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A B S T R A C T   

Shape memory polymers (SMP) have been a field of interest for researchers over the past few decades and SMPs with unique characteristics are being developed 
continuously. Careful, time-consuming design is required for improved materials. Polymer informatics is part of an effort to shorten the development time of 
polymers by using computation and data-driven approaches such as machine learning. A specific polymer can be described via “fingerprints”, which are a way to 
characterize molecular structures in a manner understandable by computers. In this paper, we describe combinations of nine epoxies and twenty-two hardeners with 
twenty fingerprints, and simulated the thermomechanical cycle with molecular dynamics code LAMMPS. Subsequently, we statistically analyzed which fingerprints 
are most strongly correlated with each shape memory property, specifically recovery stress and shape recovery ratio. This study lays a solid foundation for choosing 
and understanding atomistic fingerprints in order to discover new SMPs via machine learning.   

1. Introduction 

Shape Memory Polymers (SMP) are a type of material with the ability 
to change its shape in response to an external stimulus or trigger [1]. 
SMPs usually have one ‘memorized’ or permanent shape, which can then 
be deformed or ‘programmed’ to make another shape that can be held 
until a certain stimulus is applied. These stimuli can be heat [2–4], light 
[5], and other types of triggers [6,7]. When this occurs, the programmed 
shape returns to its original shape, often having a significant stress 
release that can be used for useful work, if partially constrained shape 
recovery is allowed. For example, a new kind of suture was developed 
using SMPs that automatically fastens itself using the body heat as 
trigger [8]. Smart curtains that can draw itself by reacting to sunlight 
has also been developed using SMPs [9]. Most heat-triggered SMP have 
one switch temperature above which it returns to its permanent shape 
[10]. In absence of thermal stimulus, other methods like magnetic, 
electrical and chemical stimuli have also been used to achieve remote 
actuation [11], for example, making implants on neural interfaces to 
understand neurological disorder [12], and developing shape memory 
hydrogels for drug delivery [13]. 

To better understand and address problems in polymer physics, 
theoretical, experimental and computational methods are used. Due to 
rapid advances in computation technology in recent years, modeling and 
studying polymers by computational methods is a way to shorten ma
terial development time. One standard tool for modeling polymers is 

molecular dynamics (MD) simulations [14]. MD can predict bulk 
properties of a variety of materials and elucidate the molecular level 
factors that contribute to these properties [15]. Large-scale data acqui
sition and analysis is also aided with MD with extensive use of auto
mation. MD has been used to study variety of SMPs [16–23] utilizing 
both coarse-grained and atomistic models [17–19]. It has been used to 
quantify how different functional groups affect the shape memory 
behavior of a specific SMP. To better understand how different struc
tural characteristics affect the shape memory property and deformation 
mechanism of SMPs, shape-memory polymers were modeled by simu
lating three epoxies and twenty-two curing agents using MD [20,21]. A 
coarse-grained model was also used to study the structure-property re
lationships of SMPs [22]. Some studies aimed to enhance the shape 
memory effect by modeling SMPs mixed with other materials such as 
graphene sheets [23]. 

As not all polymers exhibit a sufficient shape memory effect (SME) 
for all applications, appropriate material and structural design are 
required. The factors affecting the shape-memory properties (i.e., shape 
recovery ratio and recovery stress) need to be identified and manipu
lated. Polymer informatics is a new field of materials science being used 
to address such issues. It is a data-driven approach adopted because of 
the often complex nature of problems faced during new material dis
covery [24]. The power of any data-driven approach depends on the 
accuracy and how well the data is organized, and should be reproducible 
and accessible to others [25]. For this reason, The US Government 
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launched a federal multi-agency initiative named ‘Materials Genome 
Initiative’ [26] in 2009 to discover and manufacture new materials 
within a fraction of the time of traditional methods as well as making 
collaboration easier. The UK, Germany, Spain, Italy [27], and Japan 
[28] have also established such databases. 

The Polymer Genome Initiative was recently developed [29] for the 
rapid structure to property predictions of polymers with a single back
bone and of ladder polymers. In order to translate molecular structures 
into a computationally meaningful representation, a new technique 
called “fingerprinting” was developed. It involves breaking down a 
molecule into a sequence of numerical values that define the chemical 
and physical properties of the molecule [30]. Examples of these de
scriptors include degree of branching, weight averaged molecular 
weight, polydispersity, chemical composition, electronegativity, 
HOMO-LUMO gaps, and radial distribution functions [31]. The finger
prints can be described in different length scales ranging from 
atomistic-scale, such as elemental composition, to topological scale, 
such as distance between rings, and to morphological descriptors, such 
as volume fraction of phases. A methodology to predict polymer prop
erties using a dataset with descriptors and their associated properties 
was developed in a 2017 study [32]. An online platform named Nano
Mine, created to help design and predict the properties of new polymer 
nanocomposites, was also created [33]. Recently, 2000 unique 
coarse-grained polymers were simulated to create a dataset for reliably 
predicting structural properties with limited structural information 
[34]. Most recently, machine learning (ML) was used to discover new 
thermoset shape memory polymers (TSMPs) with a small training 
dataset [35]. In that study, the recently developed BigSMILES [36] was 
used to fingerprint the thermoset network. While BigSMILES is a useful 
tool, able to represent the sequency of the atoms within the monomer, 
crosslinker, and of the crosslink point, it does not directly include in
formation about the topology, the interaction potential, or any higher 
order information about the structure. By including such information in 
the form of the fingerprints discussed here, the correlation between the 
chemical structures and thermomechanical properties of the TSMPs can 
be better established and understood, and more accurate predictions can 
be produced. Unfortunately, there are many ways to describe features 
within the monomers and hardeners, and it is not clear which features, 
or fingerprints, can strongly correlate with the thermomechanical 
properties, particularly the shape recovery ratio and recovery stress. 

The goal of this study is to apply this approach to amine hardened 
epoxies. Specifically, the MD package LAMMPS [35] was used to 
simulate combinations of 9 epoxies, all with exactly two glycidyl ether 
groups (DGE), and 22 commercially available hardeners, each with two 
primary amine groups. Twenty descriptors or fingerprints, such as 
sidechain length, were chosen to represent the epoxies and hardeners. 
After crosslinking and relaxation, the fingerprints, defined in section III, 
were calculated. The glass transition temperature, recovery stress, and 
shape recovery ratio were then calculated, which are properties asso
ciated with SME. The effect of the fingerprints on their respective 
desired properties were calculated by analyzing their p-values and 
correlation coefficients. 

2. Simulation details 

II.A. Creation of Polymer Networks. We developed a set of Python 
codes to create polymer networks based on DGE epoxies and hardeners 
with two amine groups. The codes were designed to work with epoxies 
with DGE end groups and any amine hardener, requiring its SMILES 
(Simplified molecular-input line-entry system) string as input. The Lig
ParGen software [36], which incorporates the SMILES of different 
molecules as inputs, was used to create the topology files for the 
monomers. These topologies were utilized as data files for the LAMMPS 
simulations software package [35,37] with the optimized potential for 
liquid simulations force field [38–40]. Also, using the LigParGen soft
ware, the topologies of reacted epoxies plus hardeners were saved to 

create the crosslinks in the polymer network. This is described in greater 
detail in our previous work [16]. 

We chose epoxies and hardeners so that each epoxy had exactly two 
glycidyl ethers, each hardener had two amine nitrogens, and each ni
trogen had two hydrogens. This was done to be consistent with our 
previous work with DGEBA-IPD [16], which was calibrated against 
experiment for its crosslinking percentage, in which 70% was used. For 
the number of DGEs and amine hydrogens to be the same, the system 
configurations were constrained to have two epoxies for every hardener. 
A simulation box was created for every system with two epoxies and one 
hardener in which their individual structures were relaxed with conju
gate gradient energy minimizations. Then, the systems were replicated 
six times in X, Y, and Z directions to create a total of 432 epoxies and 216 
hardeners. This resulted in system sizes ranging from 18,240 to 30,240 
atoms with 864 glycidyl ethers and amine hydrogens for a total of 864 
potential reactions. 

Table 1 gives a list of all epoxies and hardeners studied, including 
their abbreviations. Full chemical structures for each epoxy and hard
ener can be found in Tables S1 and S2. The specific procedure for 
equilibrating the systems, creating five independent structures, and 
carrying out the crosslinking is described in detail in our previous work 
[16]. We crosslinked all of the systems to create 70% of all possible 
bonds, which gave the best agreement with experimental glass transition 
values, rubbery and glassy moduli for DGE-IPD [16]. This resulted in 
approximately 90% of epoxy and nearly 100% of hardener monomers 
reacting at least once. Crosslinking was simulated at 398 K for all sys
tems, with 10 ps of equilibration in 0.5 fs time steps preceding each 
crosslinking attempt at 1 atm in the NpT ensemble [41]. This was fol
lowed by bond rearrangement, and then a two-step relaxation procedure 
as detailed in our previous work [16], which was adopted from other 
works [42,43]. The process was repeated until 600 total steps were 
carried out. Each step resulted in a reaction between glycidyl ether and 

Table 1 
List of epoxies and hardeners modeled and their abbreviations.  

Epoxy/Hardener Abbreviation 

Epoxies 
Bisphenol A DGE DGEBA 
Bisphenol F DGE EPON862 
Propoxylated bisphenol A DGE DGEBAPO-2 
Resorcinol DGE DGER 
Poly (ethylene glycol) DGE DGEPEG 
1,2-cyclohexanediol DGE DGECD 
1,7-dihydroxyl naphthalene DGE DGEDHN 
Neopentyl glycol DGE DGENG 
Poly (dimethylsiloxane) DGE PDMSDGE  

Hardeners 
Isophoronediamine IPD 
1,3-Bis(aminomethyl)cyclohexane BACH 
m-Phenylenediamine MPDA 
Propylenediamine DAP 
2,2-Bis(aminoethoxy)propane BAP 
2,4-Diaminotoluene DAT 
2,2′-(Ethylenedioxy)bis (ethylamine) EDBE 
Jeffamine JA 
m-Xylenediamine XDA 
4,7,10-Trioxa-1,13-tridecanediamine TTD 
Butylenediamine DAB 
Ethylenediamine DAE 
p-Phenylenediamine PPDA 
2,4-diethyl-6-methylbenzene-1,3-diamine DMDA 
Acetoguanamine AGA 
4-ethyoxybenzene-1,2-diamine EOBA 
4-phenylpyridine-2,6-diamine PPYA 
o-Phenylenediamine OPDA 
1,1′-Binaphthyl-2,2′-diamine BPDA 
Dytek EP Diamine DEPD 
3,4-Pyridinediamine PDA 
2,2′-Dithiodianiline DOA  
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amine hydrogen, resulting in 69.4% of possible reaction pairs (600/864) 
forming bonds. 

2.1. II.B. Calculation of shape memory properties 

The glass transition (Tg) and other shape memory properties for each 
system were calculated in the same fashion as our previous work [16]. 
The uncertainties were calculated by the standard error of the mean 
from the five independent simulations. All systems were equilibrated at 
30 K above their Tg values at a pressure of 1 atm to allow for hot pro
gramming, or deformation in their rubbery states, as was done by Fan 
and Li [44]. Programming was carried out by slowly applying a 50% 
compression in one direction while keeping the pressure perpendicular 
to the deformation set to 1 atm for 4 ns. For each of the five systems, 
three independent compressions were carried out, one for each dimen
sion, leading to a total of 15 separate simulations. After programming, 
the systems were allowed to relax at a fixed strain in one direction for an 
additional 4 ns, followed by a 2 ns simulation in which the systems were 
cooled to 298 K at the same strain conditions. Then, a 2 ns simulation at 
298 K was carried out in the NpT ensemble allowing all system di
rections to change, and allowing for a small elastic spring-back to occur. 
Next, the direction that had the initial deformation was fixed, allowing 
directions perpendicular to this equilibrate at 1 atm, and a 2 ns simu
lation warming the system to 30 K above their Tg took place, followed by 
an additional 2 ns simulation at 30 K higher than the Tg, which was used 
to calculate the recovery stress. This recovery stress was the stress along 
the same axis as deformation during the last 200 ps of the simulation. 

An additional 4 ns simulation in the NpT ensemble was also carried 
out at 550 K and 1 atm, where all directions were allowed to have 
volume fluctuations to estimate the shape recovery. The shape recovery 
ratio was recorded at the end of the simulation period in the usual way 
[45]. The fixed temperature of 550 K was chosen for two reasons. A 
higher temperature allowed the system to equilibrate faster, allowing 
differences between the systems to be compared with relatively shorter 
simulations. Also, using the same temperature for all systems studied 
versus studying shape recovery at 30 K higher than their Tg allowed a 
better comparison between them. Our previous work found that using 
temperatures based on each system’s individual Tg made it challenging 
to compare them as higher temperatures always lead to higher shape 
recovery in the short simulation times that we can run [16]. In reality, 
these higher temperatures may lead to additional side reactions that 
could further change the cross-linking ratio. However, in the simula
tions, this can be controlled, and the higher temperature is used for the 
sole purpose of increasing the dynamics of the system for the purpose of 
making a more consistent qualitative comparisons in their shape 

recovery ratios. 

3. Fingerprinting 

Fingerprinting for each polymer focused on the individual monomers 
before they were crosslinked. The first step in fingerprinting was 
defining which atoms are part of the backbone, and which are part of 
sidechains. Fig. 1 is a schematic for the heavy atoms for DGEBA and IPD, 
which shows all backbone atoms as black and sidechain atoms as red. 
For DGEBA, crosslinked networks are formed by reactions with the 
primary carbons in the epoxy groups, with the bonds between the pri
mary epoxy carbons and the epoxy oxygens breaking during network 
formation. As a consequence, the epoxy oxygen atoms are treated as 
sidechain atoms. For both of these monomers, it can be observed that all 
atoms that form bonds between the reactive groups are classified as the 
backbone. 

The following fingerprints were used to describe the individual 
monomers.  

1) The number of bonds separating the shortest distance between the 
reacted DGE carbons. In the case of DGEBA (see Fig. 1), this is 16.  

2) The number of bonds separating the shortest distance of reacted 
amine nitrogens. For IPD, this is 5.  

3) The average number of backbone heavy atoms after full crosslinking 
divided by the number of original monomers. Note that in a ring, this 
will include all ring atoms. This is (2 × 21 + 9)/3 = 17 for DGEBA- 
IPD (note that DGEBA has twice as many monomers as IPD).  

4) The ratio of the number of backbone heavy atoms with the total 
number of heavy atoms. For instance, in DGEBA, there are 21 
backbone atoms and in IPD there are 9 (see Fig. 1). That gives a total 
of 51 backbone atoms since there are two DGEBA for every IPD. The 
total number of heavy atoms for DGEBA and IPD are 25 and 12, 
respectively, giving a total of 61 heavy atoms. This gives a ratio of 
51/62 = 0.823.  

5) The stiffness of the bond stretching interaction between heavy atoms. 
Bond stretching is given by the following formula: ubond =

kr(r − r0)
2. The stiffness is simply the average kr for all bonds.  

6) The stiffness of the angular interaction between heavy atoms (see 
Fig. 1). Angles interact via the harmonic formula: uangle =

kθ(θ − θ0)
2. The stiffness is the average kθ for all angles. 

7) Dihedral energy strength between heavy atoms (see Fig. 1). Di
hedrals interact via both regular dihedral energy and improper 
torsional energy: 

Fig. 1. Schematic for the fingerprinting scheme for 
IPD (left) and DGEBA (right). Black bonds and atoms 
are part of the backbone, while those marked red are 
part of the sidechain. Light blue dashed lines indicate 
sidechain bond angles and sidechain dihedrals; green 
dashed lines indicate backbone bond angles and di
hedrals. Here, (a) and (b) are sidechain dihedral and 
bond angles, (c) and (d) are backbone dihedral and 
bond angles. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the Web version of this article.)   

udihedral =
1
2

k1[1 + cos(φ) ] +
1
2

k1[1 + cos(2φ) ] +
1
2

k1[1 + cos(3φ) ] +
1
2
k1[1 + cos(4φ) ] + K[1 + dcos(nφ) ] (1)   
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The dihedral energy strength is defined as the sum of all 
⃒
⃒
⃒
⃒
k
2

⃒
⃒
⃒
⃒ values 

and |K|. Since these are sometimes negative, the absolute value is used.  

8) The van der Waals (vdW) size as defined as the average σ value of the 
heavy atom Lennard-Jones potential which is used for vdW 
interactions: 

uvdW = 4ε
[(σ

r

)12
−

(σ
r

)6
]

(2)    

9) The van der Waals strength as defined as the average ε value of 
the heavy atom Lennard-Jones potential which is used for vdW 
interactions (Equation (2)).  

10) The polarity of all the atoms. This is defined as the average 
electron charge squared (q2

i ) per atom.  
11) The radius of gyration for the epoxy monomer and the hardener 

monomer. This is calculated based on the mass (with rCOM being 
the center of mass) [46], 

Rg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1mi

(

ri
⇀

− r⇀COM

)2

∑N
i=1mi

√
√
√
√
√
√ (3)   

12) The maximum sidechain length for heavy atoms. For an indi
vidual sidechain heavy atom, its sidechain length is defined as the 
number of bonds between it and the nearest backbone atom.  

13) The number of aromatic and non-aromatic backbone rings. It 
should be noted that there are two epoxies for each hardener, so 
each epoxy is counted twice in this. For instance, DGEBA in a 
network will contribute four aromatic rings. 

For items 5–10, fingerprints were calculated for both backbone and 
non-backbone or sidechain atoms. A bond, angle, or dihedral are 
considered part of the backbone only if all of the atoms are part of the 
backbone (see Fig. 1 for examples). 

4. Results and discussion 

4.1. IV.A. Calculated properties 

Fig. 2 (left) illustrates the programming stress as a function of strain 
for four of the systems studied with 70% crosslinking: DGEBA epoxy 
with IPD, BACH, DAP, and PDA hardeners. All four of the systems have 

similar programming stress curves, and it would be expected that all of 
them would overpredict the stress in comparison with experiment due to 
the short simulation times (4 ns). Of greater interest is the recovery 
stress, which is also shown in the figure using triangle markers. In 
comparison with the programming stress, the recovery stress is much 
lower, consistent with experimental work [44]. The final recovery stress 
is also expected to be overpredicted due to the short simulation times (by 
around a factor of three in our previous work [44]), but the qualitative 
differences should be consistent. For instance, DGEBA-IPD has a higher 
recovery stress than DGEBA-BACH, which are the only two systems 
compared experimentally [44]. This is consistent with the results shown 
here despite the fact that the programming stress are nearly identical 
between the two systems. We are currently working on coarse-graining 
simulations to better bridge the timescale gap between simulations and 
experiment. 

The shape recovery ratio (see section II⋅B) as a function of time for 
the four systems described is shown in Fig. 2 (right). As described, the 
temperature for this calculation was 550 K to increase the rate of shape 
recovery and to use the same temperature for comparisons for all sys
tems. After 1–2 ns, the rate of shape recovery appears to stabilize to a 

Fig. 2. Plot of recovery stress vs strain (left) and recovery ratio vs time (right). The recovery stress is shown in the left plot using triangle markers.  

Table 2 
Recovery stress (σrec) and shape recovery ratio (Rr) after 3 ns calculated for 
selected TSMPs.  

Epoxy Hardener σrec (MPa) Rr 

DGEBA IPD 50 0.50  
BACH 44 0.58  
MPDA 56 0.49  
DAP 60 0.68  
BAP 28 0.51  
DAT 50 0.55  
EDBE 49 0.66  
JA 39 0.94  
XDA 43 0.54  
TTD 44 0.71  
DAB 52 0.59  
DAE 56 0.56  
PPDA 47 0.38  
DMDA 53 0.46  
AGA 50 0.33  
EOBA 44 0.40  
PPYA 56 0.36  
OPDA 60 0.47  
BPDA 28 0.35  
DEPD 57 0.40  
PDA 56 0.42  
DOA 47 0.33 

EPON862 IPD 40 0.48 
DGEBAPO-2  29 0.67 
DGER  43 0.52 
DGEPEG  28 0.68  
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certain degree, increasing at a fairly constant rate. 
Table 2 lists the recovery stress and shape recovery ratios calculated 

for a selected set of thermoset shape memory polymers (TSMPs) studied 
in this work, which include DGEBA with all hardeners studied and IPD 
with all epoxies. Table S3 includes a comprehensive list of all systems 
studied including their Tg values, which has more epoxy and hardener 
combinations than those shown in Table 2. The recovery stress is given 
at 30 K higher than Tg for all of them, consistent with our previous work 
[16]. As stated before, the crosslinking density is 70% for all of them, 
which was calibrated for DGEBA-IPD in our previous work [16]. The 
actual crosslinking density will most likely vary among the different 
systems, but a single one was chosen to make consistent comparisons 
between various TSMP networks. The first thing that can be observed is 
that out of all of the epoxies studied, DGEBA has the highest recovery 
stress. The two systems with literature experimental results, DGEBA-IPD 
and DGEBA-BACH, with similar programming and recovery criteria as 
the computational work, have experimental recovery stresses near 18 
MPa and 9 MPa, respectively [44]. This shows that while the compu
tationally predicted recovery stresses are higher than experimental 
value, the qualitative values, in this instance, are consistent. As indi
cated previously, the reason is due to our short simulation time. With 
longer simulation time, the recovery stress will be reduced due to stress 
relaxation, and the shape recovery ratio will increase due to structural 
relaxation, moving towards the experimental results. 

A recovery stress temperatures 30 K higher than Tg was chosen to be 
consistent with previous simulation and experimental work [16, 44]. 
This results in most of the systems having their recovery stress being 
calculated at different temperatures for the TSMPs, which may have an 
impact on comparing them. To evaluate this, we calculated the recovery 
stresses of seven TSMPs at a set temperature of 210 ◦C, and the results 
are given in Table S3. For these seven TSMPs, the correlation coefficient 
between the recovery stress calculated at 30 K higher than Tg and those 
calculated at 210 ◦C is 0.997. This shows strong correlation between 
them, and it is expected that the correlation with the different finger
prints should only be minimally impacted by the fact that recovery 
stresses were calculated at different temperatures. 

The shape recovery ratios after 4 ns vary widely among the different 
systems, ranging from 0.33 for DGEBA-DOA to 0.94 for DGEBA-JA. 
Upon closer inspection of these values, recovery stress values appear 
to be negatively correlated with Rr, which is consistent with previous 
observations. As indicated by Fan and Li [46], for a given polymer, lower 
stiffness in the rubbery state favors a higher shape recovery ratio, but 
reduces the recovery stress. This leads to a general assumption that re
covery stress is negatively correlated with shape recovery ratio. To 

better demonstrate this, along with how the recovery stress and Rr 
correlate with glass transition temperature, Fig. 3 gives a comparison 
between scaled values with a linear regression line for their best fit. The 
recovery stress has a correlation coefficient (cc) of −0.27 and a p-value 
of 0.11 with Rr, while Tg has a 0.42 cc and 0.01 p-value with recovery 
stress and a −0.28 cc and a p-value of 0.10 with Rr. This shows that only 
the recovery stress and Tg have a statistically significant correlation 
(p-value less than 0.05). This consistent with a recent experimental 
study by Feng and Li [49], where they showed that a high glass transi
tion temperature of 280 ◦C lead to a high recovery stress of 35.3 MPa in 
the rubbery state. While previous researchers have suggested that re
covery stress and Rr were negatively correlated [46], and it could be 
difficult to increase both of these properties simultaneously, we find that 
the relationship is not universally true. The large scatter of values in the 
plot also is consistent with this, which shows that while there does 
appear to be a negative correlation between recovery stress and Rr, there 
are enough exceptions to allow a TSMP to be designed that has high 
values in both. 

4.2. IV.B. Correlation between fingerprints and properties 

Table 3 gives some of the fingerprint values arrived at for a select 
number of epoxies, while Table S4 in the supplementary information 
gives a comprehensive list for all systems and values. BB and SC refer to 
the backbone and sidechain, respectively. Each epoxy and hardener 
combination requires approximately 1 min to calculate, as their mini
mum energy structures need to be generated with the LigParGen soft
ware [36]. One may notice that the radius of gyration, Rg, of the same 
epoxies vary to a modest degree. This is due to the fact that the minimum 
energy structures of the systems used to calculate Rg created by the 
LigParGen software [36] had a slight variation in structures, because it 
uses a Monte Carlo procedure for minimization. Many of the values 
themselves appear to make qualitative sense. For instance, the stretching 
energies are much higher than angular, which are higher than dihedral. 
The backbone ratio shows that for most systems, the vast majority of the 
heavy atoms are part of the backbone. Furthermore, the epoxies have a 
more extended shape than the hardeners. Another aspect that can be 
observed is that vdW strength (i.e. the epsilon value in Equation (2)) has 
a strong correlation with polarity. This is expected as more polar mol
ecules often have stronger vdW attraction. 

Fig. 4 plots the recovery stress versus some of the fingerprint values 
calculated with lines representing linear fits of the data. All of the fin
gerprints are scaled by dividing their individual values by their means. 
As can be observed, the bond stretching and angular stiffness values are 
positively correlated with higher recovery stress. The SC dihedral stiff
ness has no significant correlation with recovery stress, while the BB 
dihedral stiffness does. The BB polarity has a negative correlation with 
recovery stress, while the number of aromatic BB rings (Arom. BB Rings) 
has a positive correlation with recovery stress. The latter observation is 
consistent with the results for BB stiffness, as aromatic rings have a high 
degree stiffness. 

A plot of the shape recovery ratio, Rr, with selected fingerprints is 
given in Fig. 5. All of the stiffness values are negatively correlated with 
Rr, opposite with what was found for recovery stress and consistent with 
the negative correlation between σrec and Rr found in Fig. 3. Also, this is 
consistent with previous findings that stiffer polymers in rubbery state 
leads to lower shape recovery ratio [46]. It should be noted that SC 
angular and dihedral stiffness has weaker correlations than BB stiffness, 
showing most of the impact of stiffness is in the BB. The polarity of the 
BB has no significant correlation with Rr despite that it correlates with 
higher recovery stress. This makes changing BB polarity a potential way 
to increase recovery stress without impacting shape recovery. The 
number of BB aromatic rings is also negatively correlated with Rr, which 
is not surprising as aromatic rings are very stiff. 

The p-values and cc’s for all fingerprints with respect to recovery 
stress and Rr are given in Table 5. Fingerprints whose p-values are less 

Fig. 3. Comparison of scaled recovery stress (σrrec), recovery ratio (Rr) and 
glass transition temperature (Tg) with respect to each other. The line represents 
the linear best fit between them. All values are scaled with respect to 
their mean. 
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Table 3 
Fingerprints for select epoxy and hardener combinations. The rest are included in the supplementary information.  

Epoxy Hardener Epoxy Length Hardener Length Stretch (SC) Stretch (BB) Angle (SC) Angle (BB) Polarity (SC) Polarity (BB) 

DGEBA IPD 16 5 385 287 47.7 42.8 0.059 0.03 
DGEBA BACH 16 5 383 304 47.1 41.4 0.04 0.042 
DGEBA MPDA 16 4 415 315 48.7 41.8 0.044 0.05 
EPON862 IPD 16 5 385 298 46.7 40.8 0.059 0.031 
DGEBAPO2 IPD 22 5 370 282 46.8 42.2 0.056 0.027 
DGER IPD 10 5 366 298 46 40.8 0.08 0.034 
DGEPEG IPD 9 5 299 298 42.2 40.8 0.092 0.031 
DGECD IPD 9 5 291 298 42.9 40.8 0.080 0.027 
DHEDHN IPD 11 5 389 298 49 40.8 0.064 0.033 
DGENG IPD 10 5 297 287 43 42.3 0.086 0.028 
PDMSDGE IPD 19 5 309 261 42.4 40.8 0.567 0.066    

vdW Size (SC) vdW Size (BB) vdW Strength (SC) vdW Strength (BB) BB Ratio Epoxy 
Rg 

Hardener Rg 

DGEBA IPD 3.467 3.391 0.078 0.079 0.823 4.795 2.450 
DGEBA BACH 3.471 3.344 0.076 0.094 0.85 4.815 2.503 
DGEBA MPDA 3.476 3.344 0.077 0.094 0.845 5.051 1.956 
EPON862 IPD 3.476 3.329 0.078 0.087 0.879 4.835 2.452 
DGEBAPO2 IPD 3.435 3.420 0.081 0.076 0.808 6.519 2.452 
DGER IPD 3.438 3.329 0.082 0.087 0.841 3.748 2.450 
DGEPEG IPD 3.400 3.329 0.085 0.087 0.806 3.749 2.450 
DGECD IPD 3.422 3.329 0.081 0.087 0.841 3.001 2.450 
DHEDHN IPD 3.453 3.329 0.081 0.087 0.865 3.713 2.450 
DGENG IPD 3.406 3.391 0.083 0.079 0.738 3.042 2.452 
PDMSDGE IPD 3.429 3.437 0.090 0.074 0.721 4.318 2.450  

Fig. 4. Plot of the recovery stress with respect to selected fingerprint values. All fingerprints are scaled with respect to their mean values.  

Fig. 5. Plot of the shape recovery ratio with respect to selected fingerprint values. All fingerprints are scaled with respect to their mean values.  
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than 0.05 are considered statistically significant (i.e. having a confi
dence greater than 95%), and are shown in boldface. As described pre
viously, all BB stiffness values (stretch, angle, and dihedral) are 
positively correlated with recovery stress and negatively correlated with 
Rr. Previous experimental work denoted the importance of enthalpy for 
having a high recovery stress [44]. While they focused on bond 
stretching energy, it appears that all types of bonding energy play a role 
in higher recovery stress with the notable exception of the backbone 
angular energy, which is also consistent with another theoretical study 
[50]. Unfortunately, these energies appear to negatively influence Rr as 
well. In addition, it is found that non-bonded interactions, in particular 
the polarity of the backbone atoms and their vdW strength lead to lower 
recovery stress. However, these two properties have no statistically 
significant impact on Rr. This shows from a design perspective that, 
polymers with stiff bonds but also with non-polar sidechains should be 
chosen for higher recovery stress. The fact that backbone atomic polarity 
and vdW strength has no statistically significant impact on recovery 
stress is also notable. The number of aromatic backbone rings has the 
same correlation with recovery stress and Rr as backbone stiffness as 
mentioned previously. Non-aromatic backbone rings (Non-Arom. BB 
Rings) are negatively correlated with recovery stress while having little 
to no correlation with Rr. Beyond the strength of interactions, the size of 
backbone atoms (i.e. bulkier atoms) is negatively correlated with higher 
recovery stress, but is not correlated with Rr. Furthermore, having more 
of the atoms a part of the backbone is positively correlated with recovery 
stress, while having a negative correlation, while not statistically sig
nificant, with Rr. 

Sidechain fingerprints, in general, have little correlation with either 
recovery stress and Rr. This includes maximum sidechain length, (Max 
SC Length), angular sidechain stiffness, sidechain vdW strength and size, 
and sidechain polarity. The bond stretching stiffness is an exception, 
along with the dihedral stiffness with regard to Rr, potentially allowing 
further handles for σrec and Rr to be independently manipulated. 
Somewhat surprising, longer maximum sidechain length has no statis
tically significant correlation with recovery stress or with Rr. However, 
this study was limited to relatively short side-chains – the longest was 4 
heavy atoms – and side chains longer than the backbones may produce 
different effects. 

For designing new TSMPs, a few fingerprints stand out as correlating 
with only one of the properties in a statistically significant way, which 
could potentially be used to create a TSMP with both high recovery 
stress and Rr. The hardener length, which is defined as the number of 

atoms in between the amine groups, is correlated with higher Rr, and 
having a higher ratio of heavy atoms being a part of the backbone is 
positively correlated with recovery stress with only weak correlation 
with Rr. Additionally, the radius of gyration of the epoxy is significantly 
correlated only with recovery stress, while for the hardener, it is only 
significantly correlated with Rr. This, along with the results for the epoxy 
and hardener lengths, suggest that the epoxy length and how extended 
its structure is (since a more extended structure has a higher radius of 
gyration) increases recovery stress, while for the hardener, these in
crease Rr. Most of the other fingerprints appear to counterbalance one 
another, correlating with an increase in one, and a decrease in the other. 

5. Conclusions 

In this study, combinations of epoxies and amine hardeners were 
simulated for their shape memory properties. Overall, 11 out of 20 
(55%) fingerprints show statistical significance with the recovery stress, 
and 9 out of 20 (45%) fingerprints show statistical significance with the 
shape recovery ratio. Some of these are consistent with many previous 
understandings. For example, overall backbone stiffness is expected to 
positively correlate with recovery stress as found in this study. However, 
sidechain stiffness has a much weaker correlation with recovery stress, if 
any at all. It is possible that higher sidechain stiffness plays a role in 
better crosslinking and consequently influencing recovery stress. At the 
same time, some of the fingerprints only affected one of the shape 
memory parameters. The backbone polarity, for example, significantly 
affected stress recovery, but does not affect the recovery ratio, sug
gesting that the stress recovery could be increased without penalty to the 
recovery ratio by manipulating the polarity along the backbone. The van 
der Waals strength behaves similarly. Backbone ratio was also signifi
cantly correlated with stress recovery, but not recovery ratio, adding 
another handle by which to manipulate only 1 shape memory property. 
Interestingly, the epoxy radius of gyration was only significantly 
correlated with the recovery stress, while the hardener radius of gyra
tion was only significantly correlated with the recovery ratio, suggesting 
that applying machine learning approaches to these materials and fin
gerprints would likely result in materials with multiple property 
improvements. 

However, this study doesn’t focus on the impact of how fingerprints 
influence the crosslinking rate, and more studies, along with additional 
experimental validation would be necessary for such an investigation. 
Other limitations include: (1) epoxies with groups other than diglycidyl 
ether and hardeners with more than two amine groups were not 
included, (2) the LigParGen software cannot create topologies for mol
ecules containing more than 200 atoms, limiting the candidates for 
epoxies and hardeners, and (3) computational timescale limitations 
prevented full recovery simulation of the polymers, necessitating 
extrapolation from short-timescale runs. (4) The amount of experi
mental data on shape memory properties is very limited, only providing 
two systems to make direct comparisons with. Regardless, this study 
provides useful guidance in selecting atomistic and topological finger
prints to represent the chemical structures and monomers and hardeners 
in machine learning, i.e., not all the fingerprints are strongly correlated 
with the thermomechanical properties, and those with strong correla
tions should be chosen in machine learning studies. Furthermore, the 
systems predicted to have high recovery stress are being synthesized to 
bring further experimental verification of the computational results and 
determine if increased recovery stress can be achieved. 

It should be noted that all of the epoxies and hardeners simulated in 
this study are commercially available. Some of the fingerprints have a 
strong correlation with recovery stress and shape recovery ratio. How
ever, due to their p-value not meeting the criteria, this correlation is not 
considered statistically significant. Perhaps a more extensive dataset 
will grant us more insight into the effect individual fingerprints have on 
shape memory properties. In future works, epoxies and hardeners that 
are not commercially available should be simulated to prepare a larger 

Table 5 
P-value and Pearson correlation coefficient for different fingerprints with re
covery stress (σrec) and shape recovery ratio (Rr).  

Fingerprint σrec (MPa) Rr 

p-value cc p-value cc 

Epoxy Length 0.08 0.29 0.99 0.00 
Hardener Length 0.45 −0.13 < 0.01 0.51 
BB Ratio 0.05 0.33 0.19 −0.22 
Stretch (SC) 0.04 0.35 < 0.01 ¡0.52 
Stretch (BB) < 0.01 0.68 < 0.01 ¡0.59 
Angle (SC) 0.32 0.17 0.81 −0.04 
Angle (BB) < 0.01 0.60 < 0.01 ¡0.66 
Dihedral (SC) 0.99 0.00 0.01 ¡0.41 
Dihedral (BB) < 0.01 0.63 < 0.01 ¡0.58 
vdW size (SC) 0.67 −0.07 0.17 0.23 
vdW size (BB) < 0.01 0.65 < 0.01 ¡0.57 
vdW strength (SC) 0.12 0.26 0.07 −0.30 
vdW strength (BB) < 0.01 ¡0.58 0.36 0.16 
Polarity (SC) 0.52 0.11 0.03 −0.36 
Polarity (BB) < 0.01 ¡0.51 0.44 0.13 
Epoxy Rg 0.02 0.40 0.86 −0.03 
Hardener Rg 0.24 −0.20 0.01 0.41 
Max SC Length 0.40 0.15 0.12 −0.26 
Non-Arom. BB Rings < 0.01 ¡0.49 0.12 0.26 
Arom. BB Rings < 0.01 0.56 < 0.01 ¡0.51  
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dataset and discover new SMPs with better shape memory properties. 
Moreover, there are some intercorrelations within these fingerprints, 
which may require dimensional reduction methods (e.g., Principal 
Component Regression and LASSO) to give more accurate data analysis 
for machine learning to give more accurate data analysis. 
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