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Abstract—We study a symmetric Gaussian wiretap channel
with a helper, where a confidential message is sent from a
transmitter to a legitimate receiver, in the presence of a helper
and an eavesdropper, under a weak notion of secrecy constraint.
For this setting, we characterize the optimal secure generalized
degrees-of-freedom (GDoF). The result reveals that, adding a
helper can significantly increase the secure GDoF of the wiretap
channel. The result is supported by a new converse and a new
scheme. In the proposed scheme, the helper sends a cooperative
jamming signal at a specific power level and direction. In this
way, it minimizes the penalty in GDoF incurred by the secrecy
constraint. In the secure rate analysis, the techniques of noise
removal and signal separation are used.

Index Terms—Information-theoretic secrecy, wiretap channel,
generalized degrees-of-freedom, cooperative jamming, secure ca-
pacity.

I. INTRODUCTION

The study of information-theoretic secrecy dates back to
Shannon’s work of [1] in 1949. Since then, information-
theoretic secrecy has been investigated in varying communi-
cation channels, e.g., the wiretap channels [2]–[4], multiple
access channels with confidential messages and wiretap mul-
tiple access channels [5]–[12], the broadcast channels with
confidential messages [13]–[18], and the interference channels
with confidential messages [13], [19]–[39]. In those settings,
the messages are transmitted over the channels with secrecy
constraints, which often incur a penalty in capacity (cf. [10],
[13], [19], [24], [25], [28], [29], [31], [33], [37], [38], [40]).
One way to minimize the capacity penalty incurred by secrecy
constraints is to add helper(s) into the channels (see, e.g., [25],
[33], [34], [36], [39], [41]–[45]). Specifically, the work in [39]
recently showed that adding a helper can totally remove the
penalty in sum generalized degrees-of-freedom (GDoF), in a
two-user symmetric Gaussian interference channel.

In this work, we consider secure communications over a
Gaussian wiretap channel with a helper. In this setting, a
confidential message sent from a transmitter to a legitimate
receiver needs to be secure from an eavesdropper, in the
presence of a helper. The wiretap channel and its variations
have been considered as the basic channels for the inves-
tigation of information-theoretic secrecy. For example, the
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wiretap channel with a helper can be considered as a specific
case of an interference channel with only one confidential
message. The insights gained from the former can be very
helpful in understanding the fundamental limits of the latter.
For the Gaussian wiretap channel with one helper, the work in
[45] provided both inner and outer bounds on the achievable
secrecy rate at finite SNRs, where the achievability is based
on unstructured Gaussian random codes and the derived inner
and outer bounds do not match in general. In the wiretap
channel with M helpers, the works in [25], [41] showed that
the secure degrees-of-freedom (DoF) is M

M+1 for almost all
channel gains. The result is derived under the assumption
that perfect channel state information (CSI) is available at the
transmitters. The work in [36], [42] then showed that the same
secure DoF of M

M+1 is still achievable when the eavesdropper
CSI is not available at the transmitters. Another work in [43]
studied a Gaussian wiretap channel with a helper, where a
single antenna is equipped at each of the transmitter and the
legitimate receiver, while multiple antennas are equipped at
each of the helper and the eavesdropper. The result in [43]
revealed that the secure DoF 1/2 is achievable irrespective
of the number of antennas at the eavesdropper, as long as
the number of antennas at the helper is the same as the
number of antennas at the eavesdropper. In the setting of
wiretap channel with a helper, the previous DoF results were
generalized to the multiple-antenna scenario where multiple
antennas are equipped at each node [33], [44]. The work in
[44] used the assumption that perfect CSI is available at the
transmitters, while the work in [33] used the assumption that
the eavesdropper CSI is not available at the transmitters. In all
of those previous works in [25], [33], [36], [41]–[44] (except
for [45], which studied the secrecy rate at finite SNRs), the au-
thors considered the secure DoF performance of the channels.
The DoF metric is a form of capacity approximation. Under
the DoF metric, all the non-zero channel gains are treated
equally strong, at the regime of high signal-to-noise ratio
(SNR). However, in the communication channels the capacity
is usually affected by different channel strengths of different
links. Therefore, it motivates us to go beyond the DoF metric
and consider a better form of capacity approximation. GDoF
metric is a generalization of DoF, which is able to capture the
capacity behavior when different links have different channel
strengths and is very helpful in understanding the capacity
to within a constant gap (cf. [46]). The work in [34] studied
the secure GDoF and secure capacity of the Gaussian wiretap
channel with a helper, as well as the Gaussian multiple access
wiretap channel, where channel gain from the first transmitter
to the eavesdropper is the same as the channel gain from
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Fig. 1. Optimal secure GDoF vs. α for the symmetric Gaussian wiretap
channels with and without a helper, where α denotes the ratio between the
direct-links’ channel strength (in decibel scale) and the cross-links’ channel
strength (in decibel scale). The direct-links refers to the link from the
transmitter to its legitimate receiver, as well as the link from the helper
to the eavesdropper, while the cross-links refers to the other two links, in
this symmetric setting. The dash line with green color refers to the optimal
symmetric secure GDoF vs. α for the symmetric Gaussian interference
channel with confidential messages (cf. [37]).

the second transmitter to the eavesdropper. Note that, the
setting considered in [34] has symmetric channel gains at
the wiretapper, which is different from our setting considered
in this work. Also note that, the secure GDoF upper bound
and the lower bound provided in [34] are not matched for a
certain range of channel parameters. In this work, we seek to
characterize the optimal secure GDoF of a wiretap channel
with a helper.

Specifically, the main contribution of this work is the
optimal secure GDoF characterization of a symmetric wiretap
channel with a helper, for all the channel parameters. The
result reveals that, adding a helper can significantly increase
the secure GDoF of the wiretap channel (see Fig. 1). The
result is supported by a new converse and a new scheme. The
converse is derived for the wiretap channel with a helper under
the general channel parameters, i.e., the converse holds for the
symmetric and asymmetric channels. In the proposed scheme,1

the helper sends a cooperative jamming signal at a specific
power level and direction. In this way, it minimizes the penalty
in GDoF incurred by the secrecy constraint. In the proposed
scheme, the signal of the transmitter is a superposition of a
common signal, a middle signal, and a private signal. The
power of private signal is low enough such that this signal
arrives at the eavesdropper under the noise level. The power
of the common signal and middle signal is above the noise
level at the receivers. However, at the eavesdropper each of
the common signal and middle signal is aligned at a specific
power level and direction with the jamming signal sent from
the helper, which minimizes the penalty in GDoF incurred by
the secrecy constraint. Here the common signal and middle
signal can be considered as the upper and lower parts of the

1Although in this paper, for illustration simplicity, the achievable scheme
is mainly discussed for the symmetric settings, the key ideas could be
generalized to asymmetric channels as well.

common signal in [38], respectively. Comparing the achievable
scheme of this paper with [38], the fundamental difference is
that here we split the common signal in [38] into two parts
and apply different transmit power levels and different pulse
amplitude modulation (PAM) constellation sets to them to
achieve the optimal secure GDoF for a certain regime. The
optimal secure GDoF is described in different expressions for
different interference regimes. For each interference regime,
the power and rate levels of the signals in the proposed scheme
are set to the optimal values, so as to achieve the optimal
secure GDoF. In the secure rate analysis, the techniques of
noise removal and signal separation are used (cf. [47], [48]).
The secure GDoF result derived in this work can be extended
to understand the secure capacity to within a constant gap,
which will be investigated in the future work.

We will organize the rest of this work as follows. In
Section II we will describe the channel model. In Section III,
the main results of this work will be provided. The converse
proof will be described in Section IV. The achievability proof
will be shown in Section V and Section VI. In Section VII
we will provide the conclusion. In terms of notations, we use
H(•) and I(•) to represent the entropy and mutual information,
respectively, and use h(•) to represent differential entropy. Z
and Z+ are used to denote the sets of integers and positive
integers, respectively, while R is used to denote the set of real
numbers. (•)+ = max{0, •}. When f(s) = o(g(s)) is used, it
suggests that lims→∞ f(s)/g(s) = 0. All the logarithms are
considered with base 2.

II. SYSTEM MODEL

This work focuses on a Gaussian wiretap channel with
a helper (see Fig. 2). In this setting, transmitter 1 sends a
confidential message to receiver 1 (the legitimate receiver), in
the presence of a helper (transmitter 2) and an eavesdropper
(receiver 2). By following the common conventions in [37],
[38], [48], the channel input-output relationship of this setting
is described by

y1(t) =
√
Pα11h11x1(t) +

√
Pα12h12x2(t) + z1(t) (1a)

y2(t) =
√
Pα21h21x1(t) +

√
Pα22h22x2(t) + z2(t) (1b)

where yk(t) denotes the received signal of receiver k at time
t, xk(t) denotes the transmitted signal of transmitter k with
a normalized power constraint E|xk(t)|2 ≤ 1, and zk(t) ∼
N (0, 1) denotes the additive white Gaussian noise.

√
Pαk`hk`

represents the channel gain of the link from transmitter ` to
receiver k, for `, k = 1, 2. The nonnegative parameter αk`
captures the link strength of the channel from transmitter ` to
receiver k. hk` ∈ (1, 2] is a parameter of the channel gain. In
this setting, P ≥ 1 captures the base of signal-to-noise ratio
of all the links. Since the form of

√
Pαk`hk` can describe any

real channel gain greater than 1, the above model can describe
the general channels (focusing on the cases with channel gains
greater than 1) in terms of capacity approximation. In this
setting, all the nodes are assumed to know all the channel
parameters {αk`, hk`}k,`.2 When we consider the symmetric

2The availability of the CSI of the eavesdropper links can be justified
when the eavesdropper is a legitimate user in the network, as in the case
of interference channels with confidential messages [25], [38].
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Fig. 2. A Gaussian wiretap channel with a helper, where transmitter 1 sends a
confidential message w to receiver 1, in the presence of a helper (transmitter 2)
and an eavesdropper (receiver 2).

case, we will assume that

α12 = α21 = α, α22 = α11 = 1, α ≥ 0.

In this setting, transmitter 1 sends a message w to its
legitimate receiver over n channel uses, where w is cho-
sen uniformly from the set W ,{1, 2, 3, · · · , 2nR}. When
transmitting the confidential message from transmitter 1, a
stochastic function

f1 :W0 ×W → Rn

maps w ∈ W to the signal xn1 = f1(w0, w) ∈ Rn, where
the randomness in this mapping is represented by w0 ∈ W0.
We assume that w0 and w are independent. At the helper
(transmitter 2), another function

f2 :Wh → Rn

generates a random signal xn2 = f2(wh) ∈ Rn, where wh ∈
Wh is a random variable that is independent of w0 and w. We
assume that w0 is available at the first transmitter only, while
wh is available at the second transmitter only. We say a secure
rate R is achievable if there exists a sequence of codes with
n-length, such that the legitimate receiver can reliably decode
the message w, i.e.,

Pr[w 6= ŵ] ≤ ε (2)

for any ε > 0, and the message is secure from the eavesdrop-
per, i.e.,

I(w; yn2 ) ≤ nε. (3)

The above secrecy constraint is also known as a weak notion
of secrecy constraint. We will use C(α11, α12, α21, α22, P ) to
denote the secure capacity, which is defined as the maximal se-
cure rate that is achievable. We will use d(α11, α12, α21, α22)
to denote the secure GDoF, which is defined as

d(α11, α12, α21, α22), lim
P→∞

C(α11, α12, α21, α22, P )
1
2 logP

. (4)

GDoF is a form of the approximation of capacity. In this
setting, DoF is a particular case of GDoF by considering only
one point with α12 = α21 = α22 = α11 = 1.

III. MAIN RESULT

The main result of this paper is the characterization of the
optimal secure GDoF value for the symmetric wiretap channel
with a helper defined in Section II.

Theorem 1. Consider the symmetric Gaussian wiretap chan-
nel with a helper defined in Section II, with α12 = α21 = α
and α22 = α11 = 1. For almost all channel coefficients
{hk`} ∈ (1, 2]2×2, the optimal secure GDoF is characterized
as

d(α) =



1 for 0 ≤ α ≤ 1/2 (5a)
2− 2α for 1/2 ≤ α ≤ 3/4 (5b)
2α− 1 for 3/4 ≤ α ≤ 5/6 (5c)
3/2− α for 5/6 ≤ α ≤ 1 (5d)
α/2 for 1 ≤ α ≤ 4/3 (5e)
2− α for 4/3 ≤ α ≤ 2 (5f)
0 for 2 ≤ α . (5g)

Proof. The converse follows from Lemma 1 and Corollary 2
described in Section IV. Specifically, Lemma 1 provides some
upper bounds on the secure rate of the Gaussian wiretap
channel with a helper, under general channel parameters.
Corollary 2 is the GDoF result derived from Lemma 1, in the
setting of symmetric Gaussian wiretap channel with a helper.
The achievability based on cooperative jamming is described
in Sections V and VI.

Remark 1. In Fig. 1, for the wiretap channel without a helper
(removing transmitter 2), the secure GDoF, denoted by dno, is
given by

dno(α) = (1− α)+ ∀α ∈ [0,∞)

(see Appendix F for details). Comparing dno(α) with d(α)
in Theorem 1, one can find that adding a helper significantly
increases the secure GDoF of the wiretap channel.

Remark 2. From Fig. 1, it is not hard to verify that for
all α values, the sum secure GDoF of two-user symmetric
interference channels with confidential messages is no less
than the secure GDoF of symmetric wiretap channel with
a helper (surprisingly, for a large regime of 3

2 ≤ α < 2,
the former is the double of the latter). This indicates that in
a two-user symmetric interference channel with confidential
messages, acting one of the transmitter as a pure helper (i.e.,
not sending its own confidential message) does not improve
the sum secure GDoF.

Our achievability scheme is based on pulse amplitude
modulation, superposition coding, cooperative jamming, and
alignment techniques. Specifically, the transmitted signal of
transmitter 1 is a superposition of a common signal (denoted
by vc), a middle signal (denoted by vm), and a private
signal (denoted by vp). The power of private signal is low
enough such that this signal arrives at the eavesdropper under
the noise level. The power of the common signal is higher
than that of the middle signal, and both signals are above
the noise level at the receivers. The transmitted signal of



TABLE I
SIGNAL DESIGN FOR DIFFERENT CASES, WHERE “X” MEANS THAT THE SIGNAL WILL BE SENT AND “×” MEANS THAT THE SIGNAL WON’T BE SENT.

0 ≤ α ≤ 1
2

1
2
≤ α ≤ 3

4
3
4
≤ α ≤ 5

6
5
6
≤ α ≤ 1 1 ≤ α ≤ 4

3
4
3
≤ α ≤ 2

(vc, uc) × × X X X X

(vm, up) X X X X × ×

vp X X X X × ×

the helper (transmitter 2) is a superposition of a common
jamming signal (denoted by uc) and a private jamming signal
(denoted by up). The common signal vc is aligned with the
common jamming signal uc at the eavesdropper at a specific
power level and direction, while the middle signal vm is
aligned with the private jamming signal up at the eavesdropper,
again, at a specific power level and direction. One difference
between the common and private jamming signals is that, the
latter arrives at the legitimate receiver under the noise level.
Therefore, the signal up will not cause much interference at the
legitimate receiver, while the signal uc will create significant
interference at the legitimate receiver, which we intend to
minimize to improve the achievable secrecy rate. Different
from the common and the middle signals, the private signal
is not required to be aligned with the jamming signal at the
eavesdropper, because it arrives at the eavesdropper under the
noise level. Depending on different regimes of α, some signals
are not needed and are thus set as empty signals. Table I gives a
summary of the signal design. Note that (vc, uc) is considered
as a pair of signals, and (vm, up) is considered as another
pair of signals, due to our alignment design. With the above
signal design, our scheme achieves the optimal secure GDoF
value. More details of the achievability scheme can be found
in Sections V and VI.

Remark 3. Essentially, here the common signal vc and middle
signal vm can be regarded as the upper and lower parts of
the common signal v1,c in [38], respectively. Comparing the
achievable scheme of this paper with [38], the fundamental
difference is that here we split the common signal v1,c in [38]
into two parts, i.e., the upper part (or the common signal)
vc and the lower part (or the middle signal) vm, and apply
different transmit power levels (depending on β in Section V)
and PAM constellation sets (depending on λ in Section V)
to them to achieve the optimal secure GDoF for the regime
3
4 < α < 1. See the two columns 3

4 ≤ α ≤ 5
6 and 5

6 ≤
α ≤ 1 in Table II of Section V, where different β (i.e., βc and
βm) and λ (i.e., λc and λm) values are applied to common
and middle signals, respectively. Notably, the transmit power
level of the common signal is larger than that of the middle
signal, i.e., −βc ≥ −βm. This flexible design enables that
the helper could use a weaker private jamming signal up to
align with the middle signal at the eavesdropper and only
incur interference that is under the noise floor of the legitimate
receiver, which is the key to achieve the optimal secure GDoF.
This design is different from the achievable scheme in [38],
where sophisticated common signal splitting is not needed and
the same power and constellation set is applied to the whole

of the common signal vk,c (In each column of Table I in [38],
there is only one single value of βvk,c and λvk,c ). Also, it is
notable that in the regime of 0 ≤ α ≤ 3

4 and 1 ≤ α ≤ 2,
a smart splitting of the common signal v1,c in [38] is not
needed to achieve the optimal secure GDoF. In the columns
of 0 ≤ α ≤ 1

2 , 1
2 ≤ α ≤ 3

4 , 1 ≤ α ≤ 4
3 and 4

3 ≤ α ≤ 2
of Table II in Section V, we have either (βc = ∞, λc = 0)
or (βm =∞, λm = 0), which means that either the common
signal vc or the middle signal vm is empty.

Remark 4. In this paper, besides the achievability, we also
provide an information theoretic upper bound matching the
derived lower bound, and fully characterize the secure GDoF
for the symmetric Gaussian wiretap channel with a helper. Our
converse is based on genie-aided techniques. Specifically, we
enhance the setting by using the following two approaches:
a) adding noise with a certain power to the observation of
eavesdropper; b) adding information to the legitimate receiver.
By using these genie-aided techniques, and with careful ma-
nipulation, we are able to derive a new converse bound on
secure GDoF that are optimal in this wiretap channel with a
helper.

IV. CONVERSE

For the Gaussian wiretap channel with a helper defined in
Section II, we provide a general upper bound on the secure
rate, which is stated in the following Lemma 1.

Lemma 1. For the Gaussian wiretap channel with a helper
defined in Section II, letting φ1 ,(α12 − (α22 −α21)+)+ and
φ3 ,min{α21, α12, (α11 − φ1)+}, the secure rate is upper
bounded by

R ≤ 1

2
log
(

1 + Pα11−φ3
|h11|2

|h21|2
+ Pα12−(α22−α21)+ |h12|2

|h22|2
)

+
1

2
log
(
1 + Pφ3−φ1 |h22|2

)
+ 7.3 (6)

R ≤ 1

2

(1

2
log
(
1 +

P (α11−α21)+

|h21|2
)

+
1

2
log
(
1 +

P (α22−α12)+

|h12|2
)

+
1

2
log
(
1 + Pα11 |h11|2 + Pα12 |h12|2

)
+ log 9

)
(7)

R ≤ 1

2
log
(
1+Pα11−α21

|h11|2

|h21|2
+Pα22+α11−α21

|h11|2|h22|2

|h21|2
)
.

(8)

The proof of Lemma 1 is provided in the following sub-
sections. Our converse is based on genie-aided techniques.
Specifically, we enhance the setting by using the following
two approaches. a) Adding noise with a certain power to the



observation of eavesdropper. See (23) later on, where y2(t)
becomes ȳ2(t), which is a noisy version of y2(t). b) Adding
information to the legitimate receiver. See (21) and (28) later
on. The converse also builds on some bounds on the difference
of conditional differential entropy of an interference channel
(see Lemmas 3 and 4 later on). More details of the converse
proof are provided in the following subsections.

Based on Lemma 1, we provide the secure GDoF upper
bound in the following corollary.

Corollary 1. For the Gaussian wiretap channel with a helper
defined in Section II, the secure GDoF is upper bounded by

d(α11, α12, α21, α22)

≤min
{

max{φ1, (α11 − φ3)+}+ (φ3 − φ1)+︸ ︷︷ ︸
Bound 1

,

1

2

(
(α11 − α21)+ + (α22 − α12)+ + max{α11, α12}

)
︸ ︷︷ ︸

Bound 2

,

(α22 + α11 − α21)+︸ ︷︷ ︸
Bound 3

}
. (9)

Proof. The first bound d ≤ max{φ1, (α11 − φ3)+} + (φ3 −
φ1)+ follows from the bound in (6). The second bound follows
from the bound in (7) and the last bound follows from the
bound in (8).

The following result is a simplified version of Corollary 1
for the symmetric setting with α11 = α22 = 1, α21 = α12 =
α.

Corollary 2. For the symmetric Gaussian wiretap channel
with a helper defined in Section II, with α11 = α22 = 1, α21 =
α12 = α, the secure GDoF is upper bounded by

d(α) ≤



1 for 0 ≤ α ≤ 1/2

2− 2α for 1/2 ≤ α ≤ 3/4

2α− 1 for 3/4 ≤ α ≤ 5/6

3/2− α for 5/6 ≤ α ≤ 1

α/2 for 1 ≤ α ≤ 4/3

2− α for 4/3 ≤ α ≤ 2

0 for 2 ≤ α .

Proof. See Appendix G.

In what follows, we provide the proof of Lemma 1. At first,
for k, ` ∈ {1, 2}, k 6= ` we define that

φ1 ,(α12 − (α22 − α21)+)+ (11)

φ2 ,(α11 − φ1)+ (12)

φ3 ,min{α21, α12, φ2} (13)

skk(t),
√
P (αkk−αk`)+hkkxk(t) + z̃k(t) (14)

s`k(t),
√
Pα`kh`kxk(t) + z`(t) (15)

x̄1(t),
√
Pmin{α21,α12,α11−φ1}h21x1(t) + z̄3(t) (16)

x̄2(t),
√
Pφ3 z̃2(t) + z̄4(t) (17)

and

ȳ2(t),
√
P−(α21−φ3)y2(t) + z̄2(t)

=
√
Pφ3h21x1(t) +

√
Pα22−(α21−φ3)h22x2(t)

+
√
P−(α21−φ3)z2(t) + z̄2(t) (18)

where z̃1(t), z̃2(t), z̄2(t), z̄3(t), z̄4(t) ∼ N (0, 1) are i.i.d. noise
random variables that are independent of the other noise
random variables and transmitted signals {x1(t), x2(t)}t.
Let snkk ,{skk(t)}nt=1, sn`k ,{s`k(t)}nt=1, x̄nk ,{x̄k(t)}nt=1 and
ȳn2 ,{ȳ2(t)}nt=1.

A. Proof of bound (6)

Let us focus on the proof of bound (6). For the channel
defined in Section II, the secure rate is bounded as follows:

nR = H(w)

= I(w; yn1 ) + H(w|yn1 )

≤ I(w; yn1 ) + nε1,n (19)
≤ I(w; yn1 )− I(w; yn2 ) + nε1,n + nε (20)
≤ I(w; yn1 , s

n
22)− I(w; yn2 ) + nε1,n + nε (21)

= I(w; sn22)︸ ︷︷ ︸
=0

+I(w; yn1 |sn22)− I(w; yn2 ) + nε1,n + nε

= I(w; yn1 |sn22)− I(w; yn2 ) + nε1,n + nε (22)
≤ I(w; yn1 |sn22)− I(w; ȳn2 ) + nε1,n + nε (23)

where (19) follows from Fano’s inequality; (20) results from
secrecy constraint in (3), i.e., I(w; yn2 ) ≤ nε for an arbitrary
small ε; (21) uses the fact that adding information will not
reduce the mutual information; (22) follows from the fact that
w is independent of xn2 and sn22 (cf. (14)); (23) stems from the
fact that w → yn2 → ȳn2 forms a Markov chain, which implies
that I(w; yn2 ) ≥ I(w; ȳn2 ).

We invoke the following lemma to bound I(w; ȳn2 ) appeared
in (23).

Lemma 2. For s22(t) and ȳ2(t) defined in (14) and (18), the
following inequality holds true

I(w; ȳn2 ) ≥ I(w; ȳn2 |sn22)− n

2
log 14. (24)

Proof. The proof of this lemma is provided in Appendix A.

Then, by incorporating the result of Lemma 2 into (23), it
gives

nR− n

2
log 14− nε1,n − nε

≤I(w; yn1 |sn22)− I(w; ȳn2 |sn22)

=h(yn1 |sn22)− h(ȳn2 |sn22) + h(ȳn2 |sn22, w)− h(yn1 |sn22, w)

=h(yn1 |sn22)− h(ȳn2 |sn22) + h(ȳn2 , s
n
22|w)− h(yn1 , s

n
22|w)

(25)

where (25) uses the identities that h(ȳn2 |sn22, w) =
h(ȳn2 , s

n
22|w) − h(sn22|w) and h(yn1 |sn22, w) = h(yn1 , s

n
22|w) −

h(sn22|w). For the first two terms in (25), we have an upper
bound that is stated in the following lemma.



Lemma 3. For s22(t) and ȳ2(t) defined in (14) and (18), the
following inequality holds true

h(yn1 |sn22)− h(ȳn2 |sn22)

≤n
2

log
(

1 + Pα11−φ3 · |h11|2

|h21|2
+ Pα12−(α22−α21)+ · |h12|2

|h22|2
)

+
n

2
log 10.

Proof. The proof of this lemma is provided in Appendix B.

For the last two terms in (25), we have an upper bound that
is stated in the following lemma.

Lemma 4. For y2(t) defined in (1), and s22(t) defined in (14),
the following inequality holds true

h(ȳn2 , s
n
22|w)− h(yn1 , s

n
22|w)

≤n
2

log
(
1 + Pφ3−φ1 |h22|2

)
+
n

2
log 168. (26)

Proof. The proof of this lemma is provided in Appendix C.

Finally, by incorporating the results of Lemmas 3 and 4 into
(25), the secure rate is bounded by

R ≤1

2
log
(

1 + Pα11−φ3
|h11|2

|h21|2
+ Pα12−(α22−α21)+ |h12|2

|h22|2
)

+
1

2
log
(
1 + Pφ3−φ1 |h22|2

)
+ 7.3 + ε1,n + ε.

Letting n → ∞, ε1,n → 0, ε2,n → 0 and ε → 0, we get the
desired bound (6).

B. Proof of bound (7)

Let us now prove the bound (7). Let

x̃k(t),
√
Pmax{αkk,α`k}xk(t) + z̃k(t)

and x̃nk ,{x̃k(t)}nt=1 for k, ` ∈ {1, 2}, k 6= `, where z̃k(t) ∼
N (0, 1) is a virtual noise that is independent of the other noise
and transmitted signals. Recall that

s`k(t),
√
Pα`kh`kxk(t) + z`(t)

for k, ` ∈ {1, 2}, k 6= ` (cf. (15)) Beginning with Fano’s
inequality, the secure rate is bounded as:

nR− nε1,n
≤I(w; yn1 )

≤I(w; yn1 )− I(w; yn2 ) + nε (27)
≤I(w; yn1 , x̃

n
1 , x̃

n
2 , y

n
2 )− I(w; yn2 ) + nε (28)

=h(x̃n1 , x̃
n
2 )− h(yn2 ) + h(yn1 , y

n
2 |x̃n1 , x̃n2 )

− h(yn1 , x̃
n
1 , x̃

n
2 |yn2 , w) + nε

≤h(x̃n1 , x̃
n
2 )− h(sn21) + h(yn1 , y

n
2 |x̃n1 , x̃n2 )

− h(yn1 , x̃
n
1 , x̃

n
2 |yn2 , w) + nε (29)

where (27) results from a secrecy constraint (cf. (3)); (28)
stems from the fact that adding information does not decrease
the mutual information; (29) follows from the derivation

that h(yn2 ) ≥ h(yn2 |xn2 ) = h(sn21). Note that y2(t) =√
Pα22h22x2(t) + s21(t). On the other hand, we have

nR ≤ I(xn1 ; yn1 ) + nε1,n (30)
= h(yn1 )− h(sn12|xn1 ) + nε1,n (31)
= h(yn1 )− h(sn12) + nε1,n (32)

where (30) follows from the Markov chain of w → xn1 →
yn1 ; (31) results from the fact that y1(t) =

√
Pα11h11x1(t) +

s12(t); (32) follows from the independence between xn1 and
sn12. Finally, by combining (29) and (32), it gives

2nR− 2nε1,n − nε
≤h(x̃n1 )− h(sn21) + h(x̃n2 )− h(sn12) + h(yn1 )

+ h(yn1 , y
n
2 |x̃n1 , x̃n2 )− h(yn1 , x̃

n
1 , x̃

n
2 |yn2 , w). (33)

At this point, by following the steps from (171)-(176) in [38],
we end up with

2R+ 2ε1,n − ε

≤1

2
log
(
1 +

P (α11−α21)+

|h21|2
)

+
1

2
log
(
1 +

P (α22−α12)+

|h12|2
)

+
1

2
log
(
1 + Pα11 |h11|2 + Pα12 |h12|2

)
+ log 9.

By setting n→∞, ε1,n → 0 and ε→ 0, it gives bound (7).

C. Proof of bound (8)

Bound (8) is directly from [38, Lemma 8].

V. ACHIEVABILITY

This section focuses on the symmetric Gaussian wiretap
channel with a helper defined in Section II. Note that we
consider the symmetric channel mainly for illustration sim-
plicity. The key ideas of the achievable scheme presented in
this section could be generalized to asymmetric settings as
well. For this channel, we will provide a cooperative jamming
scheme to achieve the optimal secure GDoF expressed in
Theorem 1. The proposed scheme will use PAM modulation
and signal alignment. The details of the scheme are described
as follows.

1) Codebook: At transmitter 1, a codebook is generated as

B,
{
vn(w,w0) : w ∈ {1, 2, · · · , 2nR},

w0 ∈ {1, 2, · · · , 2nR0}
}

(34)

with vn being the codewords. All the codewords’ elements are
independent and identically generated according to a specific
distribution. R and R0 are the rates of the confidential message
w and the confusion message w0, respectively. The purpose
of using the confusion message is to guarantee the security
of the confidential message. The message will be mapped to
a codeword under the following two steps. First, given the
message w, a sub-codebook B(w) is selected, where B(w) is
defined as

B(w),
{
vn(w,w0) : w0 ∈ {1, 2, · · · , 2nR0}

}
.

Second, transmitter 1 randomly selects a codeword from the
selected sub-codebook based on a uniform distribution. Then,



Generate

vc, vm, vp
from PAM

Generate

v from (36)

Generate

Bcodebook

with v i.i.d.

Select

B(w)
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Map message with

and map channel input

with (35)

B(w)

(39)-(41)

Fig. 3. A schematic representation of the proposed scheme, focusing on transmitter 1.

the channel input is mapped from selected codeword vn such
that

x1(t) = h22v(t) (35)

for t = 1, 2, · · · , n, where v(t) denotes the tth element of vn.
2) Constellation and alignment: In the proposed scheme,

each codeword vn is generated such that each element takes
the following form

v(t) =
√
P−βc · vc(t) +

√
P−βm · vm(t) +

√
P−βp · vp(t)

(36)

which suggests that the input x1 in (35) can be described as

x1 =
√
P−βch22vc +

√
P−βmh22vm +

√
P−βph22vp (37)

without the time index for simplicity (same for the next signal
descriptions). For transmitter 2 (the helper), the transmitted
signal is a cooperative jamming signal designed as

x2 =
√
Pα−1−βch21uc +

√
Pα−1−βmh21up. (38)

For the above transmitted signals, the random variables vc, vm,
vp, uc and up are independently (cross symbols and times) and
uniformly drawn from the corresponding PAM constellation
sets

vc, uc ∈ Ω(ξ =
6γ

Q
, Q = P

λc
2 ) (39)

vm, up ∈ Ω(ξ =
2γ

Q
, Q = P

λm
2 ) (40)

vp ∈ Ω(ξ =
γ

Q
, Q = P

λp
2 ) (41)

where Ω(ξ,Q),{ξ · a : a ∈ Z ∩ [−Q,Q]} denotes the PAM
constellation set, and γ is a finite constant such that

γ ∈ (0, 1/20]. (42)

In Table II we provide the parameters {βc, βm, βp, λc, λm, λp}
under different regimes3. If the parameters are set as βp =∞
and λp = 0, we will treat vp as an empty term in the transmit-
ted signal. Similar implication is applied to {vc, uc, vm, up}
. In Fig. 3 we provide a schematic representation of the
proposed scheme, focusing on transmitter 1.

3Without loss of generality, we assume that P
λc
2 , P

λm
2 and P

λp
2 are

integers. Consider one example with λc = α − 1/2 − ε and P
λc
2 =√

Pα−1/2−ε. When
√
Pα−1/2−ε is not an integer, we can slightly modify

ε such that
√
Pα−1/2−ε is an integer, for the regime with large P .

Given our signal design, the power constraints E|x1|2 ≤ 1
and E|x2|2 ≤ 1 are satisfied. Focusing on the first transmitter,
we have

E|vc|2 =
2× ( 6γ

Q )2

2Q+ 1

Q∑
i=1

i2 =
( 6γ
Q )2 ·Q(Q+ 1)

3
≤ 72γ2

3

E|vm|2 ≤
8γ2

3

E|vp|2 ≤
2γ2

3
(43)

which suggests that

E|x1|2 ≤ 4× (
72γ2

3
+

8γ2

3
+

2γ2

3
)

=
328

3
γ2 ≤ 328

3
× 1

400
< 1. (44)

Similarly, we have E|x2|2 ≤ 1. Note that, with our parameter
design it holds true that βc ≥ α − 1 and βm ≥ 2α − 1,
which controls the average power of the transmitted signal x2

to satisfy E|x2|2 ≤ 1.
The above signal design then implies the following forms

of the received signals

y1 =
√
P 1−βch11h22vc +

√
P 1−βmh11h22vm

+
√
P 1−βph11h22vp +

√
P 2α−1−βch12h21uc

+
√
P 2α−1−βmh12h21up + z1 (45)

y2 =h21h22(
√
Pα−βc(vc + uc) +

√
Pα−βm(vm + up))

+
√
Pα−βph21h22vp + z2. (46)

As we can see, at the eavesdropper, the jamming signal uc
(resp. up) is aligned at a specific power level and direction
with the signal vc (resp. vm). In this way, it will minimize the
penalty in GDoF incurred by the secrecy constraint, which
can be seen later. Note that, with the above parameter design,
the power of signal term with vp is under the noise level at
receiver 2, while the power of signal term with up is under
the noise level at receiver 1.

3) Secure rate analysis: For ε > 0, let us define the two
rates as

R, I(v; y1)− I(v; y2)− ε (47)

R0 , I(v; y2)− ε. (48)

Note that the wiretap channel with a helper can be considered
as a specific case of the two-user interference channel with
confidential messages, by removing the message of the second
transmitter. Therefore, the result of [28, Theorem 2] reveals
that the rate R defined in (47) is achievable and the message
w is secure, i.e., I(w; yn2 ) ≤ nε. The result of [28, Theorem 2]



TABLE II
DESIGNED PARAMETERS FOR DIFFERENT CASES, FOR SOME ε > 0.

0 ≤ α ≤ 1
2

1
2
≤ α ≤ 3

4
3
4
≤ α ≤ 5

6
5
6
≤ α ≤ 1 1 ≤ α ≤ 4

3
4
3
≤ α ≤ 2

βc ∞ ∞ 0 0 α− 1 α− 1

βm 0 2α− 1 2α− 1 2α− 1 ∞ ∞

βp α α α α ∞ ∞

λc 0 0 4α− 3− ε α− 1/2− ε α/2− ε 2− α− ε

λm α− ε 1− α− ε 1− α− ε 1− α− ε 0 0

λp 1− α− ε 1− α− ε 1− α− ε 1− α− ε 0 0

requires that the random variables {v(t)}nt=1 are mutually
independent, and that v → x1 → (y1, y2) forms a Markov
chain, both of which are satisfied based on the design from
(34)-(42) in our scheme.

In the following, we will analyze the secure rate for different
cases of α. Note that, for the regimes of 0 ≤ α ≤ 3

4 , we
also provide an alternative proof based on the scheme of
treating interference as noise for the achievable secure GDoF
in Appendix H.

A. Rate analysis when 0 ≤ α ≤ 1/2

For the first case with 0 ≤ α ≤ 1/2, the parameter design
in Table II gives the following forms of the transmitted signals

x1 =h22vm +
√
P−αh22vp (49)

x2 =
√
Pα−1h21up. (50)

Then, the received signals become

y1 =
√
Ph11h22vm +

√
P 1−αh11h22vp

+
√
P 2α−1h12h21up + z1 (51)

y2 =
√
Pαh21h22(vm + up) + h21h22vp + z2. (52)

Let us now analyze the achievable secure rate expressed in
(47), i.e.,

R = I(v; y1)− I(v; y2) (53)

by setting ε→ 0. We will begin with the first term in the right-
hand side of (53). With our signal design, v is now expressed
as v = vm +

√
P−αvp. In this case, the two random variables

vm and vp can be estimated from y1, with error probability
denoted by Pr[{vm 6= v̂m} ∪ {vp 6= v̂p}]. For the first term in
the right-hand side of (53), we have the following bound

I(v; y1) ≥ I(v; v̂m, v̂p) (54)
= H(v)−H(v|v̂m, v̂p)
≥ H(v)−

(
1 + Pr[{vm 6= v̂m} ∪ {vp 6= v̂p}] ·H(v)

)
(55)

=
(
1− Pr[{vm 6= v̂m} ∪ {vp 6= v̂p}]

)
·H(v)− 1

(56)

where (54) uses the Markov property of v → y1 → {v̂m, v̂p};
and (55) follows from Fano’s inequality. The entropy H(v) in
(56) can be computed as

H(v) = H(vm) + H(vp)

= log(2 · P
α−ε
2 + 1) + log(2 · P

1−α−ε
2 + 1)

=
1− 2ε

2
logP + o(logP ) (57)

using the facts that vm ∈ Ω(ξ = 2γ · 1
Q , Q = P

α−ε
2 ) and

vp ∈ Ω(ξ = γ · 1
Q , Q = P

1−α−ε
2 ), and that {vp, vm} can be

reconstructed from v, and vice versa. For the error probability
appeared in (56), we have the following result.

Lemma 5. Consider the case with 0 ≤ α ≤ 1/2, and consider
the signal design in (37)-(42) and Table II. Then, the error
probability of the estimation of {vm, vp} from y1 is

Pr[{vm 6= v̂m} ∪ {vp 6= v̂p}]→ 0 as P →∞. (58)

Proof. The proof is described in Appendix D. In the proof,
a successive decoding method is used in the estimation of
{vm, vp} from y1.

By combining the results of (56), (57) and (58), it produces
the following bound

I(v; y1) ≥ 1− 2ε

2
logP + o(logP ). (59)

Note that the term I(v; y2) in the right-hand side of (53) can
be considered as a penalty term in the secure rate, incurred
by the secrecy constraint. We will show that, with our scheme
design using signal alignment, this penalty will be minimized
to a small value that can be ignored in terms of GDoF. It
can be seen from the received signal of the eavesdropper that,
the jamming signal is aligned at a specific power level and
direction with the signal sent from transmitter 1 (see (46)).
Let us now bound the penalty term I(v; y2) as follows:

I(v; y2)

≤I(v; y2, vm + up)

=I(v; vm + up) + I(v;h21h22vp + z2|vm + up)

=H(vm + up)−H(up) + h(h21h22vp + z2)− h(z2)

≤ log(4 · P
α−ε
2 + 1)− log(2 · P

α−ε
2 + 1)︸ ︷︷ ︸

≤1



+
1

2
log(2πe(|h21|2|h22|2 + 1︸ ︷︷ ︸

≤17

))− 1

2
log(2πe) (60)

≤ log(2
√

17) (61)

where (60) results from the identity that Gaussian input
maximizes the differential entropy and the fact that vm+up ∈
Ω(ξ = 2γ · P−α−ε2 , Q = 2P

α−ε
2 ). Note that uniform

distribution maximizes the entropy. At the final step, we
incorporate the results of (59) and (61) into (53) and then
get the following bound on the secure rate

R ≥ 1− 2ε

2
logP + o(logP ). (62)

It implies that the secure GDoF d = 1 is achievable for this
case with 0 ≤ α ≤ 1/2.

B. Rate analysis when 1/2 ≤ α ≤ 3/4

Given the parameter design in Table II, in this case the
transmitted signals are simplified as

x1 =
√
P−(2α−1)h22vm +

√
P−αh22vp (63)

x2 =
√
P−αh21up (64)

which gives the following forms of the received signals

y1 =
√
P 2−2αh11h22vm+

√
P 1−αh11h22vp+ h12h21up + z1

(65)

y2 =
√
P 1−αh21h22(vm + up) + h21h22vp + z2. (66)

In this case, we can prove that the secure rate R ≥
2−2α−2ε

2 logP + o(logP ) is achievable. The rate analysis for
this case follows from the steps in the previous case (cf. (53)-
(62)). To avoid the repetition, we will just provide the outline
of the proof for this case. In the first step, it can be proved
that

I(v; y1) ≥ 2− 2α− 2ε

2
logP + o(logP ) (67)

by following the derivations in (53)-(59). In this case v =√
P−(2α−1)vm +

√
P−αvp and H(v) = H(vm) + H(vp) =

2−2α−2ε
2 logP + o(logP ). Similarly to the conclusion in

Lemma 5 for the previous case, in this case it is also true
that the error probability of the estimation of {vm, vp} from
y1 vanishes as P →∞. A successive decoding method is also
used in this estimation. In the second step, by following the
derivations related to (60) and (61), it can be proved that

I(v; y2) ≤ o(logP ), (68)

which, together with (67), gives the lower bound on the secure
rate R ≥ 2−2α−2ε

2 logP + o(logP ). It implies that the secure
GDoF d = 2− 2α is achievable for this case.

C. Rate analysis when 3/4 ≤ α ≤ 5/6

Given the parameter design in Table II, in this case the
transmitted signals are simplified as

x1 =h22vc +
√
P−(2α−1)h22vm +

√
P−αh22vp (69)

x2 =
√
Pα−1h21uc +

√
P−αh21up. (70)

The received signals are given by

y1 =
√
Ph11h22vc +

√
P 2α−1h12h21uc +

√
P 2−2αh11h22vm

+
√
P 1−αh11h22vp + h12h21up + z1 (71)

y2 =h21h22(
√
Pα(vc + uc) +

√
P 1−α(vm + up))

+ h21h22vp + z2. (72)

The rate analysis also follows (53)-(62). In this case, we can
prove that the secure rate R ≥ 2α−1−3ε

2 logP + o(logP ) is
achievable. Again, to avoid the repetition we will just provide
the outline of the proof. In the first step, it can be proved that

I(v; y1) ≥ 2α− 1− 3ε

2
logP + o(logP ) (73)

by following the derivations in (53)-(59). Here we have v =
vc+
√
P−(2α−1)vm+

√
P−αvp and H(v) = H(vc)+H(vm)+

H(vp) = 2α−1−3ε
2 logP + o(logP ). It is true that the error

probability of the estimation of {vc, vm, vp} from y1 vanishes
as P →∞. A successive decoding method is also used in this
estimation. In the second step, by following the derivations
related to (60) and (61), we can prove that

I(v; y2) ≤ o(logP ). (74)

Therefore, the secure rate is bounded by R ≥ 2α−1−3ε
2 logP+

o(logP ), implying that the secure GDoF d = 2α − 1 is
achievable.

D. Rate analysis when 5/6 ≤ α ≤ 1

In this case, the transmitted signals take the same forms as
in (69) and (70), and the received signals are expressed as in
(71) and (72). However, in the rate analysis, the estimation
approach is different, where noise removal and signal sepa-
ration will be used. By following the previous derivations in
(54)-(56), we have the following bound

I(v; y1)

≥
(
1− Pr[{vc 6= v̂c} ∪ {vm 6= v̂m} ∪ {vp 6= v̂p}]

)
·H(v)− 1

(75)

where the entropy H(v) in (75) can be computed as

H(v) =H(vc) + H(vm) + H(vp)

=
3/2− α− 3ε

2
logP + o(logP ). (76)

The following lemma shows that the error probability Pr[{vc 6=
v̂c} ∪ {vm 6= v̂m} ∪ {vp 6= v̂p}] in (75) vanishes as P
approaches infinity.

Lemma 6. Consider the case with 5/6 ≤ α ≤ 1, and
consider the signal design in (37)-(42) and Table II. Then,
for almost all the channel realizations {hk`} ∈ (1, 2]2×2, the
error probability of the estimation of {vc, vm, vp} from y1 is

Pr[{vc 6= v̂c} ∪ {vm 6= v̂m} ∪ {vp 6= v̂p}]→ 0 as P →∞.
(77)

Proof. The proof is described in Section VI. In the proof,
noise removal and signal separation are used in the estimation
of {vc, vm, vp} from y1.



The results of (75), (76) and (77) imply that the bound

I(v; y1) ≥ 3/2− α− 3ε

2
logP + o(logP ) (78)

holds true for almost all the channel realizations {hk`} ∈
(1, 2]2×2. Next, by following the derivations related to (60)
and (61), it can be proved that

I(v; y2) ≤ o(logP ). (79)

Thus, we have R ≥ 3/2−α−3ε
2 logP + o(logP ), implying that

the secure GDoF d = 3/2−α is achievable, for almost all the
channel realizations in this case.

E. Rate analysis when 1 ≤ α ≤ 4/3

In this case, the transmitted signals are simplified as

x1 =
√
P−(α−1)h22vc (80)

x2 =h21uc (81)

and the received signals are expressed as

y1 =
√
P 2−αh11h22vc +

√
Pαh12h21uc + z1 (82)

y2 =
√
Ph21h22(vc + uc) + z2. (83)

As in the previous case, the estimation approaches of noise
removal and signal separation are also used here for the
rate analysis. In this case, the entropy H(v) is computed
as H(v) = H(vc) = α/2−ε

2 logP + o(logP ). Following the
previous derivations in (54)-(56), we have

I(v; y1) ≥
(
1− Pr[{vc 6= v̂c}]

)
·H(v)− 1

=
(
1− Pr[{vc 6= v̂c}]

)
· α/2− ε

2
logP + o(logP ).

(84)

The lemma below provides the result on the error probability
Pr[vc 6= v̂c].

Lemma 7. Consider the case with 1 ≤ α ≤ 4/3, and
consider the signal design in (37)-(42) and Table II. Then,
for almost all the channel realizations {hk`} ∈ (1, 2]2×2, the
error probability of the estimation of vc from y1 is

Pr[vc 6= v̂c]→ 0 as P →∞. (85)

Proof. The proof is described in Appendix E. In the proof,
noise removal and signal separation are used in the estimation
of vc from y1.

The results of (84) and (85) implies that the following bound

I(v; y1) ≥ α/2− ε
2

logP + o(logP ) (86)

holds true for almost all the channel realizations {hk`} ∈
(1, 2]2×2. Again, it is not hard to prove that I(v; y2) ≤
o(logP ). Together with (86), it reveals that R ≥
α/2−ε

2 logP +o(logP ), and that the secure GDoF d = α/2 is
achievable, for almost all the channel realizations in this case.

F. Rate analysis when 4/3 ≤ α ≤ 2

In this case, the transmitted signals take the same forms
as in (80) and (81), and the received signals are expressed
as in (82) and (83). Here the entropy H(v) is computed as
H(v) = H(vc) = 2−α−ε

2 logP + o(logP ). Similar to the
previous cases, we can prove that

I(v; y1) ≥
(
1− Pr[vc 6= v̂c]

)
· 2− α− ε

2
logP + o(logP )

(87)

(cf. (84)). The probability Pr[vc 6= v̂c] in (87) is the error
probability of the estimation of vc from y1. In this case, it
can be proved that uc and vc can be estimated from y1 in
a successive way and the error probability of this estimation
vanishes as P →∞. The proof of this step is similar to that of
Lemma 5, and hence it is omitted here to avoid the repetition.
Then, we have

I(v; y1) ≥ 2− α− ε
2

logP + o(logP ). (88)

As in the previous cases, it can be proved that I(v; y2) ≤
o(logP ). Finally we have a lower bound on the secure rate
R ≥ 2−α−ε

2 logP + o(logP ), which implies that the secure
GDoF d = 2− α is achievable in this case.

VI. PROOF OF LEMMA 6

Given the observation y1 in (71), and with 5/6 ≤ α ≤ 1, we
will show that vc, uc, vm and vp can be estimated with vanish-
ing error probability, for almost all the channel realizations.
Our focus is to prove that vc, uc and vm can be estimated
from y1 simultaneously with vanishing error probability, for
almost all the channel realizations. This proof is motivated by
the proof of [38, Lemma 4], in which the noise removal and
signal separation techniques will be used. Once vc, uc and vm
are estimated correctly from y1, we can remove vc, uc and vm
from y1 and then estimate vp with vanishing error probability.

Recall that vc, uc ∈ Ω(ξ = 6γ
Q , Q = P

α−1/2−ε
2 ), vm, up ∈

Ω(ξ = 2γ
Q , Q = P

1−α−ε
2 ) and vp ∈ Ω(ξ = γ

Q , Q = P
1−α−ε

2 ),
for some parameters γ ∈ (0, 1/20] and ε→ 0. Let us describe
y1 in the following form

y1 =
√
Ph11h22vc +

√
P 2α−1h12h21uc +

√
P 2−2αh11h22vm

+
√
P 1−αh11h22vp + h12h21up + z1

=
√
P 1−α+ε2γ (3

√
P 1/2g2q2 + 3

√
P 2α−3/2g1q1 + g0q0)︸ ︷︷ ︸

, s̃

+
√
P 1−α

(
h11h22vp +

√
Pα−1h12h21up

)︸ ︷︷ ︸
, ẽ

+z1

=
√
P 1−α+ε · 2γs̃+

√
P 1−αẽ+ z1 (89)

where g2 , g0 ,h11h22, g1 ,h12h21, ẽ,h11h22vp +
1√
P 1−αh12h21up, s̃, g0q0 + 3

√
P 2α−3/2g1q1 + 3

√
P 1/2g2q2

and

q2 ,
Q2

6γ
· vc, q1 ,

Q1

6γ
· uc, q0 ,

Q0

2γ
· vm,

Q2 ,Q1 ,P
α−1/2−ε

2 , Q0 ,P
1−α−ε

2 .



In this scenario, the following conditions are always satisfied:
qk ∈ Z and |qk| ≤ Qk for k = 0, 1, 2. Let

A2 , 3
√
P 1/2, A1 , 3

√
P 2α−3/2, A0 , 1.

In this scenario with 5/6 ≤ α ≤ 1, without loss of generality
we will consider the case that4 Q0, Q1, Q2, A1, A2 ∈ Z+.

For the observation y1 in (89), the goal is to estimate the
sum s̃ = g0(q0+3

√
P 1/2q2)+3

√
P 2α−3/2g1q1 by considering

the other signals as noise (noise removal). After decoding s̃
correctly, the three symbols q0, q1, q2 can be estimated, based
on the fact that {g0, g1} are rationally independent (signal
separation, cf. [47]), as well as the fact that q0 and q2 can be
reconstructed from q0+3

√
P 1/2q2. Note that the minimum dis-

tance of 3
√
P 1/2q2, i.e., minq2,q̄2∈Z∩[−Q2,Q2], q2 6=q̄2 3

√
P 1/2 ·

|q2 − q̄2|, is no less than the maximum of 2q0. To estimate
s̃ from y1, we will show that the minimum distance of s̃
is sufficiently large, in order to make the error probability
vanishing. Let us define the minimum distance of s̃ as

dmin(g0, g1, g2), min
q1,q2,q̃1,q̃2∈Z∩[−Q2,Q2]
q0,q̃0∈Z∩[−Q0,Q0]

(q0,q1,q2)6=(q̃0,q̃1,q̃2)

∣∣∣g0(q0 − q̃0)

+ 3
√
P 2α−3/2g1(q1 − q̃1) + 3

√
P 1/2g2(q2 − q̃2)

∣∣∣. (90)

The following lemma provides a result on the minimum
distance.

Lemma 8. For the case with 5/6 ≤ α ≤ 1, and for some
constants δ ∈ (0, 1] and ε > 0, the following bound on the
minimum distance dmin holds true

dmin ≥ δ (91)

for all the channel realizations {h11, h12, h22, h21} ∈
(1, 2]2×2\Hout, where Hout ⊆ (1, 2]2×2 is an outage set whose
Lebesgue measure, denoted by L(Hout), has the following
bound

L(Hout) ≤ 12096δ · P− ε2 . (92)

Proof. For β, δ ∈ (0, 1], we define an event as

B(q2, q1, q0),{(g2, g1, g0) ∈ (1, 4]3 :

|A2g2q2 +A1g1q1 + g0q0| < β}. (93)

Also define

B,
⋃

q0,q1,q2∈Z:
|qk|≤2Qk ∀k
(q0,q1,q2)6=0

B(q2, q1, q0). (94)

4The result of Lemma 6 still holds for the case when any of
{Q0, Q1, Q2, A1, A2} is not integer. The proof just needs some minor
modifications. For example, when A2 is not an integer, we can modify vc and
uc as vc = ηcv′c and uc = ηcu′c, where v′c, u

′
c ∈ Ω(ξ = 6γ

Q
, Q = P

λc
2 ),

and ηc is a selected parameter such that 0 < ηc < 1 and A2ηc is an integer.

For 5/6 ≤ α ≤ 1, by [48, Lemma 14] we have the following
bound on the Lebesgue measure of B (i.e., L(B))

L(B)

≤504β · 4
(

2 min
{Q0

A2
, Q2

}
+ Q̃2 min

{
Q1,

Q0

A1
,
A2Q̃2

A1

}
+ 2 min

{Q0

A1
, Q1

}
+ Q̃1 min

{
Q2,

Q0

A2
,
A1Q̃1

A2

})
≤504β · 4

(2Q0

A2
+ Q̃2 ·

Q0

A1
+

2Q0

A1
+ Q̃1 ·

Q0

A2

)
≤504β · 4

(
Q1 ·

9Q0

A2
+

4Q0

A1

)
≤504β · 8Q0 max

{9Q1

A2
,

4

A1

}
≤504β · 8Q0 · 3P

α−1
2

=12096δ · P− ε2 (95)

where Q̃1 = min
{
Q1, 8

max{Q0,A2Q2}
A1

}
= Q1 and Q̃2 =

min
{
Q2, 8

max{Q0,A1Q1}
A2

}
= Q1 · min

{
1, 8A1

A2

}
. In this sce-

nario, we can treat B as an outage set. When (g0, g1, g2) /∈ B,
by definition we have dmin(g0, g1, g2) ≥ δ. Recall that
g2 , g0 ,h11h22 and g1 ,h12h21. At this point, we define
a new set Hout as

Hout ,{(h11, h22, h12, h21) ∈ (1, 2]2×2 : (g2 = g0, g1, g0) ∈ B}.

We define 1Hout(h11, h22, h12, h21) = 1 if
(h11, h22, h12, h21) ∈ Hout, else 1Hout(h11, h22, h12, h21) = 0.
Similarly, we define 1B(g1, g0) = 1 if (g2 = g0, g1, g0) ∈ B,
else 1B(g1, g0) = 0. Then we can bound the Lebesgue
measure of Hout as

L(Hout)

=

∫ 2

h11=1

∫ 2

h12=1

∫ 2

h21=1

∫ 2

h22=1

1Hout(h11, h22, h12, h21)dh22

· dh21dh12dh11

=

∫ 2

h11=1

∫ 2

h12=1

∫ 2

h21=1

∫ 2

h22=1

1B(h12h21, h11h22)dh22dh21

· dh12dh11

≤
∫ 2

h11=1

∫ 2

h12=1

∫ 4

g1=1

∫ 4

g0=1

1B(g1, g0)h−1
11 h

−1
12 dg0dg1

· dh12dh11

≤
∫ 2

h11=1

∫ 2

h12=1

L(B)dh12dh11

≤12096δ · P− ε2 (96)

where the last step uses the result in (95).

In the rest of this section, we will consider the channel
realizations (h11, h22, h12, h21) ∈ (1, 2]2×2 that are not in the
outage set Hout. The result of Lemma 8 reveals that

L(Hout)→ 0, for P →∞.

When the channel realizations satisfy the condition
(h11, h22, h12, h21) /∈ Hout, we have the following property
on the minimum distance defined in (90): dmin ≥ δ for a



given constant δ ∈ (0, 1]. With this result, we can estimate
s̃ from y1 expressed in (89). For the random variable
ẽ = h11h22vp + 1√

P 1−αh12h21up appeared in (89), it is true
that

|ẽ| ≤ ẽmax , 3/5 ∀ẽ.

At this point, we have the following bound on the error
probability of the estimation of s̃ from y1

Pr[s̃ 6= ˆ̃s] ≤ Pr
[
|z1 +

√
P 1−αẽ| >

√
P 1−α+ε · 2γ · dmin

2

]
≤ 2 ·Q

(
P

1−α+ε
2 · 2γ · dmin

2
− P

1−α
2 ẽmax

)
≤ 2 ·Q

(
P

1−α
2 (γδP

ε
2 − 3/5)

)
(97)

where ˆ̃s denotes the estimate of s̃;
Q(τ), 1√

2π

∫∞
τ

exp(− z
2

2 )dz; the last step stems from
the result that dmin ≥ δ. By following the fact that
Q(τ) ≤ 1

2 exp(−τ2/2), ∀τ ≥ 0, the result in (97) implies
the following conclusion

Pr[s̃ 6= ˆ̃s]→ 0 for P →∞. (98)

After decoding s̃ = g0(q0 + 3
√
P 1/2q2) + 3

√
P 2α−3/2g1q1

correctly, the three symbols q0, q1, q2 can be recovered, as
illustrated before in this section.

Next, we remove s̃ from y1, which leads to

y1 −
√
P 1−α+ε · 2γs̃ =

√
P 1−αh11h22vp + h12h21up + z1.

(99)

Since the interference term h12h21up in (99) is under the noise
level, i.e., h12h21up ≤ 8γ ≤ 2/5, one can easily prove that
the the error probability for decoding vp from the observation
in (99) is

Pr[vp 6= v̂p]→ 0 for P →∞. (100)

Therefore, the error probability Pr[{vc 6= v̂c}∪{vm 6= v̂m}∪
{vp 6= v̂p}] vanishes as P approaches infinity, for almost all
the channel realizations (h11, h22, h12, h21) ∈ (1, 2]2×2.

VII. CONCLUSION

In this work, we characterized the optimal secure GDoF of
a symmetric Gaussian wiretap channel with a helper, under
a weak notion of secrecy constraint. The result reveals that,
adding a helper can significantly increase the secure GDoF
of the wiretap channel. A new converse and a new scheme
are provided in this work. The converse derived in this work
holds for the symmetric and asymmetric channels. In the
proposed scheme, the helper sends a cooperative jamming
signal at a specific power level and direction, which allows
to minimize the penalty in GDoF incurred by the secrecy
constraint. Notably, a smart splitting of the common signal
into a new common signal (or upper common signal) and
middle signal (or lower common signal) is one of the key
technique ingredients in the proposed scheme. In the secure
rate analysis, the techniques of noise removal and signal
separation are used. The optimal secure GDoF is described
in different expressions for different interference regimes. For
the regimes of 0 ≤ α ≤ 5/6 and 4/3 ≤ α ≤ 2, the achievable

secure GDoF result holds for all the channel realizations under
our channel model. For the regime of 5/6 < α < 4/3, the
achievable secure GDoF result holds for almost all the channel
realizations when P is large, under our channel model. In the
future work, we will generalize our secure GDoF result to
understand the constant-gap secure capacity.

APPENDIX A
PROOF OF LEMMA 2

Recall that ȳ2(t) is a nosy version of y2(t), defined in (18).
From chain rule, we have

I(w; ȳn2 ) = I(w; ȳn2 |sn22) + I(w; sn22)− I(w; sn22|ȳn2 )

= I(w; ȳn2 |sn22)− I(w; sn22|ȳn2 ) (101)

where (101) follows from the independence between w and
sn22. For the term I(w; sn22|ȳn2 ) in (101), it can be bounded by

I(w; sn22|ȳn2 )

=h(sn22|ȳn2 )− h(sn22|ȳn2 , w)

≤
n∑
t=1

h(s22(t)|ȳ2(t))− h(sn22|ȳn2 , w, xn2 ) (102)

=
n∑
t=1

h(s22(t)−
√
P−φ3 ȳ2(t)|ȳ2(t))− h(z̃n2 )︸ ︷︷ ︸

=n
2 log(2πe)

=
n∑
t=1

h
(
z̃2(t)−h21x1(t)−

√
P−α21h22z2(t)−

√
P−φ3 z̄2(t)

+ (
√
P (α22−α21)+ −

√
Pα22−α21)h22x2(t)|ȳ2(t)

)
− n

2
log(2πe) (103)

≤n
2

log
(

1 + |h21|2 + P−α21 |h22|2 + P−φ3︸ ︷︷ ︸
≤10

+ (
√
P (α22−α21)+ −

√
Pα22−α21)2︸ ︷︷ ︸

≤1

· |h22|2︸ ︷︷ ︸
≤4

)
(104)

≤n
2

log 14 (105)

where (102) follows from chain rule and the fact that condi-
tioning reduces differential entropy; (103) uses the identity that
h(z̃n2 ) = n

2 log(2πe); (104) results from the fact that Gaussian
input maximizes the differential entropy, and that conditioning
reduces differential entropy. At this point, we complete the
proof of Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

For s22(t) and ȳ2(t) defined in (14) and (18), we have

h(yn1 |sn22)− h(ȳn2 |sn22)

≤h(yn1 |sn22)− h(ȳn2 |sn22, z
n
2 ) (106)

=h(yn1 |sn22)− h({ȳ2(t)−
√
P−(α21−φ3)z2(t)}nt=1|sn22, z

n
2 )

=h(yn1 |sn22)− h
(
{
√
Pφ3h21x1(t)

+
√
Pα22−(α21−φ3)h22x2(t) + z̄2(t)}nt=1|sn22, z

n
2

)



=h(yn1 |sn22)− h
(
{
√
Pφ3h21x1(t)

+
√
Pα22−(α21−φ3)h22x2(t) + z̄2(t)}nt=1|sn22

)
(107)

=h(yn1 |{
√
P (α22−α21)+h22x2(t) + z′2(t)}nt=1)

− h
(
{
√
Pφ3h21x1(t) +

√
Pα22−(α21−φ3)h22x2(t)

+ z̄2(t)}nt=1|{
√
P (α22−α21)+h22x2(t) + z′2(t)}nt=1

)
(108)

where (106) uses the fact that conditioning reduces differential
entropy; (107) follows from the fact that zn2 is independent
of {
√
P−φ3h21x1(t) +

√
Pα22−(α21−φ3)h22x2(t) + z̄2(t)}nt=1

and sn22 = {
√
P (α22−α21)+h22x2(t) + z̃2(t)}nt=1; in (108)

we replace z̃2(t) with a new noise random variable z′2(t) ∼
N (0, 1) that is independent of the other noise random variables
and transmitted signals {x1(t), x2(t)}t; note that replacing
z̃2(t) ∼ N (0, 1) with z′2(t) ∼ N (0, 1) will not change the
differential entropies in (107), due to the fact that differential
entropy depends on distributions. To bound the right-hand side
of (108), we will use the result of [38, Lemma 9] that is
described below.

Lemma 9. [38, Lemma 9] Let y1(t) =
√
Pα11h11x1(t) +√

Pα12h12x2(t) + z1(t) and y2(t) =
√
Pα21h21x1(t) +√

Pα22h22x2(t)+z2(t), as defined in (1). Consider a random
variable (or a set of random variables), w̄1, that is indepen-
dent of {xn2 , zn1 , zn2 , z̃n1 , z̃n2 , z̄n2 , z̄n3 , z̄n4 }; and consider another
random variable (or another set of random variables), w̄2,
that is independent of {xn1 , zn1 , zn2 , z̃n1 , z̃n2 , z̄n2 , z̄n3 , z̄n4 }. Then,
we have

h(yn2 |w̄1)− h(yn1 |w̄1)

≤n
2

log
(

1 + Pα22−α12 · |h22|2

|h12|2
+ Pα21−(α11−α12)+ · |h21|2

|h11|2
)

+
n

2
log 10, (109)

h(yn1 |w̄2)− h(yn2 |w̄2)

≤n
2

log
(

1 + Pα11−α21 · |h11|2

|h21|2
+ Pα12−(α22−α21)+ · |h12|2

|h22|2
)

+
n

2
log 10. (110)

Note that the result in (110) holds true when w̄2

is set as w̄2 ,{
√
P (α22−α21)+h22x2(t) + z′2(t)}nt=1.

Let us define α′21 ,φ3, α′22 ,α22 − (α21 − φ3) and
y2(t)′,

√
Pα
′
21h21x1(t) +

√
Pα
′
22h22x2(t) + z̄2(t). Then, by

incorporating the result of (110) into (108), we have

h(yn1 |sn22)− h(ȳn2 |sn22)

≤h(yn1 |w̄2)− h(y′n2 |w̄2) (111)

≤n
2

log
(

1 + Pα11−α′21 · |h11|2

|h21|2
+ Pα12−(α′22−α

′
21)+ · |h12|2

|h22|2
)

+
n

2
log 10 (112)

=
n

2
log
(

1 + Pα11−φ3 · |h11|2

|h21|2
+ Pα12−(α22−α21)+ · |h12|2

|h22|2
)

+
n

2
log 10 (113)

where (111) is from (108); and (112) follows from (110).
Then, we complete the proof of Lemma 3.

APPENDIX C
PROOF OF LEMMA 4

In this section we provide the proof of Lemma 4. Recall
that y2(t), s22(t), x̄1(t) and x̄2(t) are defined in (1), (14),
(16), and (17), respectively. In this setting, we have

h(ȳn2 , s
n
22|w)− h(yn1 , s

n
22|w)

= h(ȳn2 , s
n
22|w)− h(yn1 , s

n
22, x̄

n
1 |w) + h(x̄n1 |w, yn1 , sn22)︸ ︷︷ ︸

, J11

= h(ȳn2 , s
n
22, s

n
12, x̄

n
2 , x̄

n
1 |w)− h(sn12, x̄

n
2 , x̄

n
1 |w, ȳn2 , sn22)︸ ︷︷ ︸

, J22

− h(yn1 , s
n
22, x̄

n
1 |w) + J11

= h(sn22, s
n
12, x̄

n
2 , x̄

n
1 |w) + h(ȳn2 |w, sn22, s

n
12, x̄

n
2 , x̄

n
1 )︸ ︷︷ ︸

, J33

− h(yn1 , s
n
22, x̄

n
1 |w) + J11 − J22

= h(x̄n1 |w) + h(sn22, s
n
12|x̄n1 , w) + h(x̄n2 |sn22, s

n
12, x̄

n
1 , w)

− h(x̄n1 |w)− h(yn1 , s
n
22|x̄n1 , w) + J11 − J22 + J33

= h(sn22, s
n
12|x̄n1 , w)︸ ︷︷ ︸

=h(yn1 ,s
n
22|x̄n1 ,w,xn1 )

−h(yn1 , s
n
22|x̄n1 , w)

+ h(x̄n2 |sn22, s
n
12, x̄

n
1 , w) + J11 − J22 + J33

= h(yn1 , s
n
22|x̄n1 , w, xn1 )− h(yn1 , s

n
22|x̄n1 , w)︸ ︷︷ ︸

=−I(xn1 ;yn1 ,s
n
22|x̄n1 ,w)≤0

+ h(x̄n2 |sn22, s
n
12, x̄

n
1 , w)︸ ︷︷ ︸

, J44

+J11 − J22 + J33 (114)

≤ J11 − J22 + J33 + J44. (115)

In the above steps, chain rules are used in the derivations. In
addition, (115) uses the fact that mutual information cannot
be negative, and (114) follows from the following derivations

h(sn22, s
n
12|x̄n1 , w)

=h(sn22, s
n
12)

=h(sn22, s
n
12|x̄n1 , w, xn1 )

=h(sn22, {s12(t) +
√
Pα11h11x1(t)}nt=1|x̄n1 , w, xn1 )

=h(sn22, y
n
1 |x̄n1 , w, xn1 ) (116)

which use the independence between {sn22, s
n
12} and

{x̄n1 , w, xn1}, as well as the identity y1(t) =
√
Pα11h11x1(t)+

s12(t). To complete this proof, we invoke the following
lemma.

Lemma 10. For J11, J22, J33, and J44 defined in this section,
we have

J11 ≤
n

2
log(42πe) (117)

J22 ≥
3n

2
log(2πe) (118)

J33 ≤
n

2
log(16πe) (119)

J44 ≤
n

2
log
(
2πe
(
1 + Pφ3−φ1 |h22|2

))
(120)



where φ3 ,min{α21, α12, (α11 − φ1)+} and φ1 ,(α12 −
(α22 − α21)+)+.

The proof of Lemma 10 is given in the following subsection.
By incorporating the results of Lemma 10 into (115), we have

h(ȳn2 , s
n
22|w)− h(yn1 , s

n
22|w)

≤J11 − J22 + J33 + J44

≤n
2

log
(
1 + Pφ3−φ1 |h22|2

)
+
n

2
log 168 (121)

which completes the proof of Lemma 4.

A. Proof of Lemma 10

Recall that s11(t) =
√
Pα11−α12h11x1(t) + z̃1(t), s22(t) =√

P (α22−α21)+h22x2(t) + z̃2(t), s12(t) =
√
Pα12h12x2(t) +

z1(t), x̄1(t),
√
Pmin{α21,α12,α11−φ1}h21x1(t) + z̄3(t),

x̄2(t),
√
Pφ3 z̃2(t)+z̄4(t), ȳ2(t),

√
P−(α21−φ3)y2(t)+z̄2(t),

φ3 ,min{α21, α12, φ2}, φ2 ,(α11 − φ1)+ and
φ1 ,(α12 − (α22 − α21)+)+.

At first we focus on the bound of J11:

J11

=h(x̄n1 |w, yn1 , sn22)

≤
n∑
t=1

h(x̄1(t)|y1(t), s22(t)) (122)

=
n∑
t=1

h
(
x̄1(t)−

√
Pmin{α21,α12,α11−φ1}−α11

h21

h11

(
y1(t)

−
√
Pα12−(α22−α21)+

h12

h22
s22(t)

)∣∣y1(t), s22(t)
)

(123)

=
n∑
t=1

h
(
z̄3(t)−

√
Pmin{α21,α12,α11−φ1}−α11

h21

h11
z1(t)

+
√
Pmin{α21,α12,α11−φ1}−α11+α12−(α22−α21)+

h21h12

h11h22
z̃2(t)∣∣∣y1(t), s22(t)

)
≤n

2
log
(

2πe
(
1 + Pmin{α21,α12,α11−φ1}−α11︸ ︷︷ ︸

≤1

· |h21|2

|h11|2︸ ︷︷ ︸
≤4

+ Pmin{α21,α12,α11−φ1}−α11+α12−(α22−α21)+︸ ︷︷ ︸
≤1

|h21|2|h12|2

|h11|2|h22|2︸ ︷︷ ︸
≤16

))
(124)

≤n
2

log(42πe) (125)

where (122) follows from chain rule and the fact that con-
ditioning reduces differential entropy; (123) uses the fact
that h(a|b) = h(a − βb|b) for a constant β and two con-
tinuous random variables a and b; (124) follows from the
fact that Gaussian input maximizes the differential entropy
and that conditioning reduces differential entropy; (125) uses
the identities min{α21, α12, α11 − φ1} − α11 ≤ 0 and
min{α21, α12, α11 − φ1} − α11 + α12 − (α22 − α21)+ ≤ 0,
where φ1 = (α12 − (α22 − α21)+)+.

For J22, it can be bounded by

J22 = h(sn12, x̄
n
2 , x̄

n
1 |w, ȳn2 , sn22)

≥ h(sn12, x̄
n
2 , x̄

n
1 |w, ȳn2 , sn22, x

n
2 , x

n
1 , z̃

n
2 ) (126)

= h(zn1 , z̄
n
4 , z̄

n
3 )

=
3n

2
log(2πe) (127)

where (126) follows from the fact that conditioning reduces
differential entropy.

For J33, we have the following bound:

J33

=h(ȳn2 |w, sn22, s
n
12, x̄

n
2 , x̄

n
1 )

≤
n∑
t=1

h(ȳ2(t)|s22(t), x̄2(t), x̄1(t)) (128)

=
n∑
t=1

h
(
ȳ2(t)−

√
P−(α22−α21)++(α22−α21)

(√
Pφ3s22(t)

− x̄2(t)
)
− x̄1(t)

∣∣∣s22(t), x̄2(t), x̄1(t)
)

=

n∑
t=1

h
((√

Pφ3 −
√
Pmin{α21,α12,α11−φ1}

)
h21x1(t) + z̄2(t)

+
√
Pφ3−α21z2(t)− z̄3(t)

+
√
P−(α22−α21)++(α22−α21)z̄4(t)

∣∣s22(t), x̄2(t), x̄1(t)
)

≤n
2

log
(

2πe
(
(
√
Pφ3 −

√
Pmin{α21,α12,α11−φ1})2︸ ︷︷ ︸

≤1

|h21|2 + 1

+ Pφ3−α21︸ ︷︷ ︸
≤1

+1 + P−(α22−α21)++(α22−α21)︸ ︷︷ ︸
≤1

))
(129)

≤n
2

log(16πe) (130)

where (128) results from chain rule and the fact that con-
ditioning reduces differential entropy; (129) follows from
the fact that Gaussian input maximizes the differential en-
tropy and that conditioning reduces differential entropy;
(130) uses the identity that (

√
Pmin{α21,α12,(α11−φ1)+} −√

Pmin{α21,α12,α11−φ1})2 ≤ 1 and the definition that
φ3 ,min{α21, α12, φ2}.

For the term J44, we have two different bounds. One bound
is given as

J44

=h(x̄n2 |sn22, s
n
12, x̄

n
1 , w)

≤
n∑
t=1

h(x̄2(t)|s22(t), s12(t)) (131)

=
n∑
t=1

h
(
x̄2(t)−

√
Pφ3

(
s22(t)

−
√
P−α12+(α22−α21)+

h22

h12
s12(t)

)∣∣s22(t), s12(t)
)

=

n∑
t=1

h
(
z̄4(t)

+
√
Pφ3−α12+(α22−α21)+

h22

h12
z1(t)

∣∣s22(t), s12(t)
)



≤n
2

log
(

2πe
(

1 + Pφ3−(α12−(α22−α21)+) · |h22|2

|h12|2
))

(132)

where (131) results from chain rule and the fact that condition-
ing reduces differential entropy; (132) follows from the fact
that Gaussian input maximizes the differential entropy and that
conditioning reduces differential entropy. The other bound is
given as

J44 ≤
n∑
t=1

h(x̄2(t)) (133)

=
n

2
log
(
2πe
(
1 + Pφ3

))
(134)

where (133) uses the fact that conditioning reduces differential
entropy. By combining the bounds in (132) and (134), we
finally have

J44

≤n
2

log
(
2πe
(
1 + min

{
Pφ3 , Pφ3−(α12−(α22−α21)+) |h22|2

|h12|2
}))

≤n
2

log
(

2πe
(

1

+ min
{
Pφ3 |h22|2, Pφ3−(α12−(α22−α21)+)|h22|2

}))
=
n

2
log
(

2πe
(

1 + Pφ3−(α12−(α22−α21)+)+ |h22|2
))

(135)

which completes the proof of Lemma 10.

APPENDIX D
PROOF OF LEMMA 5

Before showing the proof of Lemma 5, we describe the
result of [38, Lemma 1] below, which will be used later.

Lemma 11. [38, Lemma 1] Let y′ =
√
Pα1hx+

√
Pα2e+z,

with three random variables z ∼ N (0, σ2), x ∈ Ω(ξ,Q), and
e ∈ Se, for a given discrete set Se, under the condition of

|e| ≤ emax, ∀e ∈ Se.

In this model, emax, h, σ, α1 and α2 are positive constants
independent of P , with a constraint that α1 > α2. Let γ′ > 0
be a finite constant independent of P . If the parameters Q and
ξ are set as

Q =
P
α′
2 · hγ′

2emax
, ξ = γ′ · 1

Q
, for 0 < α′ < α1 − α2

then the error probability of the estimation of x from y′ is

Pr(e)→ 0 as P →∞.

Let us now prove Lemma 5. Given the observation y1

expressed in (51), we will show that vm and vp can be
estimated from y1 with vanishing error probability. In this case,
y1 can be described as

y1 =
√
Ph11h22vm +

√
P 1−αe′ + z1

where e′,h11h22vp+
√
P 3α−2h12h21up. In this scenario with

0 ≤ α ≤ 1/2, we have

|e′| ≤ 7/5

for any realizations of e′. Note that, vm, up ∈ Ω(ξ = 2γ
Q , Q =

P
α−ε
2 ) and vp ∈ Ω(ξ = γ

Q , Q = P
1−α−ε

2 ), for some
parameters γ ∈ (0, 1/20] and ε → 0. Then, by Lemma 11,
it holds true that the error probability of the estimation of vm
from y1 is

Pr[vm 6= v̂m]→ 0, as P →∞. (136)

In the next step, we remove vm from y1 and then estimate
vp from the following observation

y′1 =
√
P 1−αh11h22vp +

√
P 2α−1h12h21up + z1. (137)

For the second term in the right-hand side of (137), the
following condition is always satisfied

|h12h21up| ≤ 4× 2γ ≤ 2/5.

Therefore, by Lemma 11, it is also true that the error proba-
bility of the estimation of vp from y′1 expressed in (137) is

Pr[vp 6= v̂p|vm = v̂m]→ 0, as P →∞. (138)

At this point, by combining the results of (136) and (138),
it gives

Pr[{vm 6= v̂m} ∪ {vp 6= v̂p}]→ 0 as P →∞.

APPENDIX E
PROOF OF LEMMA 7

Given the case with 1 ≤ α ≤ 4/3, we will show that vc and
uc can be estimated from y1 with vanishing error probability,
for almost all the channel realizations. Recall that vc, uc ∈
Ω(ξ = 6γ

Q , Q = P
α/2−ε

2 ), for some parameters γ ∈ (0, 1/20]
and ε→ 0. Let us describe y1 in the following form

y1 =
√
P 2−αh11h22vc +

√
Pαh12h21uc + z1

= 6γP ε/2 (A′0g
′
0q
′
0 +A′1g

′
1q
′
1)︸ ︷︷ ︸

, s̃′

+z1

= 6γP ε/2s̃′ + z1 (139)

where g′0 ,h11h22, g′1 ,h12h21, A′0 ,
√
P 2−3α/2,

A′1 ,
√
Pα/2, s̃′,A′0g

′
0q
′
0 +A′1g

′
1q
′
1 and

q′0 ,
Q′0
6γ
· vc, q′1 ,

Q′1
6γ
· uc, Q′1 ,Q′0 ,P

α/2−ε
2 .

In this scenario, the following conditions are always satisfied:
q′0, q

′
1 ∈ Z , |q′0| ≤ Q′0 and |q′1| ≤ Q′0. Similar to the proof of

Lemma 6, without loss of generality we will consider the case
that Q′0, A

′
0, A

′
1 ∈ Z+.

For the observation y1 in (139), our focus is to estimate
the sum s̃′ = A′0g

′
0q
′
0 + A′1g

′
1q
′
1. After decoding s̃′ correctly,

q′0 and q′1 can be recovered, because {g′0, g′1} are rationally
independent. We define the minimum distance of s̃′ as

d′min(g′0, g
′
1), min

q′0,q
′
1,q̃
′
0,q̃
′
1∈Z∩[−Q′0,Q

′
0]

(q′0,q
′
1) 6=(q̃′0,q̃

′
1)

|A′0g′0(q′0 − q̃′0) +A′1g
′
1(q′1 − q̃′1)|.

(140)

The following lemma provides a result on the minimum
distance.



Lemma 12. For the case with 1 ≤ α ≤ 4/3, and for some
constants δ ∈ (0, 1] and ε > 0, the following bound on the
minimum distance d′min defined in (140) holds true

d′min ≥ δ (141)

for all the channel realizations {h11, h12, h22, h21} ∈
(1, 2]2×2\H′out, where H′out ⊆ (1, 2]2×2 is an outage set whose
Lebesgue measure, denoted by L(H′out), has the following
bound

L(H′out) ≤ 192δ · P− ε2 . (142)

Proof. For β, δ ∈ (0, 1], we define an event as

B′(q′1, q
′
0),{(g′1, g′0) ∈ (1, 4]2 : |A′1g′1q′1 +A′0g

′
0q
′
0| < β}

(143)

and define

B′,
⋃

q′0,q
′
1∈Z:

|q′k|≤2Q′0 ∀k
(q′0,q

′
1)6=0

B′(q′1, q
′
0). (144)

For this case with 1 ≤ α ≤ 4/3, by [39, Lemma 1] we have
a bound on the Lebesgue measure of B′, given as

L(B′) ≤ 24βmin
{4Q′1Q

′
0

A′1
,

4Q′0Q
′
1

A′0
,

8Q′0
A′1

,
8Q′1
A′0

}
≤ 24β · 8Q′0

A′1
= 192δ · P− ε2 . (145)

At this point, we define a new set H′out as

H′out ,{(h11, h22, h12, h21) ∈ (1, 2]2×2 : (g′1, g
′
0) ∈ B′}.

By following the steps related to (96), we have the following
bound on the Lebesgue measure of H′out

L(H′out) ≤ L(B′) ≤ 192δ · P− ε2 . (146)

Lemma 12 reveals that the Lebesgue measure of the outage
set H′out is vanishing when P is large, i.e.,

L(H′out)→ 0, for P →∞.

Let us now consider the channel condition that
(h11, h22, h12, h21) /∈ H′out, in which the minimum distance
of s̃′, defined in (90), satisfies the inequality of d′min ≥ δ
(see (141)). With this result, we can conclude that the error
probability for decoding s̃′ from y1 = 6γP ε/2s̃′ + z1 (see
(139)), denoted by Pr[s̃′ 6= ˆ̃s], is

Pr[s̃′ 6= ˆ̃s′]→ 0 for P →∞

for almost all the channel realizations in the regime of large P .
After decoding s̃′ correctly, q′0 and q′1 can be recovered, based
on the fact that {g′0, g′1} are rationally independent. Then, we
complete the proof.

APPENDIX F
SECURE GDOF OF THE GAUSSIAN WIRETAP CHANNEL

without A HELPER

This section focuses on the wiretap channel without a helper
(removing transmitter 2). For this channel, the goal is to
understand the GDoF based on the capacity result of [2], [3],
which will be used for the GDoF comparison of the wiretap
channels with and without a helper. For the wiretap channel
without a helper, the secure capacity, denoted by Cno, is given
by:

Cno = max
v→x1→y1,y2

I(v; y1)− I(v; y2) (147)

(cf. [2], [3]), where the maximum is computed over all random
variables v, x1, y1, y2 such that v → x1 → y1, y2 forms a
Markov chain, and yk =

√
Pαk1hk1x1 + zk for k = 1, 2. Let

us focus on the upper bound on the following difference:

I(v; y1)− I(v; y2)

≤I(v; y1, y2)− I(v; y2)

=h(y1|y2)− h(y1|y2, v)

≤h(y1|y2)− h(y1|y2, v, x1) (148)

=h(y1|y2)− 1

2
log(2πe) (149)

=h(y1 −
√
Pα11−α21

h11

h21
y2|y2)− 1

2
log(2πe)

=h(z1 −
√
Pα11−α21

h11

h21
z2|y2)− 1

2
log(2πe)

≤h(z1 −
√
Pα11−α21

h11

h21
z2)− 1

2
log(2πe) (150)

=
1

2
log(1 + Pα11−α21

|h11|2

|h21|2
) (151)

where (148) and (150) use the identity that conditioning
reduces differential entropy; (149) results from the fact that
h(y1|y2, v, x1) = h(z1) = 1

2 log(2πe). By combining (147)
and (151), the secure GDoF, denoted by dno, is upper bounded
by

dno ≤ (α11 − α21)+. (152)

On the other hand, since the secure capacity is optimized over
the random variables v and x1, by setting x1 = v ∼ N (0, 1)
we have the lower bound on the secure capacity:

Cno ≥I(v; y1)− I(v; y2)

=h(
√
Pα11h11x1 + z1)− h(z1)

− h(
√
Pα21h21x1 + z2) + h(z2)

=
1

2
log(1 + Pα11 |h11|2)− 1

2
log(1 + Pα21 |h21|2).

(153)

The bound in (153) reveals that the secure GDoF is lower
bounded by

dno ≥ (α11 − α21)+ (154)

which, together with (152), gives the optimal secure GDoF

dno = (α11 − α21)+. (155)



For the symmetric case of notation with α11 = 1 and α12 = α,
this secure GDoF becomes

dno = (1− α)+ ∀α ∈ [0,∞).

APPENDIX G
PROOF OF COROLLARY 2

For the symmetric setting with α11 = α22 = 1, α21 =
α12 = α, φ1 and φ3 take the following forms:

φ1 = (α− (1− α)+)+

φ3 = min{α, (1− (α− (1− α)+)+)+}.

In this symmetric case, the three bounds in Corollary 1 then
become

d ≤ max{φ1, (1− φ3)+}+ (φ3 − φ1)+ (156)

d ≤ (1− α)+ +
max{1, α}

2
(157)

d ≤ (2− α)+. (158)

When 0 ≤ α ≤ 1/2, it reveals that φ1 = 0 and φ3 = α,
and the bounds in (156)-(158) can be simplified as

d ≤ 1

d ≤ 3/2− α
d ≤ 2− α

which implies that

d ≤ min{1, 3/2− α, 2− α} = 1, ∀α ∈ [0, 1/2].

When 1/2 ≤ α ≤ 1, it suggests that φ1 = 2α − 1 and
φ3 = min{α, 2(1−α)}. Then, the bounds in (156)-(158) can
be simplified as

d ≤ max{2α− 1, 1− α}+ min{1− α, (3− 4α)+}
d ≤ 3/2− α
d ≤ 2− α.

From the above results, the GDoF d can be bounded as

d ≤ min{2− 2α, 3/2− α, 2− α} = 2− 2α, ∀α ∈
[1
2
,

3

4

]
d ≤ min{2α− 1, 3/2− α, 2− α} = 2α− 1, ∀α ∈

[3
4
,

5

6

]
d ≤ min{2α− 1, 3/2− α, 2− α} = 3/2− α, ∀α ∈

[5
6
, 1
]
.

When 1 ≤ α, then φ1 = (α − (1 − α)+)+ = α and φ3 = 0,
and the bounds in (156)-(158) can be simplified as

d ≤ α
d ≤ α/2
d ≤ (2− α)+.

The above results imply that

d ≤ min{(2− α)+, α/2} = α/2, ∀α ∈ [1, 4/3]

d ≤ min{(2− α)+, α/2} = 2− α, ∀α ∈ [4/3, 2]

d ≤ min{(2− α)+, α/2} = 0, ∀α ∈ [2,+∞].

At this point we complete the proof.

APPENDIX H
ALTERNATIVE PROOF ON THE ACHIEVABLE SECURE GDOF

IN THE REGIMES OF 0 ≤ α ≤ 3/4

In this section we provide an alternative proof on the
achievable secure GDoF in the regimes of 0 ≤ α ≤ 3/4 based
on a scheme of treating interference as noise.

In the previous work of [38], the author considered a two-
user Gaussian interference channel with confidential messages
and proposed a scheme in which, each transmitter simply
employs a Gaussian wiretap codebook (GWC) to guarantee
the secrecy, while each receiver simply treats interference as
noise (TIN) when decoding its desired message. This scheme
is called as a GWC-TIN scheme (see Section II-B in [38]).
Note that the wiretap channel with a helper can be considered
as a specific case of the two-user interference channel with
confidential messages, by setting the second transmitter’s
the message empty. Therefore, by treating the message of
the second transmitter as a random noise in the GWC-TIN
scheme, one can conclude that in the wiretap channel with
a helper the following secure rate of the message sent from
transmitter 1 to receiver 1 is achievable

R,
[
I(v1; y1)− I(v1; y2)− ε

]+
(159)

for some ε > 0, where y1 =
√
Pα11h11v1 +

√
Pα12h12v2 +z1,

y2 =
√
Pα22h22v2 +

√
Pα21h21v1 +z2, v1 ∼ N (0, P−β1) and

v2 ∼ N (0, P−β2) for some β1, β2 ≥ 0 (cf. (9)-(15) in [38]).
By setting ε → 0, the above secure rate R can be expressed
as

R =
[1

2
log
(
1 +

|h11|2Pα11−β1

1 + |h12|2Pα12−β2

)
︸ ︷︷ ︸

=I(v1;y1)

− 1

2
log(1 +

|h21|2Pα21−β1

1 + |h22|2Pα22−β2
)︸ ︷︷ ︸

=I(v1;y2)

]+
. (160)

Let us focus on the symmetric wiretap channel with a helper
considered here, with (α12 = α21 = α, α22 = α11 = 1). For
the regime of 0 ≤ α ≤ 3/4, by setting the parameters β1 and
β2 as β1 = 0 and β2 = α, the rate in (160) becomes

R

=
[1
2

log
( (1+|h12|2Pα−β2+|h11|2P 1−β1)(1+|h22|2P 1−β2)

(1+|h12|2Pα−β2)(1+|h22|2P 1−β2+|h21|2Pα−β1)

)]+
=
[1

2
log
( (1 + |h12|2 + |h11|2P )(1 + |h22|2P 1−α)

(1 + |h12|2)(1 + |h22|2P 1−α + |h21|2Pα)

)]+
(161)

which implies that the following secure GDoF is achievable

d=[2−α−max{1−α, α}]+=

{
1 for 0 ≤ α ≤ 1/2

2−2α for 1/2 ≤ α ≤ 3/4 .
This achievable secure GDoF matches the achievable secure
GDoF described in Section V for the regimes of 0 ≤ α ≤ 3/4,
which is optimal.
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