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Abstract

Unsupervised domain adaptation (UDA) enables cross-domain learning without
target domain labels by transferring knowledge from a labeled source domain whose
distribution differs from the target. However, UDA is not always successful and
several accounts of ‘negative transfer’ have been reported in the literature. In this
work, we prove a simple lower bound on the target domain error that complements
the existing upper bound. Our bound shows the insufficiency of minimizing source
domain error and marginal distribution mismatch for a guaranteed reduction in
the target domain error, due to the possible increase of induced labeling function
mismatch. This insufficiency is further illustrated through simple distributions for
which the same UDA approach succeeds, fails, and may succeed or fail with an
equal chance. Motivated from this, we propose novel data poisoning attacks to fool
UDA methods into learning representations that produce large target domain errors.
We evaluate the effect of these attacks on popular UDA methods using benchmark
datasets where they have been previously shown to be successful. Our results show
that poisoning can significantly decrease the target domain accuracy, dropping
it to almost 0% in some cases, with the addition of only 10% poisoned data in
the source domain. The failure of UDA methods demonstrates the limitations of
UDA at guaranteeing cross-domain generalization consistent with the lower bound.
Thus, evaluation of UDA methods in adversarial settings such as data poisoning
can provide a better sense of their robustness in scenarios unfavorable for UDA.

1 Introduction

The problem of domain adaptation (DA) arises when the training and the test data distributions
are different, violating the common assumption of supervised learning. In this paper, we focus on
unsupervised DA (UDA), which is a special case of DA when no labeled information from the target
domain is available. This setting is useful for applications where obtaining large-scale well-curated
datasets is both time-consuming and costly. The seminal works [1, 2] proved an upper bound on a
classifier’s target domain error in the UDA setting leading to several algorithms for learning in this
setting. Many of these algorithms rely on learning a domain invariant representation by minimizing
the error on the source domain and a divergence measure between the marginal feature distributions of
the source and target domains. Popular divergence measures include total variation distance, Jensen-
Shannon divergence [9, 29, 33], Wasserstein distance [27, 13, 7], and maximum mean discrepancy
[17, 15, 18]. The success of these algorithms is argued in terms of minimization of the upper bound
proposed in [1] along with an improvement in the target domain accuracy on benchmark UDA tasks.

Despite this success on benchmark datasets, some works [9, 14, 32, 30] have presented evidence
of the failure of these methods under different scenarios. Recent works have tried to explain this
apparent failure of UDA methods by proposing new upper bounds [32, 6] on the target domain
error while others have demonstrated the cause of failure with experiments where learning a domain
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invariant representation that minimizes the source domain error causes an increase in the error of
the ideal joint hypothesis [14] leading to an increase in the upper bound proposed by [1]. However,
a large upper bound does not guarantee the failure of UDA methods. Therefore, in this work, we
prove a lower bound on the target domain error that provides a necessary condition for the success
of learning under the UDA setting and complements the upper bound of [1]. Our lower bound is
dependent on the difference between the labeling functions for source and target domain data induced
by the representation map. For cases where the induced labeling functions match on the source and
the target domain data (i.e., favorable case), the success of UDA is explained using the upper bounds
proposed by previous works [1, 32]. For a representation that aligns the source and the target domain
data and minimizes the error on the source but induces labeling functions that don’t agree on the
source and the target domain data (i.e., unfavorable case), our lower bound explains the failure of
UDA. Our analysis brings to light yet another case (i.e., ambiguous case) of data distributions where
success and failure of UDA are equally likely. This is due to the lack of label information from the
target domain. Due to this, a small amount of misinformation about the target domain labels can turn
the distribution into the unfavorable case leading to a significant increase in the target domain error.

Motivated from our analysis of UDA based on the lower bound, we evaluate the performance of
current UDA methods in presence of a small amount of adversarially crafted data. For this purpose,
we propose novel data poisoning attacks, using mislabeled and clean-label points. Using our attacks
we study how the presence of poisoned data fools UDA methods into learning a representation that
incurs high target domain error. We evaluate the effect of our attacks on popular UDA methods using
benchmark datasets, where they were previously shown to be very effective. Our poisoning attacks
cause UDA methods to either align incorrect classes from the two domains or prevent correct classes
from being very close in the representation space. Both of these lead to the failure of UDA methods
at reducing target domain error. Our results show a significant drop in the target domain accuracy
for current UDA methods, dropping to almost 0% in some cases, with just 10% poison data in the
source domain. This dramatic failure of UDA methods demonstrates their limits and suggests that the
future UDA methods must be evaluated not only on clean benchmark datasets but also in adversarial
settings such as poisoning to evaluate their effectiveness in scenarios unfavorable for UDA.

Our main contributions are as follows:

• We prove a simple lower bound on the target domain error providing a necessary condition for
the success of learning in the UDA setting. The bound shows the failure of learning a domain
invariant representation that minimizes source domain error at guaranteeing target generalization.

• We present example distributions where UDA succeeds, fails, and where success and failure are
equally likely. The last case opens door to adversarial attacks such as data poisoning.

• We propose novel data poisoning attacks that use clean-label and mislabeled points to demonstrate
the dramatic failure of UDA methods at target generalization on benchmark datasets. Our
poisoning attacks can be used to obtain a better sense of the robustness of the future UDA methods
beyond just evaluating accuracy on simple benchmark datasets.

2 Background and related work

Analysis of Domain Adaptation: Several previous works have studied the problem of DA and have
provided conditions under which DA is possible [2, 1, 19, 20, 8, 3]. [1, 2] proposed an upper bound
on the target domain error which is the inspiration of many UDA algorithms. Recent works [32, 6]
have improved the upper bounds on target domain error and have proposed a lower bound dependent
on the labeling functions in the input space. Using this lower bound, the failure of learning in the
UDA setting was explained in the case when marginal label distributions are different between the
two domains. Our lower bound, on the other hand, is dependent on the labeling functions for the
source and target domains, induced by the representation. This suggests that if a representation
induces labeling functions that disagree on source and target domains then DA provably fails even if
the representation is domain invariant and minimizes error on the source domain. Thus our lower
bound directly explains the observations of failure of UDA in many previous works [9, 14, 30, 32].

Algorithms for UDA: Most algorithms [9, 29, 16, 33] for UDA learn a representation that is invariant
to the domain shift and minimizes error on the source domain. A popular adversarial approach to
domain adaptation is DANN [9] which uses a discriminator to distinguish points from source and
target domains based on their representations. Another popular method CDAN[16], uses classifier
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output along with representations to identify domains of the points. IW-DAN and IW-CDAN [6] were
recently proposed as extensions of the original DANN and CDAN with an importance weighting
scheme to minimize the mismatch between the labeling distributions of the two domains. A different
approach MCD [25], makes use of two task-specific classifiers as discriminators to align the two
domains. This method adversarially trains the representation to minimize the disagreement between
the two classifiers on the target domain data (classifier discrepancy) while training the classifiers to
maximize this discrepancy. Another recent approach, SSL [31] uses self-supervised learning tasks
(e.g. rotation angle prediction) to better align the two domains. In this work, we study the effect of
poisoning on these methods as they have been shown to be effective at various UDA tasks.

Data poisoning: Data poisoning [4, 23, 11, 5, 12, 28] is a training time attack where the attacker has
access to the training data which will be used by the victim for training. The attacker intends to modify
the training data such that victim’s model behaves as the attacker intended, after training. Several
works [34, 24, 26, 21, 10] have shown the limitations of supervised learning methods in presence
of poisoned data. Recently, the effects of poisoning were also studied against training methods that
produce certifiably robust classifiers [22]. However, all these methods consider poisoning in a single
domain setting. We are the first to study the effect of poisoning in the UDA setting with two domains
and using popular UDA algorithms for training rather than only using empirical risk minimization.

3 When does learning fail in the unsupervised domain adaption setting?

Notations and settings: Let X be the data domain and D be the distribution over X with the
corresponding pdf p(x). We assume there is a deterministic labeling function f : X → [0, 1] for
the given binary classification task. The f(x) can be interpreted as Pr[y = 1|x]. Let g : X → Z
denote the representation map that maps an input instance x to its features where Z is called
feature or representation space. Let h : Z → [0, 1] be a hypothesis for binary classification on the
representation space. Note that the representation map g induces a distribution over Z denoted by
PrD̃[B] := PrD[g−1(B)] and the corresponding density function p̃(z) on Z [2]. The g also induces
the labeling function

f̃(z) := ED[f(x)|g(x) = z], (1)
for any B such that g−1(B) is D-measurable. The misclassification error e(h) w.r.t. the induced
labeling function is e(h) = Ez∼D̃[|f̃(z) − h(z)|] where D̃ is the induced distribution over Z .
Similarly, we define e(f̃ , f̃ ′) = Ez∼D̃[|f̃(z) − f̃ ′(z)|] and e(h, h′) = Ez∼D̃[|h(z) − h′(z)|]. The
distributions p̃ and the labeling functions f̃ for the source and the target domains will be written as
p̃S , p̃T , f̃S and f̃T , respectively. The total variation distance is D1(p̃, p̃′) =

∫
Z |p̃(z)− p̃′(z)|dz.

3.1 Lower bound on the target domain error

Most adversarial DA methods learn a domain invariant representation g : X → Z by minimizing
error on the source domain and penalizing the mismatch between the marginal source and target
distributions since the conditional distribution p̃T (z|y) for target domain is unavailable in the UDA
setting. Some works [30, 32, 14] have shown this to be insufficient at guaranteeing target gener-
alization. Recent works have proposed a new upper bound [32] or argued failure in terms of the
upper bound in [1, 2] (eT (h) ≤ min{eT (f̃S , f̃T )), eS(f̃S , f̃T ))}+ eS(h) +D1(p̃S , p̃T )) being large.
However, a large upper bound does not guarantee failure. Thus, we prove a simple lower bound on
the target domain error which shows the necessary condition for the success of learning in the UDA
setting and also explains the failure of current UDA methods at guaranteeing target generalization.
Theorem 1. Let H be the hypothesis class and G be the class representation maps. Then, for all
h ∈ H and g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} − eS(h)−D1(p̃S , p̃T ). (2)

The proof is in Appendix A. Even though our bound depends on the total variation distance which is a
strict measure of distance and is difficult to estimate, the bound still explains the limitations of UDA.
Extending the bound to different divergence metrics is left as future work. The following corollary is
immediate from Theorem 1.
Corollary 1.1. For all h ∈ H, g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} − eS(h)−
√

0.5DKL(p̃S ||p̃T ).
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Figure 1: Illustrative cases for UDA. In UDA, one can observe the source data (blue blobs), the source
labels (class + and -), and the target data (green blobs) but not the target labels. The optimal linear
representation g(x) = uTx from the input space in R2 to the feature space in R (dashed line) that
minimizes the source loss and the alignment loss in Eq. 3 can be computed accurately. Depending on
the original data distribution, the optimal representation can be successful (Case 1), fail (Case 2), or
be undetermined (Case 3). Case 3 has two global minima and poisoning can make the bad solution
(right) to be chosen, leading to a large error on the target domain data.

This is due to the Pinsker’s inequality: D1(p, p
′) ≤

√
0.5DKL(p||p′). The interpretation of Eq. 2 is as

follows. Since fT is not observable, the goal of UDA is to minimize the observable source classifi-
cation error eS(h) and the domain mismatch D1(p̃S , p̃T ) (or other metrics such as dH∆H(p̃s, p̃T )):

min
g,h

es(h) +D1(p̃S , p̃T ). (3)

This leads to maximization of the second and the third term in the RHS of Eq. 2. With overparame-
terized models such as deep neural nets, it is often possible to get eS(h) ' 0 and D1(p̃S , p̃T ) ' 0.
Consequently, eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )}. If f̃S and f̃T disagree on the source and
target domains in the representation space, target domain error eT (h) will be provably large.
Corollary 1.2. For all h ∈ H and g ∈ G,

|eT (h)−eS(f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ), and |eT (h)−eT (f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ).

This is obtained by combining the upper and the lower bounds (Appendix A). Thus a UDA method can
only guarantee the target error eT (h) to be close to the labeling function mismatch e(f̃S , f̃T ). Whether
e(f̃S , f̃T ) becomes larger or smaller after solving Eq. 3 is data/model dependent. For concreteness,
we analyze the cases when UDA methods succeed and fail using the following illustrative examples.

3.2 Illustrative examples of UDA failure

Assume mixture-of-Gaussian distributions pS(x) and pT (x) for the source and the target domains in
the input space, shown as blue and green blobs in Fig. 1. We consider a linear representation map
g(x) = uTx from the input space X ⊂ R2 to the feature space Z ⊂ R (dashed line) that minimizes
the source classification loss plus the marginal mismatch loss in Eq. 3. The optimal solution g to the
minimization problem can be found accurately using a mix of analytical and numerical optimization
(detailed in Appendix B). We demonstrate three cases of data distributions. In Case 1 (favorable case),
the true labeling function for source and target is fS((x1, x2)) = fT ((x1, x2)) = I[x2 ≥ 0], that is, f
is 1 in the upper halfspace and 0 in the bottom halfspace. One can verify (Appendix B) that the optimal
u is the vertical direction (u = [0, 1]T ) and the best hypothesis is h(z) = I[z ≥ 0], in which case
eS(h) = 0 and D1(p̃S , p̃T ) = 0. That is, perfect source classification and a perfect alignment of the
marginals are achieved. Furthermore, the true labeling function in Z is f̃S(z) = f̃T (z) = I[z ≥ 0]

(from Eq. 1) and therefore e(f̃S , f̃T ) = 0 as well as the target loss eT (h) = 0. In other words,
the representation that minimizes Eq. 3 simultaneously minimizes e(f̃S , f̃T ), achieving the goal
of reducing eT (h). However in Case 2 (unfavorable case), the true labeling function for target is
upside-down fT ((x1, x2)) = I[x2 ≤ 0]. Since UDA does not use the target label nor the true
labeling function, the optimal g is exactly the same as Case 1 (u = [0, 1]T ), in which case we still
have eS(h) = 0 and D1(p̃S , p̃T ) = 0, but the labeling function mismatch becomes e(f̃S , f̃T ) = 1
as well as eT (h) = 1 which is the worst case. In other words, the representation that minimizes
Eq. 3 simultaneously maximizes e(f̃S , f̃T ), totally failing at the goal of reducing eT (h). Case 3
exemplifies an ambiguous case. The optimal projection minimizing eS is still the vertical direction
u = [0, 1]T but the optimal projection minimizing the alignment loss D1(p̃S , p̃T ) can be either of
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the ±45◦ directions (u = [±1/
√

2, 1/
√

2]T ) with no preference of one over the other. Therefore
the optimal solution u for Eq. 3 that trades off the source error and the mistmatch loss has two
equal-valued global solutions [±u1, u2]T for some u1, u2. One solution (Fig. 1, Case 3, left) yields a
small e(f̃S , f̃T ) and the other (Fig. 1, Case 3, right) yields a large e(f̃S , f̃T ). As can be intuitively
seen, UDA is successful in the former but fails in the latter, and which equal-valued solution will
be chosen is undetermined. Thus a slight nudge via additional information (such as target labels) or
misinformation (such as poisoning) can determine success or failure of UDA methods. Details of the
analysis and the results are in Appendix B.

4 Breaking unsupervised domain adaptation methods with data poisoning
In this section, we present novel data poisoning attacks to evaluate the ease with which current
UDA methods can be fooled into producing a representation that leads to a large error on the target
domain1. We propose three methods to generate poisoned data which will be added to the clean
source domain data. The first method uses mislabeled data as poisons. Under this attack, we evaluate
two approaches (a) adding mislabeled source domain data (wrong-label correct-domain poisoning)
and (b) adding mislabeled target domain data (wrong-label incorrect-domain poisoning) as poisons.
The second method adds images from the source domain watermarked with images from the target
domain with incorrect labels (watermarking attack) as poisons. The last method adds poisons with
clean labels. We evaluate two approaches for this attack (a) using source domain data (clean-label
correct-domain poisoning) and (b) using target domain data (clean-label wrong-domain poisoning) to
initialize the poison data. The intuitive pictures of how these poisoning attacks hurt UDA methods
are shown in Figs. 4, 5, and 6. We evaluate the effect of poisoning on popular UDA methods namely,
DANN[9], CDAN[16], MCD[25], SSL[31] (with rotation-angle prediction task), IW-DAN[6], and
IW-CDAN[6]. We compare the difference in the target accuracy attainable by these methods when
using clean versus poisoned data. Two benchmark datasets are used in our experiments, namely Digits
and Office-31. We evaluate four tasks using SVHN, MNIST, MNIST_M, and USPS datasets under
Digits and six tasks under the Office-31 using Amazon (A), DSLR (D), and Webcam (W) datasets.
For all experiments, we train UDA algorithms on clean and poisoned source domain data and use
neural networks whose architectures are similar to those used by previous works (see Appendix E).

4.1 Poisoning using mislabeled source and target domain data

In this experiment, mislabeled data is added to the clean source domain as poison. The labels provided
by the attacker to the poison data are chosen to fool UDA methods into learning a representation that
incurs large errors on the target domain. We use two simple and effective labeling functions for this.
For the Digits dataset, we use a labeling function that systematically labels the poison data to the
class next to their true class (e.g. poison points with true class one are labeled as two, points with
true class two are labeled as three, and so on). For the Office-31 dataset, we use a labeling function
that assigns the poison data the label of the closest (in the representation space learned using the
clean source domain data) incorrect source domain class. Here the attacker is limited to adding only
10% poisoned data with respect to the size of the available target domain data (for experiments with
different poison percentages see Appendix C). In wrong-label correct-domain poisoning, mislabeled
source domain data are used as poisons. The results in rows marked with Poisonsource in Tables 1
and 2, show that UDA methods suffer only a minor decrease in target domain accuracy with this
approach. This happens because the presence of a large amount of correctly labeled source domain
data prevents the small amount of poisoned data from affecting the performance of UDA methods.
A similar effect is observed when a small amount of mislabeled data is used for poisoning in the
traditional single domain setting [21, 24]. However, if the relative size of poisoned data is larger or
comparable to the size of clean source domain data, poisoning can be effective. This is observed
in Table 2 when Amazon is the target data. Amazon dataset is roughly 5 times bigger than both
DSLR and Webcam datasets. Due to this, the permissible amount of poisoned data (10% of the target
domain) makes the size of clean and poisoned data comparable, leading to successful poisoning.
Thus, this attack causes UDA methods to fail in presence of a large amount of poisoned data.

In the wrong-label wrong-domain approach, mislabeled target domain data is used for poisoning.
The effect of poisoning on discriminator-based methods [9, 16] is shown in Fig. 4. The domain
discriminator used in these methods is maximally confused when marginal distributions of the

1The code is available at https://github.com/akshaymehra24/LimitsOfUDA
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(a) DANN trained on
clean data

(b) DANN trained on poi-
soned data

(c) CDAN trained on
clean data

(d) CDAN trained on poi-
soned data

SOURCE TARGET POISON

Figure 2: (Best viewed in color.) t-SNE embedding of the data in the representation space (for
MNIST→ USPS task) learned using DANN and CDAN on clean and poisoned source domain data.
Without poisoning, correct classes (data from source class 2 is zoomed in) from two domains are
aligned ((a) and (c)). The presence of poisoned data fools the methods into aligning incorrect classes
from the two domains ((b) and (d)). The mismatch between the source and target classes is dependent
on the labels of the poison data (due to which the target class 1 is aligned to the source class 2).

(a) MCD trained on clean
data

(b) MCD trained on poi-
soned data

(c) SSL trained on clean
data

(d) SSL trained on poi-
soned data

SOURCE TARGET POISON

Figure 3: (Best viewed in color.) t-SNE embedding of the data in the representation space (for
MNIST→ USPS task) learned using MCD and SSL on clean and poisoned source domain data.
Without poisoning, correct classes (data from source class 2 is zoomed in) from two domains are
aligned ((a) and (c)). The presence of poisoned data prevents the methods from aligning correct
classes from the two domains ((b) and (d)).

source and target domains are aligned. However, alignment of the marginal distributions does not
ensure alignment of the conditional distributions [32, 16]. The objective of achieving low source
domain error pushes the generator to correctly classify the poison data. Thus placing the poison
and source data with the same labels close in the representation space. Since the poison data is
mislabeled target domain data, poisoning makes UDA methods align wrong source and target domain
classes. This leads to a significant decline in the target domain accuracy. This is also evident
from the t-SNE embedding for DANN and CDAN methods in Fig. 2. In absence of poisoning,
correct source and target classes are aligned (Fig. 2 (a) and (c)), whereas in presence of poisoning
wrong classes from the two domains are closer (Fig. 2 (b) and (d)). For MCD [25], which uses
use classifier discrepancy to detect and align source and target domains, our poisoned data prevents
the method from detecting target examples. This happens because the term that minimizes the
error on the poisoned source domain reduces the discrepancy of the classifiers on poison data,
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Table 1: Decrease in the target domain accuracy for UDA methods trained on poisoned source domain
data (with poisons sampled from source/target domains) compared to accuracy attained with clean
data on the Digits tasks (mean±s.d. of 5 trials).

Method Data SVHN→ MNIST MNIST→ MNIST_M MNIST→ USPS USPS→ MNIST

Source only Clean 72.42±1.44 39.05±2.30 87.13±1.75 78.6±1.45

DANN
Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonsource 70.26±2.84 69.98±3.49 93.44±0.84 92.08±0.68
Poisontarget 1.46±1.12 0.48±0.04 0.97±0.53 5.83±0.82

CDAN
Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonsource 73.67±4.19 73.36±1.31 92.06±0.59 92.85±0.31
Poisontarget 12.27±5.02 0.59±0.12 1.92±0.42 2.96±0.71

MCD
Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonsource 85.86±5.66 93.33±0.71 87.99±1.05 83.19±2.98
Poisontarget 0.97±0.94 0.37±0.06 0.66±0.16 2.07±0.69

SSL
Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonsource 61.97±1.62 91.35±1.13 85.74±2.92 82.56±0.84
Poisontarget 0.31±0.03 0.36±0.02 7.76±1.52 9.88±1.07

Table 2: Decrease in the target domain accuracy for UDA methods trained on poisoned source domain
data (with poisons sampled from source/target domains) compared to accuracy attained with clean
data on the Office tasks (mean±s.d. of 3 trials).

Method Dataset A→ D A→ W D→ A D→ W W→ A W→ D

Source Only Clean 79.61 73.18 59.33 96.31 58.75 99.68

DANN
Clean 84.06 85.41 64.67 96.08 66.77 99.44

Poisonsource 79.11±0.35 83.98±1.19 44.31±2.94 95.22±0.22 43.35±1.65 96.58±0.87
Poisontarget 59.83±0.20 63.18±1.96 17.58±0.39 76.43±0.62 19.82±0.33 84.20±0.71

CDAN
Clean 89.56 93.01 71.25 99.24 70.32 100

Poisonsource 90.16±0.61 90.94±0.13 53.68±0.37 98.45±0.07 57.27±0.57 99.66±0.23
Poisontarget 71.88±0.20 71.94±0.76 11.19±1.47 86.37±0.36 18.54±0.45 89.08±1.23

IW-DAN
Clean 84.3 86.42 68.38 97.13 67.16 100

Poisonsource 81.25±0.91 83.27±0.45 50.76±1.58 96.68±0.29 48.31±2.02 99.73±0.12
Poisontarget 61.64±0.53 63.43±1.14 15.69±1.76 80.29±0.07 26.54±0.48 88.62±0.23

IW-CDAN
Clean 88.91 93.23 71.9 99.3 70.43 100

Poisonsource 89.83±0.31 90.77±1.27 57.51±0.06 98.41±0.07 61.16±1.21 99.66±0.12
Poisontarget 72.62±0.42 70.15±2.21 14.36±0.66 88.26±0.15 22.36±0.96 87.75±0.53

which are from the target domain. Thus, both the generator and discriminator (in the form of
two classifiers) become optimal and there is no signal for the generator to align the two domains.

SOURCE TARGET

Figure 4: Poisoning with
mislabeled target domain data
causes discriminator-based
UDA approaches to align
wrong classes (+ to -) from
the two domains, leading to
a significant decline in the
target domain accuracy.

The t-SNE embedding in Fig. 3 shows this effect. In presence of
poisoned data Fig. 3 (b), we see twenty distinct clusters rather than
just ten (we have ten classes in the Digits) as seen in the absence
of poisoning in Fig. 3 (a). In SSL [31], the generator must work
well on the main task, i.e., should correctly classify all data in
the poisoned source domain data. The auxiliary task ensures that
representations of the source and target domains become similar as
seen on clean data (Fig. 3 (c)). But in presence of poisoned data,
similar representations of correct source and target domain classes
leads to a drop in the accuracy of the main task on the poisoned
data. This creates a conflict between the main and auxiliary tasks
due to which correct source and target domain classes cannot be
aligned (Fig. 3 (d)). The objective of making the main task accurate
on poisoned data leads to target domain data being assigned the
labels of the poisoned points. Thereby leading to a significant drop in the target-domain accuracy.
The results of wrong-label wrong-domain poisoning present in rows marked with Poisontarget in
Tables 1 and 2 show a significant reduction in the target domain accuracy compared to the accuracy
obtained on clean data. On Digits, poisoning makes the target domain accuracy close to 0% on most
tasks. On Office-31, poisoning causes at least a 20% reduction in the target domain accuracy in most
cases. The reason tasks in Office-31 are less hurt by poisoning is because of the use of a pre-trained
representation. Similar to previous works for Office-31, we use all labeled source and unlabeled target
domain data for training and fine-tune from a representation pre-trained on the ImageNet dataset. The
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Table 3: Decrease in target accuracy when training different domain adaptation methods on poisoned
watermarked data in comparison to the target accuracy obtained with clean data on the Digits task
(mean±s.d. of 5 trials).

Method Dataset SVHN→ MNIST MNIST→ MNIST_M MNIST→ USPS USPS→ MNIST

DANN

Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonedα
68.76±3.910.05 27.36±15.770.05 91.84±0.550.10 88.93±4.360.10

57.96±5.840.10 7.19±2.590.10 85.51±3.010.20 78.29±8.520.20

33.33±4.380.15 4.73±0.380.15 39.29±1.340.30 41.52±7.430.30

CDAN

Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonedα
65.77±4.820.05 55.47±3.870.05 92.05±0.960.10 86.53±1.550.10

57.57±3.110.10 7.37±1.260.10 86.54±2.430.20 77.39±4.840.20

44.83±4.090.15 6.68±1.640.15 88.67±0.440.30 79.54±7.020.30

MCD

Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonedα
74.96±3.200.05 92.18±0.780.05 6.75±4.810.10 30.35±2.300.10

35.85±3.230.10 85.38±3.570.10 0.77±0.220.20 11.34±0.770.20

17.01±1.520.15 70.34±11.490.15 0.71±0.220.30 3.28±0.940.30

SSL

Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonedα
44.64±2.010.05 53.33±13.480.05 32.38±10.770.10 34.72±1.710.10

10.86±1.210.10 26.64±10.10.10 6.12±2.130.20 21.86±1.010.20

3.4±1.110.15 12.14±4.660.15 2.42±0.410.30 11.90±0.810.30

slowly changing representation pre-trained on a massive dataset weakens the effect of poisoning but
cannot eliminate it. For the two tasks D→ W and W→ D, the fine-tuned representation, trained just
on the clean source dataset (Source Only in Table 2) achieves high accuracy indicating the domains
are already well aligned in terms of conditional distributions as well. As a result, UDA methods can
easily align correct classes and suffer a drop close to 10% which is the amount of poisoned data
added. However, this is not an interesting case for the evaluation of UDA methods as domains can be
aligned just by training on the source domain data without the need for target domain data.

4.2 Poisoning with mislabeled watermarked data

SOURCE TARGET

Figure 5: Successful poi-
soning with mislabeled wa-
termarked data prevents
discriminator based UDA
approaches from aligning
correct classes from the
source and target domains.

In this experiment, we evaluate the effect of using poisoned data that
looks like the source domain data. The poisoned data is generated by
superimposing an image from the source domain with an image from
the target domain. This method of generating poison data is known
as watermarking [26]. To generate watermarked poison data we select
an image from the target domain (t) and a base image from the source
domain (s) such that it has the same class as the target domain image
and lies closest to the target image (in the input space). The poisoned
image (p) is obtained by a convex combination of the base and target
images i.e., p = αt + (1 − α)s where α ∈ [0, 1]. α is selected such
that the target image is not visible in the poison image ensuring the
poisoned image looks like the image from the source domain. We use
the same labeling function as discussed in the previous section to label
the poisoned image and add 10% poison data to the source. The illustrative picture of the effect
of poisoning in this scenario is presented in Fig. 5. Successful poisoning, in this case, works just
like in the previous experiment i.e., by making the representations of the data from wrong classes
in source and target domains similar for DANN/CDAN, by reducing the discrepancy between the
classifiers on target data for MCD and inducing a conflict between the supervised and auxiliary task
for SSL. The t-SNE embedding showing the effect of poisoning (Fig. 10) and watermarked poison
data (Fig. 9) are shown in the Appendix. We evaluate the effectiveness of this method on the Digits
dataset for different values of α. The results in Table 3 show a significant decrease in the target
domain accuracy even with a small watermarking percentage for all methods except CDAN. This
is because the success of CDAN is dependent on the correctness of the pseudo-labels on the target
domain data (output of the classifier), which are used in the discriminator. Correct pseudo-labels
provide CDAN a positive reinforcement to align correct classes from the two domains, leading to a
failure of poisoning. However, as we increase the amount of watermarking, the quality of pseudo
labels deteriorates. Thus, providing a negative reinforcement to CDAN that causes the alignment of
wrong classes from the two domains.
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4.3 Poisoning using clean-label source and target domain data

In this experiment, correctly labeled data is used for poisoning. To generate clean-label poison data
that can affect the performance of UDA methods we must affect the features of the poison data.
This requires solving a bilevel optimization problem [10, 21, 22] which we present in the Appendix.

SOURCE TARGET

Figure 6: Successful clean-
label clean-domain poison-
ing attack aligns the target
point (purple) close to the
wrong class (-).

Due to the high computational complexity involved in solving the
bilevel problem, we propose to use a simple alternating optimiza-
tion to demonstrate the feasibility of a clean label poisoning attack
against UDA. We use the setting of previous works[10, 26] and consider
misclassification of a single target domain test point (xtarget

test , ytarget
test )

rather than affecting the accuracy of the entire target domain as
done in the previous two experiments. Let u = {u1, ..., un} de-
note the poisoned data. To ensure a clean label, each poison point
ui must have a bounded perturbation from a base point xbase

i i.e,
‖ui − xbase

i ‖ = ‖δi‖ ≤ ε and has label of the base i.e., ybase
i . Thus,

D̂poison = {(ui, ybase
i )}Npoison

i=1 , D̂source = {(xsource
i , ysource

i )}Nsource
i=1

and D̂target = {(xtarget
i , ytarget

i )}Ntarget

i=1 . The clean-label poison data u is such that when the vic-
tim uses D̂source

⋃
D̂poison and D̂target for UDA, the target domain test point (xtarget

test , ytarget
test ) is

misclassified. The optimization problem for the clean-label attack is as follows.

min
u

Npoison∑
i=1

[
‖g(xtargettest ; θ)−g(ui; θ)‖22+λ‖xbasei −ui‖

]
, min

θ
LUDA(D̂source

⋃
D̂poison, D̂target; θ). (4)

Figure 7: Attack success rate
of clean-label poisoning using
base data from source/target
for a two-class problem in
MNIST→ MNIST_M.

The first problem minimizes the distance between the representa-
tions of the poison and the target domain test data (first term) while
ensuring the poison data is not too far from the base data (second
term). The second problem optimizes the parameters of the represen-
tation using UDA methods. Attack success is evaluated by solving
the second problem in Eq. 4 from scratch and evaluating the classifi-
cation of xtarget

test . This is illustrated in Fig. 6. The left part shows the
case before retraining using the poison data generated from Eq. 4
and the right part shows how poisoning induces misclassification.
We use two approaches for poisoning. The first uses source domain
data and the second uses target domain data as base data. We add 1%
poisoned data and test the effect of poisoning on a two-class (3 vs 8)
domain adaptation problem on MNIST→ MNIST_M (see Appendix E). The results in Fig. 7 show
that using target domain data as base data is significantly more successful under small permissible
perturbation (ε). Using base data from the source domain requires larger distortion to keep the poison
data close to the target point in the representation space and is hence less successful. This experiment
shows the feasibility of clean label attacks against UDA methods. We believe attack success can be
further boosted by solving the bilevel level problem (Eq. 9 in Appendix) and is left as future work.

5 Conclusion

We studied the problem of UDA and highlighted the limitations of learning under this setting. We
proposed a simple lower bound on the target domain error for UDA, dependent on the labeling function
induced by the representation. The lower bound demonstrated that learning a domain invariant
representation while minimizing error on the source domain cannot guarantee good generalization on
the target domain. We analyzed a simple model and showed the existence of cases where UDA can
naturally succeed or fail. The analysis also highlighted a case where, without access to any labeled
target domain data, the success and the failure are equally likely. In such a case, the presence of
even a small amount of poisoned data can make the data distribution unfavorable for UDA methods,
making them fail dramatically in comparison to the case without poisoning. We proposed novel
data poisoning attacks to demonstrate the failure of popular UDA methods with a small amount of
poisoned data. Our results suggest that the performance of a UDA method in presence of poisoned
data indicates how well the method aligns the conditional distributions across the two domains.Thus,
we believe our attacks can be used for evaluating UDA methods, beyond simple benchmark datasets,
to reveal their robustness to data distributions inherently unfavorable for UDA.
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Appendix
We present the proof of Theorem 1 in Appendix A followed by the analysis of the illustrative cases of
UDA failure in Appendix B. Then we present the results for the experiment of using different poison
percentages when mislabeled data is used for poisoning in Appendix C followed by the proposed
bilevel formulation for clean label attacks in Appendix D. We conclude in Appendix E by providing
the details of the datasets used, model architectures, and the clean label experiment.

A Proof of the lower bound on the target domain loss

Theorem 1. Let H be the hypothesis class and G be the class representation maps. Then, for all
h ∈ H and g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} − eS(h)−D1(p̃S , p̃T ).

Proof.

eS(h) + eT (h) = eT (h, f̃T )) + eT (h, f̃S) + eS(h, f̃S)− eT (h, f̃S)

≥ eT (f̃S , f̃T ) + eS(h, f̃S)− eT (h, f̃S)

= eT (f̃S , f̃T ) +

∫
(p̃S(z)− p̃T (z))|h(z)− f̃S(z)| dz

≥ eT (f̃S , f̃T )−
∫
|p̃S(z)− p̃T (z)| dz

= eT (f̃S , f̃T )−D1(p̃S , p̃T ).

Similarly, we can also show that

eS(h) + eT (h) ≥ eS(f̃S , f̃T )−D1(p̃S , p̃T ).

Combining the two results gives us the statement of the theorem.

Corollary 1.2. For all h ∈ H and g ∈ G,

|eT (h)−eS(f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ), and |eT (h)−eT (f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ).

Proof. From the upper bound we have,

eT (h)− eS(f̃S , f̃T )) ≤ eS(h) +D1(p̃S , p̃T ) and eT (h)− eT (f̃S , f̃T )) ≤ eS(h) +D1(p̃S , p̃T )

From the lower bound (Eq. 2) we have,

eT (h)− eS(f̃S , f̃T ) ≥ −eS(h)−D1(p̃S , p̃T ) and eT (h)− eT (f̃S , f̃T ) ≥ −eS(h)−D1(p̃S , p̃T )

Combining the results from the upper and the lower bounds gives us the statement of the corollary.

B Illustrative examples of UDA failure

In this section, we provide the details of the analysis of the illustrative cases in the main paper. As
described in Sec. 3.2, the input space X is in R2 and the source and the target distributions are
Gaussian mixtures

pS(x) = 0.5pS+(x) + 0.5pS−(x) and pT (x) = 0.5pT+(x) + 0.5pT−(x),

where pS+(x) = N (µS+, σ
2I), pS−(x) = N (µS−, σ

2I), pT+(x) = N (µT+, σ
2I), and pT−(x) =

N (µT−, σ
2I). The true labeling function f(x) in the input space is assumed linear: f(x) = I[vTx >

0] where v is the unit normal vector to the decision boundary. The representation space Z is in R and
the representation map g : X → Z is linear: g(x) = uTx where ‖u‖ = 1. For the hypothesis, we
use h(z) = Φ(az + b) which is a linear model az + b followed by a saturating function which can be
the cumulative normal distribution Φ (or others such as the logistic function l).
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Figure 8: This figure provides a visual help for deriving the induced labeling function f̃(z) in Eq. 5.
u is the direction of the 1-D projection g(z) = uTx, v is the direction of the labeling function f(x)
in the input space where we assumed f(x) = I[vTx > 0], and q is the intersection of the two lines
vTx = 0 and uT (x− zu) = 0 projected along the u⊥ direction. Evaluating Eq. 6 using the help of
this figure results in Eq. 7.

The representation map g induces the distributions p̃(z) over Z as

p̃S(z) = 0.5N (uTµS+, σ
2) + 0.5N (uTµS−, σ

2), and

p̃T (z) = 0.5N (uTµT+, σ
2) + 0.5N (uTµT−, σ

2).

The map g also induces the labeling function f̃(z) on Z defined as f̃(z) = ED[f(x)|g(x) = z] [2].
Computing this quantity can be complex in general but is relatively straightforward for a mixture of
Gaussians and a simple half-space labeling function f(x). Following the definition, we have

f̃(z) = ED[f(x)|g(x) = z] =

∫
Z
f(x) I[uTx = z] p(x|z = g(x))dx. (5)

In our example, the integral
∫
R2 · dx can be decomposed into

∫∞
−∞

∫∞
−∞ · dzdw where z and w are

the coordinates along the rotated axes u and u⊥ (see Fig. 8).

We therefore have

f̃(z) =

∫ ∞
−∞

∫ ∞
−∞

I[vTx > 0] I[uTx = z] p(x|z = g(x))dzdw

=

∫ ∞
−∞

I[vTx > 0] (0.5Nw(µT+u
⊥, σ2I) + 0.5Nw(µT+u

⊥, σ2I))dw. (6)

This integral can be evaluated as

f̃(z) =


0.5Φ(

q−µT+u
⊥

σ ) + 0.5Φ(
q−µT+u

⊥

σ ) if vTu⊥ < 0

0.5[1− Φ(
q−µT+u

⊥

σ )] + 0.5[1− Φ(
q−µT+u

⊥

σ )] if vTu⊥ > 0
0.5(1 + sign(z)) if vTu⊥ = 0 and vTu > 0
0.5(1− sign(z)) if vTu⊥ = 0 and vTu < 0

(7)

where Φ is the cumulative normal distribution and q is the intersection of the two lines vTx = 0 and
uT (x− zu) = 0 projected along the u⊥ direction. More concretely,

q =
u1v1 + u2v2

u1v2 − u2v1
z

where u = [u1, u2]T and v = [v1, v2]T .
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The UDA minimization problem is

min
u,a,b

eS(h) + λD(p̃S , p̃T ) + η(‖u‖2 − 1)2, (8)

where the last term was added to enforce ‖u‖ = 1. For differentiability, we consider the squared loss
instead of the absolute loss:

eS(h) = ES [(Φ(az + b)− f̃S(z))2] =

∫
R
p̃S(z)

(
Φ(az + b)− f̃S(z)

)2

dz

and also
D(p̃, p̃′) =

∫
R

(p̃(z)− p̃′(z))2dz.

The expectation in eS(h) can only be computed numerically due to the complex formula for f̃(z).
On the other hand, the mismatch loss is

D(p̃S(z), p̃T (z)) =

∫
R

(p̃S(z)− p̃T (z))2dz

=

∫
R

(
0.5

2πσ2

)2 [
e−

(z−uT µS+)2

2σ2 + e−
(z−uT µS−)2

2σ2 − e−
(z−uT µT+)2

2σ2 − e−
(z−uT µT−)2

2σ2

]2

dz,

which can be computed either numerically or analytically.

The three cases explained in the main paper are as follows:

Case 1 : µS+ = [−1, 1]T , µS− = [−1,−1]T , µT+ = [1, 1]T , µT− = [1,−1]T , vS(x) = vT (x) =
[0, 1]T , λ = 10−1

Case 2 : µS+ = [−1, 1]T , µS− = [−1,−1]T , µT+ = [1,−1]T , µT− = [1, 1]T , vS(x) =
−vT (x) = [0, 1]T , λ = 10−1

Case 3 : µS+ = [0, 1]T , µS− = [0,−1]T , µT+ = [−1, 0]T , µT− = [1, 0]T , vS(x) = [0, 1]T ,
vT (x) = [−1, 0]T , λ = 10−2

The other shared parameters are σ = 1 and η = 10. The λ determines the optimal tradeoff between
Es and D in Eq. 8.

We solve Eq. 8 numerically using scipy.optimize.minimize(method=‘Nelder-Mead’) function which is
stable even if the cost function may be non-differentiable. Starting from random initial conditions
and running until convergence, the solution u for both Case 1 and Case 2 converges to [0, 1]T .

For Case 1 (favorable case), we get max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} < 10−3 and eT (h) < 10−3

which shows DA was successful.

For Case 2 (unfavorable case), we get max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} > 0.99 and eT (h) > 0.99
which shows DA was unsuccessful.

For Case 3 (ambiguous case), there are roughly 50/50% chance of u converging to [−0.70, 0.72]T

or [0.70, 0.72]T . For the former, we get max{eS(f̃S , f̃T ), eS(f̃S , f̃T )} < 10−4 and eT (h) < 10−3

where DA is successful. For the latter, we get max{eS(f̃S , f̃T ), eS(f̃S , f̃T )} u 0.33 and eT (h) u
0.33 where DA has failed.

C Effect of poison percentage on attack success with mislabeled poison data

In this section, we evaluate the effect of using different poison percentages on the attack success when
mislabeled data is used for poisoning. As can be seen in Tables 1 and 2, the success of wrong-label
clean-domain poisoning with 10% poisoned data is very limited. Thus, here we only focus on using a
smaller poison percentage to study the attack success of wrong-label wrong-domain poisoning. The
results of the experiment are summarized in Table 4. For all tasks, the presence of only 6% poison
data causes a significant decrease in the target domain accuracy. When the poison percentage is
decreased further to only 2% we still see a drop of at least 20% in the target accuracy for all methods
except CDAN[16]. The use of a conditional discriminator provides CDAN this robustness. However,
the success of CDAN is dependent on the quality of the pseudo-labels from the classifier on the target
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Table 4: Effect of using different percentage of wrong-label wrong-domain poisoned data on the
target domain accuracy when training UDA methods on poisoned source domain data on the Digits
tasks (mean±s.d. of 5 trials).

Poisontarget (%) DANN CDAN MCD SSL
MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST

0% (Clean) 92.17±0.73 92.73±0.71 93.92±0.97 95.94±0.71 89.96±2.04 88.34±2.50 88.69±1.28 82.23±1.59

2% 63.53±2.09 94.72±0.63 90.54±0.91 88.79±2.34 22.74±2.17 51.02±3.57 65.88±2.93 41.25±2.32
4% 28.39±4.78 34.25±9.53 90.22±0.74 76.55±2.25 2.37±1.41 16.66±4.73 30.82±1.28 28.60±2.16
6% 7.32±4.78 12.96±7.33 42.86±5.09 8.61±4.77 2.56±0.97 4.64±1.34 21.29±2.51 18.89±1.11
8% 0.97±0.44 1.63±0.41 7.02±3.88 5.35±0.94 7.04±0.25 4.43±1.76 10.84±1.52 11.11±2.74
10% 0.97±0.53 5.83±0.82 1.92±0.42 2.96±0.71 0.66±0.16 2.07±0.69 7.76±1.52 9.88±1.07

domain data. Good pseudo-labels provide CDAN a positive reinforcement to align correct source
and target domain classes. Thus, leading to a failure of poisoning. However, as the percentage of
poisoned data increases, the classifier begins to easily classify the target domain data into labels
intended by the attacker, deteriorating the quality of the pseudo-labels. This provides a negative
reinforcement to CDAN causing it to align wrong classes from the source and the target domain. As
a result, the poisoning attack becomes successful. Thus, for wrong-label wrong-domain poisoning,
increasing the percentage of poison data gradually drives UDA methods from the case favorable to
UDA to the unfavorable one.

D Bilevel formulation for clean-label attacks

In this section, we present the bilevel formulation for a clean-label data poisoning attack
against UDA methods. Let u = {u1, ..., un} denote the poisoned data and D̂valtarget =

{(xvaltarget
i , y

valtarget
i )}

Nvaltarget

i=1 , be a small set of labeled target domain data accessible to the at-
tacker. To ensure a clean label, each poison point ui must have a bounded perturbation from
a base point xbase

i i.e, ‖ui − xbase
i ‖ = ‖δi‖ ≤ ε and has label of the base i.e., ybase

i . Thus,
D̂poison = {(ui, ybase

i )}Npoison

i=1 . The clean-label poison data u is such that when the victim uses
D̂source

⋃
D̂poison and D̂target for UDA, the accuracy on D̂valtarget is minimized. The bilevel formu-

lation for this attack is as follows:

max
u∈U

L(D̂valtarget ; θ∗) s.t. θ∗ = arg min
θ
LUDA(D̂clean

⋃
D̂poison, D̂target; θ). (9)

The solution to the lower-level problem θ∗ are the parameters of the generator and the classifier
learned from using a UDA method on the poisoned source domain data and unlabeled target domain
data. Solving bilevel optimization problems [10, 21, 22] to generate clean-label poison data has
previously been shown to be effective. We used an alternating optimization to avoid the computational
complexity of solving the bilevel optimization (Eq. 4). However, we believe the attack success can be
boosted by solving the bilevel formulation proposed in Eq. 9 and is left for future work.

E Details of the experiments

All codes are written in Python using Tensorflow/Keras and were run on Intel Xeon(R) W-2123 CPU
with 64 GB of RAM and dual NVIDIA TITAN RTX. Dataset details and model architectures used
are described below.

E.1 Dataset description

Here we describe the details of the datasets used for the Digits and Office-31 tasks.

Digits: For this task, we use 4 datasets: MNIST, MNIST_M, SVHN, and USPS. We evalu-
ate four popular tasks under this, namely, SVHN→ MNIST, MNIST→ MNIST_M, MNIST→ USPS
and USPS→ MNIST. For SVHN→ MNIST, we train on 73,257 images from SVHN and 60,000
images from MNIST while testing on 10,000 MNIST images. For MNIST→ MNIST_M, we use
60,000 from MNIST and MNIST_M for training and test on 10,000 MNIST images. Lastly, for
MNIST→ USPS and USPS→ MNIST, we use 2,000 images from MNIST and 1,800 images from
USPS for training. We test on the 10,000 MNIST images and 1,860 USPS images.
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Office-31: The dataset contains a total of 4110 images belonging to 31 categories from 3
domains: Amazon (A), DSLR(D), and Webcam(W). We evaluate the performance of UDA on all six
tasks, namely, A→ D, A→W, D→ A, D→W, W→ A, W→ D.

E.2 Model architecture

Here we describe the model architectures used for different tasks. To fairly compare the performance
of different UDA methods and eliminate the effect of architecture changes in improving the perfor-
mance of different methods, we make use of similar model architectures for different methods, as
described below. The effectiveness of these architectures has also been shown by previous works.

Digits: The architectures used for MNIST→ MNIST_M, MNIST→ USPS and USPS→ MNIST
involves a shared convolution neural network. The output of this shared network is fed into a
softmax classifier and the discriminator. The architecture of the shared network consists of a
convolution layer with a kernel size of 5x5, 20 filters, and ReLU activation, followed by a max-
pooling layer of size 2x2. This is followed by another convolution layer with a 5x5 kernel, 50
filters, and ReLU activation followed by similar max pooling and a dropout. Then we have a fully
connected layer with ReLU activation of size 500 followed by a dropout layer. For the discriminator,
we use two dense layers with 500 units each followed by a ReLU and a dropout layer. This is
followed by a 2 unit softmax layer. For MCD, we use the following architecture for the generator
on MNIST→ MNIST_M task. A convolution layer with a kernel size of 5x5, 32 filters, and ReLU
activation, followed by a max-pooling layer of size 2x2. This is followed by another convolution
layer with a 5x5 kernel, 48 filters, and ReLU activation followed by a similar max-pooling layer.
We use 2 dense layers for the classifier with 100 units followed by ReLU activation and dropout
layers. This is followed by the softmax layer. Unlike the original work MCD[25], we do not use
batch normalization layers in these tasks to make architectures consistent across different methods.

Figure 9: Watermarked poison data for
MNIST → MNIST_M task with α in
{0.05, 0.10, 0.15}.

For SVHN→ MNIST we use the following architecture
for the generator. A convolution layer with a kernel size of
5x5, 64 filters, the stride of 2 followed by batch normaliza-
tion, dropout, and ReLU activation layer. This is followed
by another convolution layer with a kernel size of 5x5,
128 filters, the stride of 2 followed by batch normalization,
dropout, and ReLU activation layer. Then another convo-
lution layer with a kernel size of 5x5, 256 filters, the stride
of 2 followed by batch normalization, dropout, and ReLU
activation layer. This is followed by a dense layer with
512 units followed by batch normalization, ReLU activation, and a dropout layer. We use the softmax
layer for classification. For the discriminator, we use two dense layers with 500 units each followed
by a ReLU and a dropout layer. This is followed by a 2 unit softmax layer. For MCD, we use the
same architecture for the generator except that we use max-pooling instead of convolution layers with
stride 2 to downsample the representation. The classifier uses the output of the generator and feeds
into a dense layer with 256 units followed by batch normalization and ReLU activation layers. This
is followed by a softmax layer.

Office-31: For office experiments, we use the publicly available code of the work3 [6] and supply the
poisoned data by adding them to the input files being used by the code. We use all default options
of the code and use DAN, CDAN, IW-DAN, IW-CDAN algorithms. This is done to eliminate the
effect of hyperparameters on the performance of the UDA algorithms on the Office-31 dataset and be
able to fairly compare the performance of poisoning. To obtain the representation trained only on the
source domain data, we initialize a ResNet50 model with weight pre-trained on Imagenet. We then
update the representation by training on respective source domain data for different tasks.

E.3 Clean-label attack on MNIST→MNIST_M

For this experiment, 1% poison data is used to prevent the alignment of a target test point to its
correct class. We test the attack on the binary classification problems (3 vs 8). Two approaches to
initializing the poison data are evaluated. In the first approach, the poison data is initialized from the

3https://bit.ly/34EFb52
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(a) DANN (b) CDAN (c) MCD (d) SSL

SOURCE TARGET POISON

Figure 10: (Best viewed in color). t-SNE embedding of the data in the representation space (for
MNIST→ USPS task) learned using DANN, CDAN, MCD, and SSL on source domain data poisoned
with watermarked (α = 0.3) data. Successful poisoning aligns the wrong classes for discriminator-
based approaches, as seen in (a) with DANN. Poisoning fails against CDAN because of the pseudo-
labels being correct on the target data (b). For MCD, we see 20 distinct clusters highlighting the
failure of the method at detecting and aligning target domain data (c). For SSL, the poison data has
prevented the correct classes from having very similar representations (d). The failure of most UDA
methods with a small amount of watermarked data makes our attack practical and raises serious
concerns about the success of these methods.

(a) Base data chosen from the source domain (b) Base data chosen from the target domain

Figure 11: Poison data (top rows) obtained after solving Eq. 4 by using DANN as the UDA method,
with base data (bottom rows) initialized from the source domain (left) and the target domain (right).
Attack success with poison data initialized from the target is significantly higher than the attack
success obtained with poison data initialized from the source, from under the same maximum
permissible distortion constraint (ε = 0.1 in `∞ norm) as seen in Fig. 7.

source domain data, and in the second approach, it is initialized from the target domain data. In both
cases, the poison is picked from the class opposite to the true class of the target test point. Moreover,
the poison data is initialized using the points closest in the input space to the target test point. The
poison data obtained after solving Eq. 4 is added to the source domain data and UDA methods are
retrained from scratch. The attack is considered successful if the target test point is misclassified after
this retraining. For the results shown in Fig. 7, we randomly targeted 20 points and obtained poison
data corresponding to each UDA method. Attack success is reported after evaluating UDA methods
on five random initializations by adding the generated poison data in the source domain. To control
the amount of maximum distortion between experiments, we add a constraint on the maximum
permissible distortion to poison data using `∞ norm and use a value of ε = 0.1. The poison data
obtained after solving the optimization with base data chosen from the source and target domains
with DANN as the UDA method are shown in Fig. 11. To generate poison data that remains effective
even after UDA methods are trained from scratch, we make use of multiple randomly initialized
networks during poison generation. Following the work [10], we reinitialize the models at different
points during optimization. This re-initialization scheme helps train UDA methods with different
random initializations and for a different number of epochs making the poison data more resilient to
initialization change that can happen at test-time.
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