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Adding Common Randomness Can Remove the
Secrecy Penalty in GDoF

Fan Li and Jinyuan Chen

Abstract—In communication networks secrecy constraints usu-
ally incur an extra limit in capacity or generalized degrees-of-
freedom (GDoF), in the sense that a penalty in capacity or GDoF
is incurred due to the secrecy constraints. Over the past decades
a significant amount of effort has been made by the researchers
to understand the limits of secrecy constraints in communication
networks. In this work, we focus on how to remove the secrecy
penalty in communication networks, i.e., how to remove the
GDoF penalty due to secrecy constraints. We begin with three
basic settings: a two-user symmetric Gaussian interference chan-
nel with confidential messages, a symmetric Gaussian wiretap
channel with a helper, and a two-user symmetric Gaussian
multiple access wiretap channel. Interestingly, in this work we
show that adding common randomness at the transmitters can
totally remove the penalty in GDoF or GDoF region of the
three settings considered here. The results reveal that adding
common randomness at the transmitters is a powerful way to
remove the secrecy penalty in communication networks in terms
of GDoF performance. Common randomness can be generated
offline before the real-time message communication. The role
of the common randomness is to jam the information signal at
the eavesdroppers, without causing too much interference at the
legitimate receivers. To accomplish this role, a new method of
Markov chain-based interference neutralization is proposed in
the achievability schemes utilizing common randomness. From
the practical point of view, we need to minimize the amount of
common randomness used for removing the secrecy penalty in
terms of GDoF performance. With this motivation, for most of the
cases we characterize the minimal GDoF of common randomness
to remove secrecy penalty, based on our derived converses and
achievability.

Index Terms—Information-theoretic security, generalized
degrees-of-freedom (GDoF), common randomness, interference
neutralization, interference networks.

I. INTRODUCTION

For the secure communications with secrecy constraints, the
confidential messages need to be transmitted reliably to the
legitimate receiver(s), without leaking the confidential infor-
mation to the eavesdroppers (cf. [1], [2]). In communication
networks secrecy constraints usually impose an extra limit
in capacity or generalized degrees-of-freedom (GDoF), in the
sense that a penalty in capacity or GDoF is incurred due to
secrecy constraints (cf. [2]–[12]). Since Shannon’s work of
[1] in 1949, a significant amount of effort has been made by
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Fig. 1. The optimal secure sum GDoF vs. α, for two-user symmetric Gaussian
interference channels without and with common randomness (CR), where α
is a channel parameter indicating the interference-to-signal ratio.

the researchers to understand the limits of secrecy constraints
in communication networks (cf. [2]–[25] and the references
therein). In this work, we focus on how to remove the secrecy
penalty in communication networks, i.e., how to remove the
GDoF penalty due to secrecy constraints.

In this work we consider three basic settings: a two-
user symmetric Gaussian interference channel with secrecy
constraints, a symmetric Gaussian wiretap channel with a
helper, and a two-user symmetric Gaussian multiple access
wiretap channel. Interestingly, we show that adding common
randomness at the transmitters can remove the secrecy penalty
in these three settings, i.e., it can totally remove the penalty in
GDoF or GDoF region of the three settings. Let us take a two-
user symmetric Gaussian interference channel as an example.
For this interference channel without secrecy constraints, the
GDoF is a “W” curve (see Fig. 1 and [26]). If secrecy
constraints are imposed on this channel, then the secure GDoF
is significantly reduced, compared to the original “W” curve
(see Fig. 1 and [12]). It implies that a GDoF penalty is incurred
due to secrecy constraints. Interestingly we show in this work
that adding common randomness at the transmitters can totally
remove the GDoF penalty due to secrecy constraints (see
Fig. 1). The results reveal that adding common randomness
at the transmitters is a constructive way to remove the secrecy
penalty in terms of GDoF performance in communication
networks.

In our settings the common randomness is available at
the transmitters but not at the receivers. The role of the
common randomness is to jam the information signal at the
eavesdroppers, without causing too much interference at the
legitimate receivers. By jamming the information signal at
the eavesdroppers with common randomness, we seek to
remove the penalty in GDoF. However, the jamming signal
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generated from the common randomness needs to be designed
carefully so that it must not create too much interference at the
legitimate receivers. Otherwise, the interference will incur a
new penalty in GDoF. To accomplish the role of the common
randomness, a new method of Markov chain-based interfer-
ence neutralization is proposed in the achievability schemes.
The idea of the Markov chain-based interference neutralization
method is given as follows: the common randomness is used
to generate a certain number of signals with specific directions
and powers; one signal is used to jam the information signal
at an eavesdropper but it will create an interference at a
legitimate receiver; this interference will be neutralized by
another signal generated from the same common randomness;
the added signal also creates another interference but will be
neutralized by the next generated signal; this process repeats
until the residual interference is under the noise level. Since
one signal is used to neutralize the previous signal and will
be neutralized by the next signal, it forms a Markov chain for
this interference neutralization process.

In this work we mainly seek to address the two fundamental
questions given as: 1) Can we remove the secrecy penalty
in GDoF by adding common randomness at the transmitters?
2) What is the minimal amount of common randomness for
removing the secrecy penalty in GDoF? In other words, we
focus on how to optimally utilize the common randomness
that is assumed to be generated already. In one direction of
the previous works (e.g., [27]–[43]), the focus is to generate
the common randomness (the key) that needs to be shared
between the distributed nodes, without leaking information
about this common randomness to an eavesdropper. This can
be considered as a secret sharing problem, or key generation
problem, which is different from the problem studied in this
work. This work considers the problem of efficient utilization
of the common randomness that has been previously gener-
ated.

In the setting considered in this work, common randomness
is shared between the transmitters only. This is different from
the secret key agreement problem (or cryptography problem)
where the common randomness or secret key is normally
shared between the transmitter and the receiver. From the
practical point of view, sharing common randomness between
the transmitters might be more practical than sharing common
randomness between the transmitter and the receiver. For ex-
ample, in the cellular network, if the transmitters are the base
stations, the base stations can share the common randomness
with high-throughput backhaul cable, as shown in Fig. 2. In the
downlink channel, sharing common randomness between base
stations (transmitters) is more practical than sharing common
randomness between base station (transmitter) and mobile user
(receiver). Common randomness can be generated offline when
the system is not busy (e.g., during the night-time) before real-
time communication. For another example of dense networks,
such as microcell network and picocell network, in which the
coverage areas of neighboring cells could be highly overlapped
and two base stations could send two different messages to
one receiver simultaneously. In this scenario, two base stations
can share the common randomness in order to improve the
secure rates. Again, the common randomness can be generated
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Fig. 2. One example of sharing common randomness in cellular networks.

offline, i.e., when the system is not busy, and can be used later
for the real-time communication. Furthermore, in the scenario
that the message is sensitive and confidential, the transmitters
may not like to share any messages with each other due to the
lack of trust between them. In this scenario, the transmitters
could share the common randomness only in order to improve
the secure rates.

The achievability of this work is based on the pulse am-
plitude modulation (PAM), rate splitting, signal alignment,
distance-outage bounding technique, and Markov chain-based
interference neutralization. Note that PAM, rate splitting, sig-
nal alignment, and distance-outage bounding technique have
been used in the previous works (cf. [12] and [19]), while
Markov chain-based interference neutralization is the new
technique proposed in this work. While the works in [12]
and [19] showed that there is a secrecy penalty in GDoF
performance in some settings, this work showed that adding
common randomness at the transmitters can totally remove
this secrecy penalty.

In terms of the organization of this work, section II describes
the system models and section III provides the main results.
The converse is described in Section VIII. The achievability is
provided in Sections V-VI and some of the appendices, while
a scheme example is described in Section IV. The work is con-
cluded in Section IX. Regarding the notations, I(•), H(•) and
h(•) denote the mutual information, entropy, and differential
entropy, respectively. The notations of Z+, R and N denote
the sets of positive integers, real numbers, and nonnegative
integers, respectively. We define that (•)+ = max{•, 0}.
We consider all the logarithms with base 2. The notation of
f(a) = o(g(a)) implies that lima→∞ f(a)/g(a) = 0.

II. THE THREE SYSTEM MODELS

For this work we focus on three settings: a two-user in-
terference channel with secrecy constraints, a wiretap channel
with a helper, and a two-user multiple access wiretap channel
(see Fig. 3). These three settings share a common channel
input-output relationship, given as

y1(t) =
√
Pα11h11x1(t) +

√
Pα12h12x2(t) + z1(t), (1)

y2(t) =
√
Pα21h21x1(t) +

√
Pα22h22x2(t) + z2(t), (2)

for t ∈ {1, 2, · · · , n}, where x`(t) represents the transmitted
signal of transmitter ` at time t, with a normalized power
constraint E|x`(t)|2 ≤ 1; yk(t) is the signal received at
receiver k; and zk(t) ∼ N (0, 1) is the additive white Gaussian
noise, for k, ` ∈ {1, 2}. The term

√
Pαk`hk` captures the

channel gain between receiver k and transmitter `, where
hk` ∈ (1, 2] denotes the channel coefficient. The exponent αk`
represents the link strength for the channel between receiver k
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Fig. 3. Three communication settings with common randomness: IC-SC, WTH, and MAC-WT.

and transmitter `. The parameter P ≥ 1 reflects the base of
link strength of all the links. Note that

√
Pαk`hk` can represent

any real channel gain bigger or equal to 1. Thus, the above
model in (1) and (2) is able to describe the general channels,
in the sense of secure capacity approximation. The channel
parameters {hk`, αk`}k` are assumed to be available at all the
nodes. In this work we focus on the symmetric case such that

α11 = α22 = 1, α12 = α21 = α, α > 0.

The three settings considered here are different, mainly on the
number of confidential messages, the intended receivers of the
messages, and the secrecy constraints. In what follows, we will
present the details of three settings.

A. Interference channel with secrecy constraints (IC-SC)

In the setting of interference channel, transmitter ` intends to
send the confidential message w` to receiver ` using n channel
uses, where the message w` is independently and uniformly
chosen from a set W`,{1, 2, · · · , 2nR`}, for ` ∈ {1, 2}. To
transmit w`, a function

f` :W` ×Wc → Rn (3)

is used to map w` ∈ W` to the signal xn` = f`(w`, wc) ∈
Rn, where wc ∈ Wc denotes the common randomness that
is available at both transmitters but not at the receivers.
We assume that wc is uniformly and independently chosen
from a set Wc,{1, 2, · · · , 2nRc}. In our setting, w1, w2

and wc are assumed to be mutually independent. We as-
sume that the transmitters are allowed to share the com-
mon randomness only, but not the messages. The rate tuple
(R1(P, α), R2(P, α), Rc(P, α)) is said to be achievable if
there exists a sequence of n-length codes such that each
receiver can decode its desired message reliably, that is,

Pr[ŵk 6= wk] ≤ ε, ∀k ∈ {1, 2}

for any ε > 0, and the transmission of the messages is secure,
that is,

I(w1; yn2 ) ≤ nε and I(w2; yn1 ) ≤ nε

(known as weak secrecy constraints), as n goes large. The
secure capacity region C̄(P, α) represents the collection of
all the achievable rate tuples (R1(P, α), R2(P, α), Rc(P, α)).
The secure GDoF region D̄(α) is defined as

D̄(α),
{
(d1, d2, dc) :∃

(
R1(P,α), R2(P,α), Rc(P,α)

)
∈ C̄(P,α)

s.t. dc= lim
P→∞

Rc(P, α)
1
2 logP

, dk= lim
P→∞

Rk(P, α)
1
2 logP

, ∀k∈{1, 2}
}
.

The secure GDoF region D(dc, α) is defined as

D(dc, α),{(d1, d2) : ∃(d1, d2, dc) ∈ D̄(α)}

which is a function of dc and α. The secure sum GDoF is
then defined as

dsum(dc, α), max
d1,d2:(d1,d2)∈D(dc,α)

d1 + d2.

In this setting, for a given α we are interested in the maximal
(optimal) secure sum GDoF defined as

d∗sum(α), max
dc:dc≥0

dsum(dc, α).

For a given α, we are also interested in the minimal (optimal)
GDoF of the common randomness to achieve the maximal
secure sum GDoF, defined as

d∗c(α), min
dc: dsum(dc,α)=d∗sum(α)

dc.

Note that degrees-of-freedom (DoF) can be treated as a
specific case of GDoF by considering α12 = α21 = α22 =
α11 = 1.

B. The wiretap channel with a helper (WTH)
In the setting of wiretap channel with a helper, transmitter 1

wishes to send the confidential message w1 to receiver 1.
This setting is slightly different from the previous interference
channel setting, as transmitter 2 will just act as a helper
without sending any message in this setting (w2 can be set as
empty). For transmitter 1, the mapping function f1 is similar
as that in the interference channel described in Section II-A.
For transmitter 2 (helper), a function f2 : Wc → Rn
maps wc ∈ Wc to the signal xn2 = f2(wc) ∈ Rn, where
wc ∈ Wc denotes the common randomness that is available
at both transmitters but not at the receivers. As before, we
assume that wc is uniformly and independently chosen from
a set Wc = {1, 2, · · · , 2nRc} and w1 and wc are mutually
independent. We assume that the transmitters are allowed to
share the common randomness only, but not the message. A
rate pair (R1(P, α), Rc(P, α)) is said to be achievable if there
exists a sequence of n-length codes such that receiver 1 can
reliably decode its desired message w1 and the transmission
of the message is secure such that I(w1; yn2 ) ≤ nε (known as
weak secrecy constraints), for any ε > 0 as n goes large. The
secure capacity region C̄(P, α) denotes the collection of all
achievable secure rate pairs (R1(P, α), Rc(P, α)). A secure
GDoF region is defined as

D̄(α),
{

(d, dc) : ∃
(
R1(P, α), Rc(P, α)

)
∈ C̄(P, α),

s.t. dc = lim
P→∞

Rc(P, α)
1
2 logP

, d = lim
P→∞

R1(P, α)
1
2 logP

}
.
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For a given α, we are interested in the maximal (optimal)
secure GDoF defined as

d∗(α), max
d,dc:(d,dc)∈D̄(α)

d.

For a given α, we are also interested in the minimal (optimal)
GDoF of the common randomness to achieve the maximal
secure GDoF, defined as

d∗c(α), min
dc:(d∗(α),dc)∈D̄(α)

dc.

C. Multiple access wiretap channel (MAC-WT)

Let us now consider the two-user Gaussian multiple ac-
cess wiretap channel. The system model of this channel is
similar as that of the interference channel defined in Sec-
tion II-A. One difference is that both messages w1 and w2

are intended to receiver 1 in this setting. Another difference
is that receiver 2 now is the eavesdropper. Both messages
need to be secure from receiver 2 and the secrecy constraint
becomes I(w1, w2; yn2 ) ≤ nε. The definitions of the rate
tuple (R1(P, α), R2(P, α), Rc(P, α)), secure capacity region
C̄(P, α), and secure GDoF regions D̄(α) and D(dc, α) follow
from that in Section II-A. For the multiple access wiretap
channel, the secure GDoF region D(dc, α) might not be
symmetric due to the asymmetric links arriving at receiver 1.
In this setting, we will focus on the maximal (optimal) secure
GDoF region defined as

D∗(α),{(d1, d2) : ∃(d1, d2) ∈ ∪dcD(dc, α)}.

We are also interested in the minimal (optimal) GDoF of
the common randomness to achieve any given GDoF pair
(d1, d2) ∈ D∗(α), defined as

d∗c(α, d1, d2), min
dc:(d1,d2)∈D(dc,α)

dc.

As mentioned, DoF can be treated as a specific case of GDoF
by considering α = 1.

III. THE MAIN RESULTS

We will provide here the main results of the channels
defined in Section II. The detailed proofs are provided in
Sections V-VIII, as well as the appendices.

A. Removing the secrecy penalty

Theorem 1 (IC-SC). For almost all the channel coefficients
{hk`} ∈ (1, 2]2×2 of the symmetric Gaussian IC-SC channel
with common randomness (see Section II-A), the optimal
characterization of the secure sum GDoF is

d∗sum(α) =



2(1− α) for 0 ≤ α ≤ 1
2 (4a)

2α for 1
2 ≤ α ≤

2
3 (4b)

2(1− α/2) for 2
3 ≤ α ≤ 1 (4c)

α for 1 ≤ α ≤ 2 (4d)
2 for α ≥ 2. (4e)

This optimal secure sum GDoF is the same as the optimal sum
GDoF of the setting without any secrecy constraint.

Proof. See Section V for the achievability proof. The opti-
mal sum GDoF of the interference channel without common
randomness and without secrecy constraint, which is charac-
terized in [26], is serving as the upper bound of the secure sum
GDoF of this IC-SC channel with common randomness. Since
secrecy constraints will not increase the sum GDoF of a net-
work, the converse derived for the setting without secrecy con-
straints will server as a converse for the setting with secrecy
constraints. Furthermore, we show in Appendix E that adding
common randomness at the transmitters will not increase the
sum GDoF of a two-user interference channel without secrecy
constraints (see Lemma 13 in Appendix E).

Remark 1. Note that, without secrecy constraints, the optimal
sum GDoF of the interference channel is a “W” curve (see
[26] and Fig. 1). With secrecy constraints, the secure sum
GDoF of the interference channel is then reduced to a modified
“W” curve (see [12]). It implies that there is a penalty
in GDoF incurred by the secrecy constraints. Interestingly,
Theorem 1 reveals that we can remove this penalty by adding
common randomness, in terms of sum GDoF.

Remark 2. Our result reveals that in this interference channel
adding common randomness at the transmitters can remove
the GDoF penalty incurred by the secrecy constraints. How-
ever, it remains open if adding common randomness at the
transmitters can still remove the capacity penalty incurred by
the secrecy constraints. Note that the capacity is unknown in
most of the communication networks. Thus, it is challenging to
investigate if the capacity penalty can be removed by adding
common randomness. In this work, we only focus on the GDoF
performance but not the capacity.

Remark 3. In this work we just focus on the settings where
the transmitters share the common randomness only, but not
the messages. In the extreme case where the two transmitters
share all of their information including the messages, the
interference channel defined in Section II then becomes a
two-user MISO channel, in which max{1, α} secure GDoF
is achievable for each user. It reveals that, sharing messages
provides a secure GDoF gain, compared to the case where
only common randomness is shared between the transmitters.
However, sharing common randomness is usually more practi-
cal than sharing the messages. The common randomness can
be generated offline and then used for real-time communi-
cation, while the real-time messages might not be feasible
to be shared in a timely manner when the system is in the
peak time. Furthermore, in the scenario that the message is
sensitive and confidential, the transmitters may not like to
share any messages with each other due to the lack of trust
between them. In this scenario, the transmitters could share
the common randomness only in order to improve the secure
rates.

Theorem 2 (WTH). Given the symmetric Gaussian WTH
channel with common randomness (see Section II-B), the
optimal secure GDoF is expressed by

d∗(α) = 1, ∀α ∈ [0,∞),
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Fig. 4. The optimal secure GDoF vs. α for a wiretap channel with a helper,
for the cases with and without common randomness.

which is the same as the maximal GDoF of the setting without
secrecy constraint.

Proof. See Section VI for the achievability proof. Without
secrecy constraint, the WTH channel can be enhanced to a
point-to-point channel with a helper, and the maximal GDoF of
the point-to-point channel with or without a helper is 1. Note
that adding common randomness at the transmitters will not
increase the GDoF of a point-to-point channel with a helper
(see Lemma 14 in Appendix E).

Remark 4. For the symmetric Gaussian WTH channel without
common randomness, the secure GDoF is another modified
“W” curve (see [19] and Fig. 4). Without secrecy constraint,
the maximal GDoF of the setting is 1. Thus, there is a penalty
in GDoF due to secrecy constraint. Theorem 2 reveals that we
can remove this GDoF penalty by adding common randomness
(see Fig. 4).

Theorem 3 (MAC-WT). Given the symmetric Gaussian MAC-
WT channel with common randomness (see Section II-C), the
optimal secure GDoF region D∗(α) is the set of all pairs
(d1, d2) satisfying

d1 + d2 ≤ max{1, α} (5)
0 ≤ d1 ≤ 1 (6)
0 ≤ d2 ≤ α, (7)

which is the same as the optimal GDoF region of the symmet-
ric Gaussian multiple access channel without eavesdropper,
i.e., without secrecy constraint.

Proof. The achievability proof is provided in Section VII.
The optimal GDoF region of the multiple access channel
without secrecy constraint is serving as the outer bound of
the optimal secure GDoF region of the MAC-WT channel
with common randomness. The optimal GDoF region of the
symmetric Gaussian multiple access channel is characterized
as in (5)-(7), which can be easily derived from the capacity
region of the setting (cf. [44]). Note that adding common
randomness at the transmitters will not enlarge the GDoF
region of a two-user Gaussian multiple access channel (see
Lemma 15 in Appendix E).
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1 20 α3
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The minimal GDoF of CR for removing the secrecy penalty in sum GDoF

Fig. 5. The secrecy penalty in sum GDoF and the minimal GDoF of CR for
removing this penalty for IC-SC setting.

Remark 5. For the multiple access channel, there is a penalty
in GDoF region due to secrecy constraint. For example,
considering the case with α = 1, the optimal sum GDoF
of the multiple access channel without secrecy constraint is
1. With secrecy constraint, i.e., with an eavesdropper, the
optimal secure sum GDoF of multiple access wiretap channel
is reduced to 2/3 (cf. [7]). Therefore, secrecy constraint incurs
an extra limit on the GDoF region. Theorem 3 reveals that by
adding common randomness we can achieve a secure GDoF
region that is the same as the one without secrecy constraint.
In other words, with common randomness, secrecy constraint
will not incur any penalty in GDoF region of the symmetric
multiple access wiretap channel.

B. How much common randomness is required?

The results in Theorems 1-3 reveal that we can remove the
secrecy penalty, i.e., remove the penalty in GDoF, by adding
common randomness for each channel considered here. From
the practical point of view, we need to minimize the amount
of common randomness used for removing the secrecy penalty
in terms of GDoF performance. The results on this perspective
are given in the following theorems.

Theorem 4 (IC-SC). For the two-user symmetric Gaussian IC-
SC channel, the minimal GDoF of the common randomness
to achieve the maximal secure sum GDoF d∗sum(α) is

d∗c(α) = d∗sum(α)/2− (1− α)+ α ∈ [0,∞). (8)

Proof. See Section V for the achievability proof and Sec-
tion VIII-A for the converse proof.

Remark 6. For the two-user symmetric Gaussian IC-SC
channel, Fig. 5 depicts the secrecy penalty in sum GDoF
vs. α, where the secrecy penalty is defined as the difference
between the maximal sum GDoF without secrecy constraints
and the maximal secure sum GDoF with secrecy constraints
but without common randomness. Fig. 5 also depicts the
minimal GDoF of common randomness for removing the
secrecy penalty in sum GDoF, for α ∈ [0,∞), based on the
result in Theorem 4. As shown in Fig. 5, it is interesting that
at some regime, 1 GDoF of common randomness can remove
2 sum GDoF of secrecy penalty (see the regime when α ≥ 2).
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Theorem 5 (WTH). For the symmetric Gaussian WTH chan-
nel, the minimal GDoF of the common randomness to achieve
the maximal secure GDoF d∗(α) is

d∗c(α) = 1− (1− α)+ α ∈ [0,∞).

Proof. See Section VI and Section VIII-B for the achievability
and converse proofs, respectively.

For the MAC-WT channel, by focusing on the case of
α = 1, we were able to characterize the minimal DoF
of the common randomness to achieve any given DoF pair
(d1, d2) in the maximal secure DoF region D∗(1) expressed
in Theorem 3.

Theorem 6 (MAC-WT). Given the symmetric Gaussian MAC-
WT channel, and for α = 1, the minimal DoF of the common
randomness to achieve any given DoF pair (d1, d2) in the
maximal secure DoF region D∗(1) is

d∗c(1, d1, d2) = max{d1, d2} for (d1, d2) ∈ D∗(1), α = 1.

Proof. The achievability and converse proofs are provided in
Section VII and Section VIII-C, respectively.

Remark 7. When α = 1, Theorem 6 reveals that the minimal
DoF of the common randomness to achieve the secure DoF
pair (d1 = 1/2, d2 = 1/2) ∈ D∗(1) is 1/2. It implies that
1/2 DoF of common randomness achieves the maximal secure
sum DoF 1. Without common randomness, the secure sum DoF
cannot be more than 2/3 for the case with α = 1. Note that
it is challenging to characterize d∗c(α, d1, d2) for the general
case of α. For the general case, the optimal secure GDoF
region is non-symmetric in (d1, d2) as shown in Theorem 3.
For a given GDoF pair in the asymmetric secure GDoF region,
it might require several converse bounds on the minimal GDoF
of the common randomness for achieving this GDoF pair,
which will be studied in our future work.

IV. SCHEME EXAMPLE

We will here provide a scheme example, focusing on the
IC-SC channel with α = 4/3 (see Section II-A). Note that
for the case of α = 4/3, without the consideration of

secrecy constraints the sum GDoF is 4/3 (cf. [26]). With the
consideration of secrecy constraints, the secure sum GDoF is
reduced to 8/9 (cf. [12]). In this example, we will show that
by adding common randomness the secure sum GDoF can be
improved to 4/3, which matches the sum GDoF for the case
without secrecy constraints. In our scheme, Markov chain-
based interference neutralization will be used in the signal
design. In this scheme, the transmitted signals are given as
(without time index):

xk = vk,c +
4∑
`=1

δk,`
√
P−βu` · u

for k ∈ {1, 2}, where βu` = 1
3 (`−1), for ` ∈ {1, 2, 3, 4}; and

δj,` =

 − hii
hij
·
(
h11h22

h12h21

) `
2−1

` ∈ {2, 4}(
h11h22

h12h21

) `−1
2 ` ∈ {1, 3}

(9)

for i, j ∈ {1, 2}, i 6= j. u is the common randomness. v1,c and
v2,c carry the messages of transmitters 1 and 2, respectively.
The random variables v1,c, v2,c and u are independently and
uniformly drawn from a PAM set

v1,c, v2,c, u ∈ Ω(ξ =
γ

Q
, Q = P

2/3−ε
2 )

where γ ∈
(
0, 1/64

]
is a constant, Ω(ξ,Q),{ξa : a ∈

[−Q,Q] ∩ Z}, and ε > 0 is a parameter that can be made
arbitrarily small. With this signal design, vk,c carries 2/3

GDoF, i.e., H(vk,c) = 2/3−ε
2 logP+o(logP ), with k ∈ {1, 2}.

One can check that the average power constraints E|x1|2 ≤ 1
and E|x2|2 ≤ 1 are satisfied. Then, the received signals are
given as (without time index)

yk =
√
Phkkvk,c+

√
P 4/3hkjvj,c+

√
P 4/3δj,1hkju︸ ︷︷ ︸

aligned

+
3∑
`=1

(
√
P (4−̀ )/3δk,`hkk+

√
P (4−̀ )/3δj, +̀1hkj)u︸ ︷︷ ︸

interference neutralization

+ δk,4hkku+ zk

=
√
Phkkvk,c +

√
P 4/3hkj(vj,c + u)+δk,4hkku+zk

for k 6= j, k, j ∈ {1, 2}. The idea of the Markov chain-
based interference neutralization method is given as follows.
As shown in Fig. 6, the common randomness u is used to
generate a certain number of signals with specific directions
and powers, i.e., {δ1,`

√
P−βu`u}4`=1 at transmitter 1 and

{δ2,`
√
P−βu`u}4`=1 at transmitter 2; the signal δ2,1

√
P−βu1u

from transmitter 2 is used to jam the information signal v2,c at
receiver 1 but it will create an interference at receiver 2; this
interference will be neutralized by the signal δ1,2

√
P−βu2u

from transmitter 1; the added signal δ1,2
√
P−βu2u also creates

another interference at receiver 1 but will be neutralized by
the next generated signal δ2,3

√
P−βu3u; this process repeats

until the residual interference is under the noise level. Since
one signal is used to neutralize the previous signal and will
be neutralized by the next signal, it forms a Markov chain for
this interference neutralization process.
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from PAM (17)-(18)

for k = 1, 2

Generate vk,c, vk,p Generate vk

from (15)

for k = 1, 2

Generate

with vk, k = 1, 2

codebook Bk

Select

Bk(wk), k = 1, 2

sub-codebook

Map message with Bk(wk)

and map channel input

according to (16) by using

u, for k = 1, 2

Fig. 7. A schematic diagram of the proposed scheme for the interference channel.

From our signal design, it can be proved that the secure rates
Rk = I(vk,c; yk) − I(vk,c; yj |vj,c) ≥ 2/3−ε

2 logP + o(logP ),
k 6= j, k, j ∈ {1, 2}, and the secure sum GDoF dsum =
4/3, are achievable for almost all the channel coefficients
{hk`} ∈ (1, 2]2×2, by using dc = 2/3 GDoF of common
randomness. More details on the proposed scheme can be
found in Section V.

V. ACHIEVABILITY FOR INTERFERENCE CHANNEL

The scheme proposed in this section, as well as the schemes
proposed in the next sections, uses PAM modulation, rate split-
ting, signal alignment, distance-outage bounding technique,
and Markov chain-based interference neutralization. In the rate
analysis of the proposed schemes, some lemmas regarding
error probabilities are provided in this section and the next sec-
tions. For each of those lemmas, the proof is based on one of
the two methods: a) successive decoding, and b) noise removal
and signal separation. Specifically, the proof of Lemma 1 is
based on successive decoding, while the proofs of Lemmas 2, 4
and 5 are based on noise removal and signal separation. For
the method of noise removal and signal separation, we will
use the distance-outage bounding technique. In a nutshell, the
distance-outage bounding technique is a tool that can be used
to bound the minimum distance of the constellation points of a
signal by controlling the outage set of the channel coefficients
(cf. [45], [12]). Although the proposed schemes are designed
for the symmetric settings, the key ideas could be generalized
to asymmetric settings (see the discussion in Section IX-A).

In this section we will provide the achievability scheme for
the symmetric Gaussian IC-SC channel defined in Section II-A.
For the case with 0 ≤ α ≤ 1/2, there is no secrecy penalty
in sum GDoF performance (cf. [12], [26]). Thus, here we will
just focus on the case with α > 1/2. The scheme details are
given in the following subsections.

1) Codebook generation: Transmitter k, k = 1, 2, at first
generates a codebook as

Bk,
{
vnk (wk, w

′
k) :wk∈{1, 2,· · ·, 2nRk}, w′k∈{1, 2,· · ·, 2nR

′
k}
}

(10)

where vnk denotes the corresponding codewords. The elements
of the codewords are generated independently and identically
based on a particular distribution. w′k is an independent
randomness that is used to protect the confidential message,
and is uniformly distributed over {1, 2, · · · , 2nR′k}. Rk and
R′k are the rates of wk and w′k, respectively. To transmit the
confidential message wk, transmitter k randomly chooses a
codeword vnk from a sub-codebook Bk(wk) defined by

Bk(wk),
{
vnk (wk, w

′
k) :w′k∈{1, 2,· · ·, 2nR

′
k}
}
, k = 1, 2 (11)

according to a uniform distribution. Then, the selected code-
word vnk is mapped to the channel input based on the following
signal design

xk(t) = εvk(t) + ε
τ∑
`=1

δk,`
√
P−βu` · u(t) (12)

for k = 1, 2, where vk(t) denotes the tth element of vnk ;
{δj,`}j,` are parameters that will be designed specifically later
on for different cases of α, based on the Markov chain-based
interference neutralization and alignment technique. ε is a
parameter designed as

ε,

{
1 if α 6= 1
h11h22−h12h21

8 if α = 1
(13)

which is used to regularize the power of the transmitted signal.
τ is a parameter designed as

τ ,


d α

1−αe if α < 1

d α
α−1e if α > 1

1 if α = 1.

(14)

u is a random variable independently and uniformly drawn
from a PAM constellation set, which will be specified later
on. For the proposed scheme, the common randomness wc is
mapped into the random variables w′1, w

′
2 and {u(t)}t, where

w′1, w
′
2, {u(t)}t are mutually independent1. Based on our

definition, w′1, w
′
2 and {u(t)}t are available at the transmitters

but not at the receivers.
2) Signal design: For transmitter k, k = 1, 2, each element

of the codeword is designed to have the following form

vk = vk,c +
√
P−βk,pvk,p. (15)

With this, the input signal in (12) can be expressed as

xk = εvk,c+ε
√
P−βk,p ·vk,p+ε

τ∑
`=1

δk,`
√
P−βu` ·u, k = 1, 2

(16)

(without time index for simplicity), where random variables
{vk,c, vk,p, u} are independently and uniformly drawn from
the following PAM constellation sets

vk,c, u ∈ Ω(ξ =
γ

Q
, Q = P

λk,c
2 ) (17)

vk,p ∈ Ω(ξ =
γ

2Q
, Q = P

λk,p
2 ) (18)

where γ is a parameter satisfying the constraint γ ∈(
0, 1

τ ·2τ ]. In the proposed scheme, the designed parameters

1Note that w′k is not needed to be part of the common randomness,
i.e., it could be the private randomness available at transmitter k only, for
k = 1, 2. However, as it will be shown later on, the rate of w′k is relatively
small, compared to the rate of the common randomness {u(t)}t used in this
proposed scheme.
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{βk,p, βu` , λk,c, λk,p, λu}k,` are given in Table I for different
regimes2. A schematic diagram of the proposed scheme for
the interference channel is provided in Fig. 7. Based on the
signal design in (17) and (18), we have

E|vk,c|2 =
2×( γQ )2

2Q+ 1

Q∑
i=1

i2≤ 2γ2

3
, E|u|2≤ 2γ2

3
, E|vk,p|2≤

γ2

6
.

(19)

From (13), (16) and (19), we can verify that the signal xk
satisfies the power constraint, that is

E|xk|2=ε2E|vk,c|2+ε2P−βk,pE|vk,p|2+ε2
( τ∑
`=1

δk,`P
−βu`

)2E|u|2
≤2γ2ε2

3
+
γ2ε2

6
+

2γ2ε2τ24τ

3
≤1

for k = 1, 2, where γ ∈
(
0, 1

τ ·2τ
]
, ε2 ≤ 1 and δk,` is designed

specifically for different cases of α satisfying the inequality
ε2δ2

k,` ≤ 4τ , ∀k, `, which will be shown later on.
3) Secure rate analysis: We define the rates Rk and R′k as

Rk , I(vk; yk)− I(vk; y`|v`)− ε (20)

R′k , I(vk; y`|v`)− ε (21)

for some ε > 0, and `, k ∈ {1, 2}, ` 6= k. With our
codebook and signal design, the result of [8, Theorem 2] (or
[3, Theorem 2]) suggests that the rate pair (R1, R2) defined
above is achievable and the transmission of the messages is
secure, i.e., I(w1; yn2 ) ≤ nε and I(w2; yn1 ) ≤ nε. Remind that,
based on our codebook design, v1 and v2 are independent,
since w1, w2, w

′
1, w

′
2 are mutually independent (cf. (10)).

In what follows we will show how to remove the secrecy
penalty in terms of GDoF performance by adding common
randomness, focusing on the regime of α > 1/2. Specifically,
we will consider the following five cases: 1

2 < α ≤ 2
3 ,

2
3 ≤ α < 1, α = 1, 1 < α ≤ 2, and 2 ≤ α. In
the achievability scheme, a Markov chain-based interference
neutralization method is proposed to accomplish the role of
common randomness.

A. 1/2 < α ≤ 2/3

In this case with 1/2 < α ≤ 2/3, based on the parameters
designed in Table I, by setting

δ1,1 =
h12

h11
, δ2,1 =

h21

h22
, δ1,2 = δ2,2 = −h12h21

h11h22
, (22)

2Without loss of generality we will take the assumption that P
λk,c

2 and

P
λk,p

2 are integers, for k = 1, 2. For example, when P
λ2,c

2 isn’t an integer,

the parameter ε in Table I can be slightly modified such that P
λ2,c

2 is an
integer, for the regime with large P . Similar assumption will also be used in
the next channel models later.

TABLE I
PARAMETER DESIGN FOR THE IC-SC CHANNEL.

1
2
<α≤ 2

3
2
3
≤α<1 α=1 1<α≤2 2≤α

βu` ,`∈{1,2,· · ·,τ} (1−α)` (1−α)` 0 (α−1)(`−1) (α−1)(`−1)

β1,p, β2,p α α ∞ ∞ ∞

λ1,c, λ2,c 2α−1−ε α/2−ε 1/2−ε α/2−ε 1−ε

λu 2α−1−ε α/2−ε 1/2−ε α/2−ε 1−ε

λ1,p, λ2,p 1−α−ε 1−α−ε 0 0 0

the transmitted signals take the following forms

x1 =v1,c+
√
P−α ·v1,p+

(√
Pα−1 · h12

h11
−
√
P 2α−2 · h12h21

h11h22

)
u

(23)

x2 =v2,c+
√
P−α ·v2,p+

(√
Pα−1 · h21

h22
−
√
P 2α−2 · h21h12

h22h11

)
u.

(24)

Note that in this case, τ = 2 and ε = 1. The received signals
then take the following forms

y1 =
√
Ph11v1,c +

√
P 1−αh11v1,p +

√
Pαh12 (v2,c + u)︸ ︷︷ ︸

aligned

+ h12v2,p −
√
P 3α−2 · h

2
12h21

h11h22
u︸ ︷︷ ︸

treated as noise

+z1 (25)

y2 =
√
Ph22v2,c +

√
P 1−αh22v2,p +

√
Pαh21 (v1,c + u)︸ ︷︷ ︸

aligned

+ h21v1,p −
√
P 3α−2 · h

2
21h12

h22h11
u︸ ︷︷ ︸

treated as noise

+z2. (26)

In the above expressions of y1 and y2, the interference is
removed by using the Markov chain-based interference neu-
tralization method.

Based on our signal design, we will prove that the secure
rates satisfy Rk = I(vk; yk) − I(vk; y`|v`) ≥ α−2ε

2 logP +
o(logP ), for k, ` ∈ {1, 2}, k 6= `, and the secure sum GDoF
dsum = 2α is achievable. For the secure rates described in
(20), letting ε→ 0 gives

R1 = I(v1; y1)− I(v1; y2|v2) (27)
R2 = I(v2; y2)− I(v2; y1|v1). (28)

Due to the symmetry we will focus on bounding the secure rate
R1 (see (27)). We will use v̂1,c and v̂1,p to denote the estimates
for v1,c and v1,p respectively from y1, and use Pr[{v1,c 6=
v̂1,c}∪{v1,p 6= v̂1,p}] to represent the error probability of this
estimation. Then the term I(v1; y1) can be lower bounded by

I(v1; y1) ≥I(v1; v̂1,c, v̂1,p) (29)
=H(v1)−H(v1|v̂1,c, v̂1,p)

≥H(v1)−
(
1+Pr[{v1,c6= v̂1,c}∪{v1,p6= v̂1,p}]·H(v1)

)
(30)

=
(
1−Pr[{v1,c 6= v̂1,c} ∪ {v1,p 6= v̂1,p}]

)
·H(v1)−1

(31)
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where (29) results from the Markov chain v1 → y1 →
{v̂1,c, v̂1,p}; (30) uses Fano’s inequality. The rates of v1,c, v1,p

and v1 = v1,c +
√
P−α · v1,p are computed as

H(v1,c) = log(2 · P
2α−1−ε

2 + 1) (32)

H(v1,p) = log(2 · P
1−α−ε

2 + 1) (33)

H(v1) =
α− 2ε

2
logP + o(logP ) (34)

where v1,p ∈ Ω(ξ = γ
2Q , Q = P

1−α−ε
2 ) and v1,c ∈ Ω(ξ =

γ
Q , Q = P

2α−1−ε
2 ). Based on our signal design, with vk we

can reconstruct {vk,c, vk,p}, and vice versa, for k = 1, 2. To
derive the lower bound of I(v1; y1), we provide a result below.

Lemma 1. With (16)-(18) and (23)-(24) and for 1/2 < α ≤
2/3, the error probability of decoding {vk,c, vk,p} from yk is
vanishing when P goes large, that is,

Pr[{vk,c 6= v̂k,c} ∪ {vk,p 6= v̂k,p}]→0 as P→∞, k = 1, 2.
(35)

Proof. See Appendix A. The proof is based on successive
decoding method.

By incorporating the results of (34) and Lemma 1 into (31),
the term I(v1; y1) in (27) can be lower bounded by

I(v1; y1) ≥ α− 2ε

2
logP + o(logP ). (36)

For the term I(v1; y2|v2) in (27), we can treat it as a rate
penalty. This penalty can be bounded by

I(v1; y2|v2)

≤I(v1; y2, v1,c + u|v2) (37)

=I(v1;v1,c+u)+I(v1;h21v1,p−
√
P 3α−2 · h

2
21h12

h22h11
u+z2|v2,v1,c+u)

(38)

≤H(v1,c+u)−H(u)+h(h21v1,p−
√
P 3α−2 · h

2
21h12

h22h11
u+z2)−h(z2)

(39)

≤log(4P
2α−1−ε

2 +1)−log(2P
2α−1−ε

2 +1)︸ ︷︷ ︸
≤1

+
1

2
log(2πe·69)− 1

2
log(2πe)

(40)

≤ log(2
√

69) (41)

where (38) follows from the fact that v1, v2, u are mutually in-
dependent; (39) stems from the fact that {vk,p, vk,c} can be re-
constructed from vk for k = 1, 2, and the identity that adding a
condition will not increase the differential entropy; (40) results
from the derivations that H(v1,c+u) ≤ log(4P

2α−1−ε
2 +1), and

that h(h21v1,p−
√
P 3α−2 · h

2
21h12

h22h11
u+ z2) ≤ 1

2 log(2πe(|h21|2 ·
E|v1,p|2 +P 3α−2 · |h21|4|h12|2 ·E|u|2 +1)) ≤ 1

2 log(2πe ·69).
With (36) and (41), we have

R1 = I(v1; y1)− I(v1; y2|v2) ≥ α− 2ε

2
logP + o(logP )

and also R2 ≥ α−2ε
2 logP+o(logP ) resulting from symmetry.

It suggests that the proposed scheme achieves dsum = 2α by
using dc = 2α − 1 GDoF of common randomness. Note that

in our scheme the common randomness is mapped into some
random variables, i.e., w′1, w′2 and {u(t)}t. In this case, the
rate of w′1 is R′1 = I(v1; y2|v2)−ε ≤ o(logP )−ε (see (21) and
(41)); the rate of w′2 is R′2 = I(v2; y1|v1)− ε ≤ o(logP )− ε;
and the rate of u is H(u) = log(2 · P

λu
2 + 1) = λu

2 logP +
o(logP ), which gives dc = λu = 2α− 1 when ε→ 0. In this
case, the GDoF of w′1 and w′2 are both 0, while the GDoF
of u is dc = 2α − 1. Therefore, the effects of w′1 and w′2 in
terms of GDoF counted for the common randomness can be
ignored.

B. 2/3 ≤ α < 1

In this case with 2/3 ≤ α < 1, based on the parameters
designed in Table I, the transmitted signals take the following
forms

x1 =v1,c +
√
P−α · v1,p +

τ∑
`=1

δ1,`
√
P−βu` · u (42)

x2 =v2,c +
√
P−α · v2,p +

τ∑
`=1

δ2,`
√
P−βu` · u (43)

where the parameters {δj,`}j,` are designed by

δj,` =


−
(
h12h21

h11h22

) `
2 ` ∈ {2k : 2k ≤ τ, k ∈ Z+}

hji
hjj
·
(
h12h21

h11h22

) `−1
2 ` ∈ {2k−1:2k−1≤τ, k∈Z+}

(44)

for i, j ∈ {1, 2}, i 6= j. Note that the common randomness u
is used to generate a certain number of signals with specific
directions and powers, i.e., {δ1,`

√
P−βu`u}τ`=1 at transmitter 1

and {δ2,`
√
P−βu`u}τ`=1 at transmitter 2. Then, the received

signals are expressed as

y1 =
√
Ph11v1,c +

√
P 1−αh11v1,p +

√
Pαh12(v2,c + u)

+
√
P (τ+1)α−τδ2,τh12u+ h12v2,p + z1 (45)

y2 =
√
Ph22v2,c +

√
P 1−αh22v2,p +

√
Pαh21(v1,c + u)

+
√
P (τ+1)α−τδ1,τh21u+ h21v1,p + z2. (46)

As can be seen from (45) and (46), the interference is removed
by using the Markov chain-based interference neutralization
method. We will focus on bounding the secure rate R1. By
following the derivations in (29)-(31), the term I(v1; y1) can
be lower bounded by

I(v1; y1)≥
(
1−Pr[{v1,c 6= v̂1,c} ∪ {v1,p 6= v̂1,p}]

)
·H(v1)−1

(47)

where the rate of v1 in (47) is

H(v1) = H(v1,c)+H(v1,p) =
1−α/2−2ε

2
logP+o(logP )

(48)

and the error probability in (47) is vanishing (see the following
lemma).

Lemma 2. Consider the signal design in (16)-(18) and (42)-
(44) for the case with 2/3 ≤ α < 1. For almost all the channel
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realizations, the error probability of decoding {vk,c, vk,p} from
yk is vanishing when P goes large, that is

Pr[{vk,c 6= v̂k,c} ∪ {vk,p 6= v̂k,p}]→ 0 as P→∞, k = 1, 2.
(49)

Proof. See Appendix B. The proof is based on noise removal
and signal separation. The distance-outage bounding technique
is also used in the proof.

From (47), (48) and Lemma 2, the term I(v1; y1) can be
lower bounded by

I(v1; y1) ≥ 1− α/2− 2ε

2
logP + o(logP ) (50)

for almost all the channel coefficients {hk`} ∈ (1, 2]2×2. From
the derivations in (37)-(41), the term I(v1; y2|v2) in (27) is
bounded by

I(v1; y2|v2) ≤ o(logP ). (51)

With (50) and (51), we conclude that

R1 = I(v1; y1)−I(v1; y2|v2)≥ 1−α/2−2ε

2
logP+o(logP )

(52)

and also R2 ≥ 1−α/2−2ε
2 logP + o(logP ), for almost all

the channel realizations. It imply that the proposed scheme
achieves dsum = 2(1 − α/2) for almost all the channel real-
izations, by using dc = α/2 GDoF of common randomness.

C. α = 1

In this case with α = 1, based on the parameters designed
in Table I, and by setting

δ1,1 =
h22h12 − h12h21

h11h22 − h12h21
, δ2,1 =

h11h21 − h21h12

h22h11 − h21h12
, (53)

the transmitted signals take the following forms

x1 =εv1,c + ε
h22h12 − h12h21

h11h22 − h12h21
· u (54)

x2 =εv2,c + ε
h11h21 − h21h12

h22h11 − h21h12
· u. (55)

Note that in this case, τ = 1 and ε = h11h22−h12h21

8 . Then,
the received signals are simplified as

y1 = ε
√
Ph11v1,c + ε

√
Ph12(v2,c + u) + z1 (56)

y2 = ε
√
Ph22v2,c + ε

√
Ph21(v1,c + u) + z2. (57)

From the previous steps in (29)-(34) and Lemma 2, one can
prove that I(v1; y1) ≥ 1/2−ε

2 logP +o(logP ) which holds for
almost all realizations of the channel coefficients. From (37)-
(41), one can also prove that I(v1; y2|v2) ≤ o(logP ). As a
result, the secure rates can be bounded as

R1 = I(v1; y1)− I(v1; y2|v2) ≥ 1/2− ε
2

logP + o(logP )

(58)

and R2 ≥ 1/2−ε
2 logP + o(logP ) due to the symmetry, for

almost all channel realizations. The proposed scheme then
achieves dsum = 1 for almost all channel realizations by using
dc = 1/2 GDoF of common randomness.

D. 1 < α ≤ 2

In this case with 1 < α ≤ 2, the transmitted signals take
the following forms

xj =vj,c +
τ∑
`=1

δj,`
√
P−βu` · u

for j = 1, 2, where in this case the parameters {δj,`}j,` are
designed by

δj,` =


− hii
hij
·
(
h11h22

h12h21

) `
2−1

`∈{2k : 2k ≤ τ, k ∈ Z+}

(
h11h22

h12h21

) `−1
2 `∈{2k−1:2k−1≤τ, k∈Z+}

(59)

for i, j ∈ {1, 2}, i 6= j. Then, the received signals become

y1=
√
Ph11v1,c+

√
Pαh12(v2,c+u)+

√
P τ−(τ−1)αδ1,τh11u+z1

(60)

y2=
√
Ph22v2,c+

√
Pαh21(v1,c+u)+

√
P τ−(τ−1)αδ2,τh22u+z2.

(61)

By following the proof steps in (29)-(34) and Lemma 2, in this
case one can prove that I(v1; y1) ≥ α/2−ε

2 logP + o(logP )
for almost all the realizations of the channel coefficients. Also,
it is easy to prove that I(v1; y2|v2) ≤ o(logP ). Therefore, the
proposed scheme achieves dsum = α for almost all channel
realizations by using dc = α/2 GDoF of common randomness.

E. α ≥ 2

When α ≥ 2, the transmitted signals take the following
forms

x1=v1,c+
(
1−
√
P 1−α · h22

h21

)
u, x2=v2,c+

(
1−
√
P 1−α · h11

h12

)
u

(62)

and the received signals can be simplified as

y1 =
√
Ph11v1,c+

√
Pαh12(v2,c+u)−

√
P 2−α · h22h11

h21
u+z1

(63)

y2 =
√
Ph22v2,c+

√
Pαh21(v1,c+u)−

√
P 2−α · h11h22

h12
u+z2.

(64)

For this case, by following the proof steps in (29)-(34) and
Lemma 1, we have I(v1; y1) ≥ 1−ε

2 logP +o(logP ). One can
also prove that I(v1; y2|v2) ≤ o(logP ) for this case. It implies
that the proposed scheme achieves dsum = 2 by using dc = 1
GDoF of common randomness.

VI. ACHIEVABILITY FOR WIRETAP CHANNEL WITH A
HELPER

In this section, we will provide the achievability scheme
for the WTH setting defined in Section II-B. Similarly to the
scheme for the previous IC-SC setting, the proposed scheme
for this WTH setting also uses PAM modulation, rate splitting,
signal alignment, distance-outage bounding technique, and
Markov chain-based interference neutralization. For the case
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with 0 ≤ α ≤ 1/2, there is no secrecy penalty in GDoF
performance (cf. [19]). Therefore, here we will just focus on
the case with α > 1/2 and prove that d(α) = 1 is achievable.
The scheme details are given as follows.

1) Codebook generation: The codebook generation is sim-
ilar to the previous case for the interference channel with
confidential messages, with one difference being that only
transmitter 1 is required to generate the codebook in this
channel. Note that in this channel transmitter 2 will act as a
helper without sending message. For transmitter 1, it generates
a codebook as in (10). To transmit the confidential message
w1, transmitter 1 chooses a codeword vn randomly from a sub-
codebook as in (11). Then the selected codeword is mapped
to the channel input under the following signal design

x1(t) = εv(t) + ε
τ∑
`=0

δ1,`
√
P−βu` · u(t) (65)

where {δk,`}k,` are the parameters, which will be specified
later by using the Markov chain-based interference neutraliza-
tion and alignment technique. ε is a parameter designed as

ε,

{
1 if α 6= 1
h11h22−h12h21

8 if α = 1.
(66)

τ is another parameter designed as

τ ,


1 if α = 1⌈

1
2(1−α)

⌉
if α < 1⌈

1
2(α−1)

⌉
if α > 1.

(67)

u is a random variable independently and uniformly drawn
from a PAM constellation set which will be specified later
on. In this channel, the common randomness wc is mapped
into two random variables, i.e., w′1 and u, and w′1 and u are
mutually independent. Based on our definition, w′1 and u are
available at the transmitters but not at the receivers.

2) Signal design: In the scheme, each element of the
codeword vn is designed as

v(t) = vc(t) +
√
P−βp · vp(t). (68)

With this, the channel input in (65) is expressed as

x1 = εvc + ε
√
P−βp · vp + ε

τ∑
`=0

δ1,`
√
P−βu` · u (69)

(removing the time index). In this setting, the helper (trans-
mitter 2) sends a jamming signal designed as

x2 = ε
τ∑
`=1

δ2,`

√
P−β

′
u` · u (70)

where the random variables u, vc and vp are independently and
uniformly drawn from the corresponding PAM constellation
sets

vc, u ∈ Ω(ξ =
γ

Q
, Q = P

λc
2 ) (71)

vp ∈ Ω(ξ =
γ

2Q
, Q = P

λp
2 ) (72)

and γ is a parameter satisfying the constraint γ ∈(
0, 1

(τ+2)·4τ
]
. Table II provides the designed parameters

TABLE II
PARAMETER DESIGN FOR THE WTH CHANNEL.

1/2 < α < 1 α = 1 α > 1

βu0 ∞ ∞ 0

βu` , ` ∈ {1, 2, · · · , τ − 1} 2`(1− α) 0 2`(α− 1)

βuτ ∞ 0 2τ(α− 1)

β′u` , ` ∈ {1, 2, · · · , τ} (2`− 1)(1− α) 0 (2`− 1)(α− 1)

βp α ∞ ∞

λc α− ε 1− ε 1− ε

λp 1− α− ε 0 0

λu α− ε 1− ε 1− ε

{βp, βu` , β′u` , λc, λp, λu} under different regimes. In this set-
ting by following the step in (19) one can check that the power
constraints E|x1|2 ≤ 1 and E|x2|2 ≤ 1 are satisfied.

3) Secure rate analysis: We define the rates R1 and R′1 as

R1 , I(v; y1)− I(v; y2)− ε (73)

R′1 , I(v; y2)− ε. (74)

With our codebook and signal design, the result of [8, Theo-
rem 2] (or [3, Theorem 2]) suggests that the rate R1 defined
in (73) is achievable and the transmission of the message
w1 is secure. For this WTH channel, it can be treated as a
particular case of the IC-SC channel if we remove the second
transmitter’s message (or set it empty). Thus, the result of [8,
Theorem 2] (or [3, Theorem 2]) derived for the IC-SC channel
reveals that the secure rate R1 defined in (73) is achievable in
this WTH channel.

In what follows we will provide the rate analysis, focusing
on the regime of α > 1/2. Specifically, we will consider
the following three cases: 1

2 < α < 1, α = 1 and α > 1.
The achievability scheme also uses the Markov chain-based
interference neutralization.

A. 1/2 < α < 1

When 1/2 < α < 1, the parameters {δk,`}k,` are designed
by

δ1,` = −
(h12h21

h11h22

)`
` ∈ {1, 2, · · · , τ − 1}

δ2,` =
h21

h22
·
(h12h21

h11h22

)`−1
` ∈ {1, 2, · · · , τ}.

In this case, the transmitted signals take the following forms

x1=vc+
√
P−α ·vp+

τ−1∑
`=1

δ1,`
√
P−βu` ·u, x2=

τ∑
`=1

δ2,`

√
P−β

′
u` ·u.

Then, the received signals are expressed as

y1 =
√
Ph11vc +

√
P 1−αh11vp +

√
P 2τα+1−2τδ2,τh12u+ z1

y2 =
√
Pαh21(vc + u) + h21vp + z2.

For this case, by following the proof steps in (29)-(34) and
Lemma 1, one can prove that I(v; y1) ≥ 1−2ε

2 logP+o(logP ).
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From (37)-(41), one can prove that I(v; y2) ≤ o(logP ) for this
case. By inserting the above results into (73), the achievable
rate can be bounded by R1 ≥ 1−2ε

2 logP + o(logP ), which
reveals that the proposed scheme achieves d(α) = 1 by using
dc = α GDoF of common randomness (note that dc = λu =
α− ε).

B. α = 1

In this case by setting δ1,1 = − h12h21

h11h22−h12h21
and δ2,1 =

h11h21

h11h22−h12h21
, the transmitted signals take the following forms

x1 = εvc − ε
h12h21

h11h22 − h12h21
u, x2 = ε

h11h21

h11h22 − h12h21
u.

Note that in this case, τ = 1 and ε = h11h22−h12h21

8 . Then,
the received signals are expressed as

y1 = ε
√
Ph11vc + z1, y2 = ε

√
Ph21(vc + u) + z2.

From the previous steps in (29)-(34) and Lemma 1, one can
prove that I(v; y1) ≥ 1−ε

2 logP + o(logP ) for this case. One
can also prove that I(v; y2) ≤ o(logP ). As a result, the achiev-
able secure rate can be bounded as R1 ≥ 1−ε

2 logP+o(logP ).
This bound suggests that, when α = 1, the proposed scheme
achieves d(α) = 1 by using dc = 1 GDoF of common
randomness.

C. α > 1

In this case the parameters {δk,`}k,` are designed by

δ1,` =
(h11h22

h12h21

)`
` ∈ {0, 1, · · · , τ}

δ2,` = −h11

h12
·
(h11h22

h12h21

)`−1
` ∈ {1, 2, · · · , τ}.

The transmitted signals in this case have the following expres-
sions

x1 = vc +
τ∑
`=0

δ1,`
√
P−βu` · u, x2 =

τ∑
`=1

δ2,`

√
P−β

′
u` · u.

Then, the received signals are expressed as

y1 =
√
Ph11vc +

√
P−2τα+2τ+1δ1,τh11u+ z1

y2 =
√
Pαh21(vc + u) + z2.

By following the proof steps in (29)-(34), (37)-(41), and
Lemma 1, one can bound the rate R1 expressed in (73) as

R1 = I(v; y1)− I(v; y2) ≥ 1− ε
2

logP + o(logP ).

This suggests that in this case the proposed scheme achieves
d(α) = 1 by using dc = 1 GDoF of common randomness.

VII. ACHIEVABILITY FOR MULTIPLE ACCESS WIRETAP
CHANNEL

In this section, we will provide the achievability proof of
Theorem 3 for MAC-WT channel defined in Section II-C. The
following lemma will be used in the proof.

Lemma 3. Given the symmetric Gaussian MAC-WT channel
defined in Section II-C, for any tuple (d

′

1, d
′

2, d
′

c) such that
(d
′

1, d
′

2, d
′

c) ∈ D̄(α), then

(
1

α
d
′

2,
1

α
d
′

1,
1

α
d
′

c) ∈ D̄(
1

α
). (75)

Proof. See Appendix C.

In what follows, we will first focus on the case of 0 ≤ α ≤
1 and prove that the optimal secure GDoF region D∗(α) =
{(d1, d2)|d1 + d2 ≤ max{1, α}, 0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ α} is
achievable for the 0 ≤ α ≤ 1 case3. In Section VII-C, we will
prove that D∗(α) is achievable for α > 1 by using the result
of Lemma 3. The proposed scheme for this MAC-WT setting
also uses PAM modulation, rate splitting, signal alignment,
distance-outage bounding technique, and Markov chain-based
interference neutralization. The details of the proposed scheme
are given as follows.

1) Codebook: The codebook generation is the same as that
of the interference channel in Section V (see (10) and (11)).
In this setting, the channel input takes the following form

xk(t) =εvk(t) + ε

τ/2∑
`=1

δk,`
√
P−β1,k,` · u1(t)

+ ε

τ/2∑
`=1

δk,`
√
P−β2,k,` · u2(t) (76)

for k = 1, 2, where vk(t) denotes the tth element of code-
word; {δk,`}k,` and τ are parameters that will be designed
specifically later on for different cases of α; ε is a parameter
designed as

ε,

{
1 if α 6= 1
h11h22−h12h21

8 if α = 1.
(77)

2) PAM constellation and signal alignment: In this setting,
all the elements of the codewords are designed to take the
following forms (without time index) for transmitter 1 and
transmitter 2, respectively,

v1=v1,c+
√
P−β1,pv1,p, v2=

√
P−β2,c

h21

h22
v2,c+

√
P−β2,m

h21

h22
v2,m.

Then, we can rewrite the channel input in (76) as

x1 =εv1,c + ε
√
P−β1,pv1,p + ε

τ/2∑
`=1

δ1,`
√
P−β1,1,` · u1

+ ε

τ/2∑
`=1

δ1,`
√
P−β2,1,` · u2 (78)

x2 =ε
√
P−β2,c

h21

h22
v2,c + ε

√
P−β2,m

h21

h22
v2,m

+ ε

τ/2∑
`=1

δ2,`
√
P−β1,2,` · u1 + ε

τ/2∑
`=1

δ2,`
√
P−β2,2,` · u2

(79)

3When α = 0, D(0) = {(d1, d2)|0 ≤ d1 ≤ 1, d2 = 0} is achievable by
using a single-user transmission scheme. Therefore, without loss of generality,
we will focus on the case with α > 0.
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TABLE III
DESIGNED PARAMETERS FOR MAC-WT CHANNEL WHEN α ≤ 1. THE LAST TWO ROWS CORRESPOND TO THE DESIGN OF THE PARAMETERS β1,k,` AND

β2,k,` , FOR k ∈ {1, 2} AND ` ∈ {1, 2, · · · , τ
2
}.

0 ≤ α ≤ 2
3

2
3
≤ α < 1 α = 1

0 ≤ B ≤ (2α−1)+ (2α−1)+ < B ≤ α 0 ≤ B ≤ 2α− 1 2α−1 < B ≤ α (d
′
1, d
′
2)∈D∗(1)

β2,c 1− α 1− α 1− α 1− α 0

β2,m ∞ α−B ∞ α−B ∞

β1,p α α α ∞ ∞

λ2,c B − ε (2α− 1)+ − ε B − ε 2α− 1− ε d
′
2 − ε

λ2,m 0 B − (2α− 1)+ − ε 0 B−2α+1−ε 0

λ1,p 1−α−B−ε (max{B, 1−α}−B−ε)+ min{1−α, 2α−1−B}−ε 0 0

λ1,c α− ε (1−B − λ1,p)+ − 2ε (1−B − λ1,p)+ − 2ε 1−B − ε d
′
1 − ε

β2,k,` ∞ β1,k,`−(1 +B − 2α) ∞ β1,k,`−(1+B−2α) ∞

β1,k,` (2`− k + 1)(1− α) 0

where the random variables {vk,c, v1,p, v2,m, uk}k=1,2 are
independent and uniformly drawn from the PAM constellation
sets

v1,c ∈ Ω(ξ =
η1,cγ

Q
, Q = P

λ1,c
2 ) (80)

v1,p ∈ Ω(ξ =
γ

2Q
, Q = P

λ1,p
2 ) (81)

v2,c ∈ Ω(ξ =
η2,cγ

Q
, Q = P

λ2,c
2 ) (82)

u1 ∈ Ω(ξ =
γ

Q
, Q = P

max{λ1,c,λ2,c}
2 ) (83)

v2,m, u2 ∈ Ω(ξ =
γ

2Q
, Q = P

λ2,m
2 ) (84)

respectively, where γ ∈
(
0, 1

τ ·2τ ]. The parameters
{λk,c, λ1,p, λ2,m, β2,c, β1,p, β2,m, β1,k,`, β2,k,`}k,` are
designed as in Table III. Note that B is a parameter
within a specific range, which will be specified later on for
different cases of α. The parameters η1,c and η2,c are designed
to ensure that v1,c and v2,c have a certain integer relationship
on the minimum distances of their PAM constellation sets4.
Specifically, η1,c and η2,c are designed as

ηim,c = 1, ηin,c =
⌈√

Pλim,c−λin,c
⌉/√

Pλim,c−λin,c

(85)
where im = arg max

i∈{1,2}
λi,c, in 6= im, im, in ∈ {1, 2}.

(86)

With this design, the ratio of the minimum distance of the
constellation for vin,c and the minimum distance of the con-
stellation for vim,c, i.e., ηin,cγ

P
λin,c

2

/ ηim,cγ

P
λim,c

2

, is an integer, where

1 ≤ ηin,c < 2. By following the step in (19), it is easy to check

4For a PAM constellation set defined as Ω(ξ,Q),{ξa : a ∈ [−Q,Q] ∩
Z}, the minimum distance of the constellation is ξ.

that the average power constraints E|x1|2 ≤ 1 and E|x2|2 ≤ 1
are satisfied. In our scheme, the parameter τ is designed as

τ ,

{
2
⌈
max

{⌈
α

1−α
⌉
,
⌈

1−α+B
1−α

⌉}
/2
⌉

if α 6= 1

2 if α = 1.
(87)

The parameters {δk,`}k,` are designed as

δ1,`,

{
−
(
h12h21

h11h22

)`
if α 6= 1

− h12h21

h11h22−h12h21
if α = 1

(88)

and

δ2,`,

{
h21

h22
·
(
h12h21

h11h22

)`−1
if α 6= 1

h11h21

h11h22−h12h21
if α = 1

(89)

for ` ∈ {1, 2, · · · τ/2}.
3) Secure rate analysis: Given the codebook design and

signal mapping, the result of [46, Theorem 1] implies that we
can achieve the following secure rate region

{
(R1, R2) :

2∑
k=1

Rk ≤
(
I(v1, v2; y1)− I(v1, v2; y2)

)+
,

R1 ≤ I(v1; y1|v2), R2 ≤ I(v2; y1|v1)
}
. (90)

In the following subsections we will provide the analysis of
the rate region under three different cases, i.e., 0 ≤ α ≤ 2

3 ,
2
3 ≤ α < 1 and α = 1. In the proposed scheme, a Markov
chain-based interference neutralization method is used.

A. 0 ≤ α ≤ 2
3

For this case of 0 ≤ α ≤ 2
3 , we will divide the analysis

into two cases and show that the secure GDoF region D∗(α)
is achievable.
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1) 0 ≤ B ≤ (2α − 1)+: In the case with 0 ≤ α ≤ 2
3 and

0 ≤ B ≤ (2α − 1)+, based on the parameter design in (78)-
(89) and Table III, the transmitted signals take the following
forms

x1 =v1,c +
√
P−αv1,p +

τ/2∑
`=1

δ1,`
√
P−β1,1,` · u1 (91)

x2 =
√
Pα−1

h21

h22
v2,c +

τ/2∑
`=1

δ2,`
√
P−β1,2,` · u1. (92)

Then the received signals take the forms as

y1 =
√
Ph11v1,c+

√
P 2α−1

h12h21

h22
v2,c+

√
P 1−αh11v1,p+z1,

(93)

y2 =
√
Pαh21(v1,c + v2,c + u1) +

√
Pα−β1,1,τ/2δ1,τ/2h21u1

+ h12v1,p + z2. (94)

In the above expressions of y1 and y2, the interference is
removed by using the Markov chain-based interference neu-
tralization method. For the secure rate region in (90), we will
prove that I(v1, v2; y1)−I(v1, v2; y2) ≥ 1−3ε

2 logP+o(logP ),
I(v1; y1|v2) ≥ 1−B−2ε

2 logP + o(logP ) and I(v2; y1|v1) ≥
B−ε

2 logP +o(logP ), which will imply that the GDoF region
{(d1, d2)|d1+d2 ≤ 1, 0 ≤ d1 ≤ 1−B, 0 ≤ d2 ≤ B} is achiev-
able, for almost all the channel coefficients {hk`} ∈ (1, 2]2×2.

First we focus on the lower bound of I(v1, v2; y1) −
I(v1, v2; y2). Let v̂1,c, v̂2,c and v̂1,p be the estimates of
v1,c, v2,c and v1,p from y1, respectively. Let Pr[{v1,c 6= v̂1,c}∪
{v1,p 6= v̂1,p} ∪ {v2,c 6= v̂2,c}] denote the corresponding error
probability of this estimation. Then the term I(v1, v2; y1) can
be lower bounded by

I(v1, v2; y1)

≥I(v1, v2; v̂1,c, v̂1,p, v̂2,c) (95)
=H(v1, v2)−H(v1, v2|v̂1,c, v̂1,p, v̂2,c)

≥
(
1−Pr[{v1,c6=v̂1,c}∪{v1,p6=v̂1,p}∪{v2,c6=v̂2,c}]

)
·H(v1, v2)−1.

(96)

For the term H(v1, v2) appeared in (96) we have

H(v1, v2)=H(v1,c)+H(v1,p)+H(v2,c)=
1−3ε

2
logP+o(logP ).

(97)

Below we provide a result on the error probability appeared
in (96).

Lemma 4. When 0 ≤ α ≤ 2
3 and 0 ≤ B ≤ (2α − 1)+,

given the signal design in Table III, (80)-(84) and (91)-(92),
for almost all the channel realizations the error probability of
decoding {v1,c, v1,p, v2,c} from y1 is vanishing when P goes
large, i.e.,

Pr[{v1,c 6= v̂1,c}∪{v1,p 6= v̂1,p}∪{v2,c 6= v̂2,c}]→0 as P→∞.
(98)

Proof. This proof follows from the key steps of the proofs
of Lemma 1 and Lemma 2. Specifically, in this setting one
can first estimate v1,c from y1 expressed in (93) based on
successive decoding method (see Lemma 1), and then estimate

v2,c and v1,p simultaneously based on noise removal and signal
separation methods (see Lemma 2). One can follow the proof
steps of Lemma 1 and Lemma 2 to show that this error
probability is vanishing as P goes large. In order to avoid
the repetition we skip the details in this proof.

With the results of (96), (97) and Lemma 4, we can bound
the term I(v1, v2; y1) as

I(v1, v2; y1) ≥ 1− 3ε

2
logP + o(logP ) (99)

for almost all the channel coefficients {hk`} ∈ (1, 2]2×2. For
the term I(v1, v2; y2), we can bound it as

I(v1, v2; y2)

≤I(v1, v2; y2, v1,c + v2,c + u1) (100)
=I(v1, v2; v1,c + v2,c + u1) + I(v1, v2; y2|v1,c + v2,c + u1)

≤H(v1,c + v2,c + u1)−H(u1)

+h(
√
Pα−β1,1,τ/2δ1,τ/2h21u1+h12v1,p+z2)−h(z2) (101)

≤ log(6Q′ + 1)− log(2Q′ + 1)

+
1

2
log
(
2πe(

8

3τ2
+

2

3τ2 · 4τ
+ 1)

)
− 1

2
log(2πe) (102)

≤ log

(
3

√
8

3τ2
+

2

3τ2 · 4τ
+ 1

)
(103)

where (102) stems from the derivation that H(v1,c + v2,c +
u1) ≤ log(6Q′ + 1) and H(u1) = log(2Q′ + 1), where
Q′,P

max{λ1,c,λ2,c}
2 . Due to our design in (85)-(86), the ratio

between the minimum distance of the constellation for v2,c

and the minimum distance of the constellation for v1,c is an
integer. This integer relationship allows us to minimize the
value of H(v1,c + v2,c +u1), which can be treated as a GDoF
penalty.

Given the results of (99) and (103), it reveals that

I(v1, v2; y1)−I(v1, v2; y2)≥ 1−3ε

2
logP+o(logP ) (104)

for almost all the channel realizations. Now we consider the
bound of I(v1; y1|v2). Let

y′1 =
√
Ph11v1,c +

√
P 1−αh11v1,p + z1 (105)

and let {v̂′1,c, v̂
′

1,p} be the estimates of {v1,c, v1,p} from y′1.
Then we have

I(v1; y1|v2)

=I(v1, y
′
1) (106)

≥
(
1− Pr[{v1,c 6= v̂

′

1,c} ∪ {v1,p 6= v̂
′

1,p}]
)
·H(v1)− 1 (107)

where (106) follows from the independence between v2 and
v1; (107) follows from the steps in (95) and (96). For the term
H(v1) appeared in (107), we have

H(v1) =
1−B − 2ε

2
logP + o(logP ). (108)

By following the proof steps of Lemma 1, one can easily prove
that error probability of estimating v1,c and v1,p based on y′1
is vanishing when P goes large, that is,

Pr[{v1,c 6= v̂
′

1,c} ∪ {v1,p 6= v̂
′

1,p}]→ 0 as P →∞. (109)
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With (107), (108) and (109), it suggests that

I(v1; y1|v2) ≥ 1−B − 2ε

2
logP + o(logP ). (110)

Similarly, I(v2; y1|v1) can be bounded by

I(v2; y1|v1) ≥ B − ε
2

logP + o(logP ). (111)

By combining the results of (90), (104), (110) and (111), it
implies that the GDoF region {(d1, d2)|d1 +d2 ≤ 1, 0 ≤ d1 ≤
1 − B, 0 ≤ d2 ≤ B} is achievable for almost all the channel
coefficients, for this case with 0 ≤ α ≤ 2

3 and 0 ≤ B ≤
(2α− 1)+.

2) (2α − 1)+ < B ≤ α: In the case with 0 ≤ α ≤ 2
3 and

(2α − 1)+ < B ≤ α, by following the steps in the previous
case one can prove that the GDoF region {(d1, d2)|d1 + d2 ≤
1, 0 ≤ d1 ≤ 1−B, 0 ≤ d2 ≤ B} is achievable.

Finally, by combining the results of the above two cases
and by moving B from 0 to α, it reveals that for almost all
the channel realizations the proposed scheme achieves D∗(α)
in this case of 0 ≤ α ≤ 2

3 .

B. 2
3 ≤ α < 1

When 2
3 ≤ α < 1, we will also divide the analysis into two

cases.
1) 0 ≤ B ≤ 2α − 1: In the case with 2

3 ≤ α < 1 and
B ≤ 2α − 1, the signals of the transmitters have the same
forms as in (91) and (92), and the signals of the receivers take
the same forms as in (93) and (94). In this case, we have

I(v1, v2; y1)

≥
(
1−Pr[{v1,c6=v̂1,c}∪{v1,p6=v̂1,p}∪{v2,c6=v̂2,c}]

)
·H(v1, v2)−1

(112)

=
1− 3ε

2
logP + o(logP ) (113)

for almost all the channel coefficients, where (112) follows
from the steps in (95)-(96); the last step stems from Lemma 5
(see below) and the derivation that H(v1, v2) = H(v1,c) +
H(v1,p) + H(v2,c) = 1−3ε

2 logP + o(logP ).

Lemma 5. When 2
3 ≤ α < 1 and 0 ≤ B ≤ 2α − 1, given

the signal design in Table III, (80)-(84) and (91)-(92), for
almost all the channel coefficients {hk`} ∈ (1, 2]2×2, the error
probability of decoding {v1,c, v1,p, v2,c} from y1 is vanishing
when P is large, i.e.,

Pr[{v1,c 6= v̂1,c}∪{v1,p 6= v̂1,p}∪{v2,c 6= v̂2,c}]→0 as P→∞.
(114)

Proof. See Appendix D.

From the steps in (100)-(103), one can easily show that
I(v1, v2; y2) ≤ o(logP ), which, together with (113), implies
that

I(v1, v2; y1)−I(v1, v2; y2)≥ 1−3ε

2
logP+o(logP ) (115)

for almost all the channel coefficients. From the steps in (105)-
(111), the following two inequalities can be easily derived

I(v1; y1|v2) ≥ 1−B − 2ε

2
logP + o(logP ), (116)

I(v2; y1|v1) ≥ B − ε
2

logP + o(logP ). (117)

From (90) and (115)–(117) we can conclude that the secure
GDoF region {(d1, d2)|d1 + d2 ≤ 1, 0 ≤ d1 ≤ 1 − B, 0 ≤
d2 ≤ B} is achievable for almost all the channel coefficients,
for this case with 0 ≤ α ≤ 2

3 and 0 ≤ B ≤ 2α− 1.
2) 2α − 1 < B ≤ α: In the case with 2

3 ≤ α < 1 and
2α− 1 < B ≤ α, by following the steps in the previous case
one can prove that the GDoF region {(d1, d2)|d1+d2 ≤ 1, 0 ≤
d1 ≤ 1−B, 0 ≤ d2 ≤ B} is achievable.

Finally, by combining the results of the above two cases
and by moving B from 0 to α, it reveals that for almost all
the channel realizations the proposed scheme achieves D∗(α)
in this case of 0 ≤ α ≤ 2

3 .

C. α = 1

In the case with α = 1, for any GDoF pair (d
′

1, d
′

2)
such that (d

′

1, d
′

2) ∈ D∗(1), we will provide the following
scheme and show that the GDoF pair (d

′

1, d
′

2) is achievable
with d

′

c = max{d′1, d
′

2} GDoF common randomness. Based
on the parameter design in (78)-(89) and Table III, then the
transmitted signals are designed as

x1 =εv1,c − ε
h12h21

h11h22 − h12h21
· u1 (118)

x2 =ε
h21

h22
· v2,c + ε

h11h21

h11h22 − h12h21
· u1. (119)

In terms of the signals at the receivers, we have

y1 = ε
√
Ph11v1,c + ε

√
P
h12h21

h22
· v2,c + z1 (120)

y2 = ε
√
Ph21(v1,c + v2,c + u1) + z2. (121)

From the derivations in (95)-(97), (100)-(103), and
Lemma 2, the term I(v1, v2; y1) − I(v1, v2; y2) in (90) can
be bounded by

I(v1, v2; y1)− I(v1, v2; y2) ≥ d
′

1 + d
′

2 − 2ε

2
logP + o(logP )

(122)

for almost all the channel coefficients. By following the steps
in (105)-(111), we have

I(v1; y1|v2) ≥ d
′

1 − ε
2

logP + o(logP ). (123)

I(v2; y1|v1) ≥ d
′

2 − ε
2

logP + o(logP ). (124)

Finally, by incorporating the results of (122)-(124) into (90),
it suggests that the secure GDoF pair (d

′

1, d
′

2) is achievable
by using d

′

c = max{d′1, d
′

2} GDoF of common randomness
(mainly due to u1), for almost all the channel coefficients
{hk`} ∈ (1, 2]2×2. By moving d

′

1 from 0 to 1−d′2 and moving
d
′

2 from 0 to 1, then we can conclude that any GDoF pair
(d
′

1, d
′

2) ∈ D∗(1) is achievable by using d
′

c = max{d′1, d
′

2}
GDoF of common randomness for almost all the channel
coefficients, in this case with α = 1.
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D. α > 1

We have proved in Sections VII-A-VII-C that the optimal
secure GDoF region D∗(α) is achievable by the proposed
scheme when α ≤ 1, where D∗(α) = {(d1, d2)|d1 + d2 ≤
max{1, α}, 0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ α}.

Let us consider a secure GDoF pair (d
′

1, d
′

2) such that
(d
′

1, d
′

2) ∈ D∗(α), with conditions 0 ≤ d
′

1 ≤ 1 − d
′

2 and
0 ≤ d

′

2 ≤ α, for α ≤ 1. From Sections VII-A-VII-C,
it reveals that the proposed scheme is able to achieve this
secure GDoF pair (d

′

1, d
′

2) with a certain amount of GDoF
common randomness. For notationally convenience let us use
d
′

c to denote that amount of GDoF common randomness
for achieving the corresponding GDoF pair (d

′

1, d
′

2) in the
proposed scheme. For this secure GDoF tuple (d

′

1, d
′

2, d
′

c), it
holds true that

(d
′

1, d
′

2, d
′

c) ∈ D̄(α) (125)

since it is achievable by the proposed scheme, for α ≤ 1.
From the result of Lemma 3, it also holds true that(

d
′

2/α, d
′

1/α, d
′

c/α
)
∈ D̄(1/α). (126)

In other words, the secure GDoF tuple (d
′

2/α, d
′

1/α, d
′

c/α)
is included in the region D̄(1/α) and the secure GDoF pair
(d
′

2/α, d
′

1/α) is included in the region D∗( 1
α ), for α ≤ 1.

Then, by moving d
′

2 from 0 to α and moving d
′

1 from 0 to
1 − d′2, it implies that any point in D∗( 1

α ) = {(d1, d2)|d1 +
d2 ≤ 1

α , 0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1
α} is achievable for α ≤ 1.

Let α
′

= 1/α, we finally conclude that the optimal secure
GDoF region D∗(α′) = {(d1, d2)|d1 + d2 ≤ α

′
, 0 ≤ d1 ≤

1, 0 ≤ d2 ≤ α
′} is achievable for α

′
> 1.

VIII. CONVERSE

In this section we will provide the converse proofs for
Theorems 4-6, regarding the minimal GDoF of the common
randomness to achieve the maximal secure sum GDoF, secure
GDoF, and the maximal secure GDoF region for interference
channel, wiretap channel with a helper, and multiple access
wiretap channel, respectively. Let us define that

sk`(t),
√
Pαk`hk`x`(t) + zk(t)

for k, ` ∈ {1, 2}, k 6= `. Let snk`,{sk`(t)}nt=1.

A. Converse for two-user interference channel

We begin with the converse proof of Theorem 4, for the
two-user interference channel defined in Section II-A. The
following lemma reveals a bound on the minimal GDoF of
common randomness d∗c(α), for achieving the maximal secure
sum GDoF d∗sum(α).

Lemma 6. Given the two-user symmetric Gaussian IC-SC
channel (see Section II-A), the minimal GDoF of the common
randomness d∗c(α) for achieving the maximal secure sum
GDoF d∗sum(α) satisfies the following inequality

d∗c(α) ≥ d∗sum(α)/2− (1− α)+ α ∈ [0,∞). (127)

In what follows, we will prove Lemma 6. This proof will
use the secrecy constraints and Fano’s inequality. Starting with

the secrecy constraint I(w1; yn2 ) ≤ nε, and with the identity
of I(w1; yn2 ) = I(w1;wc, w2, y

n
2 )− I(w1;wc, w2|yn2 ), we have

I(w1;wc, w2, y
n
2 ) ≤ I(w1;wc, w2|yn2 ) + nε. (128)

The first term in the right-hand side of (128) is bounded as

I(w1;wc, w2|yn2 ) = H(wc, w2|yn2 )−H(wc, w2|yn2 , w1)

≤ H(wc) + H(w2|yn2 ) (129)
≤ H(wc) + nεn (130)

where (129) uses the fact that conditioning reduces entropy;
and (130) follows from Fano’s inequality. On the other hand,
the term in the left-hand side of (128) can be rewritten as

I(w1;wc, w2, y
n
2 ) = I(w1; yn2 |wc, w2)

= H(w1)−H(w1|wc, w2, y
n
2 ) (131)

using the independence between w1, wc and w2. By incorpo-
rating (130) and (131) into (128), it gives

H(w1) ≤ H(wc) + H(w1|wc, w2, y
n
2 ) + nεn + nε. (132)

For the second term in the right-hand side of (132), we have

H(w1|wc, w2, y
n
2 )

=H(w1|wc, w2, y
n
2 , s

n
21) (133)

≤H(w1|wc, w2, y
n
2 , s

n
21)−H(w1|yn1 ) + nεn (134)

≤H(w1|wc, w2, s
n
21)−H(w1|yn1 , wc, w2, s

n
21) + nεn

=I(w1; yn1 |wc, w2, s
n
21) + nεn

=I(w1; {y1(t)−
√
P 1−α · h11

h21
s21(t)

−
√
Pαh12x2(t)}nt=1|wc, w2, s

n
21) + nεn (135)

=I(w1; {−
√
P 1−α · h11

h21
z2(t)+z1(t)}nt=1|wc, w2, s

n
21)+nεn

=h({−
√
P 1−α · h11

h21
z2(t)+z1(t)}n|wc, w2, s

n
21)

− h({−
√
P 1−α · h11

h21
z2(t)+z1(t)}n|w1, wc, w2, s

n
21)+nεn

=h({−
√
P 1−α · h11

h21
z2(t)+z1(t)}n|wc, w2, s

n
21)−h(zn1 )+nεn

(136)

≤n
2

log(1 + P 1−α · |h11|2

|h21|2
) + nεn (137)

where (133) follows from the fact that sn21 can be reconstructed
by {wc, w2, y

n
2 }; (134) is from Fano’s inequality; (135) uses

the fact that xn2 is a function of (wc, w2); (136) results from the
fact that zn2 can be reconstructed from {w1, wc, w2, s

n
21}; (137)

follows from the identity that conditioning reduces differential
entropy and the identity that h(zn1 ) = n

2 log(2πe). Finally,
given that H(w1) = nR1 and H(wc) = nRc, combining the
results of (132) and (137) gives the following inequality

nR1 −
n

2
log(1 + P 1−α · |h11|2

|h21|2
)− nε′n ≤ nRc (138)

for ε′n = 2εn + ε. Due to the symmetry, by exchanging the
roles of user 1 and user 2, we also have

nR2 −
n

2
log(1 + P 1−α · |h22|2

|h12|2
)− nε′n ≤ nRc. (139)
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Based on the definitions of d∗c(α) and d∗sum(α) in Section II-A,
combining the results of (138) and (139) produces the follow-
ing bound

d∗sum(α)/2− (1− α)+ ≤ d∗c(α), ∀α ∈ [0,∞) (140)

which completes the proof of Lemma 6.

B. Converse for the wiretap channel with a helper

Let us now focus on the converse proof of Theorem 5 for the
wiretap channel with a helper. The following lemma reveals a
bound on the minimal GDoF of common randomness d∗c(α),
for achieving the maximal secure GDoF, i.e., d∗(α) = 1 for
any α ∈ [0,∞) (see Theorem 2).

Lemma 7. Given the symmetric Gaussian WTH channel
(see Section II-B), the minimal GDoF of the common random-
ness d∗c(α) for achieving the maximal secure GDoF satisfies
the following inequality

d∗c(α) ≥ 1− (1− α)+ α ∈ [0,∞). (141)

The proof of Lemma 7 follows closely from that of
Lemma 6. One difference is that in this setting w2 is kept
as an empty term. By following the steps in (128)-(132) we
have the following bound for this setting

H(w1) ≤ H(wc) + H(w1|wc, yn2 ) + nε. (142)

By following the steps in (133)-(137) we have the following
bound for this setting

H(w1|wc, yn2 ) ≤n
2

log(1 + P 1−α · |h11|2

|h21|2
) + nεn. (143)

The results of (142) and (143) imply that

nR1 −
n

2
log(1 + P 1−α · |h11|2

|h21|2
)− nε′n ≤ nRc (144)

for ε′n = εn+ε. Based on the definitions of d∗c(α) and d∗(α) in
Section II-B, and given the result of Theorem 2, i.e., d∗(α) =
1, ∀α ∈ [0,∞), the result of (144) gives the following bound

1− (1− α)+ ≤ d∗c(α), ∀α ∈ [0,∞) (145)

which completes the proof of Lemma 7.

C. Converse for two-user multiple access wiretap channel

Let us consider the converse proof of Theorem 6 for the two-
user multiple access wiretap channel. The following lemma
gives a bound on the minimal GDoF of common randomness
d∗c(α, d1, d2), for achieving any given GDoF pair (d1, d2) in
the maximal secure GDoF region D∗(α).

Lemma 8. For the symmetric Gaussian MAC-WT channel
with common randomness (see Section II-C), the minimal
GDoF of the common randomness d∗c(α, d1, d2), for achieving
any given GDoF pair (d1, d2) in the maximal secure GDoF
region D∗(α), satisfies the following inequality

d∗c(α, d1, d2) ≥ max{d1 − (1− α)+, d2 − (α− 1)+}

for (d1, d2) ∈ D∗(α).

The following corollary is directly from Lemma 8 by
considering the specific case with α = 1.

Corollary 1. For the symmetric Gaussian MAC-WT channel
with common randomness defined in Section II-C, and for α =
1, the minimal GDoF of the common randomness d∗c(1, d1, d2),
for achieving any given GDoF pair (d1, d2) in the maximal
secure GDoF region D∗(1), satisfies the following inequality

d∗c(1, d1, d2) ≥ max{d1, d2} for (d1, d2) ∈ D∗(1), α = 1.

Let us now prove Lemma 8. This proof will also use the
secrecy constraints and Fano’s inequality. However, in this
setting some steps in the proof are slightly different from that
in the previous proofs. Note that in this setting, the confidential
messages are intended to receiver 1.

Starting with the secrecy constraint I(w1, w2; yn2 ) ≤ nε,
and with the identity of I(w1, w2; yn2 ) = I(w1, w2;wc, y

n
2 ) −

I(w1, w2;wc|yn2 ), we have

I(w1, w2;wc, y
n
2 ) ≤ I(w1, w2;wc|yn2 ) + nε. (146)

The first term in the right-hand side of (146) is bounded as

I(w1, w2;wc|yn2 ) = H(wc|yn2 )−H(wc|yn2 , w1, w2)

≤ H(wc). (147)

On the other hand, the term in the left-hand side of (146) can
be rewritten as

I(w1, w2;wc, y
n
2 ) = I(w1, w2; yn2 |wc)

= H(w1, w2)−H(w1, w2|wc, yn2 )

= H(w1) + H(w2)−H(w1, w2|wc, yn2 )
(148)

using the independence between w1, wc and w2. By incorpo-
rating (147) and (148) into (146), it gives

H(w2) ≤H(wc)−H(w1) + H(w1, w2|wc, yn2 ) + nε

≤H(wc)−H(w1) + H(w1, w2|wc, yn2 )

−H(w1, w2|yn1 ) + nεn + nε (149)
=H(wc)−H(w1) + H(w1|wc, yn2 )︸ ︷︷ ︸

≤0

+H(w2|w1, wc, y
n
2 )

−H(w1|yn1 )︸ ︷︷ ︸
≤0

−H(w2|w1, y
n
1 ) + nε′n

≤H(wc) + H(w2|w1, wc, y
n
2 )−H(w2|w1, y

n
1 ) + nε′n

(150)

for ε′n, εn + ε, where (149) stems from Fano’s equality. For
the second and third terms in the right-hand side of (150), we
have

H(w2|w1, wc, y
n
2 )−H(w2|w1, y

n
1 )

≤H(w2|{
√
Ph22x2(t) + z2(t)}nt=1, w1, wc, y

n
2 )

−H(w2|{
√
Ph22x2(t) + z2(t)}nt=1, w1, wc, y

n
1 ) (151)

≤H(w2|{
√
Ph22x2(t) + z2(t)}nt=1, w1, wc)

−H(w2|{
√
Ph22x2(t) + z2(t)}nt=1, w1, wc, y

n
1 ) (152)

=I(w2; yn1 |{
√
Ph22x2(t) + z2(t)}nt=1, w1, wc)
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=I(w2; {y1(t)−
√
Pα−1 · h12

h22
(
√
Ph22x2(t) + z2(t))

−
√
Ph11x1(t)}nt=1|wc, w1, {

√
Ph22x2(t) + z2(t)}nt=1)

(153)

=I(w2; {−
√
Pα−1 · h12

h22
z2(t)+z1(t)}nt=1|wc, w1, {

√
Ph22x2(t)

+z2(t)}nt=1)

≤n
2

log(1 + Pα−1 · |h12|2

|h22|2
) (154)

where (151) follows from the fact that {
√
Ph22x2(t) +

z2(t)}nt=1 can be reconstructed by {w1, wc, y
n
2 } and the fact

that conditioning reduces entropy; (152) results from the fact
that conditioning reduces entropy; (153) uses the fact that
xn1 is a function of (wc, w1); (154) follows from the identity
that conditioning reduces differential entropy. Combining the
results of (150) and (154), it gives the following inequality

H(w2)− n

2
log(1 + Pα−1 · |h12|2

|h22|2
)− nε′n ≤ H(wc). (155)

Finally, given that H(w2) = nR2 and H(wc) = nRc, (155)
implies the following inequality

nR2 −
n

2
log(1 + Pα−1 · |h12|2

|h22|2
)− nε′n ≤ nRc. (156)

On the other hand, by interchanging the roles of transmitter 1
and transmitter 2, we also have

nR1 −
n

2
log(1 + P 1−α · |h11|2

|h21|2
)− nε′n ≤ nRc. (157)

Based on the definition of d∗c(α, d1, d2) in Section II-C, the
results of (156) and (157) give the following bound

max{d1−(1−α)+, d2−(α−1)+}≤d∗c(α, d1, d2), (158)

for (d1, d2) ∈ D∗(α), which completes the proof of Lemma 8.

IX. DISCUSSION AND CONCLUSION

In this work we showed that adding common randomness at
the transmitters totally removes the penalty in sum GDoF or
GDoF region of three basic channels. The results reveal that
adding common randomness at the transmitters is a construc-
tive way to remove the secrecy constraints in communication
networks in terms of GDoF performance. Another contribution
of this work is the characterization on the minimal amount of
common randomness for removing the secrecy penalty.

For our settings, a common randomness is considered to
be available at the transmitters. In the proposed schemes
the signals are designed with common randomness, which
achieve the maximal secure GDoF performance as if without
secrecy constraints. To get the results for the settings without
common randomness, one might need to modify the schemes
accordingly, e.g., remove the common randomness and add
the private randomness. Similarly, for the converse, one might
need to modify the proofs in order to derive the results for the
setting without common randomness. In one direction of the
future work, we will focus on the setting with limited common
randomness, which covers the extreme case without common

randomness and the other extreme case with unlimited com-
mon randomness.

As mentioned, one of the contributions of our work is the
characterization on the minimal amount of common random-
ness for achieving the maximal secure GDoF as if without
secrecy constraints. In general there is a tradeoff between the
secure GDoF and the amount of the common randomness.
For example, considering the two-user symmetric interference
channel with α = 1, for the extreme case without common
randomness the maximal secure sum GDoF is 2/3, while
for the case with 1/2 GDoF of common randomness the
maximal secure sum GDoF is 1. It implies that there is a
tradeoff between the secure GDoF and the amount of the
common randomness for this example. In one direction of the
future work, we will investigate the tradeoff between secure
GDoF and the amount of common randomness in secure
communication networks.

This work specifically considers the weak secrecy con-
straints (see the statements in Section II), like many other
works in the references, e.g., [7]–[16]. Our converse results
hold for the settings with strong secrecy constraints, just
with a minor modification in the proofs, i.e., by replacing
nε with ε in the secrecy constraint terms accordingly. Based
on the result in [25] by Wang et al., our achievability results
on the interference channel and the wiretap channel with a
helper could be extended to the settings with strong secrecy
constraints as well.

Although we focus on the symmetric settings in this work,
our results could be extended to the asymmetric setting.
A discussion on the extension to the asymmetric setting is
provided in the following subsection.

A. The extension to the asymmetric setting

Let us first consider an example of asymmetric setting
by focusing on the wiretap channel with helper, given the
parameters of (α11 = α22 = 1, α12 = 1/2, α21 = 2/3).
For this example, the scheme originally proposed for the
symmetric setting, described in Section VI, can be generalized
to achieve the secure GDoF d = 1 by using dc = 2/3
GDoF of common randomness, which will be shown to be
optimal. Specifically, by following the scheme described in
Section VI-A, we set βu0 = ∞, βu1 = 5/6, β′u1

= 1/3,
βp = α21 = 2/3, λc = λu = 2/3− ε, and λp = 1/3− ε, and
design the signals at the transmitters as

x1 =vc+
√
P−α21vp−

√
P−βu1

h12h21

h11h22
u, x2 =

√
P−β

′
u1
h21

h22
u.

Then, the received signals take the following forms

y1 =
√
Ph11vc +

√
P

1
3h11vp + z1

y2 =
√
P

2
3h21(vc + u) + h21vp −

√
P−

1
6
h12h

2
21

h11h22
u+ z2.

At this point, by following the rate analysis in Section VI-A
one can show that the secure GDoF value d = 1 is achievable
by using dc = 2/3 GDoF of common randomness. Note that
d = 1 is the maximal GDoF value for this setting, even without
secrecy constraint.
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By following the converse proof in Section VIII-B, we
will show that dc = 2/3 is the minimal GDoF of common
randomness for achieving the maximal secure GDoF for this
asymmetric setting. Specifically, the step in (142) still holds
for this asymmetric setting, that is,

H(w1) ≤ H(wc) + H(w1|wc, yn2 ) + nε.

From the steps in (133)-(137), in this setting we have

H(w1|wc, yn2 ) ≤n
2

log(1 + Pα11−α21 · |h11|2

|h21|2
) + nεn.

Then, the result of (145) in Section VIII-B will be generalized
as

d∗ − (α11 − α21)+ ≤ d∗c
where d∗ is the maximal secure GDoF and d∗c is the minimal
GDoF of common randomness for achieving the maximal
secure GDoF d∗. For this example with α11 = 1 and
α21 = 2/3, and given d∗ = 1, the above result implies that
d∗c ≥ 1 − (1 − 2/3)+ = 2/3. Thus, the proposed scheme is
optimal, i.e., it achieves the minimal secure GDoF d∗ = 1
by using a minimal amount of common randomness, that is,
d∗c = 2/3.

APPENDIX A
PROOF OF LEMMA 1

We here prove Lemma 1. Let us first provide [12, Lemma 1]
that will be used in the proof.

Lemma 9. [12, Lemma 1] Consider a specific channel model
y′ =

√
Pα1h′x′ +

√
Pα2g′ + z′, where x′ ∈ Ω(ξ,Q), and

z′ ∼ N (0, σ2). g′ ∈ Sg′ is a discrete random variable with a
condition

|g′| ≤ gmax, ∀g′ ∈ Sg′

for Sg′ ⊂ R. h′, gmax, σ, α2 and α1 are finite and positive
constants that are independent of P . Also consider the condi-
tion α1 − α2 > 0. Let γ′ > 0 be a finite parameter. If we set
Q and ξ by

Q =
P
α′
2 h′γ′

2gmax
, ξ =

γ′

Q
, ∀α′ ∈ (0, α1 − α2) (159)

then the probability of error for decoding x′ from y′ satisfies

Pr(e)→ 0 as P →∞.

Due to the symmetry, we only focus on the case of k = 1. In
this setting with 1/2 < α ≤ 2/3, successive decoding method
will be used. For the observation y1 described in (25), it can
be expressed in the following form

y1 =
√
Ph11v1,c +

√
Pαg + z1 (160)

where

g,h12(v2,c + u) +
√
P 1−2αh11v1,p +

√
P−αh12v2,p

−
√
P 2α−2 · h

2
12h21

h11h22
u.

One can check that |g| ≤ 14
τ ·2τ holds true for any realization

of g. Then, Lemma 9 reveals that the error probability of the
estimation of v1,c is

Pr[v1,c 6= v̂1,c]→ 0, as P →∞. (161)

After that, v2,c + u can be estimated from the observation
below

y1 −
√
Ph11v1,c =

√
Pαh12(v2,c + u) +

√
P 1−αg′ + z1

(162)

where g′,h11v1,p+
√
Pα−1h12v2,p−

√
P 4α−3 · h

2
12h21

h11h22
u. Note

that v2,c+u ∈ 2Ω(ξ = γ
Q , Q = P

2α−1−ε
2 ). One can also check

that |g′| ≤ 10
τ ·2τ . Let ŝvu be an estimate of svu, v2,c+u. Then,

Lemma 9 suggests

Pr[svu 6= ŝvu]→ 0, as P →∞. (163)

Similarly, after decoding v2,c+u we can decode v1,p ∈ Ω(ξ =
γ
Q , Q = P

1−α−ε
2 ) with

Pr[v1,p 6= v̂1,p]→ 0 as P →∞. (164)

With results (161) and (164), then we have

Pr[{v1,c 6= v̂1,c} ∪ {v1,p 6= v̂1,p}]→ 0 as P →∞.

The case with k = 2 is also proved using the same way due
the symmetry.

APPENDIX B
PROOF OF LEMMA 2

We now prove Lemma 2. In the proof we will use the tech-
nique of noise removal and signal separation. The distance-
outage bounding technique proposed in [45] is used in the
proof. In the proof we will also use [12, Lemma 1] (see
Lemma 9 in the previous section).

In this proof we will first estimate v1,c and v2,c + u from
the observation y1 expressed in (45) with noise removal and
signal separation methods, and then estimate v1,p. Note that
v1,c ∈ Ω(ξ = γ

Q , Q = P
α/2−ε

2 ), v2,c + u ∈ 2Ω(ξ = γ
Q , Q =

P
α/2−ε

2 ), and v1,p, v2,p ∈ Ω(ξ = γ
2Q , Q = P

1−α−ε
2 ), where

2 ·Ω(ξ,Q),{ξ ·a : a ∈ Z ∩ [−2Q, 2Q]}. For the observation
y1 in (45), it can be expressed as

y1 =
√
Ph11v1,c +

√
Pαh12(v2,c + u) + z̃1

= P
α/2+ε

2 · γ · (
√
P 1−αg0q0 + g1q1) + z̃1 (165)

where z̃1 ,
√
P 1−αh11v1,p+

√
P (τ+1)α−τδ2,τh12u+h12v2,p+

z1 and

g0 ,h11, g1 ,h12, q0 ,
Qmax

γ
· v1,c

q1 ,
Qmax

γ
· (v2,c + u), Qmax ,P

α/2−ε
2

for γ ∈
(
0, 1

τ ·2τ
]
. It is true that q0, q1 ∈ Z , |q1| ≤ 2Qmax and

|q0| ≤ Qmax.
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Let us consider q̂1 and q̂0 as the corresponding estimates
of q1 and q0 from y1 (see (165)). For this estimation we
specifically consider an estimator that seeks to minimize

|y1 − P
α/2+ε

2 · γ · (
√
P 1−αg0q̂0 + g1q̂1)|.

The minimum distance defined below will be used in the error
probability analysis for this estimation

dmin(g0, g1), min
q0,q

′
0∈Z∩[−Qmax,Qmax]

q1,q
′
1∈Z∩[−2Qmax,2Qmax]

(q0,q1)6=(q′0,q
′
1)

∣∣∣√P 1−αg0(q0 − q′0)

+ g1(q1 − q′1)
∣∣∣. (166)

Lemma 11 (see below) will reveal that, for almost all channel
realizations, this minimum distance is sufficiently large when
P is large. In the proof of Lemma 11, we will use a result of
[47, Lemma 1] or [48, Lemma 8], which is a generalization
of [45, Lemma 14].

Lemma 10. [48, Lemma 8] or [47, Lemma 1] Let us consider
a parameter η such that η > 1 and η ∈ Z+, and consider
β ∈ (0, 1] and Q0, A0, Q1, A1 ∈ Z+. Also define two events
as

B̃(q0, q1),{(g0, g1) ∈ (1, η]2 : |A1g1q1 +A0g0q0| < β}
(167)

and

B̃,
⋃

q0,q1∈Z:
(q0,q1)6=0,
|qk|≤Qk ∀k

B̃(q0, q1). (168)

For L(B̃) denoting the Lebesgue measure of B̃, then this
measure is bounded as

L(B̃) ≤ 8β(η − 1) min
{Q0Q1

A1
,
Q1Q0

A0
,
Q0η

A1
,
Q1η

A0

}
.

Lemma 11. For ε > 0 and κ ∈ (0, 1] and consider the
design in (16)-(18) and (42)-(43) when α ∈ [2/3, 1). Then
the following inequality holds true for the minimum distance
dmin defined in (166)

dmin ≥ κP−
3α/2−1

2 (169)

for all channel realizations {hk`} ∈ (1, 2]2×2 \ Hout, where
the Lebesgue measure of Hout ⊆ (1, 2]2×2 satisfies

L(Hout) ≤ 64κ · P− ε2 . (170)

Proof. For this case we set η, 2 and define

β,κP−
3α/2−1

2 , A0 ,
√
P 1−α, A1 , 1,

Q0 ,2Qmax, Q1 , 4Qmax, Qmax ,P
α/2−ε

2 .

From the previous definitions, g0 = h11 and g1 = h12. Without
loss of generality (WLOG) we will consider the case that5

A0, Q0, A1, Q1 ∈ Z+. Let us define

B̃(q0, q1),{(g0, g1) ∈ (1, η]2 : |A1g1q1 +A0g0q0| < β}
(171)

and

B̃,
⋃

q0,q1∈Z:
(q0,q1)6=0,
|qk|≤Qk ∀k

B̃(q0, q1). (172)

From Lemma 10, the Lebesgue measure of B̃ can be bounded
by

L(B̃)≤8β(η−1) min{8Q2
max

1
,

8Q2
max√

P 1−α
,

2Qmaxη

1
,

4Qmaxη√
P 1−α

}

(173)

=8β(η−1)·Qmax ·min{8Qmax,
8Qmax√
P 1−α

, 2η,
4η√
P 1−α

}

≤8β(η − 1) ·Qmax · P
α−1
2 ·min{8Qmax, 4η}

≤8β(η − 1) ·Qmax · P
α−1
2 · 4η

=32βη(η − 1) · P
3α/2−1−ε

2

=32η(η − 1)κP−
ε
2

=64κP−
ε
2 . (174)

Based on the definition in (172), B̃ is a set of (g0, g1), where
(g0, g1) ∈ (1, η]2. For any (g0, g1) ∈ B̃, there exists at least
one pair (q0, q1) such that |A1g1q1 + A0g0q0| < κP−

3α/2−1
2 .

Thus, B̃ can be treated as the outage set and we have the
following conclusion:

dmin(g0, g1) ≥ κP−
3α/2−1

2 , for (g0, g1) /∈ B̃.

Let us now define Hout as a set of (h22, h21, h12, h11) ∈
(1, 2]2×2 such that the corresponding pairs (g0, g1) appear in
B̃ (outage set), that is,

Hout ,{(h22, h21, h12, h11) ∈ (1, 2]2×2 : (g0, g1)∈B̃}. (175)

5Our result also holds true for the scenario when any of the four pa-
rameters {A0, Q0, A1, Q1} isn’t an integer. It just requires some minor
modifications in the proof. Let us consider one example when A0 isn’t an
integer. For this example, the parameters A0 and g0 can be replaced with
A′0 ,ω0A0 and g′0 ,

1
ω0
g0, respectively, where ω0 , dA0e/A0. From the

definition, ω0 is bounded, i.e., 1/2 < 1/ω0 < 1, and A′0 = ω0A0 is an
integer. Let us consider another example when Q0 = 2

√
Pα/2−ε isn’t an

integer. For this example, the parameter ε can be slightly modified such that
Q0 = 2

√
Pα/2−ε is an integer and ε can still be very small when P is large.

Therefore, throughout this work, WLOG we will consider those parameters
to be integers, i.e., A0, Q0, A1, Q1 ∈ Z+.
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From the relationship between B̃ and Hout, the Lebesgue
measure of Hout can be bounded by

L(Hout)

=

∫ 2

h22=1

∫ 2

h21=1

∫ 2

h12=1

∫ 2

h11=1

1Hout(h22, h21, h12, h11)dh11

· dh12dh21dh22 (176)

=

∫ 2

h22=1

∫ 2

h21=1

∫ 2

h12=1

∫ 2

h11=1

1B̃(h11,h12)dh11dh12dh21dh22

≤
∫ 2

h22=1

∫ 2

h21=1

∫ η

g1=1

∫ η

g0=1

1B̃(g0, g1)dg0dg1dh21dh22

=

∫ 2

h22=1

∫ 2

h21=1

L(B̃)dh21dh22

≤
∫ 2

h22=1

∫ 2

h21=1

64κ · P− ε2 dh21dh22 (177)

=64κ · P− ε2 (178)

where

1Hout(h22, h21, h12, h11)=

{
1 if (h22, h21, h12, h11)∈Hout

0 if (h22, h21, h12, h11) /∈Hout

and

1B̃(g0, g1) =

{
1 if (g0, g1) ∈ B̃
0 if (g0, g1) /∈ B̃

and (177) is from (174).

Lemma 11 suggests that, the minimum distance dmin de-
fined in (166) is sufficiently large for almost all the channel
coefficients when P is large. Let us focus on the channel coef-
ficients not in the outage set Hout and rewrite the observation
y1 in (165) as

y1 =P
α/2+ε

2 · γ · xs +
√
P 1−αg̃ + z1 (181)

where xs,
√
P 1−αg0q0 + g1q1 and g̃,h11v1,p +√

P (τ+2)α−τ−1δ2,τh12u+
√
Pα−1h12v2,p. It is true that

|g̃| ≤ g̃max ,
1

τ · 2τ−1
+

2

τ
, ∀g̃.

For the observation in (181), we will decode xs by considering
other signals as noise (called as noise removal) and then
recover q0 and q1 from xs by using the rational independence
between g0 and g1 (called as signal separation, see [49]).
Given the channel coefficients outside the outage set Hout,
Lemma 11 suggests that, the minimum distance for xs satisfies
dmin ≥ κP−

3α/2−1
2 . With this result, the probability of error

for the estimation of xs from y1 is bounded by

Pr[xs 6= x̂s] ≤Pr
[
|z1 + P

1−α
2 g̃| > P

α/2+ε
2 · γ · dmin

2

]
≤2 ·Q

(
P
α/2+ε

2 · γ · dmin

2
− P

1−α
2 g̃max

)
(182)

≤2 ·Q
(
P

1−α
2 (

γκP
ε
2

2
− 1

τ · 2τ−1
− 2

τ
)
)

(183)

where Q(c), 1√
2π

∫∞
c

exp(−u
2

2 )du and (182) use the fact
that |g̃| ≤ g̃max , 1

τ ·2τ−1 + 2
τ , ∀g̃; and the last step uses the

result of dmin ≥ κP−
3α/2−1

2 . From the step in (183), it implies
that

Pr[xs 6= x̂s]→ 0 as P →∞. (184)

Note that q0 and q1 (and consequently v1,c and v2,c + u) can
be recovered from xs due to rational independence.

After decoding xs we can estimate v1,p from the following
observation

y1 − P
α/2+ε

2 · γ · xs
=
√
P 1−αh11v1,p +

√
P (τ+1)α−τδ2,τh12u+ h12v2,p + z1.

Given that v1,p, v2,p ∈ Ω(ξ = γ
2Q , Q = P

1−α−ε
2 ) and√

P (τ+1)α−τδ2,τh12u + h12v2,p ≤ 2
τ + 1

τ ·2τ , from Lemma 9
we can conclude that the probability of error for the estimation
of v1,p satisfies

Pr[v̂1,p 6= v1,p]→ 0 as P →∞. (185)

With (184) and (185) we can conclude that

Pr[{v1,c 6= v̂1,c} ∪ {v1,p 6= v̂1,p}]→ 0 as P →∞ (186)

for almost all the channel realizations. For the case with k = 2,
it is proved with the same way using the symmetry property.

APPENDIX C
PROOF OF LEMMA 3

Lemma 3 is proved here. For a MAC-WT channel, the
channel input-output relationship can be described as (see (1)
and (2))

y1(t) =
√
Ph11x1(t) +

√
Pαh12x2(t) + z1(t)

y2(t) =
√
Pαh21x1(t) +

√
Ph22x2(t) + z2(t).

(187)

By interchanging the role of transmitter 1 and transmitter 2 in
the MAC-WT channel, the channel input-output relationship
can be alternately represented as

y1(t) =

√
P ′

α′
h
′

12x
′

2(t) +
√
P ′h

′

11x
′

1(t) + z1(t)

y2(t) =
√
P ′h

′

22x
′

2(t) +

√
P ′

α′
h
′

21x
′

1(t) + z2(t)

(188)

where

h
′

11 = h12, h
′

12 = h11, h
′

21 = h22, h
′

22 = h21

x
′

1(t) = x2(t), x
′

2(t) = x1(t), P
′

= Pα, α
′

=
1

α
.

(189)

Note that the secure capacity region and the secure GDoF
region of the MAC-WT channel expressed in (188) are
C̄(P

′
, α
′
) and D̄(α

′
), respectively. Assume a scheme Γ

achieves a rate tuple (R
′

1, R
′

2, R
′

c) in the channel expressed
in (187), i.e., transmitter 1 achieves a rate R1 = R

′

1 and
transmitter 2 achieves a rate R2 = R

′

2 by using common
randomness rate Rc = R

′

c. Then the same scheme Γ achieves
rates R1 = R

′

2, R2 = R
′

1, by using common randomness
rate Rc = R

′

c in the channel expressed in (188), because the
channel expressed in (188) can be reverted back to the channel
expressed in (187) by interchanging the role of transmitters.
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For any tuple (d
′

1, d
′

2, d
′

c) such that (d
′

1, d
′

2, d
′

c) ∈ D̄(α) in
the channel expressed in (187), there exists a scheme Γ that
achieves a rate tuple in the form of(

R1 =
d
′

1

2
logP + o(logP ), R2 =

d
′

2

2
logP + o(logP ),

Rc =
d
′

c

2
logP + o(logP )

)
. (190)

Based on the above argument, by interchanging the role of
transmitter 1 and transmitter 2 in the channel expressed in
(187), the same scheme Γ achieves a rate tuple in the form of(

R1 =
d
′

2

2
logP + o(logP ), R2 =

d
′

1

2
logP + o(logP ),

Rc =
d
′

c

2
logP + o(logP )

)
(191)

in the channel expressed in (188). Then the following GDoF
tuple 

d1

d2

dc

 =


lim

P ′→∞

d
′
2
2 logP+o(logP )

1
2 logP ′

lim
P ′→∞

d
′
1
2 logP+o(logP )

1
2 logP ′

lim
P ′→∞

d
′
c
2 logP+o(logP )

1
2 logP ′



=


lim

P ′→∞

1
α

(
d
′
2
2 logP

′
+αo( log P

′

α )
)

1
2 logP ′

lim
P ′→∞

1
α

(
d
′
1
2 logP

′
+αo( log P

′

α )
)

1
2 logP ′

lim
P ′→∞

1
α

(
d
′
c
2 logP

′
+αo( log P

′

α )
)

1
2 logP ′



=


1
αd
′

2

1
αd
′

1

1
αd
′

c


is achievable in the channel expressed in (188), which implies(

1
αd
′

2,
1
αd
′

1,
1
αd
′

c

)
∈ D̄(α

′
). Since α

′
= 1

α , then we get( 1

α
d
′

2,
1

α
d
′

1,
1

α
d
′

c

)
∈ D̄(

1

α
)

which completes the proof.

APPENDIX D
PROOF OF LEMMA 5

We provide the proof of Lemma 5 in this section for the case
of 2

3 ≤ α ≤ 1 and 0 ≤ B ≤ 2α− 1. The proof is divided into
two sub-cases, i.e., 0 ≤ B ≤ 3α−2 and 3α−2 ≤ B ≤ 2α−1.

A. 0 ≤ B ≤ 3α− 2

For the case of 2
3 ≤ α ≤ 1 and 0 ≤ B ≤ 3α − 2,

the observation y1 expressed in (93) can be rewritten in the
following form

y1 =
√
P 1−αh11v1,p+

√
Ph11v1,c+

√
P 2α−1

h12h21

h22
v2,c+z1

= 2γ
√
P ε(g0q0+

√
P 1−α+Bg1q1+

√
P 2α−1−Bg2q2)+z1

(192)

where

g0 ,
h11

4
, g1 ,

η1,ch11

2
, g2 ,

η2,ch12h21

2h22
,

q0 ,
2
√
P 1−α−ε

γ
·v1,p, q1 ,

√
Pα−B−ε

η1,cγ
·v1,c, q2 ,

√
PB−ε

η2,cγ
·v2,c

for γ ∈ (0, 1
τ ·2τ ], 1 ≤ η1,c < 2, 1 ≤ η2,c < 2, v1,p ∈ Ω(ξ =

γ
2Q , Q = P

1−α−ε
2 ), v1,c ∈ Ω(ξ =

η1,cγ
Q , Q = P

α−B−ε
2 )

and v2,c ∈ Ω(ξ =
η2,cγ
Q , Q = P

B−ε
2 ). Based on our

definition, it implies that q0, q1, q2 ∈ Z , |q0| ≤
√
P 1−α−ε,

|q1| ≤
√
Pα−B−ε, and |q2| ≤

√
PB−ε. Let us define the

following minimum distance

dmin(g0,g1, g2), min
q0,q

′
0,∈Z∩[−

√
P 1−α−ε,

√
P 1−α−ε]

q1,q
′
1,∈Z∩[−

√
Pα−B−ε,

√
Pα−B−ε]

q2,q
′
2∈Z∩[−

√
PB−ε,

√
PB−ε]

(q0,q1,q2)6=(q′0,q
′
1,q
′
2)

∣∣∣g0(q0−q′0)

+
√
P 1−α+Bg1(q1−q′1) +

√
P 2α−1−Bg2(q2−q′2)

∣∣∣
(193)

which will be used for the analysis of the estimation of q0, q1

and q2 from the observation in (192). The lemma below states
a result on bounding this minimum distance.

Lemma 12. Consider the parameters κ ∈ (0, 1] and ε > 0,
and consider the signal design in Table III, (80)-(84) and (91)-
(92) for the case of 2

3 ≤ α < 1 and 0 ≤ B ≤ 3α−2. Then the
minimum distance dmin defined in (193) satisfies the following
inequality

dmin ≥ κP
ε
2 (194)

for all the channel coefficients {hk`} ∈ (1, 2]2×2 \Hout, where
the Lebesgue measure of the outage set Hout ⊆ (1, 2]2×2

satisfies the following inequality

L(Hout) ≤ 193536κP−
ε
2 . (195)

Proof. In this case we let

β,κP
ε
2 , A1 ,

√
P 1−α+B , A2 ,

√
P 2α−1−B ,

Q0 , 2
√
P 1−α−ε, Q1 ,2

√
Pα−B−ε, Q2 , 2

√
PB−ε,

for some ε > 0, κ ∈ (0, 1], 1 ≤ η1,c < 2 and 1 ≤ η2,c < 2.
Recall that g0 = h11

4 , g1 =
η1,ch11

2 , and g2 =
η2,ch12h21

2h22
. We

also define the following two sets

B′(q0, q1, q2),{(g0, g1, g2)∈(1, 4]3: |g0q0+A1g1q1+A2g2q2|<β}

and

B′,
⋃

q0,q1,q2∈Z:
(q0,q1,q2) 6=0,
|qk|≤Qk ∀k

B′(q0, q1, q2). (196)

With the result of [45, Lemma 14] we can bound the Lebesgue
measure of B′ as

L(B′) ≤ 504β
(2Q0

A2
+
Q0Q̃2

A1
+

2Q0

A1
+
Q0Q̃1

A2

)
(197)

where Q̃1 = min
{
Q1, 8 · max{Q0,A2Q2}

A1

}
= 16

√
P 3α−2−B−ε

and Q̃2 = min
{
Q2, 8 · max{Q0,A1Q1}

A2

}
= 2
√
PB−ε. By
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plugging the values of the parameters into (197), we can easily
bound L(B′) as

L(B′) ≤ 24192κP−
ε
2 . (198)

With our definition, B′ is a collection of (g0, g1, g2)
and can be treated as an outage set. Let us define
Hout ,{(h22, h21, h12, h11) ∈ (1, 2]2×2 : (g0, g1, g2) ∈ B′}
as a set of (h22, h21, h12, h11) ∈ (1, 2]2×2 such that the cor-
responding pairs (g0, g1) are in the outage set B′. Let us also
define the indicator function 1Hout(h22, h21, h12, h11) = 1 if
(h22, h21, h12, h11) ∈ Hout, else 1Hout(h22, h21, h12, h11) = 0;
and define another indicator function 1B′(g1, g2) = 1 if
(g0 = g1

2η1,c
, g1, g2) ∈ B′, else 1B′(g1, g2) = 0. Then by

following the steps in (176)-(178), the Lebesgue measure of
Hout can be bounded as

L(Hout) ≤ 193536κP−
ε
2 . (199)

Lemma 12 suggests that, the minimum distance dmin de-
fined in (193) is sufficiently large, i.e., dmin ≥ κP

ε
2 , for

almost all the channel coefficients when P is large. Let us
focus on the channel coefficients not in the outage set Hout.
Let xs, g0q0 +

√
P 1−α+Bg1q1 +

√
P 2α−1−Bg2q2. Then it is

easy to show that the error probability for the estimation of
xs from the observation in (192) is

Pr[xs 6= x̂s]→ 0 as P →∞. (200)

Note that q0, q1, q2 can be recovered due to the fact that
g0, g1, g2 are rationally independent. At this point we can
conclude that

Pr[{v1,c 6= v̂1,c}∪{v1,p 6= v̂1,p}∪{v2,c 6= v̂2,c}]→0 as P→∞
(201)

for almost all the channel coefficients.

B. 3α− 2 ≤ B ≤ 2α− 1

For this case with 2
3 ≤ α ≤ 1 and 3α−2 ≤ B ≤ 2α−1, the

proof is similar to that of Lemma 4. We will just provide the
outline of the proof in order to avoid the repetition. In this case,
we will first estimate v1,c from y1 expressed in (93) based on
successive decoding method, and then we will estimate v2,c

and v1,p simultaneously based on noise removal and signal
separation methods.

In the first step, we rewrite y1 from (93) to the following
form

y1 =
√
Ph11v1,c +

√
P 2α−1ḡ + z1. (202)

where ḡ, h12h21

h22
v2,c +

√
P 2−3αh11v1,p. Since ḡ is bounded,

i.e., |ḡ| ≤ 9
τ ·2τ , from Lemma 9 we can conclude that v1,c can

be estimated from y1 with vanishing error probability:

Pr[v1,c 6= v̂1,c]→ 0, as P →∞. (203)

In the second step v2,c and v1,p will be estimated simultane-
ously from the following observation

y1 −
√
Ph11v1,c =

√
P 2α−1

h12h21

h22
v2,c+

√
P 1−αh11v1,p+z1

= γ(A0g0q0 +A1g1q1) + z1 (204)

where g0 ,
η2,ch12h21

h22
, g1 , 1

2h11, A0 ,
√
P 2α−1−B+ε,

A1 ,
√
P 2−3α+B+ε, q0 ,

√
PB−ε

η2,cγ
v2,c ,

q1 , 2
√
P 2α−1−B−ε

γ v1,p. By following the steps in (165)-
(184), one can show that the v2,c and v1,p can be estimated
simultaneously from the observation in (204) with vanishing
error probability for almost all the channel coefficients. At
this point, we can conclude that

Pr[{v1,c 6= v̂1,c}∪{v1,p 6= v̂1,p}∪{v2,c 6= v̂2,c}]→0 as P→∞
(205)

for almost all the channel coefficients.

APPENDIX E
ADDING COMMON RANDOMNESS WILL NOT INCREASE THE

GDOF IN THE CONSIDERED SETTINGS

In this section we will prove that adding common random-
ness at the transmitters will not increase the sum GDoF, GDoF,
and GDoF region, of a two-user interference channel, a point-
to-point channel with a helper, and a two-user multiple access
channel, respectively, as described in the following lemmas.
The three settings are simply the enhanced settings of that
defined in Section II by removing the secrecy constraints.
Since secrecy constraints will not enlarge the GDoF or GDoF
region of the networks, the converse derived for the setting
without secrecy constraints will server as a converse for the
setting with secrecy constraints.

Lemma 13 (IC-SC). For a two-user symmetric Gaussian
interference channel with common randomness at the trans-
mitters (the enhanced setting of that defined in Section II
by removing secrecy constraints), the sum GDoF is upper
bounded by

d1 + d2 ≤ d∗sum(α)

where d∗sum(α) is characterized in Theorem 1.

Lemma 14 (WTH). For a point-to-point Gaussian channel
with a helper and with common randomness at the transmitters
(the enhanced setting of that defined in Section II-B by
removing secrecy constraint), the GDoF is upper bounded by

d(α) ≤ 1, ∀α ∈ [0,∞).

Lemma 15 (MAC-WT). For a two-user symmetric Gaussian
multiple access channel with common randomness at the trans-
mitters (the enhanced setting of that defined in Section II-C
by removing secrecy constraint), the optimal GDoF region is
outer bounded by

d1 + d2 ≤ max{1, α}, d1 ≤ 1, d2 ≤ α.

The proofs of the above three lemmas are proved in the
following sections.

A. Proof of Lemma 13

Let us now prove Lemma 13, focusing on the two-user
symmetric Gaussian interference channel with common ran-
domness at the transmitters. At first we will follow the
footsteps of the converse proof in [26], by taking the additional
consideration of the common randomness at the transmitters.



24

We will consider the genie-aided channel where a genie
provides sn21 and wc to receiver 1, and provides sn12 and
wc to receiver 2, where s21(t),

√
Pα21h21x1(t) + z2(t) and

s12(t),
√
Pα12h12x2(t)+z1(t). For this genie-aided channel,

the sum rate is upper bounded by

nR1 + nR2 − nεn
≤I(w1; yn1 , s

n
21, wc) + I(w2; yn2 , s

n
12, wc)

=I(w1; yn1 , s
n
21|wc) + I(w2; yn2 , s

n
12|wc) (206)

=I(w1; sn21|wc) + I(w1; yn1 |sn21, wc)

+ I(w2; sn12|wc) + I(w2; yn2 |sn12, wc)

=h(sn21|wc)−h(sn21|w1, wc)+h(yn1 |sn21, wc)−h(yn1 |sn21, w1, wc)

+h(sn12|wc)−h(sn12|w2,wc)+h(yn2 |sn12,wc)−h(yn2 |sn12, w2,wc)

=h(sn21|wc)−h(zn2 )+h(yn1 |sn21, wc)−h(sn12|wc)+h(sn12|wc)
− h(zn1 ) + h(yn2 |sn12, wc)− h(sn21|wc) (207)

≤
n∑
t=1

(
h(y1(t)|s21(t),wc)+h(y2(t)|s12(t),wc)

)
−h(zn1 )−h(zn2 )

(208)

where (206) uses the fact that w1, w2 and wc are mutually
independent; (207) follows from the fact that, (sn21, w1) and
(sn12, w2) are conditionally independent given wc; note that
xni is a deterministic function of (wc, wi) for i = 1, 2. For the
term h(y1(t)|s21(t), wc) in (208), we have

h(y1(t)|s21(t), wc)

=Ewc [h(y1(t)|s21(t), wc = wc)]

≤1

2
log(2πe) + Ewc

[1
2

log(E[var[y1(t)|s21(t), wc = wc]])
]

(209)

≤1

2
log(2πe) + Ewc

[1

2
log
(
E[|y1(t)|2|wc = wc]

− |E[y1(t)s21(t)|wc = wc]|2

E[|s21(t)|2|wc = wc]

)]
(210)

≤1

2
log(2πe)+

1

2
log
(

1+Pα12 |h12|2E[|x2(t)|2|]

+
Pα11 |h11|2 · E[|x1(t)|2|]

1 + Pα21 |h21|2 · E[|x1(t)|2|]

)
(211)

≤1

2
log(2πe) +

1

2
log
(

1 + Pα12 |h12|2 +
Pα11 |h11|2

1 + Pα21 |h21|2
)

(212)

where (209) follows from the fact that Gaussian input maxi-
mizes the conditional differential entropy for a given variance
constraint E[var[y1(t)|s21(t), wc = wc]]; (210) uses the result
that E[var[y|x]] ≤ E|y|2 − |E[xy]|2

E[|x|2] (cf. [50, Lemma 1]); (211)
applies Jensen’s inequality to the concave functions of f1(x) =
log(1+x) and f2(x) = ax

1+bx for a > 0, b > 0 and x ≥ 0; (212)
uses the identity that the function f3(x, y) = log(1+cx+ ay

1+by )
is increasing with x and y for a > 0, b > 0, c > 0. Similarly,
we have

h(y2(t)|s12(t), wc)

≤1

2
log(2πe) +

1

2
log(1 + Pα21 |h21|2 +

Pα22 |h22|2

1 + Pα12 |h12|2
).

(213)

By inserting (212) and (213) into (208), and dividing each
side of (208) with n

2 logP and letting P, n → ∞, it gives
the sum GDoF bound d1 + d2 ≤ max{α12, α11 − α21} +
max{α21, α22 − α12}. By focusing on the symmetric case
with (α11 = α22 = 1, α12 = α21 = α), we have

d1 + d2 ≤ 2 max{α, 1− α}. (214)

The above bound is derived by following the footsteps of
the converse proof in [26], and by adapting the common
randomness wc term into the derivations.

We can also derive a bound on the sum GDoF by consider-
ing the one-sided interference channel where a genie provides
w2 and wc to receiver 1 and provides wc to receiver 2. In this
one-sided interference channel, by following the footsteps of
the converse proof in [51] (or [26]), one can prove that

d1 + d2 ≤ 2(1− α/2) for α ≤ 1. (215)

For the one-sided interference channel, by following the foot-
steps of the converse proof in [52], one can also prove that

d1 + d2 ≤ α for α ≥ 1. (216)

Finally, the bounds d1 ≤ α11 and d2 ≤ α22 can be easily
proved (see next subsection for the similar proof). These two
bounds give the sum GDoF bound for the symmetric case:
d1 + d2 ≤ 2, which, together with (214), (215) and (216),
complete the proof of Lemma 13.

B. Proof of Lemma 14

The proof of Lemma 14 is straightforward. For a point-
to-point Gaussian channel with a helper and with common
randomness at the transmitters, we enhance the setting by
providing an information wc to the receiver. Then, the rate
is bounded as

nR1 − nε1,n
≤I(w1; yn1 , wc)

=I(w1; yn1 |wc) (217)

≤
∑
t

h(y1(t)|wc)− h(yn1 |wc, w1)

=
∑
t

h(
√
Pα11h11x1(t) + z1(t)|wc)− h(zn1 ) (218)

≤
∑
t

h(
√
Pα11h11x1(t) + z1(t))− h(zn1 )

≤n
2

log(1 + Pα11 |h11|2) (219)

where (217) uses the independence between w1 and wc; (218)
uses the definition that x2(t) is a deterministic function of wc;
(219) follows from the fact that Gaussian input maximizes the
differential entropy. From (219) it implies that d ≤ α11, which
completes the proof of Lemma 14 by focusing on the case with
α11 = 1 and α12 = α.

C. Proof of Lemma 15

Let us now consider the two-user symmetric Gaussian
multiple access channel with common randomness at the
transmitters. From the proof in the previous subsection, one
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can easily prove the d1 ≤ α11 and d2 ≤ α12. In this setting,
the sum rate can be bounded as

nR1 + nR2 − nεn
≤I(w1, w2; yn1 )

≤
∑
t

h(y1(t))− h(yn1 |w1, w2, x
n
1 , x

n
2 )

=
∑
t

h(y1(t))− h(zn1 )

≤n
2

log(1 + Pα11 |h11|2 + Pα12 |h12|2) (220)

where (220) follows from the fact that Gaussian input max-
imizes the differential entropy. The result in (220) gives the
sum GDoF bound as d1 +d2 ≤ max{α11, α12}. At this point,
we complete the proof of Lemma 15 by focusing on the case
with (α11 = 1, α12 = α).
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