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Mass spectrometry (MS) based omics data analysis require significant time and resources. To date,
few parallel algorithms have been proposed for deducing peptides from mass spectrometry-based data.
However, these parallel algorithms were designed, and developed when the amount of data that needed
to be processed was smaller in scale. In this paper, we prove that the communication bound that is
reached by the existing parallel algorithms is Q(mn + Zr%), where m and n are the dimensions of the
theoretical database matrix, q and r are dimensions of spectra, and p is the number of processors.

We further prove that communication-optimal strategy with fast-memory ~M = mn + % can achieve

Q(Z";%) but is not achieved by any existing parallel proteomics algorithms till date. To validate our
claim, we performed a meta-analysis of published parallel algorithms, and their performance results. We
show that sub-optimal speedups with increasing number of processors is a direct consequence of not
achieving the communication lower-bounds. We further validate our claim by performing experiments
which demonstrate the communication bounds that are proved in this paper. Consequently, we assert
that next-generation of provable, and demonstrated superior parallel algorithms are urgently needed for
MS based large systems-biology studies especially for meta-proteomics, proteogenomic, microbiome, and
proteomics for non-model organisms. Our hope is that this paper will excite the parallel computing
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community to further investigate parallel algorithms for highly influential MS based omics problems.
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1. Introduction

Almost all numerical algorithms when developed, considered
arithmetic operations as the sole metric for efficiency [14,21,4].
Over time, especially in the last decade, the technological trend
of the Moore’s law has kept making the arithmetic operations
faster. Therefore, bottleneck for many algorithms has shifted from
computational arithmetic operations efficiency to communication
i.e. communication costs of moving the data between different
memory-distributed processors connected via a network. Commu-
nication of data elements is essential because operand requires
them to be in the same memory at the same time. Same applies to
serial machines where the data has to be moved to the smallest,
and fastest memory in the hierarchy (i.e. cache). Numerous stud-
ies have shown [2,27,4] this trend of excessive cost of moving data
exceeds the costs of doing the arithmetic operations. With the in-
troduction and ubiquitous multicores, manycore, and GPU based
architectures; this gap is, and will continue to grow exponentially
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over time [8,30]. The current trend for increasing the efficiency for
most numerical algorithms is to reduce the gap between moving
the data, and computing on that data. This trend is observed both
for serial as well as parallel algorithms [4].

Over the years, significant efforts have been invested for the
design, and development of efficient methods for Mass Spectrom-
etry based omics data analysis. These numerical algorithms include
highly successful search engines including but not limited to Se-
quest [12,9,11], Tide [26], Mascot, XTandem, and more recently
MSFragger [19]. Recent trends in systems biology Mass Spectrom-
etry (MS) based experiments generate increasingly large, and com-
plex (multiple species, non-model species, microbiome) data sets
potentially leading to high-impact proteomics, meta-proteomics
and microbiomes studies directly related to human disease and
health. This in turn point towards need for larger, better, and faster
computational tools [29,1,15]. The numerical algorithms developed
for Mass Spectrometry (MS) based peptide deduction is designed
and implemented by assuming number of arithmetic operations as
the sole metric for efficiency.

Development of computational methods for MS data is an ac-
tive area of research [19] but the focus of this research, till date,
has been towards improving the efficiency of arithmetic opera-
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tions. Database-search workflows are the most used data process-
ing pipelines which require matching a high-dimensional noisy MS
data (called spectra) to a database of protein sequences. These MS
data sets are then processed using databases which may be several
times larger than the original proteome (or multiple proteomes in
case of meta-proteomics studies [33]) depending on the search pa-
rameters. The data volume can easily reach tera-byte level depend-
ing on the experiment, and search parameters for these workflows.
Non-model organism proteomics is considered the next frontier
[33,16] to accelerate insight into chronic disease in humans, and
requires even larger search-spaces which would lead to intractable
run-times.

Increasing size of the spectra, and theoretical database search-
space has led to the development of high-performance computing
(HPC) strategies [20,24,31,10,6,23,24] to speed up these search en-
gines. Similar to serial numerical algorithms, the objective of these
HPC methods has been to speed up the arithmetic scoring part of
the search engines with little to no efforts to minimize the com-
munication costs.

Exclusion of communication costs as a metric, of otherwise
highly successful methods [12,9,11,26,19], is becoming a severe
bottleneck for processing of MS data (due to excessive processing
times), and now hinders scientific advancements for mass spec-
trometry, and (meta) proteomics/microbiome research. This obser-
vation might be common perception for systems biologist working
with MS data analysis for meta-proteomics, proteogenomic, or mi-
crobiome studies but it is still anecdotal. In other words, it is hard
to quantify the good or poor scalability of these workflows. From
our anecdotal observations, it was apparent that existing parallel
algorithms result in abysmal speedups with increasing number of
processors or data sets. To prove that these observations are not
an artifact of a specific library or compute-architecture we wanted
to investigate the lower-bounds that are acquired by existing HPC
algorithms.

Therefore, we set out to ask these questions: (1) Are there
lower-bounds on the parallel algorithms that can be acquired?
(2) Do existing HPC algorithms attain these lower-bounds? (3)
If not, are there new parallel algorithms that will allow us to
do that? The bounds will be similar for serial algorithms subject
to architecture-specific communication costs. To date, we are not
aware of compute- or communication bounds proved for any MS
based omics serial or parallel algorithms.

In this paper, we theoretically prove that the efficiency of
these algorithms (both serial and parallel) is bottle-necked by
the communication costs, and is prohibitively excessive; no mat-
ter what kind of indexing is employed. We further prove the
theoretical lower-bounds that are possible but are not achieved
by any existing parallel algorithm. Lastly, we demonstrate that
these lower-bounds were consistent with the empirical observa-
tions (and published results), and experimental resultsAs expected,
attaining these lower-bounds would require a significant redesign
of these parallel (and serial) algorithms; and not just OPENMP loop
transformations. These redesigns may include different numeri-
cal properties, transformation of MS data into readable/write-able
compressed formats, more effective ways of decomposing the data
on parallel architecture that incur minimal communications, and
different data-structures that need to be investigated.

Rest of the paper is organized as follows. In section 2, we for-
mulate the communication models that would be used for analysis
of parallel algorithms. In the next section 3, we introduce the
reader to proteomics workflows, and a generalized parallel strat-
egy that is used by all HPC methods. In section 4, we provide
theoretical proves of the communications bounds, the computation
bounds, and the overall runtime bounds of the existing, as well as
communication-optimal parallel algorithms. In section 5, we pro-
vide the meta-analysis of all existing HPC methods, and analyze
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the published results with our new communication/computation
bounds. In section 6, we elaborate on the experimental set up and
details about the results that are obtained. Section 7, and section 8
are reserved for discussion and conclusions.

2. Communication model

For design of parallel algorithms, it is essential that they are
not only load-balanced but also minimize the communication costs
between processors associated with data decomposition. Most of
the algorithms, especially ones dealing with big data sets, have
inter-processor communications costs that are much larger than
the computation costs. Hardware trends that are growing towards
more many-core, and multi-core architectures also predict that
most of the problems will become communication-bound even
for serial algorithms [3]. For our MS based proteomics parallel al-
gorithms, we will model the cost of communications as follows:
There are two costs that are normally associated with communica-
tion. When the system has to send n words from one processor to
the other over the network via which the processors are communi-
cating; the words are first packed into contiguous block of memory
and are known as a message. This message is then sent to the des-
tination processor by following the parallel algorithmic constructs
that have been implemented. There is a fixed overhead time that
is required to assemble, pack, and transmit the data (called latency
cost denoted by «). There is also time needed to transmit n words
and this time is proportional to n called the bandwidth cost de-
noted by Bn. Then to send one message of n words is denoted by
o + Bn, and the time to send S messages containing a total of W
words can be denoted by oS + BW. Also let y denote the time it
takes to perform one arithmetic computation, and F denotes that
total number of computations. Summation of all of these terms is
equivalent to oS + BW + y F, and the recent technological trends
dictate that « >> 8 >> y. Therefore, it is of utmost importance
to have parallel algorithms that can minimize both the bandwidth,
and the latency. Such communication models are used for mini-
mizing communication in numerical linear-algebraic computations,
and more details can be found at [2].

2.1. Sequential computer

For a serial architecture that has levels of memory-hierarchy,
the model oS + BW + ¢ F, would suffice for 2 levels of hierarchy.
If there are more levels are hierarchy to be considered then there
is a communication cost associated with each level and when the
data is moved to/from that level.

2.2. Parallel computer

Similar to a sequential computer, «S + W + yF would be
sufficient to provide the communication costs associated with one
node of the parallel computing architecture. A lower-bound on one
processor is enough to get a lower-bound on the whole algorithm
with the assumption that all processors are homogeneous and are
completing the same tasks. A upper-bound (time required by the
entire algorithm) will need a summation of the terms in an order
of dependencies considering the critical path, which maximize the
summation of these costs. If the parallel architecture can overlap
communication and computations; then the expression can be re-
placed with max(aS + BW, y F) or max(aS, BW, y F) which can
lower the cost by 2 or 3 but does not effect the asymptomatic re-
lations. Different indexes can be used for formulating the model
for a heterogeneous architecture. However, for this paper we will
assume a homogeneous architecture.

Finally, an algorithm will be called a communication-optimal al-
gorithm if it can asymptotically attain the communication lower-
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Fig. 1. A high-level overview of the MS based proteomics data analysis that leads to spectra-to-peptide deductions.

bounds for a given parallel architectures. Such an algorithm is also
colloquially known as communication-avoiding.

3. MS database proteomics, proteogenomic, and
meta-proteomics search

We will start by defining the database-search strategy that is
used for Mass spectrometry data. For the purposes of this frame-
work we will assume the most simplest strategy independently
on how the data was acquired and what are the systems biol-
ogy objectives. This will ensure that our results are generalized
for most of MS data processing using databases. The most com-
monly employed method for peptide identification is the database
search where the experimental tandem MS/MS spectra are com-
pared to the theoretically predicted spectral libraries/databases
[19]. The theoretical spectral libraries are generated by first in-silico
digesting a proteome sequence database into peptide sequences
and then predicting MS/MS spectra for each peptide sequence and
its possible (modified) variants. The advantage of this technique
is that Post-Translational Modifications (PTM) and fragmentation
types can be easily incorporated in the theoretical spectra. The ex-
perimental spectra are then compared with the theoretical spectra
created during the database creation process just described. This
scoring is called peptide-to-spectrum match (PSM) computations.
An overview schematic of the mass spectrometry based peptide
deduction is shown in Fig. 1.

3.1. Generalized parallel computing strategy

Existing parallel algorithms for proteomics, like numerical al-
gorithms in other domains, have been designed for problems that
are compute-bound. In general, all HPC algorithms that have been
proposed in this domain operate by taking the database and dis-
tributing it over the processors. Once the database is communi-
cated, N/p of the spectra is assigned on each processing unit
where N in the total number of spectra and p is the number of
processing elements. Thereafter, a serial algorithm (such as XTan-
dem) is executed on each of the node in parallel. Once this is
completed the results are transmitted back to the master node.
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It is easy to generalize these HPC methods and are listed in Al-
gorithm 1. Note that in these methods few assumptions are made
that may not be true for today’s calculations i.e. each spectra take
equal amount of computations, the communication is minimal and
the overall workflow is compute-bound. Therefore, no significant
effort is invested in getting a load-balanced system, or minimiz-
ing the communication costs. We show in this paper that both of
these factors are now a major bottleneck for these parallel algo-
rithms.

Algorithm 1: General HPC strategy that is used by Parallel
Methods for MS based Proteomics data.

Result: Each Spectra is assigned to a peptide

while Spectra need peptide deduction do

. Take a species specific protein database; and expand it to a theoretical
database D using search parameters;

. Database D is copied whole on each of the P processors;

. The spectra set S that needs to be processed are divided in S/P parts;

. S/P spectra are processed on each of the processor in parallel;

. The results are accumulated using MPI-gather or similar operation;

—_

v wN

end

4. Communication lower bounds

We will formulate the problem in terms of matrix operations,
and prove the computation- and communication bounds for the
existing strategies.

Definition 1. Database is the result of the theoretical spectra that
are generated using the search parameters. Let this database be
presented as a m x n matrix D where m presented the number
of theoretical spectra entries, and n presents the average length of
the entries. The entries of matrix D can be access using i, and j
indexes where (0 <i <n), and (0 < j <m). Then rows of D can be
access using D(O0, j), D(1, j) and so on.

Definition 2. Let the set of spectra so, s1,---,Sg—1) that needs to
be processed can be presented by a matrix S g x r where q repre-
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Fig. 2. A schematic of the matrix D (that represents the theoretical spectra), matrix
S (that represents the experimental spectra), and matrix that holds the peptide that
are deduced.

sents the number of spectra, and r represents the average length
of the spectra. The entries of matrix S can be access using i, and j
indexes where (0 <i <r), and (0 < j < q). Then rows of S can be
access using S(0, j), S(1, j) and so on.

A rough schematic of the matrix D, Matrix S, and the deduced
peptides are shown in Fig. 2.

Definition 3. The parallel architecture is memory-distributed pro-
cessors with M fast-memory associated with a single-core pro-
cessor. All processors are assumed to be connected to each
other.

Lemma 1. Three communication rounds take place for the existing
parallel algorithms (similar to Algorithm 1) for MS based proteomics
database search methods.

Proof. One communication round is the distribution of the data-
base on each of the processors. Second communication round is
the distribution of q/p spectra on each processor. Third commu-
nication round takes place when the processing is done and the
results of q/p spectra are accumulated on a single machine. O

Theorem 1. The total words that are communicated using three round
listed above are equal to 2(mn) for existing HPC strategies.

Proof. The total words communicated on each processor is equal
to |D| + % + ‘%. Here it is easy to see that |D| = (m x n). Further
'% is going to be equal to the words that are communicated from
the spectra set i.e. %. The final communication round is when
the peptides are deduced for each spectra and accumulated on a
processor. The words that will be communicated are equal to &
r is assumed to be the case where the spectra peaks are equal
to the peptide length. Then the total number of words that are
communicated is equal to (m x n) + q” + q” = (m x n) +2"Xr

Therefore, the words communicated are Q(mn + er,). a

Theorem 2. The computational costs of dot-product like scoring that is

performed for spectra-to-peptide match for each processor are equal to
F — am@n=1)
p

Proof. Each scalar dot product (called score) will work on one ar-
ray from the database D and one array from the spectra S. On
processor PO which contains the whole matrix D, and subset of
matrix from S; a score is calculated for D(0,i) 0 <i <n, and
S(0, j) 0 < j <r. This will require n multiplications, and (n — 1)
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additions. Since this has to be done for all entries of the database
D; it will require m x (2n — 1) computation for a single spectrum.
It is obvious that the number of spectra on each processor is q/p.
This implies that the words that need to be processed on each pro-
cessor are 4m21=D 4

Theorem 3. The lower-bound of Bandwidth communication for data-
base spectra to peptide match is W= Q(%) for any configuration of
database or spectra in which dot-product scores are performed for
matching.

Proof. The lower-bound of communication possible is equal to
Q(#of Flops/~/M). The computations required for dot-product like
routines are O(%}")) as proved in our earlier theorem. The size
of the fast memory is assumed to contain both the database, the
spectra that needs to be searched and the result of the scoring.
Therefore, vM > mn + %. Then the equation Q(px(nz1 ). Our

qu

earlier assumption that n~r and ¢ can be approaching m 1s appli-

cable here without losing generality. This gives us % which
. . m? . .
is equivalent to Pmig For M which can contain the database,

the spectra, and the results; As before for q ~ m proves that
lower-bound of communication which can be reached is equal to
Q(%). O

Theorem 4. We prove that the lower-bound on the Latency cost L =
Q2

mp,,z )

Proof. A lower bandwidth bound on the bandwidth cost W gives
us a lower bound on the latency cost L. Assume that the largest
message by a given architecture is myqy, then it is clear that L >
W /mmex since no message can be larger than the memory. There-
fore we get L = Q(#Offl"ps) Assuming that g &~ m the #offlops =

m (2” D then L = Q(ml\/g}?) Since we know that vM = mn + %:
m?(2n)
px(mn+ 23
sets g ~m, and n ~r; the expression can be approximated as

2 Therefore, L ~ Q(==5). O

substltutmg will give us L = Since for large data

- s )
mpr2x (145 +3+5) pnz
Theorem 5. The overall runtime lower-bound of existing HPC methods is
Q(mn) irrespective of how many processors are used for computations.

Proof. The overall run time bound can be calculated for existing
HPC methods can by summation of L, and F, and the communica-
tion that is speciﬁc to existing algorithms. The summation of these
q{m(2+1) + (mp >) + (mn) gives us a lower bound on the overall
run time which is bounded by Q(mn). O

Corollary 1. Mass filtering (or other filtering specific to MS data) for can-
didate generation does not change the communication bounds of 2(mn)
of the current parallel algorithms.

Proof. Our communication bounds are proved by assuming that
no mass filtering is taking place for computations. This is to en-
sure that the results are as generalizable to parallel algorithms as
possible; without considering specific algorithms. However, below
we show that even with mass-filtering, communication bounds re-
main unchanged:

Case 1: The mass-filtering takes place on the master-node and the
database, and truncated databases are communicated In the above
case, the worst-case communication bounds are still going to be
Q(mn) since all (or a constant factor) of the database could be
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communicated at certain nodes. With the assumption that the
parts that are transmitted are fraction of the number of proces-
sors i.e. q/p; it is easy to see that the Q((g/p) * mn) computations
are needed for decisions at the master-node. Therefore, the com-
munication bound remains unchanged.

Case 2: The mass-filtering takes place on each node in parallel. If the
mass filtering takes place on each node in parallel; then it needs
to communicate (mn) database to each node, and the communi-
cation bounds calculated in this paper remain unchanged. O

Corollary 2. Fragment-Ion Index (based on MSFragger) scoring does not
change the communication bounds of Q(mn) of the current parallel al-
gorithmic approaches.

Proof. Fragment-lon index is based on indexing the peaks for each
of the theoretical spectra. If the indexing is taking place on the
head node then 2(mn) communication has to take place to dis-
tribute the index on each of the processing nodes. O

Theorem 6. We prove that much tighter lower-bounds are possible for
parallel algorithms (that are yet to be discovered). Combining the lower-
bounds on W, L, and F will yield lower-bounds on the overall run
time possible for processor with M < (mn + %) memory available.
Therefore, the lower-bounds possible for parallel algorithms is equal to
Q).

Proof. Combining the lower-bounds on W, L, and F will yield
lower-bounds on the overall run time of the existing HPC al-

gorithms. In our theorems we have proved that L = (m;nz) +

This summation gives us a result of

m2
pm+2q°

F = 7{]”‘!(2’;‘!71) + W =
Q(Z"‘%). o

As can be seen from Theorem 5 that the existing HPC algorithm
achieves only Q(mn) run time irrespective of the number of pro-
cessors that are used for the computations. Any advantage that is
observed in the experiments are likely due to the smaller subset
of spectra g that needs to be processor on each processor. How-
ever, with high throughput mass spectrometers q is approaching
the theoretical databases, and any advantage is by a constant fac-
tor than asymptotic.

On the other hand, we can see the Theorem 6 predicts Q(%)
as the overall run time possible for database and spectra search
when m is approx, equal to q. Although estimate of the lower-
bound can be done by approximating q to m which allow for much
simpler mathematical expressions but overestimates the lower-
bound of the run time. In reality the run time is closer to Q(%)
which incurs a parameter for the number of spectra as well in the
expression. However, with the latest usage of database search algo-
rithms that require more number of post-translations modification
parameters, and larger window size; the dominating factor will re-
main the communication costs related to the theoretical database.

We specifically note here, that none of the HPC techniques pro-
posed till date achieve this lower-bound of computation and com-
munication. Significant research efforts are needed to ensure that
parallel algorithms can be designed which achieve these lower-
bounds both in theory and in practice.

5. Meta-analysis of results of current HPC methods

To confirm our lower-bounds that we have proved for the ex-
isting methods, and lower-bounds on communication that might
be possible we did a thorough evaluation of the existing meth-
ods. These existing methods [22,17,25,9,31,20,5,23,24,28,6,10] in-
cluded MPI-based memory-distributed implementations, Map-
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Reduce/Hadoop implementations, and GPU-based methods. Since
we are assuming a memory-distributed architecture for our bounds;
we have concentrated on those studies. Further, we have elimi-
nated studies that have been conducted on a cloud-based Hadoop
systems since communication patterns, and infrastructure infor-
mation is generally not available for commercial or shared facil-
ities. We have also discarded numbers for CPU-GPU based algo-
rithms since it is a distinctly different architecture than a homo-
geneous memory-distributed machines assumed for our calcula-
tions.

We concentrated on two metrics to make sure that the com-
parisons are fair for methods that may have been tested on dif-
ferent set of architectures, and systems. One of these metrics is
the amount of total communication for a given parallel algorithm,
and this metric is going to be independent of machines, and sys-
tems. The second key metric used for estimating the efficiency of
these parallel algorithms is speedups. Similar to the communication
metric, speedups are also independent metric that is not based on
comparison with other architectures.

For evaluation, we downloaded all the results [22,17,25,9,31,
20,5,23,24,28,6,10] that have been reported till date. This infor-
mation included, the database size, the number of spectra, serial
and parallel times, and the speedups. Memory (GB) was also noted
whenever reported. Using this information, we plotted the com-
munication message that was required for the method to complete.
Note that we only consider the amount of data that needs to be
communicated as a function of theoretical database, and neglecting
the length of the theoretical spectra. We then plotted the commu-
nication bounds that we have calculated for the current methods,
as well as the communication bounds that are theoretically pos-
sible. As can be seen in Fig. 3, that most of the results that are
reported are close to the bounds that we have calculated. Also
note that as the number of processor increase, the number of mes-
sages that need to be transmitted (theoretically) rapidly decrease;
however, such behavior is not exhibited by real-world implemen-
tations. Clearly, this is because majority of existing HPC methods
do not consider the communication cost in their design.

We are only aware of this study [20] which allowed splitting
the database among parallel nodes. However, as our later analysis
shows that the speedups attained by this method is still less than
linear. This is because the communication-costs are masked by on-
the-fly computations leading to high compute times and limited
(around 50%) parallel efficiency. The study also assumes that the
number of spectra are much less than the theoretical database
which is no longer valid due to high-throughput mass spectrome-
ters.

To validate that our estimates were correct; we went one step
further and looked closely into the speedups that were being re-
ported. The speedups that are reported as shown in Fig. 4 con-
clusively show that increasing the number of processors decreased
the speedups that were obtained for these state-of-the-art meth-
ods. The decrease in speeds-up, of course, is due to increase in the
communication, and the gap between the current methods, and
the theoretical bounds that can be achieved; but are currently not
attainable. Thus, the rigor of the prior research suggests that there
is significant effort that is needed to investigate parallel algorithms
that can achieve the lower-bounds that we have proved, and thus
give reasonable performance with increasing number of processors,
and data.

6. Experimental evaluation of current HPC methods

We evaluated several existing database peptide search tools
including MSFragger [19], Comet-MS [13], MSGF+ (MS-PyCloud)
[18], [7], X!Tandem (X!!Tandem) [6] and SW-Tandem [23] in
parallel configuration by searching increasing size experimental
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and the speedups with increasing number of processors.

data against various size custom database search-spaces in both translational modifications (PTMs) to the Uniprot homo sapiens
open- (precursor mass tolerance > 100Da) and restricted- (pre- (UP000005640) database. The experimental datasets were created
cursor mass tolerance < 1Da) search modes. The custom database by splitting the dataset: PXD015890 into 3 subsets each contain-
search-spaces were created by increasingly adding variable post- ing: 25%, 50% and 100% of the experimental spectra data. In the

2
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first experiment, the 25% subset was searched against the human
database incorporating methionine oxidation (M + 15.99Da) modi-
fication in restricted-mode. In the second, third and fourth experi-
ments, the 25%, 50% and 100% experimental subsets were searched
against a human database search-space incorporating methionine
oxidation (M + 15.99Da), STY-phosphorylation (STY + 79.97Da) and
N-Term acetylation (n-term + 42.02Da) in restricted search mode
respectively. In the fifth and sixth experiments, the 50% and 100%
subsets were searched against the custom search space incorporat-
ing methionine oxidation (M + 15.99Da) and STY-phosphorylation
(STY + 79.97Da) in open-search mode respectively. The three-
custom search-spaces grew to 7.6 million, 76 million and 108
million peptides and variants respectively. The fragment mass tol-
erance was set to 0.01 Da where applicable. The experimental
spectra charge range was set between 1 and 4, minimum and max-
imum precursor mass range between 500 and 5000 amu, and the
minimum and maximum peptide length was set to 6 and 46 re-
spectively. The experiments were performed on a cluster machine
where each node was equipped with a 16 core processor and
32 GB RAM, interconnected with 100 GB/s HDR InfiniBand, also
connected to a Lustre-based shared storage system via the same
interconnect.

The scalability results depicted in Fig. 5 show that in case of re-
stricted search mode (Fig. 5 a to d), the search tools depict lower
scalability than the linear (the positive deviation from the dotted
gray line depicting ideal scalability) as most of the time is spent in
/O and data communication with minimal time spent in perform-
ing the computations. In open-search mode, MSFragger depicts
near linear scalability until a certain number of parallel nodes but
drops to sub-linear beyond that point. The reason for this is the
poor parallelization technique employed within existing HPC tools
(replicate the entire database on all nodes and partition the exper-
imental data among them) which results in higher communication
overheads due to memory bandwidth exhaustion. Fig. 6 further de-
picts the percentage total time for MSFragger spent in I/O showing
that in case of restricted-search mode, the 1/O time dominates the
parallel performance whereas in open-search mode the I/O time
percentage drops. Note that the load imbalance increases dramati-
cally in case of open-search for MSFragger, which can further neg-
atively impact the overall performance. Finally, we confirmed by
profiling MSFragger using Intel VTune in open-search mode that
its performance is heavily (> 70%) memory-bandwidth bounded as
the custom database search-space size increases. Tools that do not
take advantage of modern indexing strategies such as Crux, Comet-
MS, MSFG+ and X!Tandem perform orders-of-magnitude slower
than MSFragger.

7. Discussions

There is an urgent need for provably scalable parallel algo-
rithms for large-scale MS systems biology studies which has di-
rect impact on personalized nutrition, microbiome research, and
cancer therapeutics. This is especially true for non-model pro-
teomics, meta-proteomics, and proteogenomic studies where the
search-space traversal needed to make peptide deductions are
massive. Our theoretical results indicate that further formal de-
sign, and evaluation is warranted for scalable infrastructure for
MS based omics database-workflows. In order to make progress,
the next generation of parallel algorithms will have to acquire
provably demonstrated superior performance on multicore, GPU,
memory-distributed supercomputers, and cloud-computing infras-
tructure. Such contributions are expected to be significant because
it will open up novel, and faster ways to analyze MS data for vari-
ous omics (read: preteomics, proteogenomic, meta-proteomics etc.)
studies considered “too large-scale”. Following are few points that
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would help the reader interpret the theoretical results in this pa-
per:

1. For the purposes of this paper we have assumed a single par-
allel computing strategy for deducing peptides. We do realize
that the HPC methods that have been proposed till date have
variation such as scoring, getting the candidate theoretical
spectra etc. However, the parallel strategy that is used by these
HPC methods is similar (as described in the 3.1 section) and
we are estimating the communication lower-bounds of these
parallel algorithms. Since the data are managed in the same
way for all of the HPC methods; variations (including theo-
retical spectra generation) will only modify some constants in
these communication bounds.

2. We further show that the pre-dominant way of proteomics
algorithms to increase efficiency by reducing the number of
computations (using mass filtering or filtering using other
characteristics of mass spectrometry data) does not change
the communication-bounds that are being depicted by current
state-of-the-art parallel algorithms. However, we also show
that parallel algorithms with much tighter bounds are possi-
ble (but are not yet discovered).

3. We design and implement parallel computing solutions for
problems that are compute- or memory-intensive. Further,
such parallelization is accomplished when the problem is not
scalable for a single node i.e. it is very large in data or compu-
tations. Note that communication-bounds that we have proved
are with the assumption that the theoretical database (or spec-
tra that needs processing) is very large and do not fit in mem-
ory M of single machine. If the size of the data is not that
large (i.e. all database and spectra are fitting in a Memory M)
then parallelizing will result in speedups that may be expected
to be larger than the bounds that we just proved. However,
these results and speedup will just be a artifact of the system
and/or data being analyzed and will not be a generalizable re-
sult. That is why we repeatedly see that adding more number
of processor do not significantly scale the computations and
the experimental results that are published are for relatively
small datasets.

4. For the current bounds we have assumed that the theoreti-
cal database is on the master node and is communicated via
the network. However, if the whole database is not commu-
nicated (e.g. only if database sequences are communicated),
then the amount of communication is substituted by compu-
tation costs that would be needed for further computations i.e.
0 (nm?/p). Therefore, the lower-bounds that are achieved by
the current HPC methods still hold true. This is also confirmed
by the meta-analysis of HPC methods published results.

5. For calculating our bounds we assume that whole database is
needed for computations. One can argue that ‘candidate spec-
tra’ are the only real-computations that are done by the algo-
rithms. This reasoning also does not effect the lower-bounds
that are calculated. The reason is that having ‘candidate-
spectra’ does reduce the amount of computations. However,
we have shown that the amount of communication is the
real bottleneck for these parallel algorithms. Since calcula-
tion of candidate-spectra still requires access, and communi-
cation of the theoretical spectra-database; the communication
bounds (i.e. bottleneck) remains unchanged even when only
candidate-spectra are used for computations.

8. Conclusions
For the past 30 years, significant efforts have been invested

for the design, and development of efficient search engines for
MS based omics data analysis. These methods are numerical al-
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Fig. 6. The I/O to overall run time ratio is more than 60% for MSFragger in restricted-
search experiments and drops dramatically as the number of nodes is increased (I/0O
per node is decreased). In case of open-search, the 1/O to compute ratio is much
lower.

gorithms developed for MS based peptide deduction, and are de-
signed by assuming arithmetic operations as the sole metric for
efficiency. In the last decade, the technological trend of the Moore’s
law has kept making the arithmetic operations faster. As a result,
bottleneck for many MS algorithms has shifted from computational
arithmetic operations efficiency to communication of data between
different levels of memory-hierarchy or between different nodes in
a distributed-memory architecture. This bottleneck has resulted in
unusually long processing times even for high-performance com-
puting algorithms. However, the poor scalability of these MS based
omics algorithms has been considered an artifact of the data, or
the architectures, and have been subjective and anecdotal, till date.

In this paper, we formulate, and quantify the efficiency of the
current state of the art HPC algorithms for MS data analysis. We
have presented and proved lower bounds on the amount of com-
munication that is achieved by the current MS based omics HPC
methods. We also prove the lower-bounds that can be achieved by
parallel algorithms on a distributed-memory architecture. To the
best of our knowledge, this is the first study to formulate a theo-
retical framework showing that the existing parallel strategies for
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MS based omics data analysis are not achieving the communication
bounds that are possible, and that continued improvements are
needed in this area of research. Meta-analysis of existing literature
agrees with our theoretical analysis i.e. sup-optimal communica-
tion costs are achieved by existing MS based omics HPC tools.
The experiments that we have performed also concur with these
bounds. Therefore, novel parallel algorithms that exhibit optimal-
communication costs are needed that can close the communica-
tion gap between theory, and practice for MS based omics al-
gorithms. Improved design, development, and implementation of
such communication-avoiding parallel algorithms will allow com-
putations of MS based proteomics, meta-proteomics, and proteoge-
nomic data that could scale gracefully with increasing number of
processors.

In contrast to existing methods, the next generation of HPC
algorithms must be designed by considering both computational,
and communication costs as metrics for efficiency. These designs
will allow us to experiment by varying balance points between
communication, and computation, and with different computing
platforms including distributed-memory clusters, supercomputers,
and commodity AWS cluster which is primarily used for cloud-
computing. We assert that next generation of parallel algorithms
that can scale (at least) linearly with increasing number of proces-
sors, size of the (theoretical) database, and spectra will be essen-
tial for scalable MS omics studies. The proposed HPC framework
can significantly help cross-model deep-learning networks such
as SpeCollate [32] and lead to superior peptide deduction per-
formance. To this end, recently introduced HPC frameworks that
optimize both communication and computations exhibit excellent
scalability for tera-scale data using large homogeneous supercom-
puters [14] as well as heterogeneous architectures [21]; confirming
the theoretical foundations built in this paper.
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