desiccation by going into a dormant state in which metabolism is

undetected. Once rehydrated, they are able to restore their metabolic processes.
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Learning anhydrobiosis from such organisms will be a beneficial approach in finding ways
to mitigate desiccation stress. Some PGPBs have acquired desiccation tolerant
mechanisms such as the production of intrinsic trehalose.%® The trehalose produced may
regulate most of the plant’'s enzymatic and non-enzymatic responses by supporting the
production of the plant’s collection of phytohormones.>* Other organisms, called xero-
halophiles, are extremophiles and live in areas where soil is very saline and dry.
Desiccation is a topical subject in microbial fertilizers because the efficacy of microbe
fertilizer is correlated with viability of the microbes. As the agriculture field looks for
opportunities to transition from synthetic fertilizers to microbial ones (also known as
biofertilizers), there is an increasing interest in scalable technologies that address
desiccation tolerance by providing, for example, a microenvironment that facilitates
microbe survival and growth in the form of seed coatings that then degrade in the soil and
deliver PGPBs. Alternative technologies to boost PGPBs performance include the
selection of desiccation resistant strains, and the use of synthetic biology tools to provide

desiccation resistant genes.

Climate Change

Climate change has impacted soil microbial communities resulting in increased
atmospheric CO2 concentration, temperature, precipitation and drought.>® The effects
have been both positive and negative. Numerous studies have showed how elevated CO>
levels increased the abundance of arbuscular and ectomycorrhizal fungi, whereas the

effect on PGPBs and endophytic fungi were more variable. Mostly, PGPBs were
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beneficial under elevated CO,°> which leads to higher carbon availability in the
rhizosphere and may alter root exudation composition. Root exudates play a huge role in
the structure and function of microbial communities. This indicates that colonization of
plants depends on compounds produced by plants, which are affected by climate change
factors such as temperature and drought. In these conditions, different microorganisms
show potential for different functional activities that leads to altered community structures
and may be used to impart different colonization strategies by inoculating microorganisms
such as arbuscular mycorrhizal fungi to change the composition of the microbial
community.>® Further, at elevated CO, concentrations, nitrogen becomes a growth-
limiting nutrient and as such nitrogen fixing and acquiring microorganisms may gain

increasing importance.

Temperature effects are coupled with soil moisture, thus difficult to deduce. Soil
microorganisms and the processes they mediate are temperature sensitive.
Decomposition of organic soil matter, soil respiration, and growth of microbial biomass
increases with temperature. It has been hypothesized that temperature effects are
transient; as temperature increases, the soil carbon substrates are quickly depleted by
enhanced microbial activity and because of tradeoffs microbial communities either adjust,
shift in composition, or constrain their biomass to respond to altered conditions and

substrate availability.57-58

Drought leads to soil moisture stress, which impacts the soil microbial community,

however it is less investigated than CO> or temperature. Drought amplifies the differential
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temperature sensitivity of fungi and bacteria.>®> Small changes in soil moisture can shift
fungal communities from one dominant member to another while bacteria remain
constant. Typically, drought reduces fungal colonization, although the outcome can be

strain dependent.

Soil pH

Soil pH is one of the most influential factors affecting the soil microbial community.%® pH
greatly affects abiotic factors, such as carbon availability, nutrient availability, and the
solubility of metal ions. Furthermore, pH may affect biotic factors, such as biomass
composition of fungi and bacteria in both forest and agriculture.>® The challenge of
studying pH effects are its varied effects on multiple factors. Rousk et al showed that as
pH drops from 8.3 to pH 4.5, a fivefold decrease in bacterial growth and fivefold increase
in fungal growth was measured. Fungi generally exhibit wider pH tolerance when
compared to bacteria, which tend to tolerate narrower ranges.®® The shift in fungal and
bacterial importance as pH drops has a direct negative effect on the total carbon
mineralization. Below pH 4.5, there is general microbial inhibition, probably due to release
of free aluminum and the decrease in plant productivity. Conversely, studies conducted
from soils from North and South America have shown that both the relative abundance
and diversity of bacteria increased with soil pH, considering ranges between pH 4 and
8.50 The relative abundance of fungi was, however, unaffected by pH and fungal diversity

was weakly positively related.®°
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Competition in the Soil and Microbe Concentration

Inoculated legume root nodules are mostly formed by indigenous microbes present in the
soil.>2 Microbe competition is one of the key determining factors for infection
effectiveness. Rhizospheric microorganisms connect plants and soils and together
develop an ecosystem that provides nutrient life cycle and soil fertility.6' Technological
advances in DNA sequencing, molecular ecology and data science have provided the
tools to study plant-associated and soil microbial diversity and to assess the implication
of this diversity on ecosystem functioning.6? When microorganisms are delivered into the
soil, we need to consider the surrounding ecosystem that will be in competition with them.
The viability, concentration and delivery method of microbes become vital as a
competitive advantage over other microbes as the physiological state of microbes can
prevent biomass buildup. Therefore, microbe release mechanism in soil becomes
paramount as it affects the concentration and location of delivery that are impacted by
rhizospheric microbe competition. A threshold number of cells, which differs among
species, is essential to obtain the intended positive plant response. For example, it has
been reported that 10°-107 cells-plant™’ are necessary for the PGPB Azospirillum
brasilense.®® Oliveira et al, showed that a consortium of microbes improved plant growth
more than a singular isolate inoculation.*® Gottel et al. and Shakya et al. found that the
ecological niche (endosphere vs. root) outperformed other measured factors (soil
properties, season, plant genotype, etc) (upland vs. lowland) in shaping microbial

communities.*9:64
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Soil Structure

Soil structure is the arrangement of primary soil particles and the pore spaces between
them. Microbe-plant interactions are influenced by the soil type, soils that share a certain
set of well-defined properties.*® Biological linkages between soils, roots and the
atmosphere are poorly characterized. However, Bonito et al showed that bacterial
communities in the root are more tightly structured by plant host species than by soil
origin.*® Plants, soils and microbiota interact and function in a zone known as the root
microbiome,®® which is characterized by elevated rates of respiration, nutrient turnover,
and carbon sequestration, highlighting its importance to the functioning of terrestrial
ecosystems.®® The nutrient concentration, pH and water content play an active role on
microbe colonization. Microbes are very specific therefore have differing niche
microenvironments that accommodate them best. The distribution of bacterial and fungal
communities and their function varies between different aggregate size classes.®’
Further, compaction of soil has detrimental effects as it affects physical properties of soil
such as bulk density, soil strength and porosity. Compaction limits the mobility of
nutrients, water and air infiltration and root penetration in soil.%¢ Juyal et al. have shown
how increasing soil bulk density (compaction) significantly reduced the number of
microorganisms in soil and their growth rate. Good soil structure provides an array of
niches, such as substrate availability and redox potential, which can house diverse
microbial communities.®® Microbes reside in pores and inner surfaces of aggregates as

microcolonies of 2—16 microbes each, and extensive colonization is restricted to
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microsites with higher carbon availability, e.g., rhizosphere and outer surfaces of freshly
formed macroaggregates.’® Location of aggregates in relation to roots, organic residues,
and macropores is more important for determining the microbial community composition
and their activity.?® Understanding the microbes niche environment will help build
predictive models and skill us in shaping the rhizosphere of the plant as microbes are

very specific with regards to conditions required for colonization.

Perspective

PGPBs are plant and soil specific, which makes them challenging to deploy universally.
However, as our understanding of soil structure, soil pH, impact of climate change, soil
microbe concentration and desiccation impact plant and soil microbe interaction
increases, the efficacy of microbe-based fertilizer can be enhanced by precise microbe
selection, developing models based on plant, and investigating microbe and soil
interactions. All the extrinsic factors influencing PGPBs growth and metabolism are
coupled together and understanding how they all interact will be key to design highly

effective techniques to develop and deploy, at scale, biofertilizers.

3. Formulations

Rhizobia bioformulations have been on the market for centuries in numerous forms.

Commercial biofertilizers can be solid carrier based (organic or inorganic), liquid

formulations, synthetic polymer based or metabolite based formulations.’" The
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formulation is composed of the microbe, carrier material, and additives. The first
commercial nitrogen biofertilizer of rhizobia, ‘Nitragin’ was patented by Nobbe and
Hiltner.5 Initially, inoculation procedure entailed transferring soil from legume grown soils
to soils that will host plants. Following this first technology, solid based carriers came into
use in the early 1900’s. Even today, many of the microbial inoculants all over the world
are based on solid based carriers, mostly peat formulations. This has been true for well-
developed legume inoculants based on selected rhizobial strains, due to peat bacterial
protection properties,”’ such as high water holding capacity, chemical and physical
evenness, non-toxic and environmentally friendly nature.”? However, peat is very
inconsistent and is a non-renewable resource making it unusable on a large scale.” Thus,
interest in substitutes grew and alternatives such as lignite, filter mud, coal-bentonite,
cellulose, coal, soil, charcoal, manure, compost, powdered coconut shells, ground teak
leaves and wheat straw have been used as solid carrier materials.%' Granular carriers
were also developed for direct application to the soil, which made handling, storage and

application easier.

Liquid formulations were developed as alternatives to solid carriers due to their limitations
such as environmental impact and carbon emissions of peat-made solid carries.”
Further, liquid formulations are better suited for mechanical sowing in large fields.*® In
1958, freeze-dried inocula came on to the market, then gel based microbial inoculants
that entrapped rhizobia in polymer gels such as polyacrylamide-entrapped Rhizobium
(PER), alginate-entrapped Rhizobium (AER), and xanthan-entrapped Rhizobium (XER);

which gave satisfactory results in wet conditions.>'7# In the early 2000’s, the modification



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

of liquid formulations by addition of additives and cell protectants were proposed. The
additives promote cell survival in storage and after application to seed or soil.” Commonly
used additives for rhizobial inoculants were polyvinyl pyrrolidone (PVP), carboxymethyl
cellulose (CMC), gum arabic, sodium alginate and glycerol.>' PVP protects microbes from
desiccation and harmful seed exudates and CMC's rheological property increases the gel
viscosity of carriers to make it more suitable for viability of rhizobial cells.5" Further,
genetic modification of rhizobia is being developed to improve the efficacy of nitrogen
fixation in new formulations, such as upregulating nitrogen fixation.”® The emerging
technique of secondary metabolites addition (flavonoids and phytohormones) to
bioformulations increases agricultural productivity by improving the inoculants
efficiency.”” The addition of flavonoids to rhizobial formulations during growth,
significantly alleviates the effects of adverse conditions,”® enhances nitrogen fixation 7°,
improves the rhizobial competitiveness and nodulation.®" The cost associated with
flavonoids isolation or synthesis is sometimes justified by the low concentrations used in

the final formulation.80:8

Despite, the abovementioned technologies, bioformulations still face many limitations.
Inoculation formulations have improved microbial survival during storage of products, but
these efforts have not improved survival on the seed or in soil.? Bacterial survival on the
seed are mainly affected by three factors: desiccation, the toxic nature of seed coat
exudates and high temperatures.®? Therefore, there is a need to find biomaterials that
could provide a microenvironment to protect microbes from desiccation while also having

the mechanical properties to conform around a seed (Figure 3).8 Biomaterials are
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Figure 3. Seed coating technology encapsulates and protects microbes while providing
a targeted in situ release of payload to be delivered.

Efficacy of formulations depends on their shelf life, which depends on several factors such
as production technology, carrier and packing material used, transport activity and
farmers’ practices to sustain the quality of inoculants.®® Factors related to production
processes (quality and marketing standards) are also important for consistency and user
uptake. Currently, the storage, preparation and application of formulations needs special
facilities and skills, which most farmers and suppliers do not possess.®® Therefore, an
easy to use alternative is necessary for better adoption. The current problems with most
formulations are a lack of robust scientific data. According to Brockwell et al °°, 90% of
inoculants have no impact on target crop. Further, Herrmann et al.®' reported that more

than 50% of the inoculants have high levels of contamination. Contaminants have



409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

detrimental effects on the quality of rhizobial inoculants and 25% contaminants of the
commercial inoculants can be opportunistic human pathogens. Therefore, many
inoculants produced globally, because of lack of quality control, tend not to perform well.
Thus, there is a requirement for strict regulations for rhizobial bioformulations to overcome
the abovementioned problems related to worldwide production and application of
biofertilizers. In the future, emphases should be given to techniques that increase
population density and survival of rhizobial strains in inoculants and minimize operator
exposure to high dose of PGBPs whether in solution or in water droplets. Additionally,
survival of cells is mandatory for better commercialization of rhizobial inoculants in the

global market.®?

Nano-bioformulations of biofertilizers has emerged as one of the most promising
techniques to achieve this goal. It comprises nanoparticles made up of organic or
inorganic materials, that interact with microorganisms and enhance their survival by
providing protection from desiccation, heat, and UV inactivation. Applications of nano-
bioformulations also include environmental cleanup strategies.®® In 2015, PGPBs such
as (Pseudomonas fluorescens, B. subtilis and Paenibacillus elgii) treated with silver,
aluminium, and gold nanoparticles have been shown to support plant growth and increase
pathogen resistance.®* The release of such nanoencapsulated biofertilizers into target
cells is operated in a very controlled manner, free from any harmful effects and increasing
the adhesion of beneficial bacteria within the root rhizosphere.®®> Additionally,

nanobiofertilizers may be considered as an alternative to chemical pesticides,® although
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the deployment of nanoparticles in the environment needs to satisfy stringent

requirements imposed by policymakers.

The application of phyto-nanotechnology on agriculture could change the traditional plant
production systems, providing the controlled release of agrochemicals (e.g., pesticides,
herbicides, fertilizers) and target-specific transport of biomolecules (e.g., activators,
nucleotides, proteins). Nanoencapsulation using biodegradable materials also makes the
assembled active elements straightforward and safe to be handled by the farmers.
Advanced understanding of the interactions between nanoparticles and plant responses
(uptake, localization, and activity) could transform crop production through improved

disease resistance, nutrient use, and crop yield.%’

The use of polymeric inoculants and alginate beads have already been tested and need
more exploration for their future use.*>%" Furthermore, the use of stress tolerating
microbes/rhizobia in inoculations is also thought to be imperative in developing
bioformulations that will survive in stress conditions (high temperature, drought,

salinity).%89°

The use of genetically improved rhizobia as inoculants has some legislative constraints
because it requires permission from environmental protection agencies to release into the
environment and due to the little understanding of microbial ecology.'® Further, the
majority of microbial seed inoculation involves private companies (agrichemical and seed

companies) that rarely disclose their data and formulations*®, although there is a
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compelling need to develop a more comprehensive knowledge that integrates academic

efforts to speed up advancements and the development of disruptive technologies.

Perspective

Peat-based formulations have been traditionally used for the delivery of microbe-based
fertilizers. These tend to be good at providing the niche for microbe growth when outside
the soil and when inoculated. However, since peat is a non-renewable resource, new
formulations are required. Liquid-based formulations have been developed, however
performance in microbe preservation can be improved to ensure high efficacy of the
inoculant. As we learn new lessons on how microorganisms survive desiccation, e.g. by
looking at tardigrades production of trehalose and intrinsically disorder proteins to
promote water substitution and vitrification, new strategies can be designed to engineer
formulations that better protect and store microbes outside the cold chain and in

operational conditions before deployment in the field.

4. Rhizosphere and Endosphere

Rhizobacteria

The rhizosphere is the region of soil directly surrounding the root system that is directly
influenced by root secretions and associated soil microorganisms known as the root
microbiome.°1.192 Rhizobacteria implies a group of bacteria found in the rhizosphere that
can colonize the root system.'% |t has been demonstrated that bacterial cells first colonize
the rhizosphere following soil inoculation.®* Therefore, microorganisms delivered in the

soil need to be able to colonize the rhizosphere before they can have an impact on plant
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health and metabolism. Bacterial cells have been visualized as single cells attached to
the root surfaces, and subsequently as doublets on the rhizodermis, forming a string of
bacteria.'%® Colonization then occurs on the whole surface of the rhizodermal cells.'% For
microbes to produce plant growth promoting factors, they need to be able to colonize the
rhizosphere and/or the rhizoplane during an extended period characterized by strong
microbial competition with rhizosphere competent microbes (microorganisms that have
the capacity to effectively build a population of microorganisms on plant roots or in the
vicinity).'9” Furthermore, root colonization is complex and non-uniform. This can be
explained by different factors such as varying root exudation patterns released by plants
and containing chemoattractant to promote microbe colonization and growth.'08
Rhizosphere colonization is however a complex system influenced both by
microorganisms competition during inoculation and rhizosphere competence of the
microbe. We are yet to fully understand these interactions, which are soil specific as a

microbe needs a specific niche to perform optimally.

Endophytes

There are types of microorganisms that do not only colonize the rhizosphere but also
enter and colonize plant tissue for beneficial effects, i.e. endophytes.'® Studies have
shown how plants host a diverse group of endophytic microbes and most endophytes are
derived from the rhizosphere, e.g. rhizobium.'%119 Endophytes are a subgroup of
rhizobacteria known for entering the endorhiza (the root interior) once the rhizosphere

has been colonized. Moreover, they are known to show a plant growth promoting behavior
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more intense when compared to exclusively rhizospheric colonizing microbes.’"" The
penetration process does not involve an active mechanism, but rather a passive one.
Passive penetration can take place at cracks, such as those occurring at root emergence
sites or created by deleterious microorganisms, as well as by root tips.''? However, some
microorganisms have developed active mechanisms, such as root nodulating rhizobia.
The nodulation mechanism is mediated by root release of chemoattractants (e.g.
flavonoid exudes) and microbial signals (nod factors) and as such it is specific and
specialized. Root invasion can happen through fissures that occur at lateral root base and
by cortical intracellular entry.''31"4 Besides, plant-rhizobia endophytic interactions are not
well understood. Further, emerging but limited knowledge exists on endophytes
colonizing flowers, fruit and seeds.'"® In addition, evidence of endophytic microbes found
in plant stems and leaves and not in the rhizosphere highlights other potential colonization
mechanisms. Bacterial endophytes are carried inside the seed (vertical transmission) and
can be equally important for the evolution of the microbial community of the

seedling.'16.117

Perspective

Microbe identification remains a very important matter as we search for the best
performing microbes with regards to nitrogen fixation and phosphate solubilization. These
remain a matter of interest as we search for nitrogen fixing microbes for cereal crops.
Cereal crops makeup a considerable percentage of the foods farmed globally. The

diversity of our soils has decreased with modern agricultural practices, however PGPBs
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play a pivotal role in enhancing the sustainability of the agriculture system and may enable

the production of better-quality food, thus promoting health and wellness.

5. Application Methods

Soil microbe delivery systems, to be effective for field-scale use, have to be designed to
provide a dependable source of bacteria that survives in the soil and becomes available
to crops, when needed.*® Rhizobia application can be performed on the seed surface or
directly into the soil or through plant inoculation.*34¢ Seed inoculation outnumbers soil
application and depends on the requirement of the type of inoculant, the seed type and
inoculant volume. The efficacy of each inoculation technique needs to be taken into
account. Effects such as high temperature of a seed coater and an air seeder, high
pressure, rapid drying when the inoculant is sprayed into sowing machinery and when
inoculated seeds are sown under hot, dry conditions, or when seeds are treated with

fungicides and herbicides potentially have large deleterious effects.*3

Seed Inoculant: Seed Coating and Bio-priming

There is typically limited success from coating seeds with rhizobia because it is difficult
to maintain living and active bacterial cells.''® Factors such as temperature, humidity, and
toxic substances all affect the survival of rhizobia in the seed-coating agent.®2 However,

this is the most common and practical seed inoculation procedure. This happens because
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it is the easiest method to use and it requires considerably small volumes for inoculation.®?

Additionally, the standard seed coating technology has not changed in years.

Seed coating is a technique that entails the covering of a seed with a material laden with
microbes to enhance seed performance and plant establishment while reducing cost, to
meet the requirements in development for precision agriculture. (Figure 4). Historically,
coating seeds has been broadly used as a cost-effective way to alleviate abiotic and biotic
stresses, thus boosting crop growth, yield, and health.''® The process is very streamlined;
seeds are dusted with peat inoculant, with or without water or adhesive. With small seeds,
fillers such as limestone are added, with or without adhesive, and allowed to dry.*3 The
coated seeds are dried in situ or just before sowing. In situ coating standardizes the
delivery and makes the technology easy to use for farmers but tends to lead to lower
microbial count than coating before sowing. Seed may be a basic input deciding the fate
of productivity of any crop. Commonly, seeds are studied for their germination and
distributed to growers. Despite the very fact that the germination percentage registered
within the seed testing laboratory is about 80-90%, these efficiency can hardly be
replicated in the field because of the inadequacy or non-availability of sufficient moisture

under rain fed systems.?0
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Seed coating ingredients
* Protectants
* Nutrients
« Symbionts
« Soil adjuvant
+ * Phytoactive promoters

» Colours and tracers

Binder: liquid Fillers: powder Active ingredients

Seed coating mechanisms

Coat type

Film coating Encrusting Pelleting

—

Increase in coating thickness

Figure 4. Seed coating ingredients, process and types.

One essential condition to seed coating is adding adhesive materials. There is no
standardized material used as an adhesive.'?' Adhesives are used to ensure that a
threshold of microbes are added and to secure microbes on the seed. Adhesives include
gum arabic, carboxy-methyl cellulose, sucrose solutions, vegetable oils, as well as any
non-toxic, commercial adhesive that can bind to bacteria and seeds.*® With regards to
seed coating applications, coating is either performed by hand, rotating drums that are
cheap to operate, large dough or cement mixers, or mechanical tumbling machines.'??
Liquid inoculants are directly sprayed onto the seed before being sown once dry. The
microbes can be macro or microencapsulated during the process. Microencapsulation

leads to smaller particles thus larger surface area, which enhances controlled release.'?3
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However, seed coating has several disadvantages. Each seed can only contain a
restricted amount of inoculant, which may be a limiting factor because a threshold of
bacteria may be needed for successful inoculation with most PGPBs.** Seed coating
process may damage seeds' natural coating and alter the water or oxygen absorption
properties of the seed, affecting its germination capabilities.*® Furthermore, release and
degradation properties of microbes from seed coating are important parameters to control
to induce microbe colonization and combat desiccation in the soil. Some fungicides and
insecticides applied to the seeds before coating may be detrimental to the inoculant,
therefore seed treatments need to be carefully streamlined to avoid detrimental effects

on the final product.

Bio-priming is a process of biological seed treatment that involves the soaking of seeds
in any solution containing required biological compound followed by redrying the seeds,
which results into start of germination process except the radicle emergence.'?* It allows
the bacterial imbibition into the seed, creating ideal conditions for the bacterial inoculation
and colonization in the seed and reduces the chance of desiccation and the amount of
pesticide applied to the field.'?* Soaking of seeds initiates the physiological germination
processes, where plumule and radicle emergence is prevented, until the seeds are
provided with the right temperature and oxygen after being sown. Microbes in the seed
keep on multiplying and proliferate in the spermosphere even before sowing.'?* Bio-
priming leads to improved germination and seedling establishment, however it has to be
done on site and can be labor intensive.*® Given the effort required for this process, it is

most appropriate for low-medium volume high value crops, such as vegetable seed.*®
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Soil Inoculant

Soil inoculation is used to release high volumes of inoculant into the soil but is time
intensive, expensive and may be limited by threshold number regulations.4¢:'%% Soil
inoculation can be achieved by adding granules in the seedbed or adding a liquid
inoculant into the seedbed.*® This process ensures that no inoculant is lost during seed
planting through sowing machines. Besides, small seeds that have limited surface area
can be sufficiently inoculated with enough microbes using this technique.*® In highly
mechanized farming, granular inoculants work well because the machinery for seeding
commonly includes accessories for application of fertilizer and pesticide and inoculation

is just one additional input during seeding.*?

Granular forms of soil inoculant include peat, marble combined with peat, perlite, charcoal
or soil aggregates. Granular inoculation enhances the chance for the inoculant to be in
contact with plant roots which helps with microbe colonization and therefore
effectiveness.*® The method of soil inoculation used depends on the farmer preference.
Nonetheless, it always tends to be more expensive than seed coating. The method of
application is determined by the seed size, equipment availability, seed fragility, presence

of insecticide and fungicide on seed surface and the cost the farmer is willing to pay.*3
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Plant inoculation

The plant microenvironment is naturally colonized by microorganisms. More than 90%
are bacteria.'?® Some of them are PGPBs with the ability to enhance plant growth via
providing required nutrition or increasing the availability of nutrients in an assimilable
form. Plant inoculation involves the inoculation of plants through root dipping or foliar
spray.*® These techniques require large amounts of inoculant, and with regards to root
dipping, plant nursery preparation is also required.*® This highlights that the root dipping
process is very time and labor intensive, which makes it unfeasible in large scale
agriculture.*> PGPBs application performed on roots or on cuttings to promote in vitro
rhizogenesis is mainly performed in recalcitrant species.'?”-2¢ They can be applied as a
dipping solution or can be added to the rooting media just before transferring the

shoots.129.130

Exogenous application using foliar spraying is conducted using the inoculum alone or in
a specific formulations to ensure bacterial cells fixation on the leaves, and also to maintain
live bacterial count until colonization through the stomatal apertures.’! This method of
application relies on climatic conditions; increased atmospheric temperature alters plant
microbe interaction by reducing the bacterial charge and inducing intrinsic reactions in
the plant by water deficits.'3? To overcome this issue, inoculant’s screening based on their
thermotolerance has shown great efficacy. Current findings in greenhouse studies
suggest that co-application with Bacillus cereus and humic acid can be used in the

mitigation of heat stress damage in tomato seedlings and can be commercialized as a
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biofertilizer.’®3 But, the inoculation is also affected by humidity and rain revealing the
unfeasibility of this method in large scale agriculture with certain microbe and plant
types.*® However, Fukami et al,'** showed that foliar spray in maize and wheat improved

colonization of leaves, while soil inoculations favored root and rhizosphere colonization

(Table 1).

Table 1. Comparison table between Biofertilizers application methods

Advantages
Application Comparison References
method
Seed inoculation

Advantages

Seed
coating

Seed inoculation is less expensive than in-
furrow inoculation, especially for small
seeds

135

Can be stored easily

136

Low costs of storage. Easy handling and
transportation

45

Used for recalcitrant species multiplied by
seeds like Orchids

137,138

Controlled release of microorganisms
Increase of the microbial shelf life

119
119

Limitations

Adapted to microbes compatible with dry
formulations

45

Non-sporulating bacteria experience large
viable cell losses during dry formulation

75

Affected by storage conditions

139

Affected by the abrasion and seed contact

140

Antagonism between the soil microbiome
and the inoculated bacteria

141

Biopriming

Advantages

Useful to combat the disease problem

142,143




Improve  immediate  availability  of
micronutrients

144

Used for recalcitrant species

145,146

Limitations

Immediate application

147

Depend on the interaction time

147

Soil inoculation Advantages

Increase of the effectiveness Dby
immobilization of inoculant cells and their
embodiment in polymers

148

Limitations

Antagonism between the soil microbiome
and the inoculated bacteria

141

Plant inoculation

Root

Advantages

Adapted to in vitro plants and recalcitrant
species

127,128

Facilitate bacterial root adhesion through
formation of biofilm on root surface

149

Limitations

Requires large amounts of inoculant and the
concentration of the bacterial suspension

150

Depend on the exposure time of the root to
the bacteria

150

Foliar

Advantages

Passive colonization through to the stomata
apertures, plant wounds or insect feeding

134,151

Can be combined to nanoparticles to
increase the efficiency and the effectiveness
of the inoculation

152

Limitations

Unfeasibility in large scale agriculture

45

Spraying equipment can influence the
uniformity of foliar spray

153

Depend on droplet size in terms of microbe
concentration and leaf coverage

154




660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

683

Advantages

Can be used in greenhouse vegetables 155
Seedling STYRT J ?
Limitations
pretreatment , . .
Requires a plasma treatment for immediate %6
and effective bacteria activation
Perspective

Seed coatings provide a targeted, controlled, and low volume way to deliver beneficial
microbes to the plant microbiome. An ideal strategy for future technologies consist in the
development of seed coating techniques that can be streamlined in seed treatment
processed and applied during the seed packaging to ensure standardization of seeds for
planting. However, inoculation through seed coating formulations need to reach
performances that are comparable to coating on site or soil inoculation, to have an impact

in precision agriculture, despite providing an easier technology.

6. Legislation and Business Opportunity

Regulation and legislation from production to on field application of microbial fertilizers
will play an important role in their use and eventual success.'®”:'% Environmental policies
regulate the type and quantities of microbes allowed in their environment, but also impose
restrictions the type of carrier used and degradation profile permitted for each carrier. In
particular, an increasing amount of attention is growing in the use of microplastics in
agricultural practices, despite the low quantities involved. One of the toughest challenges
for policymakers is the lack of a universally accepted definition for microbial fertilizer. The

different types of microbes utilized to improve plant growth (fungi or bacteria) and the
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different mechanisms they used to obtain this final effect have created some
inconsistencies in the definition of biofertilizers. There is then a need to develop adequate
standards and legal provisions to support the production and use of biofertilizers at the
global level. Globalization of microbial markets and the need for environmentally friendly

and sustainable agricultural activities strengthens this need.

Recently, the European Union (EU) came up with a definition for microbial fertilizers. The
new regulations will come into effect in 2022. Prior to these new regulations, the European
market was segmented and now it will move into a more consolidated one. Further, this
type of regulations will reduce costs and administrative burden when launching a product.
Europe is the second largest biofertilizer market with 30% of the industry in 2019 and is
expected to grow at 10%l/year for the next several years.'® Further, the EU defined
biostimulants by what they do, not by what they are. The European Biostimulant Industry
Council defines plant biostimulants as substances and/or microorganisms whose function
when applied to plants or to soil is to stimulate natural processes to enhance or benefit
nutrient uptake, nutrient efficiency, tolerance to abiotic stress and crop quality.'®® It is
projected that this new EU regulation will improve transparency, quality and safety.
Additionally, the EU set out a new procedure for authorizing biostimulants in agriculture,
which will ensure conformity and accreditation in all member states. New regulations are
stricter and manufacturers can only declare those benefits derived from their products
that have been scientifically proven. These new requirements will provide greater
transparency and confidence when defining the limits of the efficacy. However, on the

innovation side, only four microorganisms are regulated, meaning any product developed
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from other microorganisms cannot be marketed in the EU. This highlights the growing

need of aligning innovation and regulation.

In the USA, there is no federal law regulating biofertilizers. However, the individual states
regulate this type of product through the United States Department of Agriculture.'s8
Regulations may differ drastically, where in some states only notification is required and
in some other, local efficacy trials are required. The fragmented market makes it costly
and bureaucratic to operate in the US market.'®' Further, in the USA there are currently
no legal definitions for the term ‘biofertilizer’, or specific legal provisions defining their

characteristics. 62

The global biofertilizers market size was USD 1.34 billion in 2018 and is projected to reach
USD 3.15 billion by the end of 2026, showing a compound annual growth rate of 11.3%
forecast 2019-2026.'%% With regards to application, the global fertilizer industry is
segmented into seed treatment, soil treatment and other. Seed treatment has the largest
market share '%* (65% in 2014) and is expected to grow by 12.1%/ year between 2019-
2026. Therefore, making the seed treatment application a lucrative sector to enter.
Further, nitrogen fixing biofertilizers are the leading segment in the market (82%) and is
expected to remain the most important biofertilizer segment. North America and Europe
account for 55% of the global market revenue. The trade in North America is expanding
considerably, due to the growing number of organic farms in prominent economies, such
as the U.S., Canada, and Mexico. Novozymes AS, Rizobacter Argentina S.A., Lallemand

Inc., and BioWorks Inc. are the key active players in the biofertilizers business. North
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America is expected to hold the highest market share in the biofertilizers market. The
market is highly fragmented, with many small and large players present across different
geographical regions. The global biofertilizers commerce being unregulated is the reason
why there are many small companies in the market. Once proper regulations are put in

place, it is likely that the market will be consolidated among a few companies.

Further, with the recent European Union ban on intentionally added microplastics
(IAMPs), agriculture based companies will require to be cognizant on the type of materials
manufactured for plant and soil application and thus, microbial fertilizer application
tools.'®® Recently, IAMPs have become an issue of importance because of their
ubiquitous presence. However, most research has been focused on the marine
environment and not much on soil until of late.'®® Soils may represent a large reservoir of
IAMPs, with sources such as sewage sludge applied as fertilizer and fallout from the air.
Therefore, IAMPs may pose a threat to soil biodiversity. However, there is still a lack of
information.'®” Recent studies, show harmful effects of IAMPs on various groups of soil
fauna such as earthworms, snails, collembolans and nematodes.'®® Nevertheless, the

impacts of IAMPs on soil microbial communities have led to inconsistent results.6®

Perspective

Farming is a low margin business thus any new strategy suggested requires to be

effective and cheap. Numerous effective techniques have been developed in laboratories

across the world. However, collaboration between research and business is required to
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ensure scalability of these exciting ideas. Thus, startups working to scale up and lower
costs of farming techniques will be required to bring some of the new technologies and
techniques to the farmer. Also, working with government will be critical to develop

supportive legislation for these initiatives.

7. Future Perspective

Climate change and rapid population growth combined with the scarcity of resources
impose a rapid transformation of agriculture to a more resilient and sustainable
infrastructure. Crop production is currently too carbon intensive and lower the carbon
footprint of synthetic fertilizers is one of the major goals to enable a more sustainable
future for our society. Microbial fertilizers have shown great potential in solving the
environmental challenges we face.'®® Future formulations for microbial inoculants will
focus on precise and scalable delivery tools for microbes, while also focusing on
developing multi-functional microbe solutions that work for a variety of crops. However,
we face a two-pronged challenge for the effective use of biofertilizers that will spur large
and small-scale uptake: 1. Effective delivery methods 2a. Microbes for cereal crops 2b.
Multi-functional microbe solutions. Furthermore, cost of microbial inoculants will be key

to complementing with synthetic fertilizers.

Engineering the seed microenvironment with microbes in silk and trehalose seed coating
has recently shown to effectively deliver plant microbial fertilizers.83 A protein and

polysaccharide mixture that encapsulated microbes was shown to be able to protect
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rhizobium from desiccation for over a month and finally deliver in the soil the microbes for
colonization.®3 The bioinspired approach that guided the material formulation imparted
the appropriate mechanical properties and preservation capabilities required for an
effective microbial delivery tool. This may enable the application of the proposed seed
coating technology both for small scale farmers and large-scale farmers, independently
from their resources, skills and equipment. Secondly, the ability to preserve microbes at
standard conditions suggests that storage costs can be lowered as most microbial
fertilizers to be preserved require to be refrigerated. The framework of the technique of
engineering the seed microenvironment can be used at large scale to solve the most

important challenges faced in making microbial fertilizers ubiquitous in agriculture.

Cereal crop production accounts for a large proportion of agricultural production in the
world providing 60% of plant calories for humans.'”%"1 Therefore, corn, wheat and rice
are some of the most important crops that will be essential in driving uptake of microbial
fertilizers. Nitrogen based fertilizers account for more than two thirds of global revenue.'"?
Recently, Pivot Bio commercialized and released nitrogen fixing microbes for corn that
can supply cheaply and environmentally the necessary nitrogen in association with
synthetic fertilizer, thus lowering environmental impact (Figure 5). From 2015, several
techniques have been explored. One technique mentioned by Geddes 73, is the transfer
of nitrogenase and other supporting traits to microorganisms that already closely
associate with cereal crops as a logical approach to deliver nitrogen to cereal crops . Ryu
et al. 7% show to engineer inducible nitrogenase activity in two cereal endophytes
(Azorhizobium caulinodans ORS571 and Rhizobium sp. IRBG74) and the well-

characterized plant epiphyte Pseudomonas protegens Pf-5, a maize seed inoculant.'’
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Such synthetic biotechnology tools have opened up possibilities for rice and wheat

nitrogen fixation in the near future as highlighted by previous literature and Pivot Bio.

Current Future
) Transmon 0 &
| | | Q"
| | ‘- i
Synthetic fertilizer Synthetic fertilizer + Biofertilizer

Figure 5. Transition from synthetic to microbe-based fertilizers in synergy with synthetic
fertilizers to improve soil health and lower environmental impact through increasing
fertilizer absorption rates thus minimizing runoff rates, solubilizing phosphates and fixing
nitrogen for the plant.

Special attention is increasing for microbial inoculants that have multifunctional properties
and contain more than one organism.'”? Most biofertilizers to date consist of one
inoculant. However, it has been shown a consortium of microbes confer additional
benefits to the plant and soil. Therefore, the drive to commercialize multifunctional
property and consortium microbe fertilizers. Strains of Rhizobium, phosphate-solubilizing
bacteria and fungi, arbuscular mycorrhizal fungi, and free-living nitrogen-fixing
Azotobacter strains improve the nodulating ability, nitrogen content and herbage yield (up
to two-fold) of subabul seedlings (Leucaena leucocephala), in comparison with the
independent application of each component of the consortium. This use case has also

led to the developing of consortium-based delivery systems, which will be an important

technique in enhancing colonization and performance. Further, synthetic biology has led
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to the development of high-throughput tools to identify elite strains at the single nodule

level with the potential to revolutionize the search for elite indigenous rhizobia. 17°

Regulation will also play a huge role in the coming years to ensure standardization of
products and easier product market entrance. Since biofertilizers are not yet ubiquitous,
innovators will need to work with policy makers worldwide in developing robust policies

that encourage product development and protect the environment and farmers.
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