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Abstract—In wireless networks, link strengths are often af-
fected by some topological factors such as propagation path loss,
shadowing and inter-cell interference. Thus, different users in the
network might experience different link strengths. In this work
we consider a K-user asymmetric interference channel, where
the channel gains of the links connected to Receiver £ are scaled
with VPor, k=1,2,--- K, for 0 < a1 < a2 <--- < ak. For
this setting, we show that the optimal sum generalized degrees-
of-freedom (GDoF) is characterized as
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which matches the existing result dgym = % when a1 = as =

- = ag = 1. The achievability is based on multi-layer inter-
ference alignment, where different interference alignment sub-
schemes are designed in different layers associated with specific
power levels, and successive decoding is applied at the receivers.
While the converse for the symmetric case only requires bounding
the sum degrees-of-freedom (DoF) for selected two users, the
converse for this asymmetric case involves bounding the weighted
sum GDoF for selected J + 2 users, with corresponding weights

(2", 27-1 92 21), a geometric sequence with common ratio
2, for the first J users and with corresponding weights (1,1) for
the last two users, for J € {1,2,---, [log 51}

Index Terms—Interference alignment, sum generalized
degrees-of-freedom (sum GDoF), successive decoding, interfer-
ence channel.

I. INTRODUCTION

In wireless networks, the strengths of communication links
are often affected by propagation path loss, shadowing, inter-
cell interference, and some other topological factors. There-
fore, different users in the network might experience different
link strengths. For one example, in an interference network,
when a receiver is relatively far from the transmitters, this
receiver might experience weaker links compared to the
receivers that are closer to the transmitters (see Fig. 1).
For another example, when a receiver has more inter-cell
interference, this receiver might experience weaker links,
in terms of signal-to-interference-plus-noise ratio, compared
to the receivers that have less inter-cell interference. Such
asymmetry property of the link strengths in communication
networks can crucially affect the transceiver design, as well
as the capacity performance.
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In this work we consider a K-user asymmetric interference
channel, where different receivers might have different link
strengths. For this setting, the channel gains of the links
connected to Receiver k are scaled with P, where ay
captures the link strength of Receiver k, which might be
different from that of the other receivers, for k =1,2,--- | K.
This generalizes the symmetric setting, in which a1 = ay =
.-+ =ai =1, to a setting with diverse link strengths.

For the symmetric K -user interference channel, the work in
[1] showed that the optimal sum degrees-of-freedom (DoF) is
characterized by K/2, which implies that “everyone gets half
of the cake”. DoF is a pre-log factor of capacity at the high
signal-to-noise ratio (SNR) regime. Although the DoF metric
can produce profound insights, it has a fundamental limitation,
that is, it treats all non-zero links as approximately equally
strong. Thus, it motivates the researchers to go beyond the DoF
metric into the generalized degrees-of-freedom (GDoF) metric
(see [2]-[27] and the references therein), for the settings with
diverse link strengths. For the K'-user asymmetric interference
channel, we focus on the optimal sum GDoF. Specifically, for
this asymmetric setting we show that the optimal sum GDoF
is characterized as dgm = S a’“+2aK_aK’1 ,for 0 < ag <
ag < --- < ag. This result generalizes the existing result of
the symmetric case to the setting with diverse link strengths.

The proposed achievability is based on multi-layer interfer-
ence alignment and successive decoding. While the traditional
interference alignment scheme is usually dedicated to all users
in the network (cf. [1], [28]), the multi-layer interference align-
ment scheme proposed in this work consists of K different
interference alignment sub-schemes, with each interference
alignment sub-scheme dedicated to a subset of users. In this
scheme, each interference alignment sub-scheme is designed
in a specific layer associated with a particular power level.
In terms of decoding, successive decoding is applied at the
receivers. Specifically, successive decoding is operated layer
by layer. For the decoding at one layer, each of the involved
receivers decodes the desired signals and the interference in
this layer, and then remove them to decode signals at the
next layer. The converse for this asymmetric case involves
bounding the weighted sum GDoF for selected J + 2 users,
with weights being a geometric sequence for the first J users,
for J € {1,2,---, [log £1}. This is very different from the
converse for the symmetric case, which only requires bounding
the sum DoF for selected two users.

The remainder of this work is organized as follows. Sec-
tion II describes the system model of the asymmetric inter-
ference channel. Section III provides the main result of this
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Fig. 1. An asymmetric interference channel, where some receivers are
relatively far from the transmitters and consequently might have weaker links
compared to the receivers closer to the transmitters. When a receiver has
more inter-cell interference, this receiver might also experience weaker links,
in terms of signal-to-interference-plus-noise ratio, compared to the receivers
that have less inter-cell interference.

work. The converse proof is provided in Section IV, while
the achievability proof is described in Section V. Finally,
section VI shows the conclusion of this work. Throughout
this work, H(e), h(e) and I(e) denote the entropy, differential
entropy and mutual information, respectively. | @ | denotes
the magnitude of a scalar or the cardinality of a set. Z,
ZT, R and N denote the sets of integers, positive integers,
real numbers, and natural numbers, respectively. o(e) is a
standard Landau notation, where f(x) = o(g(z)) implies that
lim, o0 f(2)/g(xz) = 0. [A : B] is a set of integers from A
to B, for some integers A < B. Given a set A, then A(i)
denotes the ith element of set .A. Logarithms are in base 2.

II. SYSTEM MODEL

We focus on a K-user receiver-asymmetric real Gaussian
interference channel defined by the following input-output
equations:

K
ye(t) = VPO S hgw(t) + z,(1), ke[l:K] (1)
=1

t € [1 : n], where x(t) is the channel input at Trans-
mitter ¢ subject to a normalized average power constraint
Elze(t)|> < 1. zx(t) ~ N(0,1) is additive white Gaussian
noise at Receiver k. hp, is the channel coefficient between
Transmitter ¢ and Receiver k. P > 1 denotes a nominal power
value. The exponent oy, represents the channel strength of the
links connected to Receiver k. Without loss of generality we
consider the case that

O<ar <o <---<ak.

The channel coefficients {hy} ¢ are drawn independently and
identically from a continuous distribution. We assume that the
absolute value of each channel coefficient is bounded between

a finite maximum value and a nonzero minimum value. All
the channel parameters {oy}x and coefficients {hye}y ¢ are
assumed to be perfectly known to all the transmitters and
receivers (perfect CSIT and CSIR).

In this channel, the message wy, is sent from Transmitter k
to Receiver k over n channel uses, for £k € [l K],
where wy, is uniformly drawn from a set W, = [1 :
2nfte] and Ry is the rate of this message. A rate tuple
(R1(P,a),R2(P,x), - , Rx(P,)) is said to be achiev-
able if for any € > 0 there exists a sequence of n-length
codes such that each receiver can decode its own message
reliably, i.e., Prfux # wg] < ¢ Vk € [1 K], when
n goes large, for o 2|y, ag, -+ ,ak]. The capacity region
C(P, ) is the collection of all the achievable rate tuples
(R1(P, ), R2(P, ), R.(P, ). The GDoF region D(av) is
defined as

D(a) 2{(dr,ds, -+ ,dx) :
E(Rl(Pva)v"' 7RK(P7a)) € C(P,OL)

Ry (P
st. dp= lim M, Vkell: K]}
P—oo 3 log P
The sum GDoF is then defined by
dsum(a)é max di+do+---+dg.
1,d2, - ,dk:

(dl,dz,"- ,dK)GD(a)

GDoF is a generalization of the DoF. Note that DoF can be
considered as a specific point of GDoF by letting a; = g =
e=ag =1L

III. MAIN RESULT

The main result of this work is the characterization of the
optimal sum GDoF for the K-user asymmetric interference
channel.

Theorem 1. For the K-user asymmetric interference channel
defined in Section II, for almost all realizations of channel
coefficients {hy}, the optimal sum GDoF is characterized as

Eszl o +ag —ag—1
- 5 : @)
Proof. The achievability is based on multi-layer interference
alignment and successive decoding. The converse for this
asymmetric case involves bounding the weighted sum GDoF
for selected J + 2 users, J € [1 : [log 5]]. The details of the
achievability and converse proofs are provided in Section V
and Section IV, respectively. O

dsum (a)

Remark 1. The result of Theorem I matches the previous
result dg,(a) = % when oy = a9 = -+ = axg = 1 (see

[1]).

Remark 2. One observation from the result of Theorem 1
is that, the change of the link strength of the (K — 1)th
receiver, i.e., ax_1, will not take effect on the optimal sum
GDoF, as long as ax_s < ag_1 < ag. For the specific
case with K = 2, one can see that the optimal sum GDoF,
ie, dgm(a) = o, is not affected by the change of «;.
For this specific case, the value of the optimal sum GDoF



depends on the link strength of the last receiver only. By
rewriting the optimal sum GDoF for this specific case as
dsum(@) = a1+ (ag —ay), one can check that the optimal sum
GDOF is equal to the sum of oy and (g — o) but the effect
of vy is “neutralized” in the sum. Similarly, for the general
case we can rewrite the optimal sum GDoF as dgm,(o) =

52712 (K7€+1)(2a147a14_1)+2(aK_1;aK_2) —l—aK—aK,l,from
which one can see that the effect of ax_1 is “neutralized”
in the sum. Another observation is that, increasing the link
strength of any receiver except the (K — 1)th receiver, will
increase the sum GDoF performance.

Remark 3. From the result of Theorem 1, it reveals that the
link strength of the Kth receiver, i.e., g, takes more effect
on the optimal sum GDoF (with a larger weight), compared
to the link strengths of the other receivers.

IV. CONVERSE

This section provides the converse of Theorem 1, for the
K-user asymmetric interference channel defined in Section II.
While the converse for the symmetric case only requires
bounding the sum DoF for selected two users, the converse
for this asymmetric case involves bounding the weighted sum
GDoF for selected J + 2 users, with corresponding weights
(27,2771, 2221 1,1), for J € [1: [log £7]. The result
on bounding the weighted sum GDoF is given in the following
lemma.

Lemma 1. For 1 <[y <ly <+ <ljpa<Kand J€]l:
[log 5], then the following inequality holds true

J J

Z 2J_j+1dlj + le+1 + dl./+2 < Z QJ_'jalj T, (3)

Jj=1 j=1

For the proof of Lemma 1 we will use a “chain-type”
bounding process. Specifically, the proof requires bounding
a weighted sum term ®(Jy) that is defined in (7); bounding
®(Jy) also involves bounding ®(Jy — 1); and this process
repeats until reaching ®(1). Before proving Lemma 1, let us
provide the following result derived from Lemma 1, which
serves as the converse of Theorem 1.

Corollary 1. For the K-user asymmetric interference channel
defined in Section II, the optimal sum GDoF is upper bounded
by

K
< Dope1 Ok + oK — g1

dsum — 4
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Proof. The proof is based on Lemma 1. The details of this
proof are provided in Appendix B. O

Let us now prove Lemma 1. At first we will focus on the
specific case with [; = ¢ fori € [1: J+2] and J € [1 :
[log 5], and prove

7 J
S 2l dy A2 <Y 2 ey agge. (5)

Jj=1 Jj=1

Later on we will extend the proof and show that the result of
Lemma 1 holds true for the general case of {l1,ls, - , {42}

for 1 <ly <lp <<l <KandJe€Il:[log&]]. Let
us define an auxiliary variable

Jro(t) 2VP " by () + Zo(t) (6)

where Zy(t) ~ MN(0,1) is independent of the other noise
random variables, for k,¢ € [1 : K]. Let y? 2{yx(t)}1,,
i HHaw(t) oy, 2f S{ak(t) oy, and G, S {5 (8) }y. For
the ease of description, we define that

Wi S{we: €€ [1: K], L#14,0+#j}

and Wi {wy : £ € [1: K], £ # i}, fori,j € [1: K],i # j.
We also define that

®(Jo) 2270 (wyy; 47,

J+2
+ D 2O g W) (D
j=Jo+1
for Jy € [1:J — 1], and that
do20, 20, FPo=0, L(w;g1olWy) 20, Vi,
I(wo; y5) £0, and ®(0)£0. ®)

Beginning with Fano’s inequality, we have

J
Z 2J_j+1nRj +nRjp1 +nRjre —ne,
=1

J-1
< 27 (wy ) + 2L(ws ) + Hwsiasy )
=1

+I(wys2:y740) ©)
J—1 . J+2 ) B

< Z ZJﬂHH(wj; y;) + Z 2max{]ﬂ+1’0}ﬂ(wﬁ 97 7-11Wp)
j=1 Jj=J

+ (g2 — o) + 2(ay — 04.]—1))% log P 4 no(log P)
(10)

J—2
= Z 27T M (wys yf) + ®(J — 1)
j=1

n
+ ((O[J+2 —ay)+2(ay — aj,l))i log P 4 no(log P)

(11)
J-3 4
<D 27 M (wyi 7 + @(J - 2)
j=1
+ (g2 — o) + 2(ay — ay—1)
+22(ay 4 —aJ_g))glogP—Fno(logP) (12)
J—4 .
<> 2T M (wyyt) + B( - 3)
j=1

+ ((ayy2 —ay) +2(as —ay1) +2* (a1 — ay_2)

+ 23 (g g — aJ,g)) g log P + no(log P) (13)

<((ag42 —ag) +2(ay —ay_1) + 2% (a1 —ay_2)



n
+ 2% (g p—ay_3) 4+ 2‘](041—040))5 log P

+ no(log P) (14)
J - n
:(Zz Io +aJ+2)§logP+no(logP) (15)
j=1
where ®(Jp) is defined in (7), for Jy € [1 —1]; 9) is

from Fano’s inequality, and ¢, — 0 as n — oo; (10) follows
from Lemma 4, which is provided at the end of this section;
(11) uses the definition of ®(Jp); (12)-(14) follow from the
result of Lemma 2, provided at the end of this section. By
dividing each side of (15) with 7 log P and letting n, P —
00, it proves the bound in (5). In the above proof we focus
on the specific case with I; = 4 for i € [1 : J + 2] and

J € [1: [log &7]. At this point, by replacing the indexes
{li =1,l =2, | lj42 = J + 2} with the general case
Of{ll,lg,“',ZJ+2}fOl‘1<ll<lg< <ZJ+2§Kand
J € [1: [log 5£17], it then proves the bound Z L2779+

diy oy +diy,, < ZJ 127 ay, + ay,,. Note that the above
proof holds true for the general case of {l1,la, -+ ,lj42}, as
longas 1 <[y <lp<---<lyjyo<Kand J € [1 : [log%ﬂ
are satisfied. Then, it completes the proof of Lemma 1.

Note that, in our proof the weights of the sum
GDoF for J + 2 wusers are designed specifically as
(27,2771 ... (22 21 1 1). With this design, for Jy € [1 : J],

the Joth mutual 1nformat10n term I(wy,;y% ) with weight
9/=Jo+1 can be bounded with other 2/~/+ mutual infor-
mation terms generated from User (Jy + 1) to User (J +
2), ie., Y712 omaxlImdtLOM(wygn W), One
can see that bounding the sum of 2770*!(w,;y7% ) and
ZJ+2 g 2max{I—g+, O}H(w7,yJU+1 7,IW5) is equivalent to
boundlng ®(Jy) defined in (7). This bounding operation over

®(.Jy) also generates a total of 27~ (/o=1+! mutual informa-
tion terms that will be used to bound the (Jy — 1)th mutual
information term I(w,—1;y%, ;) with weight 27/~ (Jo=1+1,
In other words, bounding ®(.Jy) involves bounding ®(.Jy —1).
This process repeats until Jy = 1. Since a weighted mutual
information term is bounded with other weighted mutual
information terms and it also generates new terms for the next
operation, it then forms a “chain” on this bounding process.

The lemmas and claims used in our proof are provided
below. Their proofs are relegated to Appendix A.

Lemma 2. For ®(Jy) defined in (7), Jo € [1 : J — 1], we
have the following bound

O(Jo) +
<2J7J0+1(

27 = o= (w1597, )

gy — QJo—1) * glogP + no(log P) + ®(Jp — 1)
where g, I(wo; yly), and ®(0) are defined in (8).

Proof. See Appendix A-A. The proof is based on the result
of Lemma 3. O

Our converse proof involves bounding the term ®(.Jp) that is
defined in (7). Lemma 2 shows that bounding ®(.Jy) involves
bounding ®(Jy — 1). Apparently, bounding ®(Jy — 1) also
involves bounding ®(Jy — 2). This process repeats until Jy =
1. As we can see, it forms a “chain” on this bounding process.

Lemma 3. For Jy € [1 : J — 1], the following inequality is

true
2770 (w5 97,
J+2 _ _
+ Z 2max{‘7ﬂ+1’0}ﬂ(wj;?]TJLU+1,J0|W[J'])
j=Jo+1
<27t () — 1) - glogP + no(log P)
J+2
+ Z QmaX{J_]+1’O}H(wj§37?0,,10—1|W[j])
Jj=Jo

where o, T, and I(w;; §7 o |W1;)) are defined in (8).

Proof. See Appendix A-B. The proof uses the result of
Lemma 5. O

As mentioned, the result of Lemma 2 is based on the result
of Lemma 3. More specifically, as shown in Appendix A-A,
the result of Lemma 2 is simply a new representation of the
result of Lemma 3.

Lemma 4. The following bound holds true

2M(wr; ) + Hwir1;y70) + Hwri2; 97 10)
<2W(ws; 47 -1 IWiny) + Hwss1597 51 1Wisg1))
+ w297 -1 |Wirt2))

+(ajr2 —ay+2(ay—aj-1)) - glogP+n0(logP).

Proof. See Appendix A-C. The proof uses the result of
Lemma 5. O

Lemma 4 focuses on bounding the weighted sum of
the mutual information terms I(w;y’}), I(wy41;¥%,,) and
I(wysi2;9%,5). The structure of the inequality in Lemma 4
is very similar to that in Lemma 3. In our proof, bounding
the weighted sum of the mutual information terms I(ws;y%}),
I(wsy1597%,1) and I(wri2;9%,5) also involves bounding
®(J—1), which forms the first chain in the bounding operation
mentioned above.

Lemma 5. For {1,05,03,1,i,5 € [1: K|, {1 <o < {3, i # j,
then the following bound is true

L(wi; Y3, |92, 2, Wi 1) + Lw;s G7, 102 0, Wii1)
‘hl]| )
|h52]|2
When {5,03,1,j € [1: K| and {5 < {3, then we have

<Zlog(1+ Peaan) 4 Dlog(1 4+ Poaan UL

- S n
I(w; yZ \W[i,j])+]l(wj§ yl,£3|W[j]) §0423§ log P + no(log P).
Proof. See Appendix A-D. The proof is based on the result
of Claim 1 and Claim 2. O

According to our definitions in (1) and (6), the powers of
U0 (t), ye, () and Gy, ¢, (t) are scaled with P, P2 and
P~t1, respectively. The second inequality in Lemma 5 reveals
that the sum of the mutual information terms I(w;; ye2 Wiig)
and I(w;; g; £3|W[j ) is captured by the power of g ¢, (t), the
one having a higher power. For the first inequality in Lemma 5,
the right hand side can be represented as (ay, —ay, ) 5 log P+



no(log P). This reveals that sum of the mutual information
terms 1(ws; Y 57, o, Wia 1) and L3 G, 57, o, W) is
captured by the reduced power of g, 4, (t), given the condition
Yz, ¢, in both mutual information terms. Note that the second
inequality can be considered as a specific case of the first
inequality by setting the condition as y;. , = ¢. We keep
the two inequalities in the current forms as their proofs are
slightly different.

Claim 1. For 01,05,i,5 € [1: K|, {1 < ly, i # j, it holds
true that

n|~n T, n Qyp, —Q
]I(wi,wj;yfzwg%fl,W[m-]) < §log(1 + Pz o)),

When £2,4,j € [1: K], i # j, then the following inequality is
true

- n
I(wi, wys yp, Wi 1) < g, - B log P 4 no(log P).
Proof. See Appendix A-E. O

The second inequality in Claim 1 reveals that the mutual
information term I(w;, w;; yy, |W}i,;) is captured by the power
of ye, (t). The first inequality in Claim 1 reveals that the mutual
information term I(w;, w;; yp., |97, 4, » W[i, ;1) is captured by the
reduced power of y,(t), given the condition g , in the
mutual information term. Note that the second inequality can
be considered as a specific case of the first inequality by
setting the condition as g;: , = ¢. Again, we keep the two
inequalities in the current forms as their proofs are slightly
different.

Claim 2. For {1,05,03,1,j € [1: K], {1 < ly < L3, it is true
that

_ N = n ey, |5
H(Wj;y;f£3|y?2,yg27gl,W[j]) < 5 log(l + Ppos oy %)

|hess]
When {3,05,1,7 € [1: K], {2 < {3, and Upy .0, = & then the
above inequality is also true.

Proof. See Appendix A-F. O

The inequality in Claim 2 reveals that the mutual infor-
mation term H(wj;gj;f%\yg,gg,el,w[ﬂ) is captured by the
reduced power of §j; ¢, (t), given the condition y; in the mutual
information term. Note that the other condition ﬂ?z 0 which
has lower power than y&, will not affect the bound.

V. ACHIEVABILITY

This section provides the achievability for Theorem 1. The
achievability is based on multi-layer interference alignment,
where different interference alignment sub-schemes are de-
signed in different layers associated with specific power levels.
In this scheme, the method of successive decoding is applied
at the receivers. Before describing the scheme details, we first
provide high-level explanation of the proposed scheme.

e Multi-layer interference alignment: Due to the asym-
metric link strengths, the proposed scheme consists of
K sub-schemes, with each sub-scheme designed in a
specific layer, i.e., at a specific power level (see Fig. 2).
For each of the first K — 2 layers, the design follows

from interference alignment technique. Since interference
alignment is designed across multiple layers, we call it
as multi-layer interference alignment.

— For Transmitter k, the transmitted signal is a super-
position of k signals xj 1, %2, - , 2k, dedicated
to the first k£ layers respectively, where zj ¢ is the
signal of Transmitter k dedicated to the /th layer,
for k€ [1: K] and ¢ € [1 : k] (see Fig. 2).

— For Layer ¢, the sub-scheme design for this
layer involves the design of K — ¢ + 1 signals
To, Tep1,0, T, Tor £ € [1 ¢ K]. In other
words, the /th layer (the /th sub-scheme) is dedicated
specifically to the last K — ¢ + 1 users, from Users
¢ to User K (see Fig. 2).

— For Layer ¢, ¢ € [1 : K —2], the design follows from
interference alignment technique. For different lay-
ers, the rate and power of the symbols are different.

o Successive decoding: The decoding is based on succes-
sive decoding. The idea of successive decoding is to
decode the signals for one layer by treating the lower
layers as noise, and then remove them to decode the
signals in the next layer.

— The signals decoded in one layer include the desired
signals and the interference signals that might be in
a certain form.

— To prove that the decoding is successful with van-
ishing error probability, we prove that the decoding
at each layer is successful with vanishing error
probability.

— For Receiver k, the observation for the decoding at
Layer ¢ after some processing can be expressed as
(see (41) later on)

Yo = Sk + Iio + o + 2

where Sy ¢ corresponds to the term containing de-
sired information at Layer ¢; I, represents the
interference at Layer ¢; and 7}, denotes the term
containing signals dedicated to the next layers which
can be treated as noise, for k € [{ : K], { € [1 :
K -2].

— We prove that Sy , and I} , can be decoded together
from yy ¢ by treating T}, o as noise, with vanishing
error probability when P is large. To prove this, we
show that the minimum distance of the constellation
for the signal Sy ¢ + I ¢ (defined in (40) later on)
is sufficiently larger than Tj , that is treated as
noise (see Lemma 7 and Lemma 8 later on). In the
analysis we use the Khintchine-Groshev Theorem for
Monomials (see Theorem 2 later on).

Let us first review the pulse amplitude modulation (PAM)
that will be used in our scheme. If a random variable z is
uniformly drawn from the following PAM constellation set

QEQE{Ear a€ ZN[-Q,Q1} (16)



X )

Layer 1 F&l‘ FE4,1‘ Fﬁs,l‘

xr3 T4 T TK

Layer 2 ’12,2 ‘ F3,2 ‘ P4,2 ‘ Fﬂs,z ‘
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Fig. 2. The structure of the multi-layer interference alignment. The ¢th layer
is dedicated to the last (K — ¢ 4+ 1) users, from Users ¢ to User K, for
¢ € [1: K]. For Transmitter k, the transmitted signal is a superposition of
the signals dedicated to the first k layers, and xy, ¢ is the signal dedicated to
the ¢th layer, for £ € [1: k], k € [1: K].

for some Q € ZT and £ € R, then the average power of x is

Q+1)
2Q+12:2 '

The parameter ¢ is used to regularize the average power of z.
The expression in (17) implies that

Elz|® = (17)

E|z|? <1/7, for

€<

1
(18)
VTQ
given some 7 > 1. One property for the PAM constellation is
that, given some PAM signals ¢1,co, - ,cp € (€, Q), the
sum of them is still a PAM signal such that

+enm € QEMQ).

In the GDOF analysis of the proposed scheme, we will use
the Khintchine-Groshev Theorem for Monomials', which is
stated in the following Theorem, as in [29].

c1+c+--- (19)

Theorem 2 (Khintchine-Groshev Theorem for Monomials).
Let N < M, v = (v,v2, ,on) €E RN, and g1, g2, -+ , g
be distinct monomials generated by v. Then, for any ¢ > 0
and almost all v, there exists a positive constant k. such that

K
| ;giqz-} > e (20)

holds for all (q1,qs,--- ,qn) # 0 € ZM,

Let us describe the proposed scheme with multi-layer in-
terference alignment and successive decoding, given in the
following sub-sections.

'A function f(v) is a monomial generated by v = (vl, Vg,
RN if this function can be written as f(v) = Hf\] 15
[1:N].

UN)G
*, for B; € N,Vi €

A. Multi-layer interference alignment

The proposed scheme consists of K sub-schemes, with
each sub-scheme designed in a specific layer, i.e., at a spe-
cific power level. For each of the first K — 2 layers, the
design follows from interference alignment technique [1],
[29]. Interference alignment technique was crystallized in [1]
for the K-user interference channel by using vector-space
alignment. This technique was later extended in [29] by using
signal-scale alignment (more specifically, real interference
alignment), which can be applied to the setting where the
channel coefficients are time invariant and frequency flat. In
this work, we use the real interference alignment in each of
the first K — 2 layers in our proposed scheme. The last two
layers are dedicated to two users and one user, respectively.
Thus, the design of the last two layers is very simple.

The /th layer (the ¢th sub-scheme) is dedicated specifically
to the last K, users, from Users ¢ to User K, where

K/2K—(+1, (c[l:K]. 21)

For Transmitter %, the transmitted signal is a superposition of
the signals dedicated to the first £ layers, designed as

k
T = Z W(Ek,f fOl" xk‘,l = v%,ebkw‘e (22)
{=1

for k € [1 : K], where ag =0 and zj, is the signal of
Transmitter k dedicated to the /th layer. The vector

Vit 20k 01, V602, VkeN,]" € RV (23)
will be specified later on, where Ny is designed as
N, { mEeEeD) if e 1K -2 (24a)
1 if (e[K—1:K] (24b)
for some m € Z*. The vector
b Z[bre,1,bk,e,2, 5 b, (25)

is an information vector for the /th layer, where the elements
{bs, 1} 4, are independent random variables uniformly drawn
from the following PAM constellation set?

1
b € UE=7- 5, Q@ =Q),
Qe
€l:Ny, kel:K], Le[l: K] (26)
where +y is a positive constant, and @), is defined as
A pL
Qe=P>2, (e€[l:K]. 27)
The parameter )\, is designed as
ML i pe[1:K -2 (28)
A2 Me
Qg — Qp—1 .
e f fe[K—-1:K|] (28b
K—i+1 ¢ TrEl | 28b)

A

2Without loss of generahty we will assume that P % is an integer, for
€ [1: K].When P2 5 isn'tan mteger we can slightly modify the parameter
€ in (28a) and (28b) such that P 2 is an integer, for the regime with large



for

My 2 2mBee=1) 4 (K, — 1)ymfeEe==1 _ 1 (29)

and for some small enough € > 0. As we will see later on, Ay
represents the GDoF carried by each of the symbols {by ¢ ; }i k-
In our scheme, when oy = «y_1, then the /th layer can
be simply removed without affecting the GDoF performance,
i.e., the signal x ¢ is set as 3 = 0,VEk. Without loss of
generality, we will focus on the case with ay > a1, V/.

Let us now design the vectors of vy ¢ for each layer. The
design of vy ¢ for the last two layers is very straightforward.
Note that the (K — 1)th layer is dedicated to User K — 1 and
User K, while the K'th layer is dedicated to User K only.
Therefore, we set the parameters as

VK—1,K-1,1 = VK, K—1,1 = VK,K,1 = L.

Recall that Nx_1 = Nxg = 1 (see (24b)). In the following,
we will design the vectors of vy, for the (th layer, for £ €
[1: K — 2]. For the ¢th layer dedicated to the last K, users,
we define a set of dimensions as
K K
Ve S{TTT10 B € 0:m—1]}, e[t K -2,
j=Li=t
i#]
(30)
Note that V,,, consists of N, rationally independent real
numbers?, where Ny = m®¢(Ke=1) for ¢ € [1 : K —2]. In our
scheme, we let vy, ¢ be the vector containing all the elements
in set Vg, i.€.,

t€[l:NeJ,k€e[l:K],le[l: K—-2].
(€29)

Vi = Ve (1),

Ve,m (3) denotes the ith element of the set Vp ,.

Based on our design, Lemma 6 (see below) shows that the
average power of each transmitted signal is upper bounded by
21, where 7 is a positive value independent of P, and 7 is
a positive constant appeared in (26). Thus, by setting v as a
constant that is bounded away from zero and is no more than
%, ie., v € (0, %] then the average power constraint is
satisfied, that is, E|zg|? < 1 for k € [1: K].

Lemma 6. Based on the signal design in (22)-(30), the
average power of the transmitted signal at Transmitter k,
k € [1: K], satisfies

Elzy[* < 4% (32)
where 1 is a positive value independent of P.
Proof. See Appendix C-A. O

B. Successive decoding

The decoding is based on successive decoding. The idea
of successive decoding is to decode the signals for one layer
by treating the lower layers as noise, and then remove them
to decode the signals in the next layer. The signals decoded

3We say p1,pa,--- ,pp are rationall% independent if the only M -tuple
of integers g1, q2,- - ,qar such that > ; i 1 Piqi = 0 is the trivial solution
in which every g; is zero.

in one layer include the desired signals and the interference
signals that might be in a certain form.

Let us first focus on the decoding for the first K — 2 layers,
and then discuss the decoding for the last two layers. For the
(th layer, ¢ € [1 : K — 2], based on the above design of multi-
layer interference alignment, at Receiver k, k € [¢ : K], the
interference signals can be aligned into a set of dimensions
denoted by Zj, 4, for

Tk =
U { n T hfj;w;5”-e[o:m—u}U{vg,m\{u}
le[t:K 4,jE[:K])
14k i#]
(4,5)#(k,0)

(33)
which satisfies Zj, o C Vg m+1 and
|Th o] = mBee=) (K, — 1)ymIeEe=D=1 1 — ppp— Ny

while the desired signals lie in a set of dimensions denoted
by Sk, for

K K

Sk,e = hgpVem = {hkk H Hhﬁj (P €[0:m— 1]}
j=ti=t
£

(34)
which satisfies
|Sk.e| = mBeEe—1) — Ny.

Note that hyy, is not appeared in the dimensions of 7y, ,. Also
note that hyy is appeared in each dimension of Sy . It then
implies that all the dimensions in Zj ; U S ¢ are rationally
independent.

For the successive decoding at the ¢th layer, £ € [1 : K —2],
at Receiver k, k € [¢ : K], the goal is to decode the desired
information vector by ¢ (see (25)), as well as the interference
at that layer, given that the decoding of the previous layers is
complete. For the /th layer, ¢ € [1 : K — 2|, assuming that the
decoding of the previous layers is complete, then Receiver k,
k € [¢ : K] has the following observation (removing the time
index)

-1 K
Yt = Yk — ZZ VPor—-1hyvi by (35
=1 j=l

side information from previous layers

where the term of Zf;ll Zf:z VPor=e-thy vl by is con-
structed from the side information about desired signals and
interference obtained from the decoding of the previous layers,



with 320 ;20 for any s; € R. When ¢ = 1, this term is
zero. Let us expand yy, » from (35) to the following expression:

K K

=1 j=I
(-1 K
— T
= 2D VPu T gl by
=1 5=l
K
— T — T
= mhkkvk,ebk,z + E \/Imhkjvj’zbﬂ
A . . j=¢
= Sk,¢, desired signal j#k

A . o
= I ¢, interference

K K
DD WL T

I=0+1 j=I

(36)

A .
=T}, ¢, treated as noise

where

A — T
Sk =V P ==1hprvp b,
K
A — T
Lo 2y VP thy ol b,
=t

J#k
K K

ot SV b

I=0+1 j=I

(37

forke[l: K], € [l: K —2]. From the above expression,
Yr,e can be expanded into four terms: Sy ¢, Iy ¢, Tr e and
noise. For Receiver k, S, ¢ corresponds to the term containing
desired information at Layer ¢; I, , represents the interference
at Layer ¢; and T}, denotes the term containing signals
dedicated to the next layers, which can be treated as noise.
The term Sy ¢ can be rewritten in the following form

[Sk,el
Sk, =YV Pk 1= Z Ske(1)qr,e,i
i=1
for qre1, - Qres.. €[-Qe: Qe  (38)

where @)y and A\, are defined in (27), (2A8a) and (28b). From
20

(26) it holds true that gx i = brei - £ € [~Qu, Qu, for

i €[l:NgJ,kell: K| Le[l: K — 2] Similarly, the

interference term Iy , can be expressed in the form of

|Zk, e

ka :ﬁy\/Pak—aef1—/\e Z ij(i)q;’g?i
=1

otz € [ EKeQe 1 KeQe] (39)

Note that, if the PAM signals lie at the same dimension,
the sum of PAM signals is still a PAM signal. In the above
expression, q;€7 ¢, represents the sum of the normalized PAM

/
fOI‘ qk,é717...

signals (normalized by fyP_%) lying at the dimension Zj, ¢(3),
and thus qllc,Z,i S [—KgQg : KgQg] for i € [1 : |Ik,£H,
kel[l:K|¢e[l:K-—2] In this layer, the goal is
to decode k.15 " 7qk,€,‘5k,e|ﬂq;c,é7l7 T 7q;€_’[7|1k1£| from Ykl
by treating T} ¢ as noise.

Let us now focus on the minimum distance of the constel-

lation for the signal Sy, ¢ + Ij ¢, which is defined by
dmin (k, 0) 2 min ,
G157 54k, 6,1Sy o1 9k,0,1 " k0,1 Ty, 4
Gk, 0,15 3k 0, |5 0| E[—Qe:Qr]
CIVRTRE ’q;c,z,\zk,“e[*KeQeiKzQz]
(2,15 k0,18 o1k, e,1" 7q;C,g,\zk)(‘)7é(0,O,-~~ ,0)

|Sk,el [T, e
vV Pok—ar1=X¢ ‘ Z Sk,e (1) qhye,i + Z Lo (1) 0.4
i=1 i=1

(40)

for k€ [{: K], ¢ € [1: K — 2]. For the minimum distance
dmin(k, ¢) defined in (40), Lemma 7 (shown at the end of this
section) provides a result on its lower bound. On the other
hand, for the term T}, o appeared in (36), Lemma 8 (shown at
the end of this section) provides a result on its upper bound.
Let us go back to the expression of y;, ¢ (see (36)), that is,

(41)

Yo = Sk + Iie + o + 2k

for k € [¢ : K], £ € [1 : K — 2]. From Lemma 8, T},
is upper bounded by Ty, < P~z * - 6}, where 6 is a
positive value independent of P. From Lemma 7, the minimum
distance of the constellation for the signal Sy, + Iy, is
lower bounded by dpin(k,?) > K’ Pw, for any small
enough ¢, > 0, where «’ is a positive constant. Therefore, one
can easily show that gk ¢,1, "+, Qr,e,[Sy o Dp1s """ 7q;€’e3|1k,2|
can be decoded from y, by treating T}, as noise, with
vanishing error probability as P goes large. See Appendix D
for the discussion on how to prove the error probability to be
vanishing through an example. Since the error probability at
this layer is vanishing, this decoding error will not propagate
to next layers. At this point, at Layer ¢, the information vector
bi¢ is decoded at Receiver k, and the interference Ij , can
be reconstructed by Receiver k£ with the side information of
Qo1r ’qf;%&\lk,z\’ forke[(:K|,lel: K—-2].

Once the decoding at Layer ¢ is complete, Receiver k
removes the reconstructed Sj , and Ij, o from y; ¢, and then
moves onto the decoding at the next layer, i.e., Layer (£ + 1),
forke[{+1:K],{+1€[2: K—-2].

The decoding at the last two layers is very straightforward.
Note that the (K — 1)th layer is dedicated to User K — 1 and
User K, while the K'th layer is dedicated to User K only.
Recall that, Ngy_1 = Ng = 1, VK-1,K-1,1 = VK,K-1,1 =
vk, k1 = 1, and

1
TK-1,K-1 = bK—l,K—l,l S Q(§ =" ma Q = QK—l)
1
TrKk-—1=brKr-11 €UE=7- Ory’ Q=Qk-1)
1
T =bk k1 € Q=" Or’ Q =Qk)

(ag_1-ag_2)/2—¢ AR —OK_17¢€

for Qg_12P z and Qg 2P P

Once the decoding of the first K — 2 layers is complete, both
Receiver (K — 1) and Receiver K remove all the intended
signals and interference signals dedicated to the first K — 2
layers from the corresponding received observations. After



that, for the (K — 1)th layer, the decoding problem is simply
equivalent to decoding two symbols at a 2 x 2 interference
channel with sum GDoF ax_1 — ax_9, where the SNR of
this channel is P*¥-17*K-2_QOne can easily show that this
two symbols can be decoded at both Receiver (K — 1) and
Receiver K with vanishing error probability as P goes large.
After that, Receiver K removes the decoded symbols and then
decodes its only one symbol at the last layer. At this point,
the whole decoding is complete.

After successive decoding for all the layers, Receiver k,
k € [1: K], is able to decode all the following PAM symbols

1

., Q=P%),
€[l:k

brei € UE=1-
Viell:

M‘N

P>
N, ¢ (42)

where )\, is defined in (28a) and (28b). Since by ¢; is inde-
pendently and uniformly drawn from the corresponding PAM
constellation Q(§ = - - Q = p¥

the following amount of blts of information

A[ , ) then by ¢, carries

H(by ) = log(1+2P%) = % log P+ o(log P)  (43)
forie[l: Ny, £e[l:k], kel: K] Bysumming up all
the amount of information carried by all the symbols from all
the users, and considering that those symbols are sent over a
single channel use, it implies that for almost all realizations
of channel coefficients the following sum rate is achievable

when P is large

K
Ryum = Z Ry,
k=1

K k N
=20 D Hbes
k=1 (=1 i=1
K k N,
ZZZ —logP—i—o(logP)) (44)
=1¢=1 i=1
K K
Ny
:Z £ ZlogP—}— o(log P)
(=1 k=¢
ENM(K —0+1)
=y = 5 log P + o(log P)
=1
K-2 Qp—Qp—1
Ny(K—-/+1 —€
= el ;( M, )logP
=1
Q(AK-1—K-2 _
+ ( 22 )1ogP
+ WlogP+o(log P) (45)
where (44) follows from (43). Recall that \, = o“_nizz’l —€
if Cel: K—2),and Ay = %92 —cif £ e [K —1: K],

For the sum rate expressed in (45), by dividing each side with
%logP and letting P — oo and € — 0, it reveals that for

almost all realizations of channel coefficients the following

sum GDoF is achievable
K—2

dachzevable( )

sum

(46)

+ +axg —akg-1.

Note that when ¢ € [1 K — 2], Ne
mEe(Kg—1) . 21

oK iR =D } (Ky 1) mKe K= D=1 1 which converges to 5 for

large enough m. Therefore, for large enough m, the achievable

sum GDoF expressed in (46) can be simplified as

we have

K-2
dgucnllmeuable(a) _ Z (K — L+ 1)2(04@ - af—l)

=1
2(ap_1 — ag_
(O =o)L
K
:Zk=1 Qg +20¢K — QK1 (47)

which holds for almost all realizations of channel coefficients.
At this point, we complete the achievability proof for The-
orem 1. The two lemmas used in the GDoF analysis are
provided below.

Lemma 7. Consider the minimum distance dpin(k, £) defined
in (40). For almost all realizations of channel coefficients, and
for any small enough e; > 0, there exists a positive constant
k' such that

ﬂk—ze'*'ée

dpin(k, 0) > K'P

forke[l:K] fel: K-2].

Proof. See Appendix C-B. The proof uses the result of
Khintchine-Groshev Theorem for Monomials. O

Lemma 8. For the term T}, o defined in (37), it can be upper
bounded by

T <PTT 5 Gy

where 0y, ¢ is a positive value independent of P, for k € [{ :
K|, te[l: K-2]

Proof. See Appendix C-C. [

VI. CONCLUSION

This work considered the K-user asymmetric interference
channel, where different receivers might have different channel
gains, parameterized by 0 < a3 < ag < --- < agk. For

this channel, we characterized the optimal sum GDoF as
S artax—ax—_1

deum = . The achievability is based on
multi-layer interference ahgnment and successive decoding.
For the the converse of this asymmetric setting, it involves
bounding the weighted sum GDoF for selected J + 2 users,
J € [L: [log &£7], which is very different from the case of the
symmetric setting that only requires bounding the sum DoF
for selected rwo users. The result of this work generalizes the
existing result of the symmetric case to the setting with diverse
link strengths.



APPENDIX A
PROOFS OF LEMMAS 2, 3, 4 AND 5, AND CLAIMS 1 AND 2

Recall that

K
Tie (1) 2VPY i (t) + Z0(t)

d(Jy) é2‘]*‘]0+1]1(wj0; v7,)

J+2
+ Y 2O g, (W)
j=Jo+1
do=0, =20,  gro=¢,  L(w;gte[Wy) 20,5,

I(wo;y%) 20, and ®(0)20 for Jo € [1
J € [1: [log £7] (see (6), (7) and (8)).

J — 1] and

A. Proof of Lemma 2

The proof is based on the result of Lemma 3. Specifically,
Lemma 3 reveals that

D(Jy) §2J—J0+1(04J0 —Qgy-1)- glogP + no(log P)
J+2
n Z 2max{J—J+1ao}H(wj;g?o7jo—1‘W[j])

Jj=Jo

for Jo € [1: J —1]. By adding 27~ o=+ (w1597 )
into both sides of the above inequality, we have

®(Jo) + 277 w5y )
§2J—Jo+1(0”0 _ @‘Iofl)g log P + no(log P) + ®(Jy — 1)

which completes the proof of Lemma 2 .

B. Proof of Lemma 3

The proof will use the result of Lemma 5. At first, we note
that the following equality is true

277 (w05 7))

J+2
+ Z 2max{J ]+170}]I(wj; y?OJrLJO |W[]])
j=Jo+1
J+2
_ Z 2max{.]—]+170} (]I(’UJJO ; ygo) =+ ]I(wj§ 11790+1,Jo ‘W[J]))
j=Jo+1
(48)

by using the identity of Z;}ii 41

for Jo € [1: J — 1]. For the sum of two mutual information

—7+1 — 1
2max{J Jj+1,0} — 2J Jo+ ,

terms in the right-hand side of (48), given j € [Jo+1,J +2],
we have
W(we; ¥5,) + 1wy 9 1,001 W)
<U(wao3 Y5 Gy 00— 10 Wi do])
+ L(w;s 55 11,500 T30 01 W)
=1(w.1e5 97,7011 W.501) HI(w55 55, 501 W)

(49)

SH(W,JO;QS‘O,JO,JW[JO])
+ Wwi; Y5155 g0 -1 Wi, so])
+ W(wy; 9, 11,0097, 70—15 W[j])
<W(wo; T3 g0—11Wiae) + Lwys 35, 701 [W)

n
+ (gy — gp—1) - 3 log P + no(log P)

(50)

(G

where the step in (49) follows from the fact that adding more
information does not reduce the mutual information; the step in
(50) uses chain rule and the fact that the messages are mutually
independent; the step in (51) follows from the derivation of
H(wJo; gTILmJOfl |I/_[/[j,J0]) < H(wJo; g?U7J071, Wi ‘W[]Jo]) =
I(wye; 9%, 7o—11Wis)) and from the result of Lemma S,
which  reveals  that  T(wy; 975 |95, 50—1 Wiia)  +
L(ws; 97 150197, 70—1 W) < (g — @go—1) - 5 log P +
no(log P).
By incorporating the result of (51) into (48), it gives

27 =T (g, ; v7,)
J+2 4 _
+ 0y 2SI s g 5 W)
j=Jo+1
J42 _ _
< Z gmax{J—j+1,0} (H(wJo;fQ?O,JD—ﬂW[Jo])
j=Jo+1
+ L(wy; 5, 70 -11W51)
+ (agy — OlJo—l)% log P + no(log P)) (52)
=271 () — gy _q) - glogP + no(log P)
J+2 ‘ _
+ Z 2maX{J_J+1’O}H(wj;g,T]LO,J071|W[j]) (53)
Jj=Jo

whereJ(SZ) is from (51) and (48); (53) follows from the identity
2 max{J—j —

of Y2715 2maxl =10} = 97 =Jo+ 1 for Jy € [1:J —1].
Then, we complete the proof of Lemma 3.

C. Proof of Lemma 4

The proof will use the result of Lemma 5. In the first step,
we expand 2I(w;y7}) as follows

2(wy;yYy)

<Wwr; 95,55 51, Wigas1) + Wwrs 65,55 51, Wisu42)
(54)

=Wws; 55 7 1 Wiggs1) + Wwss 45 71 Wi, s42))

+ Wwr; Y5195 71 Wiga1) V1w Y3195 51 Wia,s421)
(55

<Wwy; 55 51 W) + Lwr; 75 51 W)

+ Wwrs Y5155 71 Wiag1) 1w y51575 721, Wigs42)
(56)



where (54) follows from the fact that adding more information
does not reduce the mutual information; (55) uses chain rule
and the fact that the messages are mutually independent; and
(56) results from the derivation that I(w,; 37 ;_ 1\W[ 50) <
Wwy; 97 - 1w Wigg) = H(vayJ7J—1|W[J]) for £ € [1

K|, t#+J.

In the second step, we expand I(wji1;y5.;) +
[(w42;y7,o) as follows

Hwst159741) + Hwri2;y742)
<(wyjy1; y?+17 1‘79+1,J7 W[J+1,J+2})
A 1w 12; YT 425 U7 41,05 Wirva)) (57)
=M(wys15 87 11,5 Wirsr,a42) + Hwreas 774 s Wigsa)
+Wwy159741197 41,05 W[J+1,J+2])
+ w297 42197 41,05 Wist2)
<Wwss1: 95415505 71> Wi+2|Wiss1,042))
+ W(wyg2; 55415505 711 Wis42))
+Wwy159741 197 41,05 W[J+1,J+2])
+H(wis2;y7,0 |37JL+1,J7 W[J+2])
=I(w, 155771 W) + 1w, 235551 Wis42)
+ Wwyg15 851 7135 71, Wiss1)

(58)

(59)

Wwyt2; G541, 7195 71, Wigt2))
+ wr ;9541195 41,0 Wiss1,042)
I(wr2; 9T 42|07 11,0 Wiss2) (60)

<(aji2—ay)- glogP + no(log P)

+ (w1355, Wirsap) + Hws 23 55,51 [Wis42)
+wr 159741 197 -1, Wiss1)

+ Hwyt2; 95 41,7197.5-1 Wirs2) 61)

where (57) and (59) result from the fact that adding more
information does not reduce the mutual information; (58)
and (60) use chain rule and the fact that the messages
are mutually independent; (61) follows from the result of
Lemma 5, that is, [(wjy1;9519% 1.0 Wissi,s42) +
Wwri2:97 40097 11,0 Wirwe) = Hwrri 954419010,
W[J+1,J+2]) + ]I(wJ+2§"J§L+2,J+2|y3+1,J’W[J+2]) <
(ajy2 —ay) - §log P+ no(log P).
By combining the results of (56) and (61), we have
2l(wy;y7) + w13 y741) + L wir2;y740)
<L2M(ws; 47 -1 IWin) + Wwre15 97 5-11Wisg1))
L(wyt2; 97 7-1IW+2)
Wwss 7197 7-1: Wia,741))
+ (w13 9741,5197 -1, Wiasy)
w9797 7-1s Wia.+2)
+wr2; 9741 197 -1, Wiss2)
log P + no(log P)

+(agy2 —ay) - % (62)

<2l(w; gTJL,J71|W[J]) + H(wyi1; 279,,]71|W[J+1])
+ w2597 7-11Wiy42))
+ (ay —ay-1)- glogP + no(log P)

+ (ag—ay_1)- glogP + no(log P)

+ (agp2 —ay) - g log P + no(log P) (63)

where (62) is from (56) and (61); (63) follows from Lemma 5.
At this point, we complete the proof of Lemma 4.

D. Proof of Lemma 5
The proof will use the result of Claim 1 and Claim 2. When
Uy, 0o, 03, 1,0,5 € [1: K], €1 < €y < {3, i j, we have
Wws; Y 107, 00> Wiing)) + Hwss 91,102 60 W)
<I(ws; Y3, 155, 0, Wiing)) + L(wss 07 e, Y 1G04 00 Wigp) - (64)
=L(wss Y, 192 00 W) + (w53 Y, 192, 0, W)
+ 1wy G Y2 b Wii)
= (ws, wj Yg |Gy 0> Wi, ) + 1(w55 07, 1905 G 0> W)

<2 log(14+P %02~ 1) S%log(1+Pa‘~’3_“‘32 %)
<2 log(1+ P20 + T log(1 4 P~ L
2 2 |hfzj|2

(65)

where (64) uses the fact that adding information does not
reduce the mutual information; and (65) follows from Claim 1
and Claim 2.

Similarly, when o, ¢3,1,5 € [1: K] and {5 < {5, we have

(w5 Tes W)

L(wys ity Yin W)

L(wy; v |Wig) + Lwy; Gites vy, W)
= H(wwwjvyélei,j]) H(’LUJ';:IJZLESWZ,WU])

H(szyZ\W[i,j]) +1
H( 172/72\W[i,j)
H(wlvyfz‘W['L )

<oy, -5 log P+no(log P) <n log(1+Pa[3 —agy ‘lhhel;]‘ﬁ)

‘hl1| )

|h52J |2
(66)

<ay, - g log P + no(log P) + — 1og(1 + PXs T L

=ay, - g log P + no(log P)

where (66) follows from Claim 1 and Claim 2. Then, we
complete the proof of Lemma 5.

E. Proof of Claim 1
When 01, 0s,i,5 € [1: K], {1 < {3, i # j, we have

I

—~

Lom |~ T
Wi Wy Y | T2y 00 Wig)

:h(yZ |2??2,z1 ) V_V[i,j]) - h(y@ |?3?2,el ) V_V[i,j]a Wi, wj)

=h(ys, 95, 6, Wiij)) — hizg,)

=h({ye, (t) = VP~ Gy 0, () 11|00 0, Wiang)) — h(27,)
=h({ze, (t) = VP2~ Zg, ()} |97, 4, Wi 1) — h(22,)
<h({ze, (t) — VP27 2, () }/1) — h(zp,) (67)
:g log(2me(1 + P*2~%1)) — % log(2me)

=3 log(1 4 P2 )



where (67) follows from the fact that conditioning reduces
differential entropy.

When /lo,4,j € [1: K], i # j, we have

I(wi, w53 97, | W)
:h(y?2 |W[i,j]) - h(Z?Q)

1 = n
=D _hye,(®)lyg, ' Wi jy) — 5 log(2me)
t=1

h(ye, (1)) = h(z,)

K

log(2me(1 + P> 3 ek ) — 5 log(2re)
k=1

% log P + no(log P)

-

~
Il

1

< (68)

1\9\3

:aez .
where (68) uses the fact that Gaussian input maximizes the
differential entropy. It then completes the proof of Claim 1.

F. Proof of Claim 2

When fl,fg,gg,l,j S [1 K], {1 < €y < l3, or when
Uy, U, 1,5 € [1: K], la < {3, Up, 0, = ¢» we have

L(wy; G1'e, Yty T 0 W)
(yz Ls |yi2v yig,él ) W[g]) (
({\/ﬁhljxj + Zo, t)

[{VP % heyya;(8) + 20, (¢
= ({VPhyya; (1) + 2, (1)
VP M (/B g 1

. t) + 20, (t) )}t 1 |
£2]
{\/ P0%2 he2]$7(t) —|— Zgz t }:L 1 ggz,fl’W[j]) - h(gz«})

Sh({gfg (t) A /Paég—alg 2[2 }t 1) h Zlg (69)
ey —aey 1P |
51og(1+P t3 =0y Ihelj |2)

where (69) follows from the fact that conditioning reduces
differential entropy. It then completes the proof of Claim 2.

g [3‘y[2’y[2,[17W[]]7w_7)
)}t 1’y€z,€1’W[J]) —h(zf,)

APPENDIX B
PROOF OF COROLLARY 1

We will first prove Corollary 1 for some specific cases
in order to get some insights. After that, we will prove
Corollary 1 for the general case. The proof is based on the
result of Lemma 1. At first we define that J,, £[log £7 and

that
. > Jm
o) 2 { x if z>2 (70a)
0 else . (70b)
Recall that (see (8))
do20, ap20. (71)

In our proof, a total of 2/ bounds are required. Among those
27/m bounds, the first 2/~ bounds have a specific structure.
The last 2/~ bounds have a similar structure but some
elements with certain indexes are erased (set as zeros).

A. Proof for the case with K = 8

From Lemma 1, the following bounds hold true

4dy + 2d3 + d7 + dg < 201 + ag + ag
4dy + 2d3 4+ d7 + dg < 2a5 + a3 + ag
4dy + 2dg + d7 + dg < 204 + 06 + g
4ds + 2dg + d7 + dg < 205 + o + 3.

By summing up the above 4 bounds and dividing each side
S Rei artas—ar

with 4, it gives dym(a) < =15
B. Proof for the case with K =9

The result of Lemma 1 reveals that

8d1 + 4ds + 2d7 + dg + dg < 4oy + 205 + a7 + g
8do + 4ds + 2d7 + dg + dg < dag + 205 + a7 + g
8ds + 4dg + 2d7 + dg + dg < das + 206 + a7 + g
8dy + 4dg + 2d7 + dg + dg < 4oy + 20 + a7 + g

dg +dyg < Qg
dg +dg < Qg
dg + dg < Qg
dg +dg < Q.

By summing up the above 8 bounds and dividing each side
with 8, we have dgm(a) < M

C. Proof for the case with K = 10

The following bounds are directly derived from Lemma 1

8dy + 4ds + 2d7 + dg + d1o < 4oy + 2a5 + a7 + g
8ds + 4ds + 2dy + dg + dig < das + 2a5 + ar + aqg
8ds + 4dg + 2d7 + dg + dio < 4das + 206 + a7 + a1
8dy + 4dg + 2d7 + dg + d1o < 4oy + 206 + a7 + aqp

2dg + dg + d1g < ag + Qg
2dg + dg + dig < ag + Qg
2dg + dg + d1p < ag + aqo
2dg + dg + d1g < ag + aqp.

By combining the above 8 bounds it gives dym(a) <
ity oxtalo—ag
2

D. Proof for the case with K = 13
When K = 13, the following bounds are directly derived
from Lemma 1
8d1 —+ 4d5 + 2d7 + dlg —+ d13 S 40[1 + 2045 —+ (64 —+ 13
(72)
8d2 —+ 4d5 —+ 2d7 —+ dlg —+ d13 S 40[2 + 2045 —+ (64 —+ 13
(73)
8ds + 4dg + 2d7 + dy2 + di3 < 4dagz + 206 + ar + a3
(74)
8d4 —|— 4d6 + 2d7 + d12 + d13 S 40[4 + 20&6 —|— [6%4 —|— 13
(75)



4dg + 2d11 + di2 + dis < 2009 + 11 + 13

(76)

209 + 11 + 13
77

2010 + a11 + ai3
(78)
8dg + 4d1g + 2d11 + di2 + di3 < dag + 2010 + @11 + 13-
(79

4ddg + 2d11 + di2 + di3

IN

4dio + 2d11 + di2 +diz <

The above 8 bounds reveal that dgm(a) < w
E. Proof for the case with K = 16
When K = 16, the following bounds are directly derived
from Lemma 1
8y + 4ds + 2d7 + di5 + dig < 4oy + 205 + a7 + 6
8dy + 4ds + 2d7 + di5 + dig < das + 205 + a7 + agg
8ds3 + 4dg + 2d7 + di5 + dig < 4das + 206 + a7 + a6
8dy + 4dg + 2d7 + dis + dis < 4oy + 2066 + a7 + 6
8dg + 4d12 + 2d14 + di5 + dig < dag + 2012 + 14 + Q16
8dg + 4d12 + 2d14 + dis + dig < dag + 212 + a4 + Q16
8d10 + 4d13 + 2d14 + di1s + dis < dang + 2013 + 14 + 16

8d11 + 4diz + 2d14 + dis + dig < 4oy + 2003 + oig + a6

16 _
It then implies that dgm () < w

In the following we will prove Corollary 1 for the general
case (K > 3) by using the result of Lemma 1. Note that when
K = 2, the proof is straightforward.

E. Proof for the general case

In our proof, a total of 27m bounds are required, which can
be seen in the previous examples. Among those 27 bounds,
the first 2/ ~! bounds have a similar structure. Specifically,
when £ € [1 : 2771, the (th bound takes the following form

T —1
Jm—J _
2 2 ey amer +dro F i
=0
Jnl_l
Im—3j—1 )
<2 2 gy etk (80
=0
Note that in the above expression, we define that

Sy 2/m 120, When £ € [27m~1 41 :2/], the th bound
takes the following form

Im—1

E 9Im=J . ¢ ) .
O(K —1-27m +[(£~2Im=1) /27 1+57]_, 27m 1)
Jj=0

+dg_1+dg
Im—1

Im—j—1 )
S Z 2 . a@(K—1—2"m+f(4—2"m*1)/2j1+2z7:1 2Jm—l)
=0

+ ag

where O(e), dy and « are defined in (70a), (70b) and (71).
The last 27m~1 bounds have a similar structure as the first

1)

27m =1 bounds. However, with our design in (81), we enforce
some dg(e) and ag(e) to 0 when the corresponding indices
are less than 27, For example, when K = 13 and J,, =
[log 57 = 3, the first 2/»~1 = 4 bounds are exactly the
same as in (72)-(75), while the last 4 bounds are expressed as

8de(s)+4dg+2d11+d12+d13 <dag(s)+ 2a9 + 11 + 13
(82)

8de(6)+4dg+2d11+d12+d13 <dage)+ 209 + 11 + 13
(83)

8de(7)+4d1o+2d11 +di2+di3 <dagr)+ 2a10 + a11 + a3
(84)

8dg+4di9+2d11+dia+di3 <4dag+ 2a19 + o171 + Q13
(85)

where d@(5) = d@(ﬁ) = d@(7) = O0g(5) = Oé@(@) = Qg(7) = 0.
The bounds in (82)-(85) can be rewritten as in (76)-(79).
Note that, for the left-hand side of the above 2™ bounds,
the total weight of dj, is 2/, Vk € [1 : K]. For the right-
hand side of the above 2™ bounds, the total weight of oy
is 2/==1 Wk € [1 : K — 2]; the total weight of af is 277
and the total weight of ax_; is 0. Therefore, by summing up

the above 2/ bounds and dividing each side with 27, the
K
< ket ak"‘;K_O‘K*l

following bound holds true dgm(cx)
which completes the proof of Corollary 1.

APPENDIX C
PROOFS OF LEMMAS 6, 7, 8
Recall that, when ¢ € [1 : K — 2], we have
|Ik,€| = mEe(Ee=1) o (K, — 1)mK/z(Ke—1)—1 -1, |Sk,€| =
mEeEe=1) )\, = W—Taj—l — €, My 2 omEe(Ee=1) 4 (K, —
DymfeBKe=D=1 1 N, = mKeKe=1) "and Ky = K — £+ 1.

A. Proof of Lemma 6
From the design in (22)-(30), the average power of trans-
mitted signal at Transmitter k, k € [1 : K], is bounded by

k
E|3;‘k|2 = Z P_W’IELCL']C,AQ
=1
k
= Z P_ae’1E|’UZ7€bk7g 2
=1

Ny

k
:Z pree Z vk,e,il* - Elbg,eil?
=1

=1

(86)

Ny

k 2
1
=S P S ol Q@ +1)
=1

(87)
pa 3Q7

N,

k
SZP—O(Z—I Z ‘vk,l,i|2 . 72
=1

i=1

(88)

k Ng

<y? Z Z ok, e,i?
=1 i=1
kY N

YD okl

/=1 i=1
=7

(89)



where

k' Ny k* N,
—argmaXZZ|vk/“| and néZZ|U;€*Li|2.

krell:K] y 2 i1 =1 i=1

Note that 7 is a positive value independent of P. The step in
(86) uses the fact that the symbols {by ¢}k are mutually
independent, based on our signal design. The step in (87) is

from the result of (17), given that by, ¢ ; € Q({ = - é, Q=
Qe), fori e [1: Ny, 0 el:k],ke[l: K| (see (26)).
The step in (88) uses the identity that % < igé <1

The step in (89) follows from the fact that P=“¢-1 < 1 for
¢ € [1: K]. At this point, we complete the proof of Lemma 6.

B. Proof of Lemma 7

Since the elements of Sy, and Zj , are monomials gen-
erated from the channel coefficients (see (33) and (34)), the
minimum distance dpin(k, ¢) defined in (40) can be bounded
by using the Khintchine-Groshev Theorem for Monomials (see
Theorem 2). Specifically, the Khintchine-Groshev Theorem for
Monomials reveals that, for any small enough ¢’ = ¢ > 0, and
for almost all realizations of channel coefficients, there exists
a positive constant « such that

e
(KEQ£)|Sk,e|+‘Ik,z|fl+e
[gyyp(ak_al—l)/Q
= PAe/2 . (KEP/\g/2)Mz71+E
Ky plar—ae_1)/2
- KMt ' (PAe/2)Mete

dmin(k7 6) Z

ap—ag_1—(ag—ap_q)

Ry 2

= I oMy—1+e
KZ

ap—op_q
Pfé'(M@Jref v )
ap—optey
2

=k'P (90)

for ke [¢: K|, ¢ [l: K — 2], where ¢ and ' are defined
as
Qp — Qy—1

M,

Ky
My—1+€"
KZ

[I>

e e(My+e— ),

Note that the value of x’ is positive and independent of P,
and ¢, is positive, V¢ € [1 : K — 2|, given that € > 0. It then
completes the proof of Lemma 7.

C. Proof of Lemma 8
For the term T}, , defined in (37), it can be bounded by

K K
Teo= Y Y VPo=othyv] by,
l—Z+1 j—l
Z ZVP% o lhkﬂzvﬂll i
1= e+1J !
< Z Z,/Pak ap— 1|hk]‘Z|’U],ll|fy (91)
1= (+1] 1

< Z ZVPO”“ ae|hk1|2|”111|’7

1=0+1 5=I

K N;

=V PRy Z ZZIh’C7HU]Jl|

I=t+1 j=1 i=1
=V Pok—ae . 5k,£
for k € [¢ K], ¢ e 1 K — 2], where

5H 721 Z+IZJ ZZ 1 |hijlvjis| and the value of 0y ¢
is independent of P. The step in (91) uses the fact that

bjei < v, given that by p; € Q€ = v - J, Q = P )

forie[l1: N, ke[l: K|, lel: K] (see (26)). At this
point, we complete the proof of Lemma 8.

APPENDIX D
DISCUSSION ON COMPUTING ERROR PROBABILITY

For the proposed scheme described in Section V, with suc-
cessive decoding we can ensure that the decoding at different
layers has vanishing error probability when P goes large.
Specifically, In our scheme, Lemma 7 and Lemma 8 have
showed that the minimum distance of the constellation for the
signals at each layer is larger than next layers’ signals that are
treated as noise. The results of these two lemmas ensure that
the decoding error at each layer is vanishing. In this section
we show how to prove the error probability to be vanishing
through an example.

Let us focus on the following simple example. We consider
a signal observation given as

y:131+172+1173+2 (92)

where z; € &; denotes the signal at the ith layer and z ~
N(0,1) is a Gaussian noise, for X; being a discrete set, i =
1,2, 3. We consider successive decoding, that is, x; in the ¢th
layer is decoded by treating other signals as noise and then the
decoded z; will be removed from the observation. We assume
that the minimum distance of the constellation for the signal
x1 € A&}, denoted by dpiy, is lower bounded by

dmin > 2Pa+€ (93)

for some o > 0 and € > 0. We also assume that the signal
9 + x3 is bounded by

|$2+$5| SPQ (94)

Then we can show that the error probability of decoding
x1 € X1, denoted by Pr[zy # #1], is vanishing as P goes
large. Specifically, the error probability of decoding z; can be
computed as

PI’[CL‘l 75 {,i‘l]

= Z PI‘[{L‘l = Xl] . Pr[ml #* :ﬁ1|£61 = Xl}
X1 €EX

< Z Priz; = x1] - Pr[|zs + 23 + 2| > diin/2]
x1€X1

< Pr[|og 4 @3 + 2| > dmin/2]
< Pr[z > —(x9 +x3) + dmm/Q]
+Prlz < —(z2 + 23) — dmin/2]
< Pr[z > —P% 4 dmm/ﬂ —|—Pr[z < P — dmm/ﬂ
= Pr[z > —P%+ dmin/Q} +Pr[z > —P% + dmin/Z]

95)



=2-Pr[z > —P% + dyin/2]
=2 Q(dmm/Q — PO‘)
<2-Q(P(P-1))

P2a (Pe _ 1)2
<ol 1)

2

where 2 is the estimate for 21 by choosing the closest point in
X, based on the observation y; and x; denotes the realization
of x1; (95) uses the assumption igl (94); the Q-function is
defined as Q(a) £ \/% [ exp(—2)ds; (96) results from the
the assumption in (93); (97) follows from the identity that
Q(a) < Lexp(—a?/2), Va > 0. At this point, from (97) it
can be concluded that

(96)

o7

Prlz; #31] =0, as P — o© (98)

under the assumptions of (93) and (94). The assumptions
of (93) and (94) imply that the minimum distance of the
constellation for the signal z; at the first layer is larger than
next layers’ signals that are treated as noise. In our scheme,
Lemma 7 and Lemma 8 have showed that the minimum
distance of the constellation for the signals at each layer
is larger than next layers’ signals that are treated as noise.
Therefore, in our scheme it ensures that the decoding error at
each layer is vanishing when P goes large.
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