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Multi-layer Interference Alignment and GDoF of
the K-User Asymmetric Interference Channel

Jinyuan Chen

Abstract—In wireless networks, link strengths are often af-
fected by some topological factors such as propagation path loss,
shadowing and inter-cell interference. Thus, different users in the
network might experience different link strengths. In this work
we consider a K-user asymmetric interference channel, where
the channel gains of the links connected to Receiver k are scaled
with

√
Pαk , k = 1, 2, · · · ,K, for 0 < α1 ≤ α2 ≤ · · · ≤ αK . For

this setting, we show that the optimal sum generalized degrees-
of-freedom (GDoF) is characterized as

dsum =

∑K
k=1 αk + αK − αK−1

2

which matches the existing result dsum = K
2

when α1 = α2 =
· · · = αK = 1. The achievability is based on multi-layer inter-
ference alignment, where different interference alignment sub-
schemes are designed in different layers associated with specific
power levels, and successive decoding is applied at the receivers.
While the converse for the symmetric case only requires bounding
the sum degrees-of-freedom (DoF) for selected two users, the
converse for this asymmetric case involves bounding the weighted
sum GDoF for selected J + 2 users, with corresponding weights
(2J , 2J−1, · · · , 22, 21), a geometric sequence with common ratio
2, for the first J users and with corresponding weights (1, 1) for
the last two users, for J ∈ {1, 2, · · · , dlog K

2
e}.

Index Terms—Interference alignment, sum generalized
degrees-of-freedom (sum GDoF), successive decoding, interfer-
ence channel.

I. INTRODUCTION

In wireless networks, the strengths of communication links
are often affected by propagation path loss, shadowing, inter-
cell interference, and some other topological factors. There-
fore, different users in the network might experience different
link strengths. For one example, in an interference network,
when a receiver is relatively far from the transmitters, this
receiver might experience weaker links compared to the
receivers that are closer to the transmitters (see Fig. 1).
For another example, when a receiver has more inter-cell
interference, this receiver might experience weaker links,
in terms of signal-to-interference-plus-noise ratio, compared
to the receivers that have less inter-cell interference. Such
asymmetry property of the link strengths in communication
networks can crucially affect the transceiver design, as well
as the capacity performance.
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In this work we consider a K-user asymmetric interference
channel, where different receivers might have different link
strengths. For this setting, the channel gains of the links
connected to Receiver k are scaled with

√
Pαk , where αk

captures the link strength of Receiver k, which might be
different from that of the other receivers, for k = 1, 2, · · · ,K.
This generalizes the symmetric setting, in which α1 = α2 =
· · · = αK = 1, to a setting with diverse link strengths.

For the symmetric K-user interference channel, the work in
[1] showed that the optimal sum degrees-of-freedom (DoF) is
characterized by K/2, which implies that “everyone gets half
of the cake”. DoF is a pre-log factor of capacity at the high
signal-to-noise ratio (SNR) regime. Although the DoF metric
can produce profound insights, it has a fundamental limitation,
that is, it treats all non-zero links as approximately equally
strong. Thus, it motivates the researchers to go beyond the DoF
metric into the generalized degrees-of-freedom (GDoF) metric
(see [2]–[27] and the references therein), for the settings with
diverse link strengths. For the K-user asymmetric interference
channel, we focus on the optimal sum GDoF. Specifically, for
this asymmetric setting we show that the optimal sum GDoF
is characterized as dsum =

∑K
k=1 αk+αK−αK−1

2 , for 0 < α1 ≤
α2 ≤ · · · ≤ αK . This result generalizes the existing result of
the symmetric case to the setting with diverse link strengths.

The proposed achievability is based on multi-layer interfer-
ence alignment and successive decoding. While the traditional
interference alignment scheme is usually dedicated to all users
in the network (cf. [1], [28]), the multi-layer interference align-
ment scheme proposed in this work consists of K different
interference alignment sub-schemes, with each interference
alignment sub-scheme dedicated to a subset of users. In this
scheme, each interference alignment sub-scheme is designed
in a specific layer associated with a particular power level.
In terms of decoding, successive decoding is applied at the
receivers. Specifically, successive decoding is operated layer
by layer. For the decoding at one layer, each of the involved
receivers decodes the desired signals and the interference in
this layer, and then remove them to decode signals at the
next layer. The converse for this asymmetric case involves
bounding the weighted sum GDoF for selected J + 2 users,
with weights being a geometric sequence for the first J users,
for J ∈ {1, 2, · · · , dlog K

2 e}. This is very different from the
converse for the symmetric case, which only requires bounding
the sum DoF for selected two users.

The remainder of this work is organized as follows. Sec-
tion II describes the system model of the asymmetric inter-
ference channel. Section III provides the main result of this
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Fig. 1. An asymmetric interference channel, where some receivers are
relatively far from the transmitters and consequently might have weaker links
compared to the receivers closer to the transmitters. When a receiver has
more inter-cell interference, this receiver might also experience weaker links,
in terms of signal-to-interference-plus-noise ratio, compared to the receivers
that have less inter-cell interference.

work. The converse proof is provided in Section IV, while
the achievability proof is described in Section V. Finally,
section VI shows the conclusion of this work. Throughout
this work, H(•), h(•) and I(•) denote the entropy, differential
entropy and mutual information, respectively. | • | denotes
the magnitude of a scalar or the cardinality of a set. Z ,
Z+, R and N denote the sets of integers, positive integers,
real numbers, and natural numbers, respectively. o(•) is a
standard Landau notation, where f(x) = o(g(x)) implies that
limx→∞ f(x)/g(x) = 0. [A : B] is a set of integers from A
to B, for some integers A ≤ B. Given a set A, then A(i)
denotes the ith element of set A. Logarithms are in base 2.

II. SYSTEM MODEL

We focus on a K-user receiver-asymmetric real Gaussian
interference channel defined by the following input-output
equations:

yk(t) =
√
Pαk

K∑
`=1

hk`x`(t) + zk(t), k ∈ [1 : K] (1)

t ∈ [1 : n], where x`(t) is the channel input at Trans-
mitter ` subject to a normalized average power constraint
E|x`(t)|2 ≤ 1. zk(t) ∼ N (0, 1) is additive white Gaussian
noise at Receiver k. hk` is the channel coefficient between
Transmitter ` and Receiver k. P ≥ 1 denotes a nominal power
value. The exponent αk represents the channel strength of the
links connected to Receiver k. Without loss of generality we
consider the case that

0 < α1 ≤ α2 ≤ · · · ≤ αK .

The channel coefficients {hk`}k,` are drawn independently and
identically from a continuous distribution. We assume that the
absolute value of each channel coefficient is bounded between

a finite maximum value and a nonzero minimum value. All
the channel parameters {αk}k and coefficients {hk`}k,` are
assumed to be perfectly known to all the transmitters and
receivers (perfect CSIT and CSIR).

In this channel, the message wk is sent from Transmitter k
to Receiver k over n channel uses, for k ∈ [1 : K],
where wk is uniformly drawn from a set Wk = [1 :
2nRk ] and Rk is the rate of this message. A rate tuple
(R1(P,α), R2(P,α), · · · , RK(P,α)) is said to be achiev-
able if for any ε > 0 there exists a sequence of n-length
codes such that each receiver can decode its own message
reliably, i.e., Pr[ŵk 6= wk] ≤ ε, ∀k ∈ [1 : K], when
n goes large, for α,[α1, α2, · · · , αK ]. The capacity region
C(P,α) is the collection of all the achievable rate tuples
(R1(P,α), R2(P,α), Rc(P,α)). The GDoF region D(α) is
defined as

D(α),
{

(d1, d2, · · · , dK) :

∃
(
R1(P,α), · · · , RK(P,α)

)
∈ C(P,α)

s.t. dk = lim
P→∞

Rk(P,α)
1
2 logP

, ∀k ∈ [1 : K]
}
.

The sum GDoF is then defined by

dsum(α), max
d1,d2,··· ,dK :

(d1,d2,··· ,dK)∈D(α)

d1 + d2 + · · ·+ dK .

GDoF is a generalization of the DoF. Note that DoF can be
considered as a specific point of GDoF by letting α1 = α2 =
· · · = αK = 1.

III. MAIN RESULT

The main result of this work is the characterization of the
optimal sum GDoF for the K-user asymmetric interference
channel.

Theorem 1. For the K-user asymmetric interference channel
defined in Section II, for almost all realizations of channel
coefficients {hk`}, the optimal sum GDoF is characterized as

dsum(α) =

∑K
k=1 αk + αK − αK−1

2
. (2)

Proof. The achievability is based on multi-layer interference
alignment and successive decoding. The converse for this
asymmetric case involves bounding the weighted sum GDoF
for selected J + 2 users, J ∈ [1 : dlog K

2 e]. The details of the
achievability and converse proofs are provided in Section V
and Section IV, respectively.

Remark 1. The result of Theorem 1 matches the previous
result dsum(α) = K

2 when α1 = α2 = · · · = αK = 1 (see
[1]).

Remark 2. One observation from the result of Theorem 1
is that, the change of the link strength of the (K − 1)th
receiver, i.e., αK−1, will not take effect on the optimal sum
GDoF, as long as αK−2 ≤ αK−1 ≤ αK . For the specific
case with K = 2, one can see that the optimal sum GDoF,
i.e., dsum(α) = α2, is not affected by the change of α1.
For this specific case, the value of the optimal sum GDoF
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depends on the link strength of the last receiver only. By
rewriting the optimal sum GDoF for this specific case as
dsum(α) = α1 +(α2−α1), one can check that the optimal sum
GDoF is equal to the sum of α1 and (α2 − α1) but the effect
of α1 is “neutralized” in the sum. Similarly, for the general
case we can rewrite the optimal sum GDoF as dsum(α) =∑K−2
`=1

(K−`+1)(α`−α`−1)
2 + 2(αK−1−αK−2)

2 +αK−αK−1, from
which one can see that the effect of αK−1 is “neutralized”
in the sum. Another observation is that, increasing the link
strength of any receiver except the (K − 1)th receiver, will
increase the sum GDoF performance.

Remark 3. From the result of Theorem 1, it reveals that the
link strength of the Kth receiver, i.e., αK , takes more effect
on the optimal sum GDoF (with a larger weight), compared
to the link strengths of the other receivers.

IV. CONVERSE

This section provides the converse of Theorem 1, for the
K-user asymmetric interference channel defined in Section II.
While the converse for the symmetric case only requires
bounding the sum DoF for selected two users, the converse
for this asymmetric case involves bounding the weighted sum
GDoF for selected J + 2 users, with corresponding weights
(2J , 2J−1, · · · , 22, 21, 1, 1), for J ∈ [1 : dlog K

2 e]. The result
on bounding the weighted sum GDoF is given in the following
lemma.

Lemma 1. For 1 ≤ l1 < l2 < · · · < lJ+2 ≤ K and J ∈ [1 :
dlog K

2 e], then the following inequality holds true

J∑
j=1

2J−j+1dlj + dlJ+1
+ dlJ+2

≤
J∑
j=1

2J−jαlj + αlJ+2
. (3)

For the proof of Lemma 1 we will use a “chain-type”
bounding process. Specifically, the proof requires bounding
a weighted sum term Φ(J0) that is defined in (7); bounding
Φ(J0) also involves bounding Φ(J0 − 1); and this process
repeats until reaching Φ(1). Before proving Lemma 1, let us
provide the following result derived from Lemma 1, which
serves as the converse of Theorem 1.

Corollary 1. For the K-user asymmetric interference channel
defined in Section II, the optimal sum GDoF is upper bounded
by

dsum(α) ≤
∑K
k=1 αk + αK − αK−1

2
. (4)

Proof. The proof is based on Lemma 1. The details of this
proof are provided in Appendix B.

Let us now prove Lemma 1. At first we will focus on the
specific case with li = i for i ∈ [1 : J + 2] and J ∈ [1 :
dlog K

2 e], and prove

J∑
j=1

2J−j+1dj + dJ+1 + dJ+2 ≤
J∑
j=1

2J−jαj + αJ+2. (5)

Later on we will extend the proof and show that the result of
Lemma 1 holds true for the general case of {l1, l2, · · · , lJ+2}

for 1 ≤ l1 < l2 < · · · < lJ+2 ≤ K and J ∈ [1 : dlog K
2 e]. Let

us define an auxiliary variable

ỹk,`(t),
√
Pα`

K∑
i=1

hkixi(t) + z̃`(t) (6)

where z̃`(t) ∼ N (0, 1) is independent of the other noise
random variables, for k, ` ∈ [1 : K]. Let ynk ,{yk(t)}nt=1,
xnk ,{xk(t)}nt=1, znk ,{zk(t)}nt=1, and ỹnk,`,{ỹk,`(t)}nt=1. For
the ease of description, we define that

W̄[i,j] ,{w` : ` ∈ [1 : K], ` 6= i, ` 6= j}

and W̄[i] ,{w` : ` ∈ [1 : K], ` 6= i}, for i, j ∈ [1 : K], i 6= j.
We also define that

Φ(J0),2J−J0+1I(wJ0 ; ynJ0)

+
J+2∑

j=J0+1

2max{J−j+1,0}I(wj ; ỹnJ0+1,J0 |W̄[j]) (7)

for J0 ∈ [1 : J − 1], and that

d0 , 0, α0 , 0, ỹn1,0 ,φ, I(wj ; ỹn1,0|W̄[j]), 0, ∀j,
I(w0; yn0 ), 0, and Φ(0), 0. (8)

Beginning with Fano’s inequality, we have
J∑
j=1

2J−j+1nRj + nRJ+1 + nRJ+2 − nεn

≤
J−1∑
j=1

2J−j+1I(wj ; ynj ) + 2I(wJ ; ynJ ) + I(wJ+1; ynJ+1)

+ I(wJ+2; ynJ+2) (9)

≤
J−1∑
j=1

2J−j+1I(wj ; ynj ) +

J+2∑
j=J

2max{J−j+1,0}I(wj ; ỹnJ,J−1|W̄[j])

+
(
(αJ+2 − αJ) + 2(αJ − αJ−1)

)n
2

logP + no(logP )

(10)

=
J−2∑
j=1

2J−j+1I(wj ; ynj ) + Φ(J − 1)

+
(
(αJ+2 − αJ) + 2(αJ − αJ−1)

)n
2

logP + no(logP )

(11)

≤
J−3∑
j=1

2J−j+1I(wj ; ynj ) + Φ(J − 2)

+
(
(αJ+2 − αJ) + 2(αJ − αJ−1)

+ 22(αJ−1 − αJ−2)
)n

2
logP + no(logP ) (12)

≤
J−4∑
j=1

2J−j+1I(wj ; ynj ) + Φ(J − 3)

+
(
(αJ+2 − αJ) + 2(αJ − αJ−1) + 22(αJ−1 − αJ−2)

+ 23(αJ−2 − αJ−3)
)n

2
logP + no(logP ) (13)

...

≤
(
(αJ+2 − αJ) + 2(αJ − αJ−1) + 22(αJ−1−αJ−2)
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+ 23(αJ−2−αJ−3) +· · ·+ 2J(α1−α0)
)n

2
logP

+ no(logP ) (14)

=
( J∑
j=1

2J−jαj + αJ+2

)n
2

logP + no(logP ) (15)

where Φ(J0) is defined in (7), for J0 ∈ [1 : J − 1]; (9) is
from Fano’s inequality, and εn → 0 as n → ∞; (10) follows
from Lemma 4, which is provided at the end of this section;
(11) uses the definition of Φ(J0); (12)-(14) follow from the
result of Lemma 2, provided at the end of this section. By
dividing each side of (15) with n

2 logP and letting n, P →
∞, it proves the bound in (5). In the above proof we focus
on the specific case with li = i for i ∈ [1 : J + 2] and
J ∈ [1 : dlog K

2 e]. At this point, by replacing the indexes
{l1 = 1, l2 = 2, · · · , lJ+2 = J + 2} with the general case
of {l1, l2, · · · , lJ+2} for 1 ≤ l1 < l2 < · · · < lJ+2 ≤ K and
J ∈ [1 : dlog K

2 e], it then proves the bound
∑J
j=1 2J−j+1dlj+

dlJ+1
+ dlJ+2

≤
∑J
j=1 2J−jαlj + αlJ+2

. Note that the above
proof holds true for the general case of {l1, l2, · · · , lJ+2}, as
long as 1 ≤ l1 < l2 < · · · < lJ+2 ≤ K and J ∈ [1 : dlog K

2 e]
are satisfied. Then, it completes the proof of Lemma 1.

Note that, in our proof the weights of the sum
GDoF for J + 2 users are designed specifically as
(2J , 2J−1, · · · , 22, 21, 1, 1). With this design, for J0 ∈ [1 : J ],
the J0th mutual information term I(wJ0 ; ynJ0) with weight
2J−J0+1 can be bounded with other 2J−J0+1 mutual infor-
mation terms generated from User (J0 + 1) to User (J +
2), i.e.,

∑J+2
j=J0+1 2max{J−j+1,0}I(wj ; ỹnJ0+1,J0

|W̄[j]). One
can see that bounding the sum of 2J−J0+1I(wJ0 ; ynJ0) and∑J+2
j=J0+1 2max{J−j+1,0}I(wj ; ỹnJ0+1,J0

|W̄[j]) is equivalent to
bounding Φ(J0) defined in (7). This bounding operation over
Φ(J0) also generates a total of 2J−(J0−1)+1 mutual informa-
tion terms that will be used to bound the (J0 − 1)th mutual
information term I(wJ0−1; ynJ0−1) with weight 2J−(J0−1)+1.
In other words, bounding Φ(J0) involves bounding Φ(J0−1).
This process repeats until J0 = 1. Since a weighted mutual
information term is bounded with other weighted mutual
information terms and it also generates new terms for the next
operation, it then forms a “chain” on this bounding process.

The lemmas and claims used in our proof are provided
below. Their proofs are relegated to Appendix A.

Lemma 2. For Φ(J0) defined in (7), J0 ∈ [1 : J − 1], we
have the following bound

Φ(J0) + 2J−(J0−1)+1I(wJ0−1; ynJ0−1)

≤2J−J0+1(αJ0 − αJ0−1) · n
2

logP + no(logP ) + Φ(J0 − 1)

where α0, I(w0; yn0 ), and Φ(0) are defined in (8).

Proof. See Appendix A-A. The proof is based on the result
of Lemma 3.

Our converse proof involves bounding the term Φ(J0) that is
defined in (7). Lemma 2 shows that bounding Φ(J0) involves
bounding Φ(J0 − 1). Apparently, bounding Φ(J0 − 1) also
involves bounding Φ(J0− 2). This process repeats until J0 =
1. As we can see, it forms a “chain” on this bounding process.

Lemma 3. For J0 ∈ [1 : J − 1], the following inequality is
true

2J−J0+1I(wJ0 ; ynJ0)

+
J+2∑

j=J0+1

2max{J−j+1,0}I(wj ; ỹnJ0+1,J0 |W̄[j])

≤2J−J0+1(αJ0 − αJ0−1) · n
2

logP + no(logP )

+
J+2∑
j=J0

2max{J−j+1,0}I(wj ; ỹnJ0,J0−1|W̄[j])

where α0, ỹ
n
1,0, and I(wj ; ỹn1,0|W̄[j]) are defined in (8).

Proof. See Appendix A-B. The proof uses the result of
Lemma 5.

As mentioned, the result of Lemma 2 is based on the result
of Lemma 3. More specifically, as shown in Appendix A-A,
the result of Lemma 2 is simply a new representation of the
result of Lemma 3.

Lemma 4. The following bound holds true

2I(wJ ; ynJ ) + I(wJ+1; ynJ+1) + I(wJ+2; ynJ+2)

≤2I(wJ ; ỹnJ,J−1|W̄[J]) + I(wJ+1; ỹnJ,J−1|W̄[J+1])

+ I(wJ+2; ỹnJ,J−1|W̄[J+2])

+ (αJ+2 − αJ + 2(αJ − αJ−1)) · n
2

logP + no(logP ).

Proof. See Appendix A-C. The proof uses the result of
Lemma 5.

Lemma 4 focuses on bounding the weighted sum of
the mutual information terms I(wJ ; ynJ ), I(wJ+1; ynJ+1) and
I(wJ+2; ynJ+2). The structure of the inequality in Lemma 4
is very similar to that in Lemma 3. In our proof, bounding
the weighted sum of the mutual information terms I(wJ ; ynJ ),
I(wJ+1; ynJ+1) and I(wJ+2; ynJ+2) also involves bounding
Φ(J−1), which forms the first chain in the bounding operation
mentioned above.

Lemma 5. For `1, `2, `3, l, i, j ∈ [1 : K], `1 < `2 ≤ `3, i 6= j,
then the following bound is true

I(wi; yn`2 |ỹ
n
`2,`1 , W̄[i,j]) + I(wj ; ỹnl,`3 |ỹ

n
`2,`1 , W̄[j])

≤n
2

log(1 + Pα`2−α`1 ) +
n

2
log
(
1 + Pα`3−α`2

|hlj |2

|h`2j |2
)
.

When `2, `3, l, j ∈ [1 : K] and `2 ≤ `3, then we have

I(wi; yn`2 |W̄[i,j])+I(wj ; ỹnl,`3 |W̄[j])≤α`3
n

2
logP + no(logP ).

Proof. See Appendix A-D. The proof is based on the result
of Claim 1 and Claim 2.

According to our definitions in (1) and (6), the powers of
ỹl,`3(t), y`2(t) and ỹ`2,`1(t) are scaled with Pα`3 , Pα`2 and
Pα`1 , respectively. The second inequality in Lemma 5 reveals
that the sum of the mutual information terms I(wi; yn`2 |W̄[i,j])
and I(wj ; ỹnl,`3 |W̄[j]) is captured by the power of ỹl,`3(t), the
one having a higher power. For the first inequality in Lemma 5,
the right hand side can be represented as (α`3−α`1)n2 logP+
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no(logP ). This reveals that sum of the mutual information
terms I(wi; yn`2 |ỹ

n
`2,`1

, W̄[i,j]) and I(wj ; ỹnl,`3 |ỹ
n
`2,`1

, W̄[j]) is
captured by the reduced power of ỹl,`3(t), given the condition
ỹn`2,`1 in both mutual information terms. Note that the second
inequality can be considered as a specific case of the first
inequality by setting the condition as ỹn`2,`1 = φ. We keep
the two inequalities in the current forms as their proofs are
slightly different.

Claim 1. For `1, `2, i, j ∈ [1 : K], `1 < `2, i 6= j, it holds
true that

I(wi, wj ; yn`2 |ỹ
n
`2,`1 , W̄[i,j]) ≤

n

2
log(1 + Pα`2−α`1 ).

When `2, i, j ∈ [1 : K], i 6= j, then the following inequality is
true

I(wi, wj ; yn`2 |W̄[i,j]) ≤ α`2 ·
n

2
logP + no(logP ).

Proof. See Appendix A-E.

The second inequality in Claim 1 reveals that the mutual
information term I(wi, wj ; yn`2 |W̄[i,j]) is captured by the power
of y`2(t). The first inequality in Claim 1 reveals that the mutual
information term I(wi, wj ; yn`2 |ỹ

n
`2,`1

, W̄[i,j]) is captured by the
reduced power of y`2(t), given the condition ỹn`2,`1 in the
mutual information term. Note that the second inequality can
be considered as a specific case of the first inequality by
setting the condition as ỹn`2,`1 = φ. Again, we keep the two
inequalities in the current forms as their proofs are slightly
different.

Claim 2. For `1, `2, `3, l, j ∈ [1 : K], `1 < `2 ≤ `3, it is true
that

I(wj ; ỹnl,`3 |y
n
`2 , ỹ

n
`2,`1 , W̄[j]) ≤

n

2
log
(
1 + Pα`3−α`2

|hlj |2

|h`2j |2
)
.

When `2, `3, l, j ∈ [1 : K], `2 ≤ `3, and ỹn`2,`1 = φ, then the
above inequality is also true.

Proof. See Appendix A-F.

The inequality in Claim 2 reveals that the mutual infor-
mation term I(wj ; ỹnl,`3 |y

n
`2
, ỹn`2,`1 , W̄[j]) is captured by the

reduced power of ỹl,`3(t), given the condition yn`2 in the mutual
information term. Note that the other condition ỹn`2,`1 , which
has lower power than yn`2 , will not affect the bound.

V. ACHIEVABILITY

This section provides the achievability for Theorem 1. The
achievability is based on multi-layer interference alignment,
where different interference alignment sub-schemes are de-
signed in different layers associated with specific power levels.
In this scheme, the method of successive decoding is applied
at the receivers. Before describing the scheme details, we first
provide high-level explanation of the proposed scheme.
• Multi-layer interference alignment: Due to the asym-

metric link strengths, the proposed scheme consists of
K sub-schemes, with each sub-scheme designed in a
specific layer, i.e., at a specific power level (see Fig. 2).
For each of the first K − 2 layers, the design follows

from interference alignment technique. Since interference
alignment is designed across multiple layers, we call it
as multi-layer interference alignment.

– For Transmitter k, the transmitted signal is a super-
position of k signals xk,1, xk,2, · · · , xk,k dedicated
to the first k layers respectively, where xk,` is the
signal of Transmitter k dedicated to the `th layer,
for k ∈ [1 : K] and ` ∈ [1 : k] (see Fig. 2).

– For Layer `, the sub-scheme design for this
layer involves the design of K − ` + 1 signals
x`,`, x`+1,`, · · · , xK,`, for ` ∈ [1 : K]. In other
words, the `th layer (the `th sub-scheme) is dedicated
specifically to the last K − ` + 1 users, from Users
` to User K (see Fig. 2).

– For Layer `, ` ∈ [1 : K−2], the design follows from
interference alignment technique. For different lay-
ers, the rate and power of the symbols are different.

• Successive decoding: The decoding is based on succes-
sive decoding. The idea of successive decoding is to
decode the signals for one layer by treating the lower
layers as noise, and then remove them to decode the
signals in the next layer.

– The signals decoded in one layer include the desired
signals and the interference signals that might be in
a certain form.

– To prove that the decoding is successful with van-
ishing error probability, we prove that the decoding
at each layer is successful with vanishing error
probability.

– For Receiver k, the observation for the decoding at
Layer ` after some processing can be expressed as
(see (41) later on)

yk,` = Sk,` + Ik,` + Tk,` + zk

where Sk,` corresponds to the term containing de-
sired information at Layer `; Ik,` represents the
interference at Layer `; and Tk,` denotes the term
containing signals dedicated to the next layers which
can be treated as noise, for k ∈ [` : K], ` ∈ [1 :
K − 2].

– We prove that Sk,` and Ik,` can be decoded together
from yk,` by treating Tk,` as noise, with vanishing
error probability when P is large. To prove this, we
show that the minimum distance of the constellation
for the signal Sk,` + Ik,` (defined in (40) later on)
is sufficiently larger than Tk,` that is treated as
noise (see Lemma 7 and Lemma 8 later on). In the
analysis we use the Khintchine-Groshev Theorem for
Monomials (see Theorem 2 later on).

Let us first review the pulse amplitude modulation (PAM)
that will be used in our scheme. If a random variable x is
uniformly drawn from the following PAM constellation set

Ω(ξ,Q),{ξ · a : a ∈ Z ∩ [−Q,Q]} (16)
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x1,1 x2,1 x5,1x4,1x3,1

x2,2 x3,2 x4,2 x5,2

x3,3 x4,3 x5,3

x4,4 x5,4

x1 x2 x3 x4 x5

x5,5

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

xK,1

xK,2

xK,3

xK,4

xK

xK,5

. . . ...
xK,K

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

...

Layer K

Fig. 2. The structure of the multi-layer interference alignment. The `th layer
is dedicated to the last (K − ` + 1) users, from Users ` to User K, for
` ∈ [1 : K]. For Transmitter k, the transmitted signal is a superposition of
the signals dedicated to the first k layers, and xk,` is the signal dedicated to
the `th layer, for ` ∈ [1 : k], k ∈ [1 : K].

for some Q ∈ Z+ and ξ ∈ R, then the average power of x is

E|x|2 =
2ξ2

2Q+ 1

Q∑
i=1

i2 =
ξ2Q(Q+ 1)

3
. (17)

The parameter ξ is used to regularize the average power of x.
The expression in (17) implies that

E|x|2 ≤ 1/τ, for ξ ≤ 1√
τQ

(18)

given some τ > 1. One property for the PAM constellation is
that, given some PAM signals c1, c2, · · · , cM ∈ Ω(ξ,Q), the
sum of them is still a PAM signal such that

c1 + c2 + · · ·+ cM ∈ Ω(ξ,MQ). (19)

In the GDoF analysis of the proposed scheme, we will use
the Khintchine-Groshev Theorem for Monomials1, which is
stated in the following Theorem, as in [29].

Theorem 2 (Khintchine-Groshev Theorem for Monomials).
Let N ≤M , v = (v1, v2, · · · , vN ) ∈ RN , and g1, g2, · · · , gM
be distinct monomials generated by v. Then, for any ε′ > 0
and almost all v, there exists a positive constant κ such that

∣∣ M∑
i=1

giqi
∣∣ > κ

maxi |qi|M−1+ε′
(20)

holds for all (q1, q2, · · · , qM ) 6= 0 ∈ ZM .

Let us describe the proposed scheme with multi-layer in-
terference alignment and successive decoding, given in the
following sub-sections.

1A function f(v) is a monomial generated by v = (v1, v2, · · · , vN ) ∈
RN if this function can be written as f(v) =

∏N
i=1 v

βi
i , for βi ∈ N, ∀i ∈

[1 : N ].

A. Multi-layer interference alignment

The proposed scheme consists of K sub-schemes, with
each sub-scheme designed in a specific layer, i.e., at a spe-
cific power level. For each of the first K − 2 layers, the
design follows from interference alignment technique [1],
[29]. Interference alignment technique was crystallized in [1]
for the K-user interference channel by using vector-space
alignment. This technique was later extended in [29] by using
signal-scale alignment (more specifically, real interference
alignment), which can be applied to the setting where the
channel coefficients are time invariant and frequency flat. In
this work, we use the real interference alignment in each of
the first K − 2 layers in our proposed scheme. The last two
layers are dedicated to two users and one user, respectively.
Thus, the design of the last two layers is very simple.

The `th layer (the `th sub-scheme) is dedicated specifically
to the last K` users, from Users ` to User K, where

K`,K − `+ 1, ` ∈ [1 : K]. (21)

For Transmitter k, the transmitted signal is a superposition of
the signals dedicated to the first k layers, designed as

xk =

k∑
`=1

√
P−α`−1xk,` for xk,` = vT

k,`bk,` (22)

for k ∈ [1 : K], where α0 , 0 and xk,` is the signal of
Transmitter k dedicated to the `th layer. The vector

vk,`,[vk,`,1, vk,`,2, · · · , vk,`,N` ]T ∈ RN`×1 (23)

will be specified later on, where N` is designed as

N`,

{
mK`(K`−1) if ` ∈ [1 : K − 2] (24a)
1 if ` ∈ [K − 1 : K] (24b)

for some m ∈ Z+. The vector

bk,`,[bk,`,1, bk,`,2, · · · , bk,`,N` ]T (25)

is an information vector for the `th layer, where the elements
{bk,`,i}N`i=1 are independent random variables uniformly drawn
from the following PAM constellation set2

bk,`,i ∈ Ω(ξ = γ · 1

Q`
, Q = Q`),

i ∈ [1 : N`], k ∈ [` : K], ` ∈ [1 : K] (26)

where γ is a positive constant, and Q` is defined as

Q`,P
λ`
2 , ` ∈ [1 : K]. (27)

The parameter λ` is designed as

λ`,


α` − α`−1

M`
− ε if ` ∈ [1 : K − 2] (28a)

α` − α`−1

K − `+ 1
− ε if ` ∈ [K − 1 : K] (28b)

2Without loss of generality we will assume that P
λ`
2 is an integer, for

` ∈ [1 : K]. When P
λ`
2 isn’t an integer, we can slightly modify the parameter

ε in (28a) and (28b) such that P
λ`
2 is an integer, for the regime with large

P .
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for

M`, 2mK`(K`−1) + (K` − 1)mK`(K`−1)−1 − 1 (29)

and for some small enough ε > 0. As we will see later on, λ`
represents the GDoF carried by each of the symbols {bk,`,i}i,k.
In our scheme, when α` = α`−1, then the `th layer can
be simply removed without affecting the GDoF performance,
i.e., the signal xk,` is set as xk,` = 0, ∀k. Without loss of
generality, we will focus on the case with α` > α`−1, ∀`.

Let us now design the vectors of vk,` for each layer. The
design of vk,` for the last two layers is very straightforward.
Note that the (K − 1)th layer is dedicated to User K − 1 and
User K, while the Kth layer is dedicated to User K only.
Therefore, we set the parameters as

vK−1,K−1,1 = vK,K−1,1 = vK,K,1 = 1.

Recall that NK−1 = NK = 1 (see (24b)). In the following,
we will design the vectors of vk,` for the `th layer, for ` ∈
[1 : K − 2]. For the `th layer dedicated to the last K` users,
we define a set of dimensions as

V`,m,
{ K∏
j=`

K∏
i=`
i6=j

h
βij
ij : βij ∈ [0 : m− 1]

}
, ` ∈ [1 : K − 2].

(30)

Note that V`,m consists of N` rationally independent real
numbers3, where N` = mK`(K`−1) for ` ∈ [1 : K− 2]. In our
scheme, we let vk,` be the vector containing all the elements
in set V`,m, i.e.,

vk,`,i = V`,m(i), i ∈ [1 : N`], k ∈ [` : K], ` ∈ [1 : K − 2].
(31)

V`,m(i) denotes the ith element of the set V`,m.
Based on our design, Lemma 6 (see below) shows that the

average power of each transmitted signal is upper bounded by
γ2η, where η is a positive value independent of P , and γ is
a positive constant appeared in (26). Thus, by setting γ as a
constant that is bounded away from zero and is no more than

1√
η , i.e., γ ∈ (0, 1√

η ], then the average power constraint is
satisfied, that is, E|xk|2 ≤ 1 for k ∈ [1 : K].

Lemma 6. Based on the signal design in (22)-(30), the
average power of the transmitted signal at Transmitter k,
k ∈ [1 : K], satisfies

E|xk|2 ≤ γ2η (32)

where η is a positive value independent of P .

Proof. See Appendix C-A.

B. Successive decoding

The decoding is based on successive decoding. The idea
of successive decoding is to decode the signals for one layer
by treating the lower layers as noise, and then remove them
to decode the signals in the next layer. The signals decoded

3We say p1, p2, · · · , pM are rationally independent if the only M -tuple
of integers q1, q2, · · · , qM such that

∑M
i=1 piqi = 0 is the trivial solution

in which every qi is zero.

in one layer include the desired signals and the interference
signals that might be in a certain form.

Let us first focus on the decoding for the first K−2 layers,
and then discuss the decoding for the last two layers. For the
`th layer, ` ∈ [1 : K−2], based on the above design of multi-
layer interference alignment, at Receiver k, k ∈ [` : K], the
interference signals can be aligned into a set of dimensions
denoted by Ik,`, for

Ik,` =⋃
l∈[`:K]
l 6=k

{
hmkl

∏
i,j∈[`:K]
i6=j

(i,j)6=(k,l)

h
βij
ij : βij ∈ [0 : m− 1]

}⋃{
V`,m

∖{
1
}}

(33)

which satisfies Ik,` ⊂ V`,m+1 and

|Ik,`| = mK`(K`−1) + (K`−1)mK`(K`−1)−1−1 = M`−N`;

while the desired signals lie in a set of dimensions denoted
by Sk,`, for

Sk,` = hkkV`,m =
{
hkk

K∏
j=`

K∏
i=`
i6=j

h
βij
ij : βij ∈ [0 : m− 1]

}
(34)

which satisfies

|Sk,`| = mK`(K`−1) = N`.

Note that hkk is not appeared in the dimensions of Ik,`. Also
note that hkk is appeared in each dimension of Sk,`. It then
implies that all the dimensions in Ik,` ∪ Sk,` are rationally
independent.

For the successive decoding at the `th layer, ` ∈ [1 : K−2],
at Receiver k, k ∈ [` : K], the goal is to decode the desired
information vector bk,` (see (25)), as well as the interference
at that layer, given that the decoding of the previous layers is
complete. For the `th layer, ` ∈ [1 : K− 2], assuming that the
decoding of the previous layers is complete, then Receiver k,
k ∈ [` : K] has the following observation (removing the time
index)

yk,`, yk −
`−1∑
l=1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l︸ ︷︷ ︸
side information from previous layers

(35)

where the term of
∑`−1
l=1

∑K
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l is con-
structed from the side information about desired signals and
interference obtained from the decoding of the previous layers,
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with
∑0
l=1 si, 0 for any si ∈ R. When ` = 1, this term is

zero. Let us expand yk,` from (35) to the following expression:

yk,` =
K∑
l=1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l + zk

−
`−1∑
l=1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l

=
√
Pαk−α`−1hkkv

T

k,`bk,`︸ ︷︷ ︸
,Sk,`, desired signal

+
K∑
j=`
j 6=k

√
Pαk−α`−1hkjv

T

j,`bj,`

︸ ︷︷ ︸
, Ik,`, interference

+
K∑

l=`+1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l︸ ︷︷ ︸
,Tk,`, treated as noise

+zk (36)

where

Sk,`,
√
Pαk−α`−1hkkv

T

k,`bk,`,

Ik,`,
K∑
j=`
j 6=k

√
Pαk−α`−1hkjv

T

j,`bj,`,

Tk,`,
K∑

l=`+1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l (37)

for k ∈ [` : K], ` ∈ [1 : K − 2]. From the above expression,
yk,` can be expanded into four terms: Sk,`, Ik,`, Tk,` and
noise. For Receiver k, Sk,` corresponds to the term containing
desired information at Layer `; Ik,` represents the interference
at Layer `; and Tk,` denotes the term containing signals
dedicated to the next layers, which can be treated as noise.
The term Sk,` can be rewritten in the following form

Sk,` =γ
√
Pαk−α`−1−λ`

|Sk,`|∑
i=1

Sk,`(i)qk,`,i

for qk,`,1, · · · , qk,`,|Sk,`| ∈ [−Q` : Q`] (38)

where Q` and λ` are defined in (27), (28a) and (28b). From

(26) it holds true that qk,`,i, bk,`,i · P
λ`
2

γ ∈ [−Q`, Q`], for
i ∈ [1 : N`], k ∈ [` : K], ` ∈ [1 : K − 2]. Similarly, the
interference term Ik,` can be expressed in the form of

Ik,` =γ
√
Pαk−α`−1−λ`

|Ik,`|∑
i=1

Ik,`(i)q′k,`,i

for q′k,`,1, · · · , q′k,`,|Ik,`| ∈ [−K`Q` : K`Q`] (39)

Note that, if the PAM signals lie at the same dimension,
the sum of PAM signals is still a PAM signal. In the above
expression, q′k,`,i represents the sum of the normalized PAM

signals (normalized by γP−
λ`
2 ) lying at the dimension Ik,`(i),

and thus q′k,`,i ∈ [−K`Q` : K`Q`] for i ∈ [1 : |Ik,`|],
k ∈ [` : K], ` ∈ [1 : K − 2]. In this layer, the goal is
to decode qk,`,1, · · · , qk,`,|Sk,`|, q′k,`,1, · · · , q′k,`,|Ik,`| from yk,`
by treating Tk,` as noise.

Let us now focus on the minimum distance of the constel-
lation for the signal Sk,` + Ik,`, which is defined by

dmin(k, `), min
qk,`,1,··· ,qk,`,|Sk,`|,q

′
k,`,1,··· ,q

′
k,`,|Ik,`|

:

qk,`,1,··· ,qk,`,|Sk,`|∈[−Q`:Q`]
q′k,`,1,··· ,q

′
k,`,|Ik,`|

∈[−K`Q`:K`Q`]
(qk,`,1,··· ,qk,`,|Sk,`|,q

′
k,`,1,··· ,q

′
k,`,|Ik,`|

)6=(0,0,··· ,0)

γ
√
Pαk−α`−1−λ`

∣∣∣ |Sk,`|∑
i=1

Sk,`(i)qk,`,i +

|Ik,`|∑
i=1

Ik,`(i)q′k,`,i
∣∣∣
(40)

for k ∈ [` : K], ` ∈ [1 : K − 2]. For the minimum distance
dmin(k, `) defined in (40), Lemma 7 (shown at the end of this
section) provides a result on its lower bound. On the other
hand, for the term Tk,` appeared in (36), Lemma 8 (shown at
the end of this section) provides a result on its upper bound.
Let us go back to the expression of yk,` (see (36)), that is,

yk,` = Sk,` + Ik,` + Tk,` + zk (41)

for k ∈ [` : K], ` ∈ [1 : K − 2]. From Lemma 8, Tk,`
is upper bounded by Tk,` ≤ P

αk−α`
2 · δk,`, where δk,` is a

positive value independent of P . From Lemma 7, the minimum
distance of the constellation for the signal Sk,` + Ik,` is
lower bounded by dmin(k, `) ≥ κ′P

αk−α`+ε`
2 , for any small

enough ε` > 0, where κ′ is a positive constant. Therefore, one
can easily show that qk,`,1, · · · , qk,`,|Sk,`|, q′k,`,1, · · · , q′k,`,|Ik,`|
can be decoded from yk,` by treating Tk,` as noise, with
vanishing error probability as P goes large. See Appendix D
for the discussion on how to prove the error probability to be
vanishing through an example. Since the error probability at
this layer is vanishing, this decoding error will not propagate
to next layers. At this point, at Layer `, the information vector
bk,` is decoded at Receiver k, and the interference Ik,` can
be reconstructed by Receiver k with the side information of
q′k,`,1, · · · , q′k,`,|Ik,`|, for k ∈ [` : K], ` ∈ [1 : K − 2].

Once the decoding at Layer ` is complete, Receiver k
removes the reconstructed Sk,` and Ik,` from yk,`, and then
moves onto the decoding at the next layer, i.e., Layer (`+ 1),
for k ∈ [`+ 1 : K], `+ 1 ∈ [2 : K − 2].

The decoding at the last two layers is very straightforward.
Note that the (K − 1)th layer is dedicated to User K − 1 and
User K, while the Kth layer is dedicated to User K only.
Recall that, NK−1 = NK = 1, vK−1,K−1,1 = vK,K−1,1 =
vK,K,1 = 1, and

xK−1,K−1 = bK−1,K−1,1 ∈ Ω(ξ = γ · 1

QK−1
, Q = QK−1)

xK,K−1 = bK,K−1,1 ∈ Ω(ξ = γ · 1

QK−1
, Q = QK−1)

xK,K = bK,K,1 ∈ Ω(ξ = γ · 1

QK
, Q = QK)

for QK−1 ,P
(αK−1−αK−2)/2−ε

2 and QK ,P
αK−αK−1−ε

2 .
Once the decoding of the first K − 2 layers is complete, both
Receiver (K − 1) and Receiver K remove all the intended
signals and interference signals dedicated to the first K − 2
layers from the corresponding received observations. After
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that, for the (K − 1)th layer, the decoding problem is simply
equivalent to decoding two symbols at a 2 × 2 interference
channel with sum GDoF αK−1 − αK−2, where the SNR of
this channel is PαK−1−αK−2 . One can easily show that this
two symbols can be decoded at both Receiver (K − 1) and
Receiver K with vanishing error probability as P goes large.
After that, Receiver K removes the decoded symbols and then
decodes its only one symbol at the last layer. At this point,
the whole decoding is complete.

After successive decoding for all the layers, Receiver k,
k ∈ [1 : K], is able to decode all the following PAM symbols

bk,`,i ∈ Ω(ξ = γ · 1

P
λ`
2

, Q = P
λ`
2 ),

∀i ∈ [1 : N`], ` ∈ [1 : k] (42)

where λ` is defined in (28a) and (28b). Since bk,`,i is inde-
pendently and uniformly drawn from the corresponding PAM
constellation Ω(ξ = γ · 1

P
λ`
2

, Q = P
λ`
2 ), then bk,`,i carries

the following amount of bits of information

H(bk,`,i) = log(1 + 2P
λ`
2 ) =

λ`
2

logP + o(logP ) (43)

for i ∈ [1 : N`], ` ∈ [1 : k], k ∈ [1 : K]. By summing up all
the amount of information carried by all the symbols from all
the users, and considering that those symbols are sent over a
single channel use, it implies that for almost all realizations
of channel coefficients the following sum rate is achievable
when P is large

Rsum =

K∑
k=1

Rk

=
K∑
k=1

k∑
`=1

N∑̀
i=1

H(bk,`,i)

=
K∑
k=1

k∑
`=1

N∑̀
i=1

(λ`
2

logP + o(logP )
)

(44)

=
K∑
`=1

K∑
k=`

N`λ`
2

logP + o(logP )

=
K∑
`=1

N`λ`(K − `+ 1)

2
logP + o(logP )

=
K−2∑
`=1

N`(K − `+ 1)(α`−α`−1

M`
− ε)

2
logP

+
2(αK−1−αK−2

2 − ε)
2

logP

+
αK − αK−1 − ε

2
logP + o(logP ) (45)

where (44) follows from (43). Recall that λ` = α`−α`−1

M`
− ε

if ` ∈ [1 : K − 2], and λ` = α`−α`−1

K−`+1 − ε if ` ∈ [K − 1 : K].
For the sum rate expressed in (45), by dividing each side with
1
2 logP and letting P → ∞ and ε → 0, it reveals that for

almost all realizations of channel coefficients the following
sum GDoF is achievable

dachievablesum (α) =
K−2∑
`=1

(K − `+ 1)(α` − α`−1)
N`
M`

+
2(αK−1 − αK−2)

2
+ αK − αK−1. (46)

Note that when ` ∈ [1 : K − 2], we have N`
M`

=
mK`(K`−1)

2mK`(K`−1)+(K`−1)mK`(K`−1)−1−1
, which converges to 1

2 for
large enough m. Therefore, for large enough m, the achievable
sum GDoF expressed in (46) can be simplified as

dachievablesum (α) =
K−2∑
`=1

(K − `+ 1)(α` − α`−1)

2

+
2(αK−1 − αK−2)

2
+ αK − αK−1

=

∑K
k=1 αk + αK − αK−1

2
(47)

which holds for almost all realizations of channel coefficients.
At this point, we complete the achievability proof for The-
orem 1. The two lemmas used in the GDoF analysis are
provided below.

Lemma 7. Consider the minimum distance dmin(k, `) defined
in (40). For almost all realizations of channel coefficients, and
for any small enough ε` > 0, there exists a positive constant
κ′ such that

dmin(k, `) ≥ κ′P
αk−α`+ε`

2

for k ∈ [` : K], ` ∈ [1 : K − 2].

Proof. See Appendix C-B. The proof uses the result of
Khintchine-Groshev Theorem for Monomials.

Lemma 8. For the term Tk,` defined in (37), it can be upper
bounded by

Tk,` ≤P
αk−α`

2 · δk,`

where δk,` is a positive value independent of P , for k ∈ [` :
K], ` ∈ [1 : K − 2].

Proof. See Appendix C-C.

VI. CONCLUSION

This work considered the K-user asymmetric interference
channel, where different receivers might have different channel
gains, parameterized by 0 < α1 ≤ α2 ≤ · · · ≤ αK . For
this channel, we characterized the optimal sum GDoF as
dsum =

∑K
k=1 αk+αK−αK−1

2 . The achievability is based on
multi-layer interference alignment and successive decoding.
For the the converse of this asymmetric setting, it involves
bounding the weighted sum GDoF for selected J + 2 users,
J ∈ [1 : dlog K

2 e], which is very different from the case of the
symmetric setting that only requires bounding the sum DoF
for selected two users. The result of this work generalizes the
existing result of the symmetric case to the setting with diverse
link strengths.
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APPENDIX A
PROOFS OF LEMMAS 2, 3, 4 AND 5, AND CLAIMS 1 AND 2

Recall that

ỹk,`(t),
√
Pα`

K∑
i=1

hkixi(t) + z̃`(t)

Φ(J0),2J−J0+1I(wJ0 ; ynJ0)

+
J+2∑

j=J0+1

2max{J−j+1,0}I(wj ; ỹnJ0+1,J0 |W̄[j])

d0 , 0, α0 , 0, ỹn1,0 ,φ, I(wj ; ỹn1,0|W̄[j]), 0, ∀j,
I(w0; yn0 ), 0, and Φ(0), 0 for J0 ∈ [1 : J − 1] and
J ∈ [1 : dlog K

2 e] (see (6), (7) and (8)).

A. Proof of Lemma 2

The proof is based on the result of Lemma 3. Specifically,
Lemma 3 reveals that

Φ(J0) ≤2J−J0+1(αJ0 − αJ0−1) · n
2

logP + no(logP )

+

J+2∑
j=J0

2max{J−j+1,0}I(wj ; ỹnJ0,J0−1|W̄[j])

for J0 ∈ [1 : J − 1]. By adding 2J−(J0−1)+1I(wJ0−1; ynJ0−1)
into both sides of the above inequality, we have

Φ(J0) + 2J−(J0−1)+1I(wJ0−1; ynJ0−1)

≤2J−J0+1(αJ0 − αJ0−1)
n

2
logP + no(logP ) + Φ(J0 − 1)

which completes the proof of Lemma 2 .

B. Proof of Lemma 3

The proof will use the result of Lemma 5. At first, we note
that the following equality is true

2J−J0+1I(wJ0 ; ynJ0)

+
J+2∑

j=J0+1

2max{J−j+1,0}I(wj ; ỹnJ0+1,J0 |W̄[j])

=
J+2∑

j=J0+1

2max{J−j+1,0}
(
I(wJ0 ; ynJ0) + I(wj ; ỹnJ0+1,J0 |W̄[j])

)
(48)

by using the identity of
∑J+2
j=J0+1 2max{J−j+1,0} = 2J−J0+1,

for J0 ∈ [1 : J − 1]. For the sum of two mutual information

terms in the right-hand side of (48), given j ∈ [J0 + 1, J + 2],
we have

I(wJ0 ; ynJ0) + I(wj ; ỹnJ0+1,J0 |W̄[j])

≤I(wJ0 ; ynJ0 , ỹ
n
J0,J0−1, W̄[j,J0])

+ I(wj ; ỹnJ0+1,J0 , ỹ
n
J0,J0−1|W̄[j]) (49)

= I(wJ0 ; ỹnJ0,J0−1|W̄[j,J0])︸ ︷︷ ︸
≤I(wJ0 ;ỹnJ0,J0−1|W̄[J0])

+I(wj ; ỹnJ0,J0−1|W̄[j])

+ I(wJ0 ; ynJ0 |ỹ
n
J0,J0−1, W̄[j,J0])

+ I(wj ; ỹnJ0+1,J0 |ỹ
n
J0,J0−1, W̄[j]) (50)

≤I(wJ0 ; ỹnJ0,J0−1|W̄[J0]) + I(wj ; ỹnJ0,J0−1|W̄[j])

+ (αJ0 − αJ0−1) · n
2

logP + no(logP ) (51)

where the step in (49) follows from the fact that adding more
information does not reduce the mutual information; the step in
(50) uses chain rule and the fact that the messages are mutually
independent; the step in (51) follows from the derivation of
I(wJ0 ; ỹnJ0,J0−1|W̄[j,J0]) ≤ I(wJ0 ; ỹnJ0,J0−1, wj |W̄[j,J0]) =
I(wJ0 ; ỹnJ0,J0−1|W̄[J0]) and from the result of Lemma 5,
which reveals that I(wJ0 ; ynJ0 |ỹ

n
J0,J0−1, W̄[j,J0]) +

I(wj ; ỹnJ0+1,J0
|ỹnJ0,J0−1, W̄[j]) ≤ (αJ0 − αJ0−1) · n2 logP +

no(logP ).
By incorporating the result of (51) into (48), it gives

2J−J0+1I(wJ0 ; ynJ0)

+

J+2∑
j=J0+1

2max{J−j+1,0}I(wj ; ỹnJ0+1,J0 |W̄[j])

≤
J+2∑

j=J0+1

2max{J−j+1,0}
(
I(wJ0 ; ỹnJ0,J0−1|W̄[J0])

+ I(wj ; ỹnJ0,J0−1|W̄[j])

+ (αJ0 − αJ0−1)
n

2
logP + no(logP )

)
(52)

=2J−J0+1(αJ0 − αJ0−1) · n
2

logP + no(logP )

+

J+2∑
j=J0

2max{J−j+1,0}I(wj ; ỹnJ0,J0−1|W̄[j]) (53)

where (52) is from (51) and (48); (53) follows from the identity
of
∑J+2
j=J0+1 2max{J−j+1,0} = 2J−J0+1, for J0 ∈ [1 : J − 1].

Then, we complete the proof of Lemma 3.

C. Proof of Lemma 4
The proof will use the result of Lemma 5. In the first step,

we expand 2I(wJ ; ynJ ) as follows

2I(wJ ; ynJ )

≤I(wJ ; ynJ , ỹ
n
J,J−1, W̄[J,J+1]) + I(wJ ; ynJ , ỹ

n
J,J−1, W̄[J,J+2])

(54)
=I(wJ ; ỹnJ,J−1|W̄[J,J+1]) + I(wJ ; ỹnJ,J−1|W̄[J,J+2])

+ I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+1])+I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+2])
(55)

≤I(wJ ; ỹnJ,J−1|W̄[J]) + I(wJ ; ỹnJ,J−1|W̄[J])

+ I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+1])+I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+2])
(56)
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where (54) follows from the fact that adding more information
does not reduce the mutual information; (55) uses chain rule
and the fact that the messages are mutually independent; and
(56) results from the derivation that I(wJ ; ỹnJ,J−1|W̄[J,`]) ≤
I(wJ ; ỹnJ,J−1, w`|W̄[J,`]) = I(wJ ; ỹnJ,J−1|W̄[J]) for ` ∈ [1 :
K], ` 6= J .

In the second step, we expand I(wJ+1; ynJ+1) +
I(wJ+2; ynJ+2) as follows

I(wJ+1; ynJ+1) + I(wJ+2; ynJ+2)

≤I(wJ+1; ynJ+1, ỹ
n
J+1,J , W̄[J+1,J+2])

+ I(wJ+2; ynJ+2, ỹ
n
J+1,J , W̄[J+2]) (57)

=I(wJ+1; ỹnJ+1,J |W̄[J+1,J+2]) + I(wJ+2; ỹnJ+1,J |W̄[J+2])

+ I(wJ+1; ynJ+1|ỹnJ+1,J , W̄[J+1,J+2])

+ I(wJ+2; ynJ+2|ỹnJ+1,J , W̄[J+2]) (58)

≤I(wJ+1; ỹnJ+1,J , ỹ
n
J,J−1, wJ+2|W̄[J+1,J+2])

+ I(wJ+2; ỹnJ+1,J , ỹ
n
J,J−1|W̄[J+2])

+ I(wJ+1; ynJ+1|ỹnJ+1,J , W̄[J+1,J+2])

+ I(wJ+2; ynJ+2|ỹnJ+1,J , W̄[J+2]) (59)

=I(wJ+1; ỹnJ,J−1|W̄[J+1]) + I(wJ+2; ỹnJ,J−1|W̄[J+2])

+ I(wJ+1; ỹnJ+1,J |ỹnJ,J−1, W̄[J+1])

+ I(wJ+2; ỹnJ+1,J |ỹnJ,J−1, W̄[J+2])

+ I(wJ+1; ynJ+1|ỹnJ+1,J , W̄[J+1,J+2])

+ I(wJ+2; ynJ+2|ỹnJ+1,J , W̄[J+2]) (60)

≤(αJ+2 − αJ) · n
2

logP + no(logP )

+ I(wJ+1; ỹnJ,J−1|W̄[J+1]) + I(wJ+2; ỹnJ,J−1|W̄[J+2])

+ I(wJ+1; ỹnJ+1,J |ỹnJ,J−1, W̄[J+1])

+ I(wJ+2; ỹnJ+1,J |ỹnJ,J−1, W̄[J+2]) (61)

where (57) and (59) result from the fact that adding more
information does not reduce the mutual information; (58)
and (60) use chain rule and the fact that the messages
are mutually independent; (61) follows from the result of
Lemma 5, that is, I(wJ+1; ynJ+1|ỹnJ+1,J , W̄[J+1,J+2]) +
I(wJ+2; ynJ+2|ỹnJ+1,J , W̄[J+2]) = I(wJ+1; ynJ+1|ỹnJ+1,J ,
W̄[J+1,J+2]) + I(wJ+2; ỹnJ+2,J+2|ỹnJ+1,J , W̄[J+2]) ≤
(αJ+2 − αJ) · n2 logP + no(logP ).

By combining the results of (56) and (61), we have

2I(wJ ; ynJ ) + I(wJ+1; ynJ+1) + I(wJ+2; ynJ+2)

≤2I(wJ ; ỹnJ,J−1|W̄[J]) + I(wJ+1; ỹnJ,J−1|W̄[J+1])

+ I(wJ+2; ỹnJ,J−1|W̄[J+2])

+ I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+1])

+ I(wJ+1; ỹnJ+1,J |ỹnJ,J−1, W̄[J+1])

+ I(wJ ; ynJ |ỹnJ,J−1, W̄[J,J+2])

+ I(wJ+2; ỹnJ+1,J |ỹnJ,J−1, W̄[J+2])

+ (αJ+2 − αJ) · n
2

logP + no(logP ) (62)

≤2I(wJ ; ỹnJ,J−1|W̄[J]) + I(wJ+1; ỹnJ,J−1|W̄[J+1])

+ I(wJ+2; ỹnJ,J−1|W̄[J+2])

+ (αJ − αJ−1) · n
2

logP + no(logP )

+ (αJ − αJ−1) · n
2

logP + no(logP )

+ (αJ+2 − αJ) · n
2

logP + no(logP ) (63)

where (62) is from (56) and (61); (63) follows from Lemma 5.
At this point, we complete the proof of Lemma 4.

D. Proof of Lemma 5

The proof will use the result of Claim 1 and Claim 2. When
`1, `2, `3, l, i, j ∈ [1 : K], `1 < `2 ≤ `3, i 6= j, we have

I(wi; yn`2 |ỹ
n
`2,`1 , W̄[i,j]) + I(wj ; ỹnl,`3 |ỹ

n
`2,`1 , W̄[j])

≤I(wi; yn`2 |ỹ
n
`2,`1 , W̄[i,j]) + I(wj ; ỹnl,`3 , y

n
`2 |ỹ

n
`2,`1 , W̄[j]) (64)

=I(wi; yn`2 |ỹ
n
`2,`1 , W̄[i,j]) + I(wj ; yn`2 |ỹ

n
`2,`1 , W̄[j])

+ I(wj ; ỹnl,`3 |y
n
`2 , ỹ

n
`2,`1 , W̄[j])

= I(wi, wj ; yn`2 |ỹ
n
`2,`1 , W̄[i,j])︸ ︷︷ ︸

≤n2 log(1+P
α`2
−α`1 )

+ I(wj ; ỹnl,`3 |y
n
`2 , ỹ

n
`2,`1 , W̄[j])︸ ︷︷ ︸

≤n2 log
(

1+P
α`3
−α`2

|hlj |2

|h`2j |
2

)
≤n

2
log(1 + Pα`2−α`1 ) +

n

2
log
(
1 + Pα`3−α`2

|hlj |2

|h`2j |2
)

(65)

where (64) uses the fact that adding information does not
reduce the mutual information; and (65) follows from Claim 1
and Claim 2.

Similarly, when `2, `3, l, j ∈ [1 : K] and `2 ≤ `3, we have

I(wi; yn`2 |W̄[i,j]) + I(wj ; ỹnl,`3 |W̄[j])

≤I(wi; yn`2 |W̄[i,j]) + I(wj ; ỹnl,`3 , y
n
`2 |W̄[j])

=I(wi; yn`2 |W̄[i,j]) + I(wj ; yn`2 |W̄[j]) + I(wj ; ỹnl,`3 |y
n
`2 , W̄[j])

= I(wi, wj ; yn`2 |W̄[i,j])︸ ︷︷ ︸
≤α`2 ·

n
2 logP+no(logP )

+ I(wj ; ỹnl,`3 |y
n
`2 , W̄[j])︸ ︷︷ ︸

≤n2 log
(

1+P
α`3
−α`2

|hlj |2

|h`2j |
2

)
≤α`2 ·

n

2
logP + no(logP ) +

n

2
log
(
1 + Pα`3−α`2

|hlj |2

|h`2j |2
)

(66)

=α`3 ·
n

2
logP + no(logP )

where (66) follows from Claim 1 and Claim 2. Then, we
complete the proof of Lemma 5.

E. Proof of Claim 1

When `1, `2, i, j ∈ [1 : K], `1 < `2, i 6= j, we have

I(wi, wj ; yn`2 |ỹ
n
`2,`1 , W̄[i,j])

=h(yn`2 |ỹ
n
`2,`1 , W̄[i,j])− h(yn`2 |ỹ

n
`2,`1 , W̄[i,j], wi, wj)

=h(yn`2 |ỹ
n
`2,`1 , W̄[i,j])− h(zn`2)

=h({y`2(t)−
√
Pα`2−α`1 ỹ`2,`1(t)}nt=1|ỹn`2,`1 , W̄[i,j])− h(zn`2)

=h({z`2(t)−
√
Pα`2−α`1 z̃`1(t)}nt=1|ỹn`2,`1 , W̄[i,j])− h(zn`2)

≤h({z`2(t)−
√
Pα`2−α`1 z̃`1(t)}nt=1)− h(zn`2) (67)

=
n

2
log(2πe(1 + Pα`2−α`1 ))− n

2
log(2πe)

=
n

2
log(1 + Pα`2−α`1 )
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where (67) follows from the fact that conditioning reduces
differential entropy.

When `2, i, j ∈ [1 : K], i 6= j, we have

I(wi, wj ; yn`2 |W̄[i,j])

=h(yn`2 |W̄[i,j])− h(zn`2)

=
n∑
t=1

h(y`2(t)|yt−1
`2

, W̄[i,j])−
n

2
log(2πe)

≤
n∑
t=1

h(y`2(t))− h(zn`2)

≤n
2

log(2πe(1 + Pα`2
K∑
k=1

|h`2k|2))− n

2
log(2πe) (68)

=α`2 ·
n

2
logP + no(logP )

where (68) uses the fact that Gaussian input maximizes the
differential entropy. It then completes the proof of Claim 1.

F. Proof of Claim 2
When `1, `2, `3, l, j ∈ [1 : K], `1 < `2 ≤ `3, or when

`2, `3, l, j ∈ [1 : K], `2 ≤ `3, ỹn`2,`1 = φ, we have

I(wj ; ỹnl,`3 |y
n
`2 , ỹ

n
`2,`1 , W̄[j])

=h(ỹnl,`3 |y
n
`2 , ỹ

n
`2,`1 , W̄[j])− h(ỹnl,`3 |y

n
`2 , ỹ

n
`2,`1 , W̄[j], wj)

=h
({√

Pα`3hljxj(t) + z̃`3(t)
}n
t=1∣∣{√Pα`2h`2jxj(t) + z`2(t)
}n
t=1

, ỹn`2,`1 , W̄[j]

)
− h(z̃n`3)

=h
({√

Pα`3hljxj(t) + z̃`3(t)

−
√
Pα`3−α`2

hlj
h`2j

(√
Pα`2h`2jxj(t) + z`2(t)

)}n
t=1

∣∣{√
Pα`2h`2jxj(t) + z`2(t)

}n
t=1

, ỹn`2,`1 , W̄[j]

)
− h(z̃n`3)

≤h
({
z̃`3(t)−

√
Pα`3−α`2

hlj
h`2j

z`2(t)
}n
t=1

)
− h(z̃n`3) (69)

=
n

2
log
(
1 + Pα`3−α`2

|hlj |2

|h`2j |2
)

where (69) follows from the fact that conditioning reduces
differential entropy. It then completes the proof of Claim 2.

APPENDIX B
PROOF OF COROLLARY 1

We will first prove Corollary 1 for some specific cases
in order to get some insights. After that, we will prove
Corollary 1 for the general case. The proof is based on the
result of Lemma 1. At first we define that Jm,dlog K

2 e and
that

Θ(x),

{
x if x ≥ 2Jm (70a)
0 else . (70b)

Recall that (see (8))

d0 , 0, α0 , 0. (71)

In our proof, a total of 2Jm bounds are required. Among those
2Jm bounds, the first 2Jm−1 bounds have a specific structure.
The last 2Jm−1 bounds have a similar structure but some
elements with certain indexes are erased (set as zeros).

A. Proof for the case with K = 8

From Lemma 1, the following bounds hold true

4d1 + 2d3 + d7 + d8 ≤ 2α1 + α3 + α8

4d2 + 2d3 + d7 + d8 ≤ 2α2 + α3 + α8

4d4 + 2d6 + d7 + d8 ≤ 2α4 + α6 + α8

4d5 + 2d6 + d7 + d8 ≤ 2α5 + α6 + α8.

By summing up the above 4 bounds and dividing each side
with 4, it gives dsum(α) ≤

∑8
k=1 αk+α8−α7

2 .

B. Proof for the case with K = 9

The result of Lemma 1 reveals that

8d1 + 4d5 + 2d7 + d8 + d9 ≤ 4α1 + 2α5 + α7 + α9

8d2 + 4d5 + 2d7 + d8 + d9 ≤ 4α2 + 2α5 + α7 + α9

8d3 + 4d6 + 2d7 + d8 + d9 ≤ 4α3 + 2α6 + α7 + α9

8d4 + 4d6 + 2d7 + d8 + d9 ≤ 4α4 + 2α6 + α7 + α9

d8 + d9 ≤ α9

d8 + d9 ≤ α9

d8 + d9 ≤ α9

d8 + d9 ≤ α9.

By summing up the above 8 bounds and dividing each side
with 8, we have dsum(α) ≤

∑9
k=1 αk+α9−α8

2 .

C. Proof for the case with K = 10

The following bounds are directly derived from Lemma 1

8d1 + 4d5 + 2d7 + d9 + d10 ≤ 4α1 + 2α5 + α7 + α10

8d2 + 4d5 + 2d7 + d9 + d10 ≤ 4α2 + 2α5 + α7 + α10

8d3 + 4d6 + 2d7 + d9 + d10 ≤ 4α3 + 2α6 + α7 + α10

8d4 + 4d6 + 2d7 + d9 + d10 ≤ 4α4 + 2α6 + α7 + α10

2d8 + d9 + d10 ≤ α8 + α10

2d8 + d9 + d10 ≤ α8 + α10

2d8 + d9 + d10 ≤ α8 + α10

2d8 + d9 + d10 ≤ α8 + α10.

By combining the above 8 bounds it gives dsum(α) ≤∑10
k=1 αk+α10−α9

2 .

D. Proof for the case with K = 13

When K = 13, the following bounds are directly derived
from Lemma 1

8d1 + 4d5 + 2d7 + d12 + d13 ≤ 4α1 + 2α5 + α7 + α13

(72)
8d2 + 4d5 + 2d7 + d12 + d13 ≤ 4α2 + 2α5 + α7 + α13

(73)
8d3 + 4d6 + 2d7 + d12 + d13 ≤ 4α3 + 2α6 + α7 + α13

(74)
8d4 + 4d6 + 2d7 + d12 + d13 ≤ 4α4 + 2α6 + α7 + α13

(75)
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4d9 + 2d11 + d12 + d13 ≤ 2α9 + α11 + α13

(76)
4d9 + 2d11 + d12 + d13 ≤ 2α9 + α11 + α13

(77)
4d10 + 2d11 + d12 + d13 ≤ 2α10 + α11 + α13

(78)
8d8 + 4d10 + 2d11 + d12 + d13 ≤ 4α8 + 2α10 + α11 + α13.

(79)

The above 8 bounds reveal that dsum(α) ≤
∑13
k=1 αk+α13−α12

2 .

E. Proof for the case with K = 16

When K = 16, the following bounds are directly derived
from Lemma 1

8d1 + 4d5 + 2d7 + d15 + d16 ≤ 4α1 + 2α5 + α7 + α16

8d2 + 4d5 + 2d7 + d15 + d16 ≤ 4α2 + 2α5 + α7 + α16

8d3 + 4d6 + 2d7 + d15 + d16 ≤ 4α3 + 2α6 + α7 + α16

8d4 + 4d6 + 2d7 + d15 + d16 ≤ 4α4 + 2α6 + α7 + α16

8d8 + 4d12 + 2d14 + d15 + d16 ≤ 4α8 + 2α12 + α14 + α16

8d9 + 4d12 + 2d14 + d15 + d16 ≤ 4α9 + 2α12 + α14 + α16

8d10 + 4d13 + 2d14 + d15 + d16 ≤ 4α10 + 2α13 + α14 + α16

8d11 + 4d13 + 2d14 + d15 + d16 ≤ 4α11 + 2α13 + α14 + α16.

It then implies that dsum(α) ≤
∑16
k=1 αk+α16−α15

2 .
In the following we will prove Corollary 1 for the general

case (K ≥ 3) by using the result of Lemma 1. Note that when
K = 2, the proof is straightforward.

F. Proof for the general case

In our proof, a total of 2Jm bounds are required, which can
be seen in the previous examples. Among those 2Jm bounds,
the first 2Jm−1 bounds have a similar structure. Specifically,
when ` ∈ [1 : 2Jm−1], the `th bound takes the following form

Jm−1∑
j=0

2Jm−j · dd`/2je+∑j
l=1 2Jm−l + dK−1 + dK

≤
Jm−1∑
j=0

2Jm−j−1 · αd`/2je+∑j
l=1 2Jm−l + αK . (80)

Note that in the above expression, we define that∑0
l=1 2Jm−l, 0. When ` ∈ [2Jm−1 + 1 : 2Jm ], the `th bound

takes the following form
Jm−1∑
j=0

2Jm−j · dΘ(K−1−2Jm+d(`−2Jm−1)/2je+
∑j
l=1 2Jm−l)

+ dK−1 + dK

≤
Jm−1∑
j=0

2Jm−j−1 · αΘ(K−1−2Jm+d(`−2Jm−1)/2je+
∑j
l=1 2Jm−l)

+ αK (81)

where Θ(•), d0 and α0 are defined in (70a), (70b) and (71).
The last 2Jm−1 bounds have a similar structure as the first

2Jm−1 bounds. However, with our design in (81), we enforce
some dΘ(•) and αΘ(•) to 0 when the corresponding indices
are less than 2Jm . For example, when K = 13 and Jm =
dlog K

2 e = 3, the first 2Jm−1 = 4 bounds are exactly the
same as in (72)-(75), while the last 4 bounds are expressed as

8dΘ(5)+4d9+2d11+d12+d13 ≤4αΘ(5)+ 2α9 + α11 + α13

(82)
8dΘ(6)+4d9+2d11+d12+d13 ≤4αΘ(6)+ 2α9 + α11 + α13

(83)
8dΘ(7)+4d10+2d11+d12+d13 ≤4αΘ(7)+ 2α10 + α11 + α13

(84)
8d8+4d10+2d11+d12+d13 ≤4α8+ 2α10 + α11 + α13

(85)

where dΘ(5) = dΘ(6) = dΘ(7) = αΘ(5) = αΘ(6) = αΘ(7) = 0.
The bounds in (82)-(85) can be rewritten as in (76)-(79).

Note that, for the left-hand side of the above 2Jm bounds,
the total weight of dk is 2Jm , ∀k ∈ [1 : K]. For the right-
hand side of the above 2Jm bounds, the total weight of αk
is 2Jm−1, ∀k ∈ [1 : K − 2]; the total weight of αK is 2Jm ;
and the total weight of αK−1 is 0. Therefore, by summing up
the above 2Jm bounds and dividing each side with 2Jm , the
following bound holds true dsum(α) ≤

∑K
k=1 αk+αK−αK−1

2 ,
which completes the proof of Corollary 1.

APPENDIX C
PROOFS OF LEMMAS 6, 7, 8

Recall that, when ` ∈ [1 : K − 2], we have
|Ik,`| = mK`(K`−1) + (K` − 1)mK`(K`−1)−1 − 1, |Sk,`| =
mK`(K`−1), λ` = α`−α`−1

M`
− ε, M`, 2mK`(K`−1) + (K` −

1)mK`(K`−1)−1 − 1, N` = mK`(K`−1), and K` = K − `+ 1.

A. Proof of Lemma 6
From the design in (22)-(30), the average power of trans-

mitted signal at Transmitter k, k ∈ [1 : K], is bounded by

E|xk|2 =
k∑
`=1

P−α`−1E|xk,`|2

=
k∑
`=1

P−α`−1E|vT

k,`bk,`|2

=
k∑
`=1

P−α`−1

N∑̀
i=1

|vk,`,i|2 · E|bk,`,i|2 (86)

=
k∑
`=1

P−α`−1

N∑̀
i=1

|vk,`,i|2 ·
γ2Q`(Q` + 1)

3Q2
`

(87)

≤
k∑
`=1

P−α`−1

N∑̀
i=1

|vk,`,i|2 · γ2 (88)

≤γ2
k∑
`=1

N∑̀
i=1

|vk,`,i|2 (89)

≤γ2
k?∑
`=1

N∑̀
i=1

|vk?,`,i|2

=γ2η
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where

k?, arg max
k′∈[1:K]

k′∑
`=1

N∑̀
i=1

|vk′,`,i|2 and η,
k?∑
`=1

N∑̀
i=1

|vk?,`,i|2.

Note that η is a positive value independent of P . The step in
(86) uses the fact that the symbols {bk,`,i}k,`,i are mutually
independent, based on our signal design. The step in (87) is
from the result of (17), given that bk,`,i ∈ Ω(ξ = γ · 1

Q`
, Q =

Q`), for i ∈ [1 : N`], ` ∈ [1 : k], k ∈ [1 : K] (see (26)).
The step in (88) uses the identity that Q`(Q`+1)

3Q2
`
≤ 2Q2

`

3Q2
`
< 1.

The step in (89) follows from the fact that P−α`−1 ≤ 1 for
` ∈ [1 : K]. At this point, we complete the proof of Lemma 6.

B. Proof of Lemma 7

Since the elements of Sk,` and Ik,` are monomials gen-
erated from the channel coefficients (see (33) and (34)), the
minimum distance dmin(k, `) defined in (40) can be bounded
by using the Khintchine-Groshev Theorem for Monomials (see
Theorem 2). Specifically, the Khintchine-Groshev Theorem for
Monomials reveals that, for any small enough ε′ = ε > 0, and
for almost all realizations of channel coefficients, there exists
a positive constant κ such that

dmin(k, `) ≥ κγ
√
Pαk−α`−1−λ`

(K`Q`)|Sk,`|+|Ik,`|−1+ε

=
κγP (αk−α`−1)/2

Pλ`/2 · (K`Pλ`/2)M`−1+ε

=
κγ

KM`−1+ε
`

· P
(αk−α`−1)/2

(Pλ`/2)M`+ε

=
κγ

KM`−1+ε
`

· P
αk−α`−1−(α`−α`−1)

2

P
− ε2 ·(M`+ε−

α`−α`−1
M`

)

= κ′P
αk−α`+ε`

2 (90)

for k ∈ [` : K], ` ∈ [1 : K − 2], where ε` and κ′ are defined
as

ε`, ε(M` + ε− α` − α`−1

M`
), κ′,

κγ

KM`−1+ε
`

.

Note that the value of κ′ is positive and independent of P ,
and ε` is positive, ∀` ∈ [1 : K − 2], given that ε > 0. It then
completes the proof of Lemma 7.

C. Proof of Lemma 8

For the term Tk,` defined in (37), it can be bounded by

Tk,` =
K∑

l=`+1

K∑
j=l

√
Pαk−αl−1hkjv

T

j,lbj,l

=
K∑

l=`+1

K∑
j=l

√
Pαk−αl−1hkj

Nl∑
i=1

vj,l,ibj,l,i

≤
K∑

l=`+1

K∑
j=l

√
Pαk−αl−1 |hkj |

Nl∑
i=1

|vj,l,i|γ (91)

≤
K∑

l=`+1

K∑
j=l

√
Pαk−α` |hkj |

Nl∑
i=1

|vj,l,i|γ

=
√
Pαk−α` · γ

K∑
l=`+1

K∑
j=l

Nl∑
i=1

|hkj ||vj,l,i|

=
√
Pαk−α` · δk,`

for k ∈ [` : K], ` ∈ [1 : K − 2], where
δk,`, γ

∑K
l=`+1

∑K
j=l

∑Nl
i=1 |hkj ||vj,l,i| and the value of δk,`

is independent of P . The step in (91) uses the fact that
bj,`,i ≤ γ, given that bk,`,i ∈ Ω(ξ = γ · 1

P
λ`
2

, Q = P
λ`
2 ),

for i ∈ [1 : N`], k ∈ [` : K], ` ∈ [1 : K] (see (26)). At this
point, we complete the proof of Lemma 8.

APPENDIX D
DISCUSSION ON COMPUTING ERROR PROBABILITY

For the proposed scheme described in Section V, with suc-
cessive decoding we can ensure that the decoding at different
layers has vanishing error probability when P goes large.
Specifically, In our scheme, Lemma 7 and Lemma 8 have
showed that the minimum distance of the constellation for the
signals at each layer is larger than next layers’ signals that are
treated as noise. The results of these two lemmas ensure that
the decoding error at each layer is vanishing. In this section
we show how to prove the error probability to be vanishing
through an example.

Let us focus on the following simple example. We consider
a signal observation given as

y = x1 + x2 + x3 + z (92)

where xi ∈ Xi denotes the signal at the ith layer and z ∼
N (0, 1) is a Gaussian noise, for Xi being a discrete set, i =
1, 2, 3. We consider successive decoding, that is, xi in the ith
layer is decoded by treating other signals as noise and then the
decoded xi will be removed from the observation. We assume
that the minimum distance of the constellation for the signal
x1 ∈ X1, denoted by dmin, is lower bounded by

dmin ≥ 2Pα+ε (93)

for some α > 0 and ε > 0. We also assume that the signal
x2 + x3 is bounded by

|x2 + x3| ≤ Pα. (94)

Then we can show that the error probability of decoding
x1 ∈ X1, denoted by Pr[x1 6= x̂1], is vanishing as P goes
large. Specifically, the error probability of decoding x1 can be
computed as

Pr[x1 6= x̂1]

=
∑

x1∈X1

Pr[x1 = x1] · Pr[x1 6= x̂1|x1 = x1]

≤
∑

x1∈X1

Pr[x1 = x1] · Pr
[
|x2 + x3 + z| > dmin/2

]
≤ Pr

[
|x2 + x3 + z| > dmin/2

]
≤ Pr

[
z > −(x2 + x3) + dmin/2

]
+ Pr

[
z < −(x2 + x3)− dmin/2

]
≤ Pr

[
z > −Pα + dmin/2

]
+ Pr

[
z < Pα − dmin/2

]
(95)

= Pr
[
z > −Pα + dmin/2

]
+ Pr

[
z > −Pα + dmin/2

]
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= 2 · Pr
[
z > −Pα + dmin/2

]
= 2 ·Q

(
dmin/2− Pα

)
≤ 2 ·Q

(
Pα(P ε − 1)

)
(96)

≤ exp
(
−P

2α(P ε − 1)2

2

)
(97)

where x̂1 is the estimate for x1 by choosing the closest point in
X1, based on the observation y; and x1 denotes the realization
of x1; (95) uses the assumption in (94); the Q-function is
defined as Q(a), 1√

2π

∫∞
a

exp(− s
2

2 )ds; (96) results from the
the assumption in (93); (97) follows from the identity that
Q(a) ≤ 1

2 exp(−a2/2), ∀a ≥ 0. At this point, from (97) it
can be concluded that

Pr[x1 6= x̂1]→ 0, as P →∞ (98)

under the assumptions of (93) and (94). The assumptions
of (93) and (94) imply that the minimum distance of the
constellation for the signal x1 at the first layer is larger than
next layers’ signals that are treated as noise. In our scheme,
Lemma 7 and Lemma 8 have showed that the minimum
distance of the constellation for the signals at each layer
is larger than next layers’ signals that are treated as noise.
Therefore, in our scheme it ensures that the decoding error at
each layer is vanishing when P goes large.
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