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Abstract

This paper presents a hardware-adaptive feature modeling framework to automatically generate and optimize deep neural networks to
support real-time feature extraction and matching on a given hardware platform. This framework consists of a deep feature extraction
and matching pipeline and a neural architecture search scheme, with which deep neural networks can be automatically generated
and optimized according to given hardware to achieve reliable real-time feature matching. Built on our feature matching approach,
we also developed a real-time 3D scene reconstruction pipeline that could run adaptively on hardware with different computational
performance. We designed experiments to validate the proposed matching and reconstruction pipelines on hardware platforms with
different performance. The results demonstrated our algorithms’ effectiveness on both matching and reconstruction tasks.
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1. Introduction

3D reconstruction is an important technique in the field of
computer-aided design and engineering, because being able to
easily acquire 3D shapes or models from the real world can
greatly accelerate the design and analysis [1, 2, 3, 4, 5]. A key
technique in 3D reconstruction is feature extraction and match-
ing, which helps register images taken from different view angles
and then infer depth and geometric structures of the captured
scenes/objects. An accurate and robust feature extraction and
matching pipeline is critical towards effective 3D reconstruction,
especially when dealing with challenging free-conditioned envi-
ronments such as those scenes that have limited field of views [6],
low scanning rate [7], or are sparsely sampled [8]. Besides accu-
racy, feature modeling and matching often need to be performed
in real-time for interactive re-scanning and refinement. But this
is often non-trivial if the given portable platform (due to cost or
mobility constraint) has low computational performance. Often
times, trade-offs need be made between the efficiency and accu-
racy of matching and reconstruction algorithms. For example, on
high-performance workstations, more sophisticated algorithms
or deeper neural networks can be used to extract more detailed
feature information, but on a smaller lower-cost laptop, simpler
algorithms or networks should be adopted to accommodate the
efficiency requirements.

A feature matching pipeline typically consists of two main
steps: keypoint detection and feature description. Classical
keypoint detection and feature description pipelines include
SIFT [9], SUREF [10], FAST [11], etc., which have been widely
adopted in many matching, reconstruction, and visual SLAM
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(simultaneous localization and mapping) tasks. Recently, deep
learning based keypoint detection [12, 13], feature description
[14, 15], and the combined detection-description pipelines [16,
17, 18, 19, 20] have been explored and achieved the state-of-
the-art performance. However, most of these learning-based
pipelines rely on a pre-designed neural network architecture,
which might work well on some platforms, but not on some
others. Specifically, a network designed and trained on a work-
station with high-end GPUs could undergo a significant perfor-
mance drop when it is deployed on a computationally limited de-
vice such as a laptop. Our goal is to develop a hardware-adaptive
pipeline that can automatically optimize the neural network ar-
chitecture according to the given hardware’s performance.

Inspired by the recent study in neural architecture search
(NAS) research in image classification and recognition tasks [21,
22,23, 24], we developed a novel learning-based feature match-
ing pipeline with an NAS optimization scheme to support the
hardware-adaptive interactive feature matching. On a given hard-
ware platform, a neural network with restricted latency will be
generated to support on-the-fly 3D reconstruction. The main con-
tributions of this work can be summarized as:

1. We developed a first automatic hardware-adaptive deep fea-
ture modeling and matching framework that can gener-
ate deep neural networks for keypoint detection and fea-
ture description according to given hardware. We formu-
lated this as a latency-constrained neural network archi-
tecture optimization problem, which turns out to be effec-
tive and successfully makes the pipeline hardware-adaptive.
This framework can help avoid tedious manual network re-
design when deployed on new given hardware platforms.

2. Built upon this deep feature matching pipeline, we devel-
oped a 3D reconstruction system to reconstruct 3D scenes,
and validated that it can achieve real-time performance in
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three hardware platforms with different computational per-
formance.

3. Compared with existing feature matching algorithms, the
proposed pipeline achieved the state-of-the-art performance
in accuracy and efficiency, especially on low-performance
hardware platforms.

2. Related Work

This section discusses related work in the following three cat-
egories: (1) learning based feature extraction, (2) Neural Archi-
tecture Search, and (3) 3D reconstruction based on sparse feature
correspondence.

2.1. Learning-based Feature Extraction

Learning-based keypoint detectors. Deep learning tech-
niques boosts the development of new effective keypoint detec-
tors. FAST [25] and ORB [26] use machine learning approaches
to speed up the process of corner detection. TILDE [27] learns
from pre-aligned images of the same scene at different illumina-
tion conditions. Although being trained with the assistance from
SIFT, TILDE can still identify keypoints missed by SIFT, and
outperforms SIFT. Quad-Network [12] is trained unsupervisedly
with the help of a ranking loss. Zhang et al. [28] combined this
ranking loss with a “Peakedness” loss and produces a more re-
peatable detector. Lenc et al. [13] proposed to train a keypoint
detector directly from the covariant constraint. Orientations of
keypoints can also be estimated through learning [29] to facili-
tate the subsequent keypoint matching.

Learning-based feature descriptors. Learning effective fea-
ture description is critical in establishing correspondence and
matching between data. DeepDesc [30] integrates a Siamese
network with the MatchNet [31] and Deepcompare [15], to
learn nonlinear distance matrices for feature matching. A se-
ries of recent studies have explored more advanced architec-
tures and triplet-based deep metric learning formulations, includ-
ing UCN [32], TFeat [33], GLoss [34], L2-Net [35] and Hard-
Net [36] for feature learning. These methods focus on designing
better loss functions, but still using the same network architecture
proposed in L2-Net [35].

Joint detector-descriptor learning. LIFT [16] was proba-
bly the first work aiming to build an end-to-end feature detec-
tion and learning pipeline. In this work, keypoints are detected
and cropped regions are then fed to a second network to esti-
mate the orientation before going throughout a third network to
perform description. However, in the training phase, it relies on
the output of SIFT detector to initialize, thus it only partially
achieves this goal. SuperPoint [17] trains a convolutional neural
network that consists of a single shared encoder and two sepa-
rate decoders for keypoint detection and feature description, re-
spectively. Synthetic shapes are used to generate images for de-
tector’s pre-training, and synthetic homographic transformations
are used to produce image pairs for detector’s fine tuning. Based
on Q-learning, LF-Net [18] uses a Siamese architecture to train
the entire network without the help of hand-craft method. RF-
Net [19] modifies the LF-Net architecture to construct more ef-
fective receptive feature maps, and introduces a neighbor mask
loss term to facilitate training patch selection for more stable de-
scriptor training.

While recent research on keypoint detection and feature de-
scription learning has achieved remarkable results, these deep
networks are pre-designed and tuned, and their performance may
not be stable when deployed on different hardware platforms.

2.2. Neural Architecture Search

The majority of current deep neural networks are developed
manually, which are often time-consuming and difficult to repro-
duce/tune [37]. Neural Architecture Search (NAS) is a new trend
in efficient network design that searches the optimal neural net-
work from a hierarchical cell-wise search space automatically.
Earlier studies of NAS focused on the cell level structure search,
and the same cell is used repeatedly in the entire neural network.
Nasnet [21] uses block-level hierarchical search space to increase
the diversity of the searched neural network, in which a network
is formed by different cells and each cell is formed through dif-
ferent blocks. Weight sharing is often adopted in NAS to reduce
computational cost. A “SuperNet” that contains different pos-
sible network topology architectures is built and then pruned to
obtain an optimal architecture through iterative training.

NAS has been successfully applied in some recent image fea-
ture classification tasks, especially since the development of
gradient-based NAS frameworks, in which the search reduces to
a numerical optimization problem. DARTS [22] is probably the
first gradient based end-to-end NAS framework, in which a joint
optimization of the architecture and its weights can be conducted
through a continuous relaxation scheme. It produces more ef-
fective convolutional architectures in image classification than
previous NAS algorithms. GDAS [38] is also a Gradient-based
search method using Differentiable Architecture Sampler to do
image classification. Built upon DARTS, a main improvement
of GDAS that it only update one sub-graph each time rather than
the entire SuperNet. So it is more efficient and can avoid the
mutual inhibition caused by updating all the operations together.
P-DARTS [39] tries to solve the “depth gap” problem in DARTS,
which uses a deeper network but fewer operations in every cell.
PC-DARTS [40] designs a channel sampling technique to fur-
ther reduce memory and computation. FBNet [24] uses gradient-
based methods to search higher accuracy neural networks for
image classification, considering the hardware performance as
a constraint of the optimization.

The above development of NAS on the image feature classi-
fication tasks are gradient based, but the searching aims at find-
ing only one optimal block for each cell. So, the final resultant
framework is sequential. Selecting only one block with highest
weight and abandoning other blocks makes the optimization an
integer problem, whose numerical optimization is in fact harder
than making the optimization a true continuous problem. In this
work, we remove this integer constraint to make the architecture
design more flexible and optimization more efficient.

2.3. 3D Reconstruction

We briefly review closely related work on feature extraction
and matching algorithms in 3D reconstruction, and refer the read-
ers to a detailed survey of 3D reconstruction algorithms [41].

3D reconstruction approaches can be categorized into dense
matching and feature-based matching methods. In dense match-
ing methods, all pixels between two frames are analyzed based
on their geometric and/or photometric characters. Representative
dense matching methods include ElasticFusion [42] and RGB-
DTAM [43]. To achieve pixelwise dense matching, volumetric
representations are often adopted. These approaches often re-
quire a powerful graphic hardware to carry the parallel compu-
tation, and hence, may not run on hardware with low computa-
tional performance. Reconstructions using feature-based match-
ing first establish coarse correspondences between features in
different frames, and then estimate inter-frame alignment based



on these correspondences. The matching is based on the key-
point descriptors and geometric constraints. A state-of-the-art
performance is achieved through ORB-SLAM2 [2]. The ORB
descriptor is a binary vector allowing high performance match-
ing. GCNV2 [44] replaced the detector and descriptor of ORB-
SLAM?2 by neural networks, and it achieves a comparable ac-
curacy as ORB-SLAM?2. However, most of these existing 3D
reconstruction algorithms were designed and tested on a single
hardware platform. How to design a flexible framework that can
perform real-time feature matching and 3D reconstruction on dif-
ferent hardware platforms adaptively has been little explored.

3. Method
Ci
Keypoint @ Feature
Detector i Descriptor
Network Patches Network
I; S,
J
B i = Keypoint Feature
b Detector () J Descriptor
o Network Patches Network
5 S,

Figure 1: Our Automatic Feature Extraction and Matching Pipeline. For keypoint
extraction, the detector network generates a score map C, a dense orientation
estimation ®, and a scale map S. Image patches around the chosen keypoints are
cropped and fed to the descriptor network to compute descriptor D. With these
matching between two images can be computed.

Recently, learning based feature matching methods [17, 18,
19, 20] have outperformed traditional hand-designed methods
and achieved the state-of-the-art performance. But their accuracy
gain comes with the price of deploying complicated neural net-
works on high-end GPUs. When the system needs to be ported
onto machines with lower computational capability for real-time
applications, these deep feature matching systems’ performance
often drops significantly, and one needs to re-design/re-train the
networks on the given platform which is not only tedious but also
difficult. Our goal is to build a flexible framework that adapts
to the given platform, and balances the accuracy and efficiency
if they cannot be achieved simultaneously. Following the most
widely adopted two-phase frameworks, we propose to design and
then optimize our matching pipeline consisting of the keypoint
detection and feature description modules. Our pipeline is illus-
trated in Figure 1. Given an image pair /; and /;, our keypoint de-
tection network generates the pixel-wise feature saliency score
maps C; and C;, orientation maps ®; and ®;, and scale maps
S; and S ;, respectively. Keypoints are extracted from the score
maps. Then, patches around keypoints are cropped from /; and /;,
and fed to the feature description network to produce patch de-
scriptors D; and D, with which the feature correspondence can
be obtained via nearest neighbors in the descriptor space. We ex-
plain our design of the keypoint detection network in Section 3.1
and feature description network in Section 3.2, their composi-
tion and training in an end-to-end pipeline in Section 3.3, and
the utilization of this pipeline for real-time 3D reconstruction in
Section 3.4.

3.1. Hardware-adaptive Keypoint Detection

We developed a keypoint detection module using LF-Net [18]
as the baseline, but we make this neural network adaptively ad-

justable. LF-Net uses a convolutional network to detect keypoint
locations on images from their learned corresponding scale and
rotational maps. It achieves a good balance between efficiency
and accuracy, and hence, is a suitable starting point. However,
the network architecture in LF-Net is fixed and computationally
intensive, it is not suitable for some hardware with low perfor-
mance. Therefore, we make the number of convolutional blocks
adaptively adjustable according to given hardware.

The proposed keypoint detector network is shown in Figure 2.
Given an input image, we first use Ny, convolutional blocks B
to extract feature maps F, which are used to build a multi-scale
feature pyramid to get multi-scale responses. N, is selected ac-
cording to hardware performance. Similar to LF-Net, we com-
pute a score map, a scale map, and an orientation map from the
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Figure 2: Our keypoint detection network that estimates keypoint locations,
scales, and orientations. Ng,; blocks are used to generate a feature map F from
an input image 1. A 5 X 5 X 2 convolutional layer is applied on the feature map to
obtain the orientation map ®. To obtain a multi-scale pyramid, the input feature
map is downsampled by a factor of 0.5 and 0.25. Feature map pyramids are fed
into a 5 X 5 convolutional layer to generate multi-scale response maps H", from
which score maps C and scale map S are obtained through SoftMax.

To determine Ny, according to hardware performance, we first
calculate the input data size for each block in the detector net-
work, so the latency of each block Tz on a specific hardware can
be estimated. Then, the total latency from concatenating Ny,
blocks should be restricted. For example, suppose on a real-
time application such as 3D reconstruction that should run at a
10-15fps, the entire matching pipeline needs to finish within
100ms. We denote this time as a farget latency Tyurge;. Based
on our experiments and observation, in most existing learning-
based matching pipelines, the keypoint detection and feature de-
scription learning modules consume about 30% and 70% time,
respectively. Therefore, we also use about 30% of the target la-
tency to restrict the latency of keypoint detection. This is formu-

lated as
30% x Ttarget - Tolher
- , (1)
B

where T is the latency (in milliseconds) consumed by each
block, and T, is latency from other network operations.

From these convolutional blocks, a tensor of feature maps, F,
can be obtained. Then a multi-scale pyramid of feature maps
is built to get scale-space responses by downsampling F for N
(N = 3 in our implementation) times with a factor of 0.5. These
feature maps are convolved by a 5 x 5 filter to get N response
maps H" (1 < n < N). We resize each H" back to the original
image size to obtain pixel-wise score maps.

To increase the saliency of keypoints, we perform a differen-
tiable form of non-maximum suppression by applying a softmax

det =
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Figure 3: Our NAS Framework. The Search Space contains candidate convolutional blocks, and a SuperNet is created using these blocks. Latency of the candidate
convolutional blocks is computed according to the SuperNet architecture. The searching process optimizes the SuperNet weights and architecture parameters 7 to

minimize the loss function L(a, w,), yielding the final architecture a € A.

operator over a 15 X 15 window in a convolutional manner. Then
we merge all these sharper response maps to get the final score
map C by a softmax operation with a 1 X 1 X N window.

C= Z H" © softmax,(H"), 2)

where operator © is the Hadamard product.

The scale of each layer in the response maps is defined as the
size of the corresponding layer’s receptive field. Each pixel in the
scale map S is defined as the scale of the layer with the largest
intensity in the response maps. By applying a 5 X 5 X 2 convo-
lutional layer on the feature map, we can obtain the orientation
map ®. The output of orientation map ® consists of two channels
represented by sine and cosine of every pixels. In this way, the
final orientation can be described by arctan, which indicates the
rotational angle between patches from the two images.

The output of the keypoint detection network is a set of key-
points {v; = (x;,y;)}, their scales s;, and orientations 8;. The key-
points are the top-K responses detected from the response score
map S.

3.2. Optimizing Feature Description

We designed our feature description module based on
L2Net [35], but searched the neural network according to the
hardware computational performance. L2Net has been widely
adopted in many recent feature matching frameworks such as
HardNet [36] and RF-Net [19]. It uses seven convolutional lay-
ers to produce 128-dimensional descriptors, and has been shown
effective in many recent feature matching pipelines. However,
the fixed L2Net structure is not adaptive when the hardware plat-
form changes. Furthermore, compared with keypoint detection,
the descriptor learning plays a more important role in the entire

feature matching pipeline. Therefore, we performed an optimiza-
tion on the feature description network using differentiable neu-
ral architecture search (DNAS) [22]. We also designed a new
loss term to guide the network architecture search and optimize
feature description with constrained latency.

3.2.1. Network Design

To optimize the neural network design for feature description,
we perform an NAS to search for an efficient and effective net-
work from various network combination. The search is usually
very large and a brute-force enumeration and training of all the
potential sub networks is prohibitive. A recent state-of-the-art
NAS framework is FBNet [24], in which the search space A is
initialized as a neural network composed by several sequentially
connected cells. This network is also called SuperNet, and its
structure is fixed. FBNet optimizes the selection of blocks in this
fixed structure, to enhance the performance of an image classifi-
cation network.

In this work, we revised the framework of FBNet to make
the pipeline more suitable for our real-time task. The two main
modifications we made to the FBNet pipeline are that: (1) In
each layer, our search network contains multiple blocks rather
than a single block (FBNet). This allows us to construct more
complicated network structures rather than just simple, sequen-
tial ones. (2) We changed the latency term to a hard constraint,
with which the efficiency of our pipeline in real-time applications
can be guaranteed.

Our developed neural architecture search framework is illus-
trated in Figure 3. Each cell is allowed to have several parallelly
allocated candidate blocks. The input of each cell is a feature
map, fed into these candidate blocks; the cell outputs a weighted
summation of each block’s outputs. We denote these weight as
n. Each candidate block contains several convolutional layers,



A\

whose network parameters are denoted as w. During the train-
ing stage, 7 and w are simultaneously learned. When converged,
blocks with 7 < 0.1 are trimmed. The final pipeline, referred to
as the optimal sub network a, may contain different cells.
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Figure 4: The basic convolutional block. Cj,, C,y; indicate the number of input
and output channels ; H and W are the height and width of the input; K is the
kernel size of the depthwise convolution (DWConv); e is the adjustment magni-
fication of the input channel; GConv and BN are group convolution and batch
normalization.

Candidate Blocks. The design of basic block candidates is
inspired by the lightweight network [45, 46] and the residual net-
work [47]. As illustrated in Figure 4, it contains a 1 X 1 pointwise
convolution, a K X K depthwise convolution, and a 1 X 1 point-
wise convolution. Batchnorm and Relu operations follow each
convolution, serving as the normalization and activation func-
tions. The channel adjustment magnification is expressed as ex-
pansion e. The final output of the basic block is the sum of the
result and the input. The Channel Shuffle (CS) is an optional
module, which mixes the information between channels to ob-
tain better accuracy to the neural network. A few such blocks
can replace multiple convolutional layers to achieve similar ac-
curacy, but with less computation and better efficiency. These
blocks are generated by a variation of k and e defined in the basic
block. To search for optimal cells, we design 9 types of canoni-
cal candidate blocks, as listed in Table. 1. We denote a block of
k =3,e =1as k3_el. In fact, the blocks adopted in the keypoint
detection network (Section 3.1) is this basic k3_el block. Here
the block type of “skip” means skipping this entire block.

Table 1: Candidate Blocks

Block type Expansion | Kernal | CS
k3_el 1 3 No
k3 el_s2 1 3 Yes
k3_e3 3 3 No
k3_e6 6 3 No
k5_el 1 5 No
k5_el_s2 1 5 Yes
k5_e3 3 5 No
k5_e6 6 5 No
skip - - -

Layer-wise SuperNet. The SuperNet we design is also layer-
wise. Each layer is a cell which contains several different candi-
date blocks. The whole SuperNet is composed by Ny sequen-
tially connected cells. The search procedure will select and com-
bine optimal candidate blocks to form each cell in the SuperNet.
A SuperNet architecture (with N, = 6 layers of cells) is shown
in Table 2. The first and last cells of the network are determined
in order to generate fixed length descriptors, while other cells are
defined through space searching.

Table 2: Architecture of the layer-wise search space. Column-“Block” denotes
the block type. Column-“filters” denotes the filter number of a block. Column-
“stride” denotes the stride of the first block in a stage. The final output is a batch
of 128 dimension vectors.

Input shape | Cell filters | stride
322x 1 3x3Conv 32 1
322x32 Cell 1 32 2
162 x 32 Cell 2 64 1
16 x 64 Cell 3 64 2
82 x 64 Cell 4 128 | 1
82 x 128 Cell 5 128 | 2
42 x1 Cell 6 128 | 1
42 x1 4x4Conv - -

3.2.2. Continuous Optimization of Weights

Classical NAS approaches combinatorially select blocks with
a binary 0-1 mask and re-initialize w in the next iteration, which
is computationally expensive and sometimes unstable. Recently,
FBNet [24] suggests a differentiable neural architecture search
framework that uses gradient-based methods to optimize the net-
work architectures, and it achieves great performance. In each
iteration, network parameters w are updated based on w from
the previous iteration, which significantly reduces the searching
time. Therefore, here we followed FBNet to search and optimize
our feature description neural network in this continuous way.
Furthermore, when the optimization is finished, unlike FBNet
that only selects a single block, we kept multiple blocks.

The searching process in classical NAS frameworks is formu-
lated as an integer optimization problem. The input for cell / + 1
can be obtained by

X1 = Z my; - byi(xp), (3)
i = argmax(n)

m = 1 4)

Mz = 0

where my; is an 0-1 integer, x; denotes the input for cell /, and b;;
denotes the operation in cell / and block i.

Because m;; is not differentiable, the optimization problem
cannot be solved with gradient descent. To convert the discrete
parameters m;; into continuous variables for stochastic gradient
descent (SGD), a Gumbel Softmax function is used to replace
Equation. 4,

exp[(n; + g1,1)/7]

; = GumbelSoft i = .
. umbelSoftmax( ) 2. expl(m, + g1/ 7]

®)

Here g;; is a random noise for cell / and block i, following the
Gumbel distribution. The Gumbel Softmax function is controlled
by a temperature parameter 7. When 7 approaches 0, m;; approx-
imates the discrete categorical sampling, and when 7 becomes
larger, m;; becomes a continuous random variable. For any 7
value, m;; is differentiable with respect to parameter 7;,;.

Figure. 5 compares the data flow before and after using Gum-
belSoftmax. When GumbelSoftmax is not adopted, as is shown
on the top, the m;; for each block is either O or 1, where its cor-
responding block is rendered in white and black. On the other
hand, when GumbelSoftmax function is used, as rendered on the
bottom, blocks are rendered in gray scale, indicating its my; is
between 0 and 1, where a lighter block has a larger m;;;.
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Figure 5: Data flow before and after using GumbelSoftmax operation. When
GumbelSoftmax is not adopted, as is shown on the top, the m;; for each block is
either 0 or 1, where its corresponding block is rendered in white and black. On
the other hand when GumbelSoftmax function is used, as rendered on the bottom,
blocks are rendered in gray scale, indicating its m;; is between 0 and 1, where a
lighter rendered block refers to a larger m; ;.
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In this way, the input for cell / + 1 can be obtained by

X1 = ) GumbelSoftmax(mim) - bi(x), (©)

where x; denotes the input for cell /, and b;; denotes the convolu-
tional operations in cell / and block i.

After searching, we select blocks with m;; > ¢ from each layer
to construct the final feature description network. Here € is a
threshold, and through experiments, we found setting it to 0.1
works well.

3.2.3. Loss Function

To ensure the delay of our entire network to be smaller than
the target latency, we shall evaluate the running time of each se-
lected sub network a on the target device. However, measuring
the latency of a during the searching procedure is computation-
ally expensive and often prohibitive in practice. Therefore, we
first deploy each block in the search space on the target device,
measure the running time, and record it in a lookup table. This
lookup table helps estimate the total latency of a by the afore-
mentioned mask variable my;; in a differentiable form

T(@) =) > my-T(by), (7)
1 i

where b;; is a selected block i at cell / from a.

Furthermore, we evaluate the distance from the latency of the
current sub network 7'(a) to the target latency T[‘ée,z,et. Since we
introduce the mask variable m;; to make the optimization dif-
ferentiable, the latency calculated is therefore not accurate and
usually larger than the true latency. Thus, we propose a new way
to represent the current sampled latency of the network, which
we call a “softly sampled latency”. Inspired by the soft-NMS al-
gorithm, we obtain the maximum softened probability for each
cell of m. The soft-NMS operation is that for every blocks 7 in

cell /, the probability m;; is suppressed when it is small, and is
enlarged when it is large:

exp(m;,; — max(my))

ftum;; = . 8
sottm, >, exp(my,; — max(my) ®

Then we can get the soft sample latency 7' by
7= Z Z soft_my; X T(by). )

T
The total latency loss function is therefore written as

T -Tds
L = ), Qi T X (— 57 (10)

1 i target

The loss we use to train the feature description network is
based on the HardNet loss[36]. It maximizes the distance be-
tween the closest positive and closest negative example in the
batch. The description loss Ly, is formulated as:

1
Ldes(DpOSs Dng) = E Z max(0, 1 + Dpos - Dng) (1)

where
Dpos = d(Df{, Dl;) (12)

D,y = min(d(D}, DY), d(Dj', D)) (13)

D is the closest non-matching descriptor to Df and D" is the

closest non-matching descriptor to fo. The descriptors’ dis-
tance is the Euclidean distance between the centroids of the two
patches.

The final loss function is defined as:

L = aLoss,ec + BLOSS 4, (14)

where « and S are weight parameters. Through experiments we
found that simply setting @ = 1.0 and 8 = 1.0 works well.

3.3. End-to-end Training

Many recent deep frameworks [18, 19] that jointly learn key-
point detection and feature description adopt three main loss
functions: score loss, patch loss, and description loss. The score
loss measures the repeatability and reliability of the detected
keypoints on different illumination and viewpoint settings. The
patch loss measures the description difference between regions
surrounding corresponding keypoints in two images. The de-
scription loss measures the difference between a closest positive
pair and the similarity between a closest negative pair.

In the end-to-end training process, the Keypoint detector is
not separately trained through supervised learning, but trained
together with the subsequent feature description. A point is con-
sidered as a keypoint if (1) it has good reliability, i.e., not sensi-
tive to viewpoint and illumination changes, and (2) it is unique
and unambiguous, i.e., it can have discriminative description that
is different from that of other keypoints. Therefore, keypoints are
defined and trained using the score loss and patch loss together
with the descriptors. To support this end-to-end training, we use
training data (to elaborate in Section 4.1) that contain many im-
age pairs with known homography transformations. These data
can support the aforementioned training. The training process is
designed as illustrated in Figure 6.

Score loss. The score loss is designed to train and evaluate
the extraction of score map from the keypoint detection neural
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network, to ensure that the score maps C; and C; from images /;
and /; have the same score on corresponding keypoint locations.
First, feed an image pair (/; and /;) into the network to get corre-
sponding score maps C; and C;. Second, transform the viewpoint
of score map C; into that of C;, by a perspective transformation
operation w. Then, process C; by a Non-Maximum-Suppression
(NMS) to make the points| of interkist sparse pndoshiaupnpidter that,
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The patch loss Lpgcx can then be defined by

k
1
Lyaer(D}, Df) = 7 > d(D}. D)) (18)
1

where d(x,y) = ||x — ||, is the distance between x and y.
Description loss. The aforementioned description loss Ly, in
Equation.11 is used to train the description network.

To train the keypoint detection network, Lgcore and Lpgcn are
combined as Ly,;:

Lgjer = A1 Lycore + /lZLpatcha (19)
where 1| and2-are weights wo loss functipps and through
experiments| N o % |0 works
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Figure 7: The flowchart of our 3D reconstruction system. We just feed the input
image into the keypoint detection network, which computes keypoint locations,
orientations and scales. After that we use these information to extract correspond-
ing image patches. By feeding these image patches into the feature description
network, descriptors for each keypoints are obtained. We use a standard nearest
neighbor search algorithm to create correspondences between keypoints. The rest
of the 3D reconstruction system is kept as the same as ORB-SLAM.

We designed a 3D reconstruction system based on the widely
adopted ORB-SLAM2 [2] system, which is regarded as a state-
of-the-art in 3D reconstruction tasks. In the pipeline of ORB-
SLAM2, we replaced the feature extraction module with our key-
point detection and feature description networks, as the orange
boxes shown in Figure 7. Our pipeline takes consecutive im-
age frames to compute keypoints and their descriptors, then uses
a standard nearest neighbor search algorithm to compute corre-
spondence between keypoints.
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Figure 8: The optimized neural network generated by the NAS algorithm on the 100% performance hardware platform. The weights m;; on each edge of the blocks are

also marked, where the edges to selected blocks are rendered in red.

4. Experimental Results

In this section, we first introduce the benchmark datasets, ex-
perimental setup, and the testing platforms, then report results.
The following experiments were conducted.

1. To evaluate the efficiency of our proposed pipeline, com-
parisons on the #parameters, #flops, latency, and accuracy
are performed on HPatches [48] datasets with LF-Net [18],
RF-Net [19], SIFT [9], SURF [10], ORB [26].

2. To evaluate the keypoint detection accuracy (repeatability),
on HPatches [48] and EF [49] datasets, we compare our net-
work with SIFT [9], FAST [50], ORB [26], SURF [10], RF-
Det [19] and D2-Det [20].

3. To evaluate the accuracy of feature matching, we compare
these methods’ results of 1 — 10 pixel matching thresholds
in different illuminations and viewpoints on HPatches [48]
datasets.

4. We also compare the performance of our entire 3D re-
construction system with ORB-SLAM?2 [26], Elastic Fu-
sion [42], RGBD TAM [43], and GCN SLAM [44] on the
TUM [51] dataset. Note that since our focus is on the match-
ing part, not the entire reconstruction pipeline, and we did
not implement sophisticated bundle adjustment or global re-
finement, we only compared with these methods.

4.1. Dataset and Experimental Setup

Searching, Training, and Test Data. We used Photo
Tourism [52] as searching data to perform NAS training. These
data are from Photo Tourism reconstructions from Trevi Foun-
tain (Rome), Notre Dame (Paris) and Half Dome (Yosemite).
Each data sample consists of a series of corresponding patches,
which are obtained by projecting 3D points from Photo Tourism
reconstructions back into the original images. We used these data
to create 500,000 pairs of image patches and resized them to
32 x 32. We used the HPatches [48] dataset to train the feature
description network. The dataset contains 116 sequences, each

of which contains six pictures and their corresponding homogra-
phies. We used 90% of the sequence of view group as the train-
ing set, and the rest as the test set. We also included the EF [49]
dataset into the test set.

Neural Architecture Search Process. To perform the NAS
search, the latency table should be first built by estimating in-
dividual delay of each canonical candidate block on the deploy-
ment platform. Then the SuperNet can be trained more efficiently
by using latency information from this table. We empirically set
the training epoch number to 60. In each epoch, 100K random
pairs out of the 500K patch pairs generated from the searching
dataset were used. The training process first trains the operation
weights w of the SuperNet, then optimizes the network weight
1. The learning rate of w is set to 0.01 using SGD with momen-
tum and the learning rate of 7 is set to 0.1 with Adam optimizer.
The input patch size is set to 32 x 32, and the batch size is 256.
Weights are trained on 80% of searching data, and 7 is trained on
the remaining 20% of searching data. In order to control Gumbel
softmax (Equation. 5), we use an exponentially decreasing tem-
perature 7. Similar to FBNet [24], we used an initial temperature
7 of 5.0 and exponentially anneal it by exp(—0.045) =~ 0.956 ev-
ery epoch. When the search is done, we get the final network
from the SuperNet based on the maximum probability blocks of
each layer.

End-to-End Training Process. At training stage, we set the
learning rate of descriptor and detector networks to 0.1. In each
training batch, we first extract 512 keypoints from an image to
train the keypoint detection network once, and then extract the
corresponding 512 patches to train the feature description net-
work twice. We resize all images to 640x480, and apply random
rotations and translation transformations for data augmentation.

4.2. Feature Extraction with Networks Generated on Different
Hardware Platforms

To test the hardware-adaptiveness of our proposed pipeline, we
utilize a workstation with £5-2690V3 x 2 CPU, NVIDIA GTX
2080 x 2 GPU, and 64G RAM. We downclocked the two GPUs
to its original 50% and 25% clock frequencies, respectively. The
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NAS is performed on these three different hardware platforms,
using Photo Tourism datasets [52].
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The generated keypoint detector neural network for the 25%
performance hardware has only one k3_e1 block to transform the
input image to the feature map. The 50% and 100%-performance
platforms select two k3_el blocks to process the input image to
improve the accuracy of the extracted feature maps. All the three
designs satisfy the latency requirement.

Figure 8 illustrates the optimized feature description neu-
ral network generated by the NAS algorithm on the 100%-
performance hardware platform. The weights m;; on each edge
of the blocks are also marked, where the edges to selected blocks
are rendered in red. When edge weights are larger than 0.1 the
blocks are selected (e.g., in the last two cells). The final archi-
tectures for the feature description network on the three target
hardware platforms are illustrated in Figure 9.

The neural network for 25%-performance workstation plat-
form has the following structure: it utilizes two skip blocks to
downsample the input image; then two k5_el blocks separated
by skip blocks to extract features. In the 50%-performance plat-
form, two k5_el blocks separated by skip blocks are selected
first, followed by a k5_el block and a k5_el_s2 block. The
100%-performance hardware platform supports a more compli-
cated network, organized by a k5_el_s2 block and three k5_e3
blocks first. Then two cells consisting of parallel blocks are
selected. The first cell includes a k3_e3 block, a k3_e6 block,
a k5_e3 block, and a k5_el_s2 block; the second cell includes
a k3_e3 block, a k3_e6 block, a k5_el_s2 block, and a k5_el
block. The parallel blocks improve the matching accuracy with
only a limited decrease in processing efficiency on the 100%-
performance platform.

4.3. Feature Extraction and Matching Results

We evaluate the feature description latency and accuracy of
the generated neural network, and compare it with other classic
geometry-based and learning-based algorithms. We consider a

standard image matching scenario where features from two given
images are extracted and matched. We use the sequences of full
images provided by the HPatches dataset [48], and match one
image with all other images in each sequence. The latency is
measured by timing the feature extraction procedures. The ac-
curacy is measured by the recall of the matching results, which
denotes the number of correctly matched descriptors with respect
to the number of corresponding descriptors between two images
of the same scene. To evaluate the feature matching performance,
we use the Mean Matching Accuracy (MMA) of three matching
strategies [53].

1. Nearest Neighbor (NN): two descriptors A and B are
matched if their distance is the nearest.

2. Nearest Neighbor with a threshold (NNT): two descriptors
A and B are matched if their distance is the nearest and is
below a threshold 7.

3. Nearest Neighbor distance ratio (NNR): two descriptors A
and B are matched if ||D4 — Dgl|/||Da — Dcl| < t where Dpg
is the first, and D¢ the second, nearest neighbor to Dj,.

Note that all learned descriptors are L2 normalized. For fair-
ness, we also normalize those manually designed feature descrip-
tors and use the nearest neighbor distance ratio threshold ¢ = 0.8.
A 5-pixel threshold is used in the matching, and the results are
shown in Table. 4.

The proposed algorithm generated three neural networks on
the corresponding GPUs, achieving accuracy of 72% , 74%, and
78% respectively, all higher than the existing ones. For a fair
comparison, we compared the speed of these three networks’ ar-
chitectures (and that of other existing approaches) on a same full-
performance workstation. The network latency of these three
architectures is 22.6ms, 31.1ms, and 38.7ms, respectively. Al-
though the classic SURF algorithm has the smallest latency (10
ms), but it has significantly lower accuracy (43%) than these
three architectures.

We compared the generated networks with the current state-of-
the-art learning based methods and manually designed methods
with a pixel thresholds from 1-10. All these experiments ran on
the 100%-performance workstation. Figure 10 shows the MMA
results of the overall, different illumination, and different view-
point conditions, on the HPatchs dataset. As shown in the fig-
ure, our method achieves the best overall performances for 1-9
pixel thresholds. An illustration of the feature matching results
of ORB [26], SIFT [9], RF-Net [19] and our method are shown
in Figure 11.

We also tested and compared the repeatability of our gener-
ated keypoint detection network and other approaches. As shown
in Table. 5, the keypoints detected by learning based end-to-end
keypoint detection methods (LF-Det, RF-Net and ours) are more
stable than FAST.

4.4. 3D Reconstruction Results

We evaluate the performance of our system in public datasets
and real world environment to show the advances of our 3D re-
construction system. Note that the network was never trained
on these reconstruction datasets. So the experiments also reveal
the generalization of our system. Our 3D reconstruction system
is coded using PyTorch’s C++ version (libtorch) with CUDA
support. We set the time spend on keypoints detection (1000
keypoints) to 15ms and feature description to 35ms (a 3 : 7
predefined ratio), but the entire process including intermediate
data transform and deploy, making the total time consumption to
around 90ms. Together with the subsequent tracking, mapping
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Figure 10: Evaluation on HPatches [48] Dataset. We use the mean matching accuracy (MMA) as a evaluation function for all methods. The methods used in this
evaluation include D2-Net [20], SURF [10], SIFT [9], RF-Net [19], LF-Net [18]. Our method get the best performance on 1-9 pixel thresholds, and D2-Net can achieve

better results on larger thresholds.

Figure 11: Feature matching results of ORB [26], SIFT [9], RF-Net [19] and our method. Correct matches are drawn with green lines and wrong matches with red lines.
The top row images are from HPatches [48] Dataset, the middle two rows images are from EF [49] Dataset and the bottom row images are from TUM [51] frl-room
benchmark. We extract 1024 keypoints for each image and use the nearest neighbor distance ratio (0.8) as our matching strategy. We choose these images to show
matching quality on different condition: viewpoint change, illumination change and small overlap. More green lines means better results.

and loop closure in parallel, our system runs at a speed of 10 to
15fps in all hardware platforms.

Table. 3 shows the camera pose estimation results of our pro-
posed 3D reconstruction system (on the three hardware plat-
forms) and original ORBSLAM?2 on the TUM dataset [51] us-
ing public benchmark. We can see that most of the results have
higher accuracy than other methods. Moreover, the camera pose
estimation results on the 100% performance hardware frame-
work is better than the others. Figure 12 shows the camera tra-
jectory of our camera pose estimation results running on TUM
Jfrl_room sequence.

10

We also tested our 3D reconstruction system by scanning an
indoor scene. The capturing sensor we used is an Intel RealSense
D415, a binocular depth camera mounted on a laptop, as shown
in Figure 13. First, we ran 3D reconstruction on a laptop using
the images captured by the RealSense sensor. Meanwhile, for
demonstration and comparison purpose, we also stored the video
and send it to the workstation, where 25% and 100% of its com-
putation capability were used to test the corresponding learning
pipelines. All these systems achieved real-time computing. In
Figure 14, we show the reconstruction results computed using
the 25% and 100% workstation pipelines. The laptop computa-



Table 3: Comparison of camera pose estimation accuracy between our proposed 3D reconstruction (on all three hardware platforms) with other camera pose estimation
systems on TUM [51] dataset (in meters). The absolute trajectory error is used to measure the difference between points of the true and the estimated trajectory. The

data are from [44].

Dataset ORB Elastic Fu- | RGBD GCN Our 25 | Our 50 | Our 100
SLAM?2 [2] | sion [42] TAM [43] | SLAM [44]

fr1_room 0.036 - - 0.021 0.091 0.075 0.065

fr1_.360 0.213 0.108 0.101 0.155 0.129 0.099 0.088

fr3_long_office 0.010 0.017 0.027 0.021 0.037 0.01 0.009

fr3_large_cabinet | - 0.099 0.070 0.070 0.108 0.101 0.093

fr3_nnf - - - 0.086 0.0956 | 0.043 0.043

Table 4: Descriptor learning and matching result comparison on HPatches
datasets [48]. The accuracy is calculated through mean matching accuracy
(MMA). All results are obtained by running on the 100% performance work-
station.

Algorithms  #Params  #FLOPs  Latency(ms) Accuracy
SIFT [9] - - 55.9 0.38
SURF [10] - - 10.0 0.43
ORB [26] - - 49.3 0.29
LF-Net [18] 2642613 24.63 GB 38.4 0.56
RF-Net [19] 1356450 45.94 GB 86.9 0.68
Ours (25%) 280711 2.81GB 22.6 0.72
Ours (50%) 325695 5.87GB 31.1 0.74
Ours (100%) 360079  11.39GB 38.7 0.78

Table 5: Repeatability of keypoints in three evaluation sequences. Repeatability
is defined as the mean percentage of points simultaneously present in the corre-
sponding image pair.

- HPatches{ HPatches{ EF
illum view Dataset

DoG [9] 0.617 0.626 0.493
FAST [50] 0.769 0.681 0.533
ORB [26] 0.734 0.692 0.436
SURF [10] 0.679 0.625 0.536
RF-Det [19] | 0.774 0.670 0.549
D2-Det [20] | 0.620 0.393 0.445
Our (25%) 0.687 0.578 0.463
Our (50%) 0.704 0.584 0.458
Our (100%) | 0.695 0.587 0.464

tion result is very similar to the 100% workstation result. We
can see that the results obtained by 100% performance hardware
framework are more accurate: the corridor is straighter, and the
room reconstruction is clearer.

5. Conclusions

We proposed an automatic end-to-end feature extraction
framework based on neural architecture search for real-time 3D
reconstruction. This is a first framework to automatically gen-
erate and optimize learning-based feature extraction pipeline for
real-time image matching and 3D reconstruction. We conducted
various experiments on benchmarks and real-scenes to validate
the efficiency and accuracy of the generated neural networks
in feature modeling and matching. Our experimental results
demonstrated that the proposed framework is flexible and adap-
tive to hardware, can achieve state-of-the-art performance on
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Figure 12: A camera pose estimation result of frl_room sequence in TUM [51]
dataset.
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Figure 13: Laptop with Intel RealSense D415

matching accuracy and efficiency, and can be used for real-time
3D reconstruction.

In our current experiment design, different hardware platforms
are simulated by downclocking the GPU clock frequency differ-
ent levels. However, besides clock speed, other factors such as
kernel size and architectural difference could also affect the hard-
ware performance. In the future, we will incorporate more fac-
tors into consideration to produce more accurate simulations and
performance evaluation.
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Figure 14: The 3D reconstruction results of an indoor scene using 25% and 100%
performance hardware frameworks. Both systems obtain real-time computing.

References

(1]

(2]

31
[4]

(5]
(6]

(7]

(8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. Fan, Q. Kong, X. Wang, Z. Wang, S. Xiang, C. Pan, P. Fua, A perfor-
mance evaluation of local features for image-based 3d reconstruction, IEEE
Transactions on Image Processing 28 (10) (2019) 4774-4789.

R. Mur-Artal, J. D. Tardés, Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras, IEEE Transactions on Robotics
33 (5) (2017) 1255-1262.

J. Engel, V. Koltun, D. Cremers, Direct sparse odometry, IEEE transactions
on pattern analysis and machine intelligence 40 (3) (2017) 611-625.

G. Klein, D. Murray, Parallel tracking and mapping for small AR
workspaces, in: Proc. IEEE and ACM International Symposium on Mixed
and Augmented Reality, 2007, pp. 1-10.

X. Li, S. Iyengar, On computing mapping of 3D objects: A survey, ACM
Computing Surveys 47 (2) (2015) 34:1-34:45.

A. Kim, R. M. Eustice, Real-time visual slam for autonomous underwater
hull inspection using visual saliency, IEEE Transactions on Robotics 29 (3)
(2013) 719-733.

S. Zheng, J. Hong, K. Zhang, B. Li, X. Li, A multi-frame graph match-
ing algorithm for low-bandwidth rgb-d slam, Computer-Aided Design 78
(2016) 107-117.

C. Le, X. Li, Sparse3d: A new global model for matching sparse rgb-d
dataset with small inter-frame overlap, Computer-Aided Design 102 (2018)
33-43.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, In-
ternational journal of computer vision 60 (2) (2004) 91-110.

H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features
(surf), Computer vision and image understanding 110 (3) (2008) 346-359.
M. Trajkovi¢, M. Hedley, Fast corner detection, Image and vision comput-
ing 16 (2) (1998) 75-87.

N. Savinov, A. Seki, L. Ladicky, T. Sattler, M. Pollefeys, Quad-networks:
unsupervised learning to rank for interest point detection, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1822-1830.

K. Lenc, A. Vedaldi, Learning covariant feature detectors, in: European
Conference on Computer Vision, Springer, 2016, pp. 100-117.

D. Mishkin, F. Radenovic, J. Matas, Repeatability is not enough: Learning
affine regions via discriminability, in: Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 284-300.

S. Zagoruyko, N. Komodakis, Learning to compare image patches via con-
volutional neural networks, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 4353-4361.

K. M. Yi, E. Trulls, V. Lepetit, P. Fua, Lift: Learned invariant feature trans-
form, in: European Conference on Computer Vision, Springer, 2016, pp.
467-483.

D. DeTone, T. Malisiewicz, A. Rabinovich, Superpoint: Self-supervised
interest point detection and description, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, 2018, pp.
224-236.

Y. Ono, E. Trulls, P. Fua, K. M. Yi, Lf-net: learning local features from

12

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

2m0zZ

images, in: Advances in Neural Information Processing Systems, 2018, pp.
6234-6244.

X. Shen, C. Wang, X. Li, Z. Yu, J. Li, C. Wen, M. Cheng, Z. He, Rf-net: An
end-to-end image matching network based on receptive field, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 8132-8140.

M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, T. Sattler,
D2-net: A trainable cnn for joint description and detection of local features,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8092-8101.

B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architec-
tures for scalable image recognition, in: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 8697-8710.

H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable architecture search,
arXiv preprint arXiv:1806.09055 (2018).

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le,
Mnasnet: Platform-aware neural architecture search for mobile, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 2820-2828.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
K. Keutzer, Fbnet: Hardware-aware efficient convnet design via differen-
tiable neural architecture search, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 10734-10742.

E. Rosten, R. Porter, T. Drummond, Faster and better: A machine learning
approach to corner detection, IEEE transactions on pattern analysis and
machine intelligence 32 (1) (2008) 105-119.

E. Rublee, V. Rabaud, K. Konolige, G. R. Bradski, Orb: An efficient alter-
native to sift or surf., in: ICCV, Vol. 11, Citeseer, 2011, p. 2.

Y. Verdie, K. Yi, P. Fua, V. Lepetit, Tilde: a temporally invariant learned
detector, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 5279-5288.

L. Zhang, S. Rusinkiewicz, Learning to detect features in texture images,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6325-6333.

K. Moo Yi, Y. Verdie, P. Fua, V. Lepetit, Learning to assign orientations
to feature points, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 107-116.

L. Wang, Y. Qiao, X. Tang, Action recognition with trajectory-pooled deep-
convolutional descriptors, in: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 4305-4314.

X. Han, T. Leung, Y. Jia, R. Sukthankar, A. C. Berg, Matchnet: Unifying
feature and metric learning for patch-based matching, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 3279-3286.

C. B. Choy, J. Gwak, S. Savarese, M. Chandraker, Universal correspon-
dence network, in: Advances in Neural Information Processing Systems,
2016, pp. 2414-2422.

V. Balntas, E. Riba, D. Ponsa, K. Mikolajczyk, Learning local feature
descriptors with triplets and shallow convolutional neural networks., in:
Bmve, Vol. 1, 2016, p. 3.

V. Kumar BG, G. Carneiro, I. Reid, Learning local image descriptors with
deep siamese and triplet convolutional networks by minimising global loss
functions, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 5385-5394.

Y. Tian, B. Fan, F. Wu, L2-net: Deep learning of discriminative patch de-
scriptor in euclidean space, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 661-669.

A. Mishchuk, D. Mishkin, F. Radenovic, J. Matas, Working hard to know
your neighbor’s margins: Local descriptor learning loss, in: Advances in
Neural Information Processing Systems, 2017, pp. 4826—4837.

F. Hutter, L. Kotthoff, J. Vanschoren, Automated Machine Learning,
Springer, 2019.

X. Dong, Y. Yang, Searching for a robust neural architecture in four gpu
hours, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1761-1770.

X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation, arXiv
preprint arXiv:1904.12760 (2019).

Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, H. Xiong, Pc-darts:
Partial channel connections for memory-efficient differentiable architecture
search, arXiv preprint arXiv:1907.05737 (2019).

M. R. U. Saputra, A. Markham, N. Trigoni, Visual slam and structure from
motion in dynamic environments: A survey, ACM Computing Surveys
(CSUR) 51 (2) (2018) 1-36.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, A. Davison, Elas-
ticfusion: Dense slam without a pose graph, Robotics: Science and Sys-
tems, 2015.

A. Concha, J. Civera, Rgbdtam: A cost-effective and accurate rgb-d track-
ing and mapping system, in: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 6756-6763.

J. Tang, L. Ericson, J. Folkesson, P. Jensfelt, Genv2: Efficient correspon-
dence prediction for real-time slam, IEEE Robotics and Automation Letters
4 (4) (2019) 3505-3512.

F. Chollet, Xception: Deep learning with depthwise separable convolutions,
in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1251-1258.

X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient con-
volutional neural network for mobile devices, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848—
6856.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770-778.

V. Balntas, K. Lenc, A. Vedaldi, K. Mikolajczyk, Hpatches: A benchmark
and evaluation of handcrafted and learned local descriptors, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5173-5182.

C. L. Zitnick, K. Ramnath, Edge foci interest points, in: 2011 International
Conference on Computer Vision, IEEE, 2011, pp. 359-366.

E. Mair, G. D. Hager, D. Burschka, M. Suppa, G. Hirzinger, Adaptive and
generic corner detection based on the accelerated segment test, in: Euro-
pean conference on Computer vision, Springer, 2010, pp. 183-196.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, A benchmark
for the evaluation of rgb-d slam systems, in: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012.

N. Snavely, S. M. Seitz, R. Szeliski, Photo tourism: exploring photo collec-
tions in 3d, in: ACM Siggraph 2006 Papers, 2006, pp. 835-846.

K. Mikolajczyk, C. Schmid, A performance evaluation of local descrip-
tors, IEEE transactions on pattern analysis and machine intelligence 27 (10)
(2005) 1615-1630.

13





