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ABSTRACT

Shape memory polymers (SMP) have been a field of interest for researchers over the past few decades and SMPs with unique characteristics are being developed
continuously. Careful, time-consuming design is required for improved materials. Polymer informatics is part of an effort to shorten the development time of
polymers by using computation and data-driven approaches such as machine learning. A specific polymer can be described via “fingerprints”, which are a way to
characterize molecular structures in a manner understandable by computers. In this paper, we describe combinations of nine epoxies and twenty-two hardeners with
twenty fingerprints, and simulated the thermomechanical cycle with molecular dynamics code LAMMPS. Subsequently, we statistically analyzed which fingerprints
are most strongly correlated with each shape memory property, specifically recovery stress and shape recovery ratio. This study lays a solid foundation for choosing
and understanding atomistic fingerprints in order to discover new SMPs via machine learning.

1. Introduction

Shape Memory Polymers (SMP) are a type of material with the ability
to change its shape in response to an external stimulus or trigger [1].
SMPs usually have one ‘memorized’ or permanent shape, which can then
be deformed or ‘programmed’ to make another shape that can be held
until a certain stimulus is applied. These stimuli can be heat [2-4], light
[5], and other types of triggers [6,7]. When this occurs, the programmed
shape returns to its original shape, often having a significant stress
release that can be used for useful work, if partially constrained shape
recovery is allowed. For example, a new kind of suture was developed
using SMPs that automatically fastens itself using the body heat as
trigger [8]. Smart curtains that can draw itself by reacting to sunlight
has also been developed using SMPs [9]. Most heat-triggered SMP have
one switch temperature above which it returns to its permanent shape
[10]. In absence of thermal stimulus, other methods like magnetic,
electrical and chemical stimuli have also been used to achieve remote
actuation [11], for example, making implants on neural interfaces to
understand neurological disorder [12], and developing shape memory
hydrogels for drug delivery [13].

To better understand and address problems in polymer physics,
theoretical, experimental and computational methods are used. Due to
rapid advances in computation technology in recent years, modeling and
studying polymers by computational methods is a way to shorten ma-
terial development time. One standard tool for modeling polymers is
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molecular dynamics (MD) simulations [14]. MD can predict bulk
properties of a variety of materials and elucidate the molecular level
factors that contribute to these properties [15]. Large-scale data acqui-
sition and analysis is also aided with MD with extensive use of auto-
mation. MD has been used to study variety of SMPs [16-23] utilizing
both coarse-grained and atomistic models [17-19]. It has been used to
quantify how different functional groups affect the shape memory
behavior of a specific SMP. To better understand how different struc-
tural characteristics affect the shape memory property and deformation
mechanism of SMPs, shape-memory polymers were modeled by simu-
lating three epoxies and twenty-two curing agents using MD [20,21]. A
coarse-grained model was also used to study the structure-property re-
lationships of SMPs [22]. Some studies aimed to enhance the shape
memory effect by modeling SMPs mixed with other materials such as
graphene sheets [23].

As not all polymers exhibit a sufficient shape memory effect (SME)
for all applications, appropriate material and structural design are
required. The factors affecting the shape-memory properties (i.e., shape
recovery ratio and recovery stress) need to be identified and manipu-
lated. Polymer informatics is a new field of materials science being used
to address such issues. It is a data-driven approach adopted because of
the often complex nature of problems faced during new material dis-
covery [24]. The power of any data-driven approach depends on the
accuracy and how well the data is organized, and should be reproducible
and accessible to others [25]. For this reason, The US Government
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launched a federal multi-agency initiative named ‘Materials Genome
Initiative’ [26] in 2009 to discover and manufacture new materials
within a fraction of the time of traditional methods as well as making
collaboration easier. The UK, Germany, Spain, Italy [27], and Japan
[28] have also established such databases.

The Polymer Genome Initiative was recently developed [29] for the
rapid structure to property predictions of polymers with a single back-
bone and of ladder polymers. In order to translate molecular structures
into a computationally meaningful representation, a new technique
called “fingerprinting” was developed. It involves breaking down a
molecule into a sequence of numerical values that define the chemical
and physical properties of the molecule [30]. Examples of these de-
scriptors include degree of branching, weight averaged molecular
weight, polydispersity, chemical composition, electronegativity,
HOMO-LUMO gaps, and radial distribution functions [31]. The finger-
prints can be described in different length scales ranging from
atomistic-scale, such as elemental composition, to topological scale,
such as distance between rings, and to morphological descriptors, such
as volume fraction of phases. A methodology to predict polymer prop-
erties using a dataset with descriptors and their associated properties
was developed in a 2017 study [32]. An online platform named Nano-
Mine, created to help design and predict the properties of new polymer
nanocomposites, was also created [33]. Recently, 2000 unique
coarse-grained polymers were simulated to create a dataset for reliably
predicting structural properties with limited structural information
[34]. Most recently, machine learning (ML) was used to discover new
thermoset shape memory polymers (TSMPs) with a small training
dataset [35]. In that study, the recently developed BigSMILES [36] was
used to fingerprint the thermoset network. While BigSMILES is a useful
tool, able to represent the sequency of the atoms within the monomer,
crosslinker, and of the crosslink point, it does not directly include in-
formation about the topology, the interaction potential, or any higher
order information about the structure. By including such information in
the form of the fingerprints discussed here, the correlation between the
chemical structures and thermomechanical properties of the TSMPs can
be better established and understood, and more accurate predictions can
be produced. Unfortunately, there are many ways to describe features
within the monomers and hardeners, and it is not clear which features,
or fingerprints, can strongly correlate with the thermomechanical
properties, particularly the shape recovery ratio and recovery stress.

The goal of this study is to apply this approach to amine hardened
epoxies. Specifically, the MD package LAMMPS [35] was used to
simulate combinations of 9 epoxies, all with exactly two glycidyl ether
groups (DGE), and 22 commercially available hardeners, each with two
primary amine groups. Twenty descriptors or fingerprints, such as
sidechain length, were chosen to represent the epoxies and hardeners.
After crosslinking and relaxation, the fingerprints, defined in section III,
were calculated. The glass transition temperature, recovery stress, and
shape recovery ratio were then calculated, which are properties asso-
ciated with SME. The effect of the fingerprints on their respective
desired properties were calculated by analyzing their p-values and
correlation coefficients.

2. Simulation details

II.A. Creation of Polymer Networks. We developed a set of Python
codes to create polymer networks based on DGE epoxies and hardeners
with two amine groups. The codes were designed to work with epoxies
with DGE end groups and any amine hardener, requiring its SMILES
(Simplified molecular-input line-entry system) string as input. The Lig-
ParGen software [36], which incorporates the SMILES of different
molecules as inputs, was used to create the topology files for the
monomers. These topologies were utilized as data files for the LAMMPS
simulations software package [35,37] with the optimized potential for
liquid simulations force field [38-40]. Also, using the LigParGen soft-
ware, the topologies of reacted epoxies plus hardeners were saved to
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create the crosslinks in the polymer network. This is described in greater
detail in our previous work [16].

We chose epoxies and hardeners so that each epoxy had exactly two
glycidyl ethers, each hardener had two amine nitrogens, and each ni-
trogen had two hydrogens. This was done to be consistent with our
previous work with DGEBA-IPD [16], which was calibrated against
experiment for its crosslinking percentage, in which 70% was used. For
the number of DGEs and amine hydrogens to be the same, the system
configurations were constrained to have two epoxies for every hardener.
A simulation box was created for every system with two epoxies and one
hardener in which their individual structures were relaxed with conju-
gate gradient energy minimizations. Then, the systems were replicated
six times in X, Y, and Z directions to create a total of 432 epoxies and 216
hardeners. This resulted in system sizes ranging from 18,240 to 30,240
atoms with 864 glycidyl ethers and amine hydrogens for a total of 864
potential reactions.

Table 1 gives a list of all epoxies and hardeners studied, including
their abbreviations. Full chemical structures for each epoxy and hard-
ener can be found in Tables S1 and S2. The specific procedure for
equilibrating the systems, creating five independent structures, and
carrying out the crosslinking is described in detail in our previous work
[16]. We crosslinked all of the systems to create 70% of all possible
bonds, which gave the best agreement with experimental glass transition
values, rubbery and glassy moduli for DGE-IPD [16]. This resulted in
approximately 90% of epoxy and nearly 100% of hardener monomers
reacting at least once. Crosslinking was simulated at 398 K for all sys-
tems, with 10 ps of equilibration in 0.5 fs time steps preceding each
crosslinking attempt at 1 atm in the NpT ensemble [41]. This was fol-
lowed by bond rearrangement, and then a two-step relaxation procedure
as detailed in our previous work [16], which was adopted from other
works [42,43]. The process was repeated until 600 total steps were
carried out. Each step resulted in a reaction between glycidyl ether and

Table 1

List of epoxies and hardeners modeled and their abbreviations.
Epoxy/Hardener Abbreviation
Epoxies
Bisphenol A DGE DGEBA
Bisphenol F DGE EPON862
Propoxylated bisphenol A DGE DGEBAPO-2

Resorcinol DGE DGER

Poly (ethylene glycol) DGE DGEPEG
1,2-cyclohexanediol DGE DGECD
1,7-dihydroxyl naphthalene DGE DGEDHN
Neopentyl glycol DGE DGENG
Poly (dimethylsiloxane) DGE PDMSDGE
Hardeners

Isophoronediamine IPD
1,3-Bis(aminomethyl)cyclohexane BACH
m-Phenylenediamine MPDA
Propylenediamine DAP
2,2-Bis(aminoethoxy)propane BAP
2,4-Diaminotoluene DAT
2,2'-(Ethylenedioxy)bis (ethylamine) EDBE
Jeffamine JA
m-Xylenediamine XDA
4,7,10-Trioxa-1,13-tridecanediamine TTD
Butylenediamine DAB
Ethylenediamine DAE
p-Phenylenediamine PPDA
2,4-diethyl-6-methylbenzene-1,3-diamine DMDA
Acetoguanamine AGA
4-ethyoxybenzene-1,2-diamine EOBA
4-phenylpyridine-2,6-diamine PPYA
o-Phenylenediamine OPDA
1,1’-Binaphthyl-2,2'-diamine BPDA
Dytek EP Diamine DEPD
3,4-Pyridinediamine PDA
2,2/-Dithiodianiline DOA
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amine hydrogen, resulting in 69.4% of possible reaction pairs (600/864)
forming bonds.

2.1. IL.B. Calculation of shape memory properties

The glass transition (Tg) and other shape memory properties for each
system were calculated in the same fashion as our previous work [16].
The uncertainties were calculated by the standard error of the mean
from the five independent simulations. All systems were equilibrated at
30 K above their T, values at a pressure of 1 atm to allow for hot pro-
gramming, or deformation in their rubbery states, as was done by Fan
and Li [44]. Programming was carried out by slowly applying a 50%
compression in one direction while keeping the pressure perpendicular
to the deformation set to 1 atm for 4 ns. For each of the five systems,
three independent compressions were carried out, one for each dimen-
sion, leading to a total of 15 separate simulations. After programming,
the systems were allowed to relax at a fixed strain in one direction for an
additional 4 ns, followed by a 2 ns simulation in which the systems were
cooled to 298 K at the same strain conditions. Then, a 2 ns simulation at
298 K was carried out in the NpT ensemble allowing all system di-
rections to change, and allowing for a small elastic spring-back to occur.
Next, the direction that had the initial deformation was fixed, allowing
directions perpendicular to this equilibrate at 1 atm, and a 2 ns simu-
lation warming the system to 30 K above their T took place, followed by
an additional 2 ns simulation at 30 K higher than the Tg, which was used
to calculate the recovery stress. This recovery stress was the stress along
the same axis as deformation during the last 200 ps of the simulation.

An additional 4 ns simulation in the NpT ensemble was also carried
out at 550 K and 1 atm, where all directions were allowed to have
volume fluctuations to estimate the shape recovery. The shape recovery
ratio was recorded at the end of the simulation period in the usual way
[45]. The fixed temperature of 550 K was chosen for two reasons. A
higher temperature allowed the system to equilibrate faster, allowing
differences between the systems to be compared with relatively shorter
simulations. Also, using the same temperature for all systems studied
versus studying shape recovery at 30 K higher than their T, allowed a
better comparison between them. Our previous work found that using
temperatures based on each system’s individual T, made it challenging
to compare them as higher temperatures always lead to higher shape
recovery in the short simulation times that we can run [16]. In reality,
these higher temperatures may lead to additional side reactions that
could further change the cross-linking ratio. However, in the simula-
tions, this can be controlled, and the higher temperature is used for the
sole purpose of increasing the dynamics of the system for the purpose of
making a more consistent qualitative comparisons in their shape
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recovery ratios.
3. Fingerprinting

Fingerprinting for each polymer focused on the individual monomers
before they were crosslinked. The first step in fingerprinting was
defining which atoms are part of the backbone, and which are part of
sidechains. Fig. 1 is a schematic for the heavy atoms for DGEBA and IPD,
which shows all backbone atoms as black and sidechain atoms as red.
For DGEBA, crosslinked networks are formed by reactions with the
primary carbons in the epoxy groups, with the bonds between the pri-
mary epoxy carbons and the epoxy oxygens breaking during network
formation. As a consequence, the epoxy oxygen atoms are treated as
sidechain atoms. For both of these monomers, it can be observed that all
atoms that form bonds between the reactive groups are classified as the
backbone.

The following fingerprints were used to describe the individual
monomers.

1) The number of bonds separating the shortest distance between the
reacted DGE carbons. In the case of DGEBA (see Fig. 1), this is 16.
2) The number of bonds separating the shortest distance of reacted
amine nitrogens. For IPD, this is 5.
3) The average number of backbone heavy atoms after full crosslinking
divided by the number of original monomers. Note that in a ring, this
will include all ring atoms. This is (2 x 21 + 9)/3 = 17 for DGEBA-
IPD (note that DGEBA has twice as many monomers as IPD).
The ratio of the number of backbone heavy atoms with the total
number of heavy atoms. For instance, in DGEBA, there are 21
backbone atoms and in IPD there are 9 (see Fig. 1). That gives a total
of 51 backbone atoms since there are two DGEBA for every IPD. The
total number of heavy atoms for DGEBA and IPD are 25 and 12,
respectively, giving a total of 61 heavy atoms. This gives a ratio of
51/62 = 0.823.
The stiffness of the bond stretching interaction between heavy atoms.
Bond stretching is given by the following formula: upmg =

4

—

5

-

k- (r — ro). The stiffness is simply the average k; for all bonds.

6) The stiffness of the angular interaction between heavy atoms (see
Fig. 1). Angles interact via the harmonic formula: ugg =
ko(6 — 6p)?. The stiffness is the average kg for all angles.

7) Dihedral energy strength between heavy atoms (see Fig. 1). Di-
hedrals interact via both regular dihedral energy and improper
torsional energy:

1 1 1 1
Udinedral = Ekl (1 + cos(p)] + Ek] [1+cos(29)] + Ekl [1+cos(39)] + 51(1 [1 + cos(4p) ] + K[1 + dcos(ng) | (@D

Fig. 1. Schematic for the fingerprinting scheme for
IPD (left) and DGEBA (right). Black bonds and atoms
are part of the backbone, while those marked red are
part of the sidechain. Light blue dashed lines indicate
sidechain bond angles and sidechain dihedrals; green
dashed lines indicate backbone bond angles and di-
hedrals. Here, (a) and (b) are sidechain dihedral and
bond angles, (c) and (d) are backbone dihedral and
bond angles. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the Web version of this article.)
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The dihedral energy strength is defined as the sum of all || values

k
2

and |K]|. Since these are sometimes negative, the absolute value is used.

8) The van der Waals (vdW) size as defined as the average ¢ value of the
heavy atom Lennard-Jones potential which is used for vdW
interactions:

oo =5~ ()]

9) The van der Waals strength as defined as the average ¢ value of
the heavy atom Lennard-Jones potential which is used for vdW
interactions (Equation (2)).

10) The polarity of all the atoms. This is defined as the average
electron charge squared (g?) per atom.

11) The radius of gyration for the epoxy monomer and the hardener
monomer. This is calculated based on the mass (with r¢oym being
the center of mass) [46],

2
N ~ =
Z[:]mi ri — Icom

R, = 3
¢ Eiv:lmi ©

12) The maximum sidechain length for heavy atoms. For an indi-
vidual sidechain heavy atom, its sidechain length is defined as the
number of bonds between it and the nearest backbone atom.

13) The number of aromatic and non-aromatic backbone rings. It
should be noted that there are two epoxies for each hardener, so
each epoxy is counted twice in this. For instance, DGEBA in a
network will contribute four aromatic rings.

For items 5-10, fingerprints were calculated for both backbone and
non-backbone or sidechain atoms. A bond, angle, or dihedral are
considered part of the backbone only if all of the atoms are part of the
backbone (see Fig. 1 for examples).

4. Results and discussion
4.1. IV.A. Calculated properties
Fig. 2 (left) illustrates the programming stress as a function of strain

for four of the systems studied with 70% crosslinking: DGEBA epoxy
with IPD, BACH, DAP, and PDA hardeners. All four of the systems have

— 1D T T T T T T T
— BACH
— DAP
— PDA

50— i

0 I | I | L | I | I |
0 10 20 30 40 50

strain%

Fig. 2. Plot of recovery stress vs strain (left) and recovery ratio vs time (right). The recovery stress is shown in the left plot using triangle markers.
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similar programming stress curves, and it would be expected that all of
them would overpredict the stress in comparison with experiment due to
the short simulation times (4 ns). Of greater interest is the recovery
stress, which is also shown in the figure using triangle markers. In
comparison with the programming stress, the recovery stress is much
lower, consistent with experimental work [44]. The final recovery stress
is also expected to be overpredicted due to the short simulation times (by
around a factor of three in our previous work [44]), but the qualitative
differences should be consistent. For instance, DGEBA-IPD has a higher
recovery stress than DGEBA-BACH, which are the only two systems
compared experimentally [44]. This is consistent with the results shown
here despite the fact that the programming stress are nearly identical
between the two systems. We are currently working on coarse-graining
simulations to better bridge the timescale gap between simulations and
experiment.

The shape recovery ratio (see section II-B) as a function of time for
the four systems described is shown in Fig. 2 (right). As described, the
temperature for this calculation was 550 K to increase the rate of shape
recovery and to use the same temperature for comparisons for all sys-
tems. After 1-2 ns, the rate of shape recovery appears to stabilize to a

Table 2

Recovery stress (o) and shape recovery ratio (R,) after 3 ns calculated for

selected TSMPs.

Epoxy Hardener Orec (MPa) R,
DGEBA IPD 50 0.50
BACH 44 0.58
MPDA 56 0.49
DAP 60 0.68
BAP 28 0.51
DAT 50 0.55
EDBE 49 0.66
JA 39 0.94
XDA 43 0.54
TTD 44 0.71
DAB 52 0.59
DAE 56 0.56
PPDA 47 0.38
DMDA 53 0.46
AGA 50 0.33
EOBA 44 0.40
PPYA 56 0.36
OPDA 60 0.47
BPDA 28 0.35
DEPD 57 0.40
PDA 56 0.42
DOA 47 0.33
EPON862 IPD 40 0.48
DGEBAPO-2 29 0.67
DGER 43 0.52
DGEPEG 28 0.68

2 3 4
t (ns)
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certain degree, increasing at a fairly constant rate.

Table 2 lists the recovery stress and shape recovery ratios calculated
for a selected set of thermoset shape memory polymers (TSMPs) studied
in this work, which include DGEBA with all hardeners studied and IPD
with all epoxies. Table S3 includes a comprehensive list of all systems
studied including their T; values, which has more epoxy and hardener
combinations than those shown in Table 2. The recovery stress is given
at 30 K higher than Tj for all of them, consistent with our previous work
[16]. As stated before, the crosslinking density is 70% for all of them,
which was calibrated for DGEBA-IPD in our previous work [16]. The
actual crosslinking density will most likely vary among the different
systems, but a single one was chosen to make consistent comparisons
between various TSMP networks. The first thing that can be observed is
that out of all of the epoxies studied, DGEBA has the highest recovery
stress. The two systems with literature experimental results, DGEBA-IPD
and DGEBA-BACH, with similar programming and recovery criteria as
the computational work, have experimental recovery stresses near 18
MPa and 9 MPa, respectively [44]. This shows that while the compu-
tationally predicted recovery stresses are higher than experimental
value, the qualitative values, in this instance, are consistent. As indi-
cated previously, the reason is due to our short simulation time. With
longer simulation time, the recovery stress will be reduced due to stress
relaxation, and the shape recovery ratio will increase due to structural
relaxation, moving towards the experimental results.

A recovery stress temperatures 30 K higher than T, was chosen to be
consistent with previous simulation and experimental work [16, 44].
This results in most of the systems having their recovery stress being
calculated at different temperatures for the TSMPs, which may have an
impact on comparing them. To evaluate this, we calculated the recovery
stresses of seven TSMPs at a set temperature of 210 °C, and the results
are given in Table S3. For these seven TSMPs, the correlation coefficient
between the recovery stress calculated at 30 K higher than T, and those
calculated at 210 °C is 0.997. This shows strong correlation between
them, and it is expected that the correlation with the different finger-
prints should only be minimally impacted by the fact that recovery
stresses were calculated at different temperatures.

The shape recovery ratios after 4 ns vary widely among the different
systems, ranging from 0.33 for DGEBA-DOA to 0.94 for DGEBA-JA.
Upon closer inspection of these values, recovery stress values appear
to be negatively correlated with R,, which is consistent with previous
observations. As indicated by Fan and Li [46], for a given polymer, lower
stiffness in the rubbery state favors a higher shape recovery ratio, but
reduces the recovery stress. This leads to a general assumption that re-
covery stress is negatively correlated with shape recovery ratio. To

| I | I | I I T O, VSR,

14— . 3:1 o o . vs.T
rec g

= . ® e e0y O 3311 o R’_ VS. TL’

scaled value
i
— (3]

e
%

e
N

scaled value

Fig. 3. Comparison of scaled recovery stress (o;rec), recovery ratio (R,) and
glass transition temperature (T,) with respect to each other. The line represents
the linear best fit between them. All values are scaled with respect to
their mean.
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better demonstrate this, along with how the recovery stress and R,
correlate with glass transition temperature, Fig. 3 gives a comparison
between scaled values with a linear regression line for their best fit. The
recovery stress has a correlation coefficient (cc) of —0.27 and a p-value
of 0.11 with R, while T, has a 0.42 cc and 0.01 p-value with recovery
stress and a —0.28 cc and a p-value of 0.10 with R;. This shows that only
the recovery stress and T, have a statistically significant correlation
(p-value less than 0.05). This consistent with a recent experimental
study by Feng and Li [49], where they showed that a high glass transi-
tion temperature of 280 °C lead to a high recovery stress of 35.3 MPa in
the rubbery state. While previous researchers have suggested that re-
covery stress and R, were negatively correlated [46], and it could be
difficult to increase both of these properties simultaneously, we find that
the relationship is not universally true. The large scatter of values in the
plot also is consistent with this, which shows that while there does
appear to be a negative correlation between recovery stress and R,, there
are enough exceptions to allow a TSMP to be designed that has high
values in both.

4.2. IV.B. Correlation between fingerprints and properties

Table 3 gives some of the fingerprint values arrived at for a select
number of epoxies, while Table S4 in the supplementary information
gives a comprehensive list for all systems and values. BB and SC refer to
the backbone and sidechain, respectively. Each epoxy and hardener
combination requires approximately 1 min to calculate, as their mini-
mum energy structures need to be generated with the LigParGen soft-
ware [36]. One may notice that the radius of gyration, Ry, of the same
epoxies vary to a modest degree. This is due to the fact that the minimum
energy structures of the systems used to calculate R, created by the
LigParGen software [36] had a slight variation in structures, because it
uses a Monte Carlo procedure for minimization. Many of the values
themselves appear to make qualitative sense. For instance, the stretching
energies are much higher than angular, which are higher than dihedral.
The backbone ratio shows that for most systems, the vast majority of the
heavy atoms are part of the backbone. Furthermore, the epoxies have a
more extended shape than the hardeners. Another aspect that can be
observed is that vdW strength (i.e. the epsilon value in Equation (2)) has
a strong correlation with polarity. This is expected as more polar mol-
ecules often have stronger vdW attraction.

Fig. 4 plots the recovery stress versus some of the fingerprint values
calculated with lines representing linear fits of the data. All of the fin-
gerprints are scaled by dividing their individual values by their means.
As can be observed, the bond stretching and angular stiffness values are
positively correlated with higher recovery stress. The SC dihedral stiff-
ness has no significant correlation with recovery stress, while the BB
dihedral stiffness does. The BB polarity has a negative correlation with
recovery stress, while the number of aromatic BB rings (Arom. BB Rings)
has a positive correlation with recovery stress. The latter observation is
consistent with the results for BB stiffness, as aromatic rings have a high
degree stiffness.

A plot of the shape recovery ratio, R,, with selected fingerprints is
given in Fig. 5. All of the stiffness values are negatively correlated with
R;, opposite with what was found for recovery stress and consistent with
the negative correlation between oy and R, found in Fig. 3. Also, this is
consistent with previous findings that stiffer polymers in rubbery state
leads to lower shape recovery ratio [46]. It should be noted that SC
angular and dihedral stiffness has weaker correlations than BB stiffness,
showing most of the impact of stiffness is in the BB. The polarity of the
BB has no significant correlation with R, despite that it correlates with
higher recovery stress. This makes changing BB polarity a potential way
to increase recovery stress without impacting shape recovery. The
number of BB aromatic rings is also negatively correlated with R,, which
is not surprising as aromatic rings are very stiff.

The p-values and cc’s for all fingerprints with respect to recovery
stress and R, are given in Table 5. Fingerprints whose p-values are less
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Table 3

Fingerprints for select epoxy and hardener combinations. The rest are included in the supplementary information.

Polymer 242 (2022) 124577

Epoxy Hardener Epoxy Length Hardener Length Stretch (SC) Stretch (BB) Angle (SC) Angle (BB) Polarity (SC) Polarity (BB)
DGEBA IPD 16 5 385 287 47.7 42.8 0.059 0.03
DGEBA BACH 16 5 383 304 47.1 41.4 0.04 0.042
DGEBA MPDA 16 4 415 315 48.7 41.8 0.044 0.05
EPON862 IPD 16 5 385 298 46.7 40.8 0.059 0.031
DGEBAPO2 IPD 22 5 370 282 46.8 42.2 0.056 0.027
DGER IPD 10 5 366 298 46 40.8 0.08 0.034
DGEPEG IPD 9 5 299 298 42.2 40.8 0.092 0.031
DGECD IPD 9 5 291 298 42.9 40.8 0.080 0.027
DHEDHN IPD 11 5 389 298 49 40.8 0.064 0.033
DGENG IPD 10 5 297 287 43 42.3 0.086 0.028
PDMSDGE IPD 19 5 309 261 42.4 40.8 0.567 0.066
vdW Size (SC) vdW Size (BB) vdW Strength (SC) vdW Strength (BB) BB Ratio Epoxy Hardener Ry
Ry
DGEBA IPD 3.467 3.391 0.078 0.079 0.823 4.795 2.450
DGEBA BACH 3.471 3.344 0.076 0.094 0.85 4.815 2.503
DGEBA MPDA 3.476 3.344 0.077 0.094 0.845 5.051 1.956
EPON862 IPD 3.476 3.329 0.078 0.087 0.879 4.835 2.452
DGEBAPO2 IPD 3.435 3.420 0.081 0.076 0.808 6.519 2.452
DGER IPD 3.438 3.329 0.082 0.087 0.841 3.748 2.450
DGEPEG IPD 3.400 3.329 0.085 0.087 0.806 3.749 2.450
DGECD IPD 3.422 3.329 0.081 0.087 0.841 3.001 2.450
DHEDHN IPD 3.453 3.329 0.081 0.087 0.865 3.713 2.450
DGENG IPD 3.406 3.391 0.083 0.079 0.738 3.042 2.452
PDMSDGE IPD 3.429 3.437 0.090 0.074 0.721 4.318 2.450
+ Stretch (SC) I [ I [ [ 1T T 1T T 7T T T T TT
60/ o Siretch (BB) o=t N 60— b i 7
* . oﬁ-ﬂm mo . | -
o Angle (SC) Tap A
50| 2 Angle (BB) — 50—
= . B = |
E 40 — & 40—
~ = g I~
15 1 g _
Da 30 ] o 304 o E‘;—‘”gﬁ' oh o b A
+ Dihedral (SC)
20F a o — 205~ o .
1 * n B i * o Dihedral (BB)
10 N R 10 > Polarity (BB)
r— o * i h— [ =
TR R T IR R B . 1 4 1 | |» Arom. BB Rings
0.8 0.9 1 1.1 1.2 0 04 0.8 1.2 1.6 2

scaled fingerprint value

scaled fingerprint value

Fig. 4. Plot of the recovery stress with respect to selected fingerprint values. All fingerprints are scaled with respect to their mean values.

=

1 T T T T [ + Stretch (SC)
S * %% |o Stretch (BB)

. o Angle (SC)
o8 - 2 Angle (BB)

0.7 h

0.6/ i
0.5 H
04 e h
03— L 4 o Proadiugl e

.3‘7 0.8 0.9 1 1.1

scaled fingerprint value

I T T T T T T T T+ Dihedral SO
0.9 ¢ 2 o Dihedral (BB)
I o Polarity (BB)
0.8 A Arom. BB Rings
0.7] -
Mk 4 -
0.6] —]
0.5 %o . Ag . t
0.4 §e . otEn —
— o © * < S o4 - —
o3 1 1 ) Ot T i i M o T M N L
0 03 06 09 12 15 18 21

scaled fingerprint value

Fig. 5. Plot of the shape recovery ratio with respect to selected fingerprint values. All fingerprints are scaled with respect to their mean values.



A. Shafe et al.

Table 5
P-value and Pearson correlation coefficient for different fingerprints with re-
covery stress (orec) and shape recovery ratio (R,).

Fingerprint Orec (MPa) R,
p-value cc p-value cc

Epoxy Length 0.08 0.29 0.99 0.00
Hardener Length 0.45 —0.13 < 0.01 0.51
BB Ratio 0.05 0.33 0.19 —-0.22
Stretch (SC) 0.04 0.35 < 0.01 —0.52
Stretch (BB) < 0.01 0.68 < 0.01 —0.59
Angle (SC) 0.32 0.17 0.81 —0.04
Angle (BB) < 0.01 0.60 < 0.01 —0.66
Dihedral (SC) 0.99 0.00 0.01 —0.41
Dihedral (BB) <0.01 0.63 < 0.01 —0.58
vdW size (SC) 0.67 -0.07 0.17 0.23
vdW size (BB) < 0.01 0.65 < 0.01 —0.57
vdW strength (SC) 0.12 0.26 0.07 —-0.30
vdW strength (BB) <0.01 —0.58 0.36 0.16
Polarity (SC) 0.52 0.11 0.03 —0.36
Polarity (BB) < 0.01 —0.51 0.44 0.13
Epoxy R, 0.02 0.40 0.86 —0.03
Hardener Ry 0.24 -0.20 0.01 0.41
Max SC Length 0.40 0.15 0.12 —-0.26
Non-Arom. BB Rings < 0.01 —0.49 0.12 0.26
Arom. BB Rings < 0.01 0.56 < 0.01 —0.51

than 0.05 are considered statistically significant (i.e. having a confi-
dence greater than 95%), and are shown in boldface. As described pre-
viously, all BB stiffness values (stretch, angle, and dihedral) are
positively correlated with recovery stress and negatively correlated with
R,. Previous experimental work denoted the importance of enthalpy for
having a high recovery stress [44]. While they focused on bond
stretching energy, it appears that all types of bonding energy play a role
in higher recovery stress with the notable exception of the backbone
angular energy, which is also consistent with another theoretical study
[50]. Unfortunately, these energies appear to negatively influence R, as
well. In addition, it is found that non-bonded interactions, in particular
the polarity of the backbone atoms and their vdW strength lead to lower
recovery stress. However, these two properties have no statistically
significant impact on R,. This shows from a design perspective that,
polymers with stiff bonds but also with non-polar sidechains should be
chosen for higher recovery stress. The fact that backbone atomic polarity
and vdW strength has no statistically significant impact on recovery
stress is also notable. The number of aromatic backbone rings has the
same correlation with recovery stress and R, as backbone stiffness as
mentioned previously. Non-aromatic backbone rings (Non-Arom. BB
Rings) are negatively correlated with recovery stress while having little
to no correlation with R,. Beyond the strength of interactions, the size of
backbone atoms (i.e. bulkier atoms) is negatively correlated with higher
recovery stress, but is not correlated with R,. Furthermore, having more
of the atoms a part of the backbone is positively correlated with recovery
stress, while having a negative correlation, while not statistically sig-
nificant, with R,.

Sidechain fingerprints, in general, have little correlation with either
recovery stress and R,. This includes maximum sidechain length, (Max
SC Length), angular sidechain stiffness, sidechain vdW strength and size,
and sidechain polarity. The bond stretching stiffness is an exception,
along with the dihedral stiffness with regard to R, potentially allowing
further handles for oy and R, to be independently manipulated.
Somewhat surprising, longer maximum sidechain length has no statis-
tically significant correlation with recovery stress or with R,. However,
this study was limited to relatively short side-chains — the longest was 4
heavy atoms — and side chains longer than the backbones may produce
different effects.

For designing new TSMPs, a few fingerprints stand out as correlating
with only one of the properties in a statistically significant way, which
could potentially be used to create a TSMP with both high recovery
stress and R,. The hardener length, which is defined as the number of
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atoms in between the amine groups, is correlated with higher R,, and
having a higher ratio of heavy atoms being a part of the backbone is
positively correlated with recovery stress with only weak correlation
with R,. Additionally, the radius of gyration of the epoxy is significantly
correlated only with recovery stress, while for the hardener, it is only
significantly correlated with R;. This, along with the results for the epoxy
and hardener lengths, suggest that the epoxy length and how extended
its structure is (since a more extended structure has a higher radius of
gyration) increases recovery stress, while for the hardener, these in-
crease R,. Most of the other fingerprints appear to counterbalance one
another, correlating with an increase in one, and a decrease in the other.

5. Conclusions

In this study, combinations of epoxies and amine hardeners were
simulated for their shape memory properties. Overall, 11 out of 20
(55%) fingerprints show statistical significance with the recovery stress,
and 9 out of 20 (45%) fingerprints show statistical significance with the
shape recovery ratio. Some of these are consistent with many previous
understandings. For example, overall backbone stiffness is expected to
positively correlate with recovery stress as found in this study. However,
sidechain stiffness has a much weaker correlation with recovery stress, if
any at all. It is possible that higher sidechain stiffness plays a role in
better crosslinking and consequently influencing recovery stress. At the
same time, some of the fingerprints only affected one of the shape
memory parameters. The backbone polarity, for example, significantly
affected stress recovery, but does not affect the recovery ratio, sug-
gesting that the stress recovery could be increased without penalty to the
recovery ratio by manipulating the polarity along the backbone. The van
der Waals strength behaves similarly. Backbone ratio was also signifi-
cantly correlated with stress recovery, but not recovery ratio, adding
another handle by which to manipulate only 1 shape memory property.
Interestingly, the epoxy radius of gyration was only significantly
correlated with the recovery stress, while the hardener radius of gyra-
tion was only significantly correlated with the recovery ratio, suggesting
that applying machine learning approaches to these materials and fin-
gerprints would likely result in materials with multiple property
improvements.

However, this study doesn’t focus on the impact of how fingerprints
influence the crosslinking rate, and more studies, along with additional
experimental validation would be necessary for such an investigation.
Other limitations include: (1) epoxies with groups other than diglycidyl
ether and hardeners with more than two amine groups were not
included, (2) the LigParGen software cannot create topologies for mol-
ecules containing more than 200 atoms, limiting the candidates for
epoxies and hardeners, and (3) computational timescale limitations
prevented full recovery simulation of the polymers, necessitating
extrapolation from short-timescale runs. (4) The amount of experi-
mental data on shape memory properties is very limited, only providing
two systems to make direct comparisons with. Regardless, this study
provides useful guidance in selecting atomistic and topological finger-
prints to represent the chemical structures and monomers and hardeners
in machine learning, i.e., not all the fingerprints are strongly correlated
with the thermomechanical properties, and those with strong correla-
tions should be chosen in machine learning studies. Furthermore, the
systems predicted to have high recovery stress are being synthesized to
bring further experimental verification of the computational results and
determine if increased recovery stress can be achieved.

It should be noted that all of the epoxies and hardeners simulated in
this study are commercially available. Some of the fingerprints have a
strong correlation with recovery stress and shape recovery ratio. How-
ever, due to their p-value not meeting the criteria, this correlation is not
considered statistically significant. Perhaps a more extensive dataset
will grant us more insight into the effect individual fingerprints have on
shape memory properties. In future works, epoxies and hardeners that
are not commercially available should be simulated to prepare a larger
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dataset and discover new SMPs with better shape memory properties.
Moreover, there are some intercorrelations within these fingerprints,
which may require dimensional reduction methods (e.g., Principal
Component Regression and LASSO) to give more accurate data analysis
for machine learning to give more accurate data analysis.
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