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Mass spectrometry (MS) based omics data analysis require significant time and resources. To date, 
few parallel algorithms have been proposed for deducing peptides from mass spectrometry-based data. 
However, these parallel algorithms were designed, and developed when the amount of data that needed 
to be processed was smaller in scale. In this paper, we prove that the communication bound that is 
reached by the existing parallel algorithms is �(mn + 2r q

p ), where m and n are the dimensions of the 
theoretical database matrix, q and r are dimensions of spectra, and p is the number of processors. 
We further prove that communication-optimal strategy with fast-memory 

√
M = mn + 2qr

p can achieve 
�(

2mnq
p ) but is not achieved by any existing parallel proteomics algorithms till date. To validate our 

claim, we performed a meta-analysis of published parallel algorithms, and their performance results. We 
show that sub-optimal speedups with increasing number of processors is a direct consequence of not 
achieving the communication lower-bounds. We further validate our claim by performing experiments 
which demonstrate the communication bounds that are proved in this paper. Consequently, we assert 
that next-generation of provable, and demonstrated superior parallel algorithms are urgently needed for 
MS based large systems-biology studies especially for meta-proteomics, proteogenomic, microbiome, and 
proteomics for non-model organisms. Our hope is that this paper will excite the parallel computing 
community to further investigate parallel algorithms for highly influential MS based omics problems.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Almost all numerical algorithms when developed, considered 
arithmetic operations as the sole metric for efficiency [14,21,4]. 
Over time, especially in the last decade, the technological trend 
of the Moore’s law has kept making the arithmetic operations 
faster. Therefore, bottleneck for many algorithms has shifted from 
computational arithmetic operations efficiency to communication
i.e. communication costs of moving the data between different 
memory-distributed processors connected via a network. Commu-
nication of data elements is essential because operand requires 
them to be in the same memory at the same time. Same applies to 
serial machines where the data has to be moved to the smallest, 
and fastest memory in the hierarchy (i.e. cache). Numerous stud-
ies have shown [2,27,4] this trend of excessive cost of moving data 
exceeds the costs of doing the arithmetic operations. With the in-
troduction and ubiquitous multicores, manycore, and GPU based 
architectures; this gap is, and will continue to grow exponentially 
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over time [8,30]. The current trend for increasing the efficiency for 
most numerical algorithms is to reduce the gap between moving 
the data, and computing on that data. This trend is observed both 
for serial as well as parallel algorithms [4].

Over the years, significant efforts have been invested for the 
design, and development of efficient methods for Mass Spectrom-
etry based omics data analysis. These numerical algorithms include 
highly successful search engines including but not limited to Se-
quest [12,9,11], Tide [26], Mascot, XTandem, and more recently 
MSFragger [19]. Recent trends in systems biology Mass Spectrom-
etry (MS) based experiments generate increasingly large, and com-
plex (multiple species, non-model species, microbiome) data sets 
potentially leading to high-impact proteomics, meta-proteomics 
and microbiomes studies directly related to human disease and 
health. This in turn point towards need for larger, better, and faster 
computational tools [29,1,15]. The numerical algorithms developed 
for Mass Spectrometry (MS) based peptide deduction is designed
and implemented by assuming number of arithmetic operations as 
the sole metric for efficiency.

Development of computational methods for MS data is an ac-
tive area of research [19] but the focus of this research, till date, 
has been towards improving the efficiency of arithmetic opera-

https://doi.org/10.1016/j.jpdc.2021.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.11.001&domain=pdf
mailto:fsaeed@fiu.edu
https://doi.org/10.1016/j.jpdc.2021.11.001


F. Saeed, M. Haseeb and S.S. Iyengar Journal of Parallel and Distributed Computing 161 (2022) 37–47
tions. Database-search workflows are the most used data process-
ing pipelines which require matching a high-dimensional noisy MS 
data (called spectra) to a database of protein sequences. These MS 
data sets are then processed using databases which may be several 
times larger than the original proteome (or multiple proteomes in 
case of meta-proteomics studies [33]) depending on the search pa-
rameters. The data volume can easily reach tera-byte level depend-
ing on the experiment, and search parameters for these workflows. 
Non-model organism proteomics is considered the next frontier 
[33,16] to accelerate insight into chronic disease in humans, and 
requires even larger search-spaces which would lead to intractable 
run-times.

Increasing size of the spectra, and theoretical database search-
space has led to the development of high-performance computing 
(HPC) strategies [20,24,31,10,6,23,24] to speed up these search en-
gines. Similar to serial numerical algorithms, the objective of these 
HPC methods has been to speed up the arithmetic scoring part of 
the search engines with little to no efforts to minimize the com-
munication costs.

Exclusion of communication costs as a metric, of otherwise 
highly successful methods [12,9,11,26,19], is becoming a severe 
bottleneck for processing of MS data (due to excessive processing 
times), and now hinders scientific advancements for mass spec-
trometry, and (meta) proteomics/microbiome research. This obser-
vation might be common perception for systems biologist working 
with MS data analysis for meta-proteomics, proteogenomic, or mi-
crobiome studies but it is still anecdotal. In other words, it is hard 
to quantify the good or poor scalability of these workflows. From 
our anecdotal observations, it was apparent that existing parallel 
algorithms result in abysmal speedups with increasing number of 
processors or data sets. To prove that these observations are not 
an artifact of a specific library or compute-architecture we wanted 
to investigate the lower-bounds that are acquired by existing HPC 
algorithms.

Therefore, we set out to ask these questions: (1) Are there 
lower-bounds on the parallel algorithms that can be acquired? 
(2) Do existing HPC algorithms attain these lower-bounds? (3) 
If not, are there new parallel algorithms that will allow us to 
do that? The bounds will be similar for serial algorithms subject 
to architecture-specific communication costs. To date, we are not 
aware of compute- or communication bounds proved for any MS 
based omics serial or parallel algorithms.

In this paper, we theoretically prove that the efficiency of 
these algorithms (both serial and parallel) is bottle-necked by 
the communication costs, and is prohibitively excessive; no mat-
ter what kind of indexing is employed. We further prove the 
theoretical lower-bounds that are possible but are not achieved 
by any existing parallel algorithm. Lastly, we demonstrate that 
these lower-bounds were consistent with the empirical observa-
tions (and published results), and experimental resultsAs expected, 
attaining these lower-bounds would require a significant redesign 
of these parallel (and serial) algorithms; and not just OPENMP loop 
transformations. These redesigns may include different numeri-
cal properties, transformation of MS data into readable/write-able 
compressed formats, more effective ways of decomposing the data 
on parallel architecture that incur minimal communications, and 
different data-structures that need to be investigated.

Rest of the paper is organized as follows. In section 2, we for-
mulate the communication models that would be used for analysis 
of parallel algorithms. In the next section 3, we introduce the 
reader to proteomics workflows, and a generalized parallel strat-
egy that is used by all HPC methods. In section 4, we provide 
theoretical proves of the communications bounds, the computation 
bounds, and the overall runtime bounds of the existing, as well as 
communication-optimal parallel algorithms. In section 5, we pro-
vide the meta-analysis of all existing HPC methods, and analyze 
38
the published results with our new communication/computation 
bounds. In section 6, we elaborate on the experimental set up and 
details about the results that are obtained. Section 7, and section 8
are reserved for discussion and conclusions.

2. Communication model

For design of parallel algorithms, it is essential that they are 
not only load-balanced but also minimize the communication costs 
between processors associated with data decomposition. Most of 
the algorithms, especially ones dealing with big data sets, have 
inter-processor communications costs that are much larger than 
the computation costs. Hardware trends that are growing towards 
more many-core, and multi-core architectures also predict that 
most of the problems will become communication-bound even 
for serial algorithms [3]. For our MS based proteomics parallel al-
gorithms, we will model the cost of communications as follows: 
There are two costs that are normally associated with communica-
tion. When the system has to send n words from one processor to 
the other over the network via which the processors are communi-
cating; the words are first packed into contiguous block of memory 
and are known as a message. This message is then sent to the des-
tination processor by following the parallel algorithmic constructs 
that have been implemented. There is a fixed overhead time that 
is required to assemble, pack, and transmit the data (called latency 
cost denoted by α). There is also time needed to transmit n words 
and this time is proportional to n called the bandwidth cost de-
noted by βn. Then to send one message of n words is denoted by 
α + βn, and the time to send S messages containing a total of W
words can be denoted by αS + βW . Also let γ denote the time it 
takes to perform one arithmetic computation, and F denotes that 
total number of computations. Summation of all of these terms is 
equivalent to αS + βW + γ F , and the recent technological trends 
dictate that α >> β >> γ . Therefore, it is of utmost importance 
to have parallel algorithms that can minimize both the bandwidth, 
and the latency. Such communication models are used for mini-
mizing communication in numerical linear-algebraic computations, 
and more details can be found at [2].

2.1. Sequential computer

For a serial architecture that has levels of memory-hierarchy, 
the model αS + βW + γ F , would suffice for 2 levels of hierarchy. 
If there are more levels are hierarchy to be considered then there 
is a communication cost associated with each level and when the 
data is moved to/from that level.

2.2. Parallel computer

Similar to a sequential computer, αS + βW + γ F would be 
sufficient to provide the communication costs associated with one
node of the parallel computing architecture. A lower-bound on one 
processor is enough to get a lower-bound on the whole algorithm 
with the assumption that all processors are homogeneous and are 
completing the same tasks. A upper-bound (time required by the 
entire algorithm) will need a summation of the terms in an order 
of dependencies considering the critical path, which maximize the 
summation of these costs. If the parallel architecture can overlap 
communication and computations; then the expression can be re-
placed with max(αS + βW , γ F ) or max(αS, βW , γ F ) which can 
lower the cost by 2 or 3 but does not effect the asymptomatic re-
lations. Different indexes can be used for formulating the model 
for a heterogeneous architecture. However, for this paper we will 
assume a homogeneous architecture.

Finally, an algorithm will be called a communication-optimal al-
gorithm if it can asymptotically attain the communication lower-
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Fig. 1. A high-level overview of the MS based proteomics data analysis that leads to spectra-to-peptide deductions.
bounds for a given parallel architectures. Such an algorithm is also 
colloquially known as communication-avoiding.

3. MS database proteomics, proteogenomic, and 
meta-proteomics search

We will start by defining the database-search strategy that is 
used for Mass spectrometry data. For the purposes of this frame-
work we will assume the most simplest strategy independently 
on how the data was acquired and what are the systems biol-
ogy objectives. This will ensure that our results are generalized
for most of MS data processing using databases. The most com-
monly employed method for peptide identification is the database 
search where the experimental tandem MS/MS spectra are com-
pared to the theoretically predicted spectral libraries/databases 
[19]. The theoretical spectral libraries are generated by first in-silico
digesting a proteome sequence database into peptide sequences 
and then predicting MS/MS spectra for each peptide sequence and 
its possible (modified) variants. The advantage of this technique 
is that Post-Translational Modifications (PTM) and fragmentation 
types can be easily incorporated in the theoretical spectra. The ex-
perimental spectra are then compared with the theoretical spectra 
created during the database creation process just described. This 
scoring is called peptide-to-spectrum match (PSM) computations. 
An overview schematic of the mass spectrometry based peptide 
deduction is shown in Fig. 1.

3.1. Generalized parallel computing strategy

Existing parallel algorithms for proteomics, like numerical al-
gorithms in other domains, have been designed for problems that 
are compute-bound. In general, all HPC algorithms that have been 
proposed in this domain operate by taking the database and dis-
tributing it over the processors. Once the database is communi-
cated, N/p of the spectra is assigned on each processing unit 
where N in the total number of spectra and p is the number of 
processing elements. Thereafter, a serial algorithm (such as XTan-
dem) is executed on each of the node in parallel. Once this is 
completed the results are transmitted back to the master node. 
39
It is easy to generalize these HPC methods and are listed in Al-
gorithm 1. Note that in these methods few assumptions are made 
that may not be true for today’s calculations i.e. each spectra take 
equal amount of computations, the communication is minimal and 
the overall workflow is compute-bound. Therefore, no significant 
effort is invested in getting a load-balanced system, or minimiz-
ing the communication costs. We show in this paper that both of 
these factors are now a major bottleneck for these parallel algo-
rithms.

Algorithm 1: General HPC strategy that is used by Parallel 
Methods for MS based Proteomics data.
Result: Each Spectra is assigned to a peptide
while Spectra need peptide deduction do

1. Take a species specific protein database; and expand it to a theoretical 
database D using search parameters;

2. Database D is copied whole on each of the P processors;
3. The spectra set S that needs to be processed are divided in S/P parts;
4. S/P spectra are processed on each of the processor in parallel;
5. The results are accumulated using MPI-gather or similar operation;

end

4. Communication lower bounds

We will formulate the problem in terms of matrix operations, 
and prove the computation- and communication bounds for the 
existing strategies.

Definition 1. Database is the result of the theoretical spectra that 
are generated using the search parameters. Let this database be 
presented as a m × n matrix D where m presented the number 
of theoretical spectra entries, and n presents the average length of 
the entries. The entries of matrix D can be access using i, and j
indexes where (0 ≤ i < n), and (0 ≤ j <m). Then rows of D can be 
access using D(0, j), D(1, j) and so on.

Definition 2. Let the set of spectra s0, s1, · · · , s(q−1) that needs to 
be processed can be presented by a matrix S q × r where q repre-
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Fig. 2. A schematic of the matrix D (that represents the theoretical spectra), matrix 
S (that represents the experimental spectra), and matrix that holds the peptide that 
are deduced.

sents the number of spectra, and r represents the average length 
of the spectra. The entries of matrix S can be access using i, and j
indexes where (0 ≤ i < r), and (0 ≤ j < q). Then rows of S can be 
access using S(0, j), S(1, j) and so on.

A rough schematic of the matrix D, Matrix S, and the deduced 
peptides are shown in Fig. 2.

Definition 3. The parallel architecture is memory-distributed pro-
cessors with M fast-memory associated with a single-core pro-
cessor. All processors are assumed to be connected to each 
other.

Lemma 1. Three communication rounds take place for the existing 
parallel algorithms (similar to Algorithm 1) for MS based proteomics 
database search methods.

Proof. One communication round is the distribution of the data-
base on each of the processors. Second communication round is 
the distribution of q/p spectra on each processor. Third commu-
nication round takes place when the processing is done and the 
results of q/p spectra are accumulated on a single machine. �
Theorem 1. The total words that are communicated using three round 
listed above are equal to �(mn) for existing HPC strategies.

Proof. The total words communicated on each processor is equal 
to |D| + |S|

p + |S|
p . Here it is easy to see that |D| = (m × n). Further 

|S|
p is going to be equal to the words that are communicated from 
the spectra set i.e. q×r

p . The final communication round is when 
the peptides are deduced for each spectra and accumulated on a 
processor. The words that will be communicated are equal to q×r

p . 
r is assumed to be the case where the spectra peaks are equal 
to the peptide length. Then the total number of words that are 
communicated is equal to (m × n) + q×r

p + q×r
p = (m × n) + 2 q×r

p . 
Therefore, the words communicated are �(mn + 2r q

p ). �
Theorem 2. The computational costs of dot-product like scoring that is 
performed for spectra-to-peptide match for each processor are equal to 
F = qm(2n−1)

p .

Proof. Each scalar dot product (called score) will work on one ar-
ray from the database D and one array from the spectra S. On 
processor P0 which contains the whole matrix D, and subset of 
matrix from S; a score is calculated for D(0, i) 0 ≤ i ≤ n, and 
S(0, j) 0 ≤ j ≤ r. This will require n multiplications, and (n − 1)
40
additions. Since this has to be done for all entries of the database 
D; it will require m × (2n − 1) computation for a single spectrum.
It is obvious that the number of spectra on each processor is q/p. 
This implies that the words that need to be processed on each pro-
cessor are qm(2n−1)

p . �
Theorem 3. The lower-bound of Bandwidth communication for data-
base spectra to peptide match is W= �(mp ) for any configuration of 
database or spectra in which dot-product scores are performed for 
matching.

Proof. The lower-bound of communication possible is equal to 
�(#of F lops/

√
M). The computations required for dot-product like 

routines are O (
qm(2n)

p ) as proved in our earlier theorem. The size 
of the fast memory is assumed to contain both the database, the 
spectra that needs to be searched and the result of the scoring. 
Therefore, 

√
M ≥ mn + 2qr

p . Then the equation �(
2qm

p×(mn+ 2qr
p )

). Our 

earlier assumption that n ≈ r and q can be approaching m is appli-
cable here without losing generality. This gives us m2n

pmn+2qn which 

is equivalent to m2

pm+2q . For M which can contain the database, 
the spectra, and the results; As before for q ≈ m proves that 
lower-bound of communication which can be reached is equal to 
�(mp ). �
Theorem 4. We prove that the lower-bound on the Latency cost L =
�( 2

mpn2
)

Proof. A lower bandwidth bound on the bandwidth cost W gives 
us a lower bound on the latency cost L. Assume that the largest 
message by a given architecture is mmax , then it is clear that L ≥
W /mmax since no message can be larger than the memory. There-
fore we get L = �(

#of f lops
M3/2 ). Assuming that q ≈ m the #of f lops =

m2(2n−1)
p then L = �(

m2(2n)

pM3/2 ). Since we know that 
√
M =mn + 2qr

p ; 

substituting will give us L = m2(2n)

p×(mn+ 2qr
p )3

. Since for large data 

sets q ≈ m, and n ≈ r; the expression can be approximated as 
2

mpn2×(1+ 4
p + 12

p2
+ 8

p3
)
. Therefore, L ≈ �( 2

mpn2
). �

Theorem 5. The overall runtime lower-bound of existing HPC methods is 
�(mn) irrespective of how many processors are used for computations.

Proof. The overall run time bound can be calculated for existing 
HPC methods can by summation of L, and F , and the communica-
tion that is specific to existing algorithms. The summation of these 
qm(2n−1)

p + ( 2
mpn2

) + (mn) gives us a lower bound on the overall 
run time which is bounded by �(mn). �
Corollary 1. Mass filtering (or other filtering specific to MS data) for can-
didate generation does not change the communication bounds of �(mn)

of the current parallel algorithms.

Proof. Our communication bounds are proved by assuming that 
no mass filtering is taking place for computations. This is to en-
sure that the results are as generalizable to parallel algorithms as 
possible; without considering specific algorithms. However, below 
we show that even with mass-filtering, communication bounds re-
main unchanged:

Case 1: The mass-filtering takes place on the master-node and the 
database, and truncated databases are communicated In the above 
case, the worst-case communication bounds are still going to be 
�(mn) since all (or a constant factor) of the database could be 
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communicated at certain nodes. With the assumption that the 
parts that are transmitted are fraction of the number of proces-
sors i.e. q/p; it is easy to see that the �((q/p) ∗mn) computations 
are needed for decisions at the master-node. Therefore, the com-
munication bound remains unchanged.

Case 2: The mass-filtering takes place on each node in parallel. If the 
mass filtering takes place on each node in parallel; then it needs 
to communicate �(mn) database to each node, and the communi-
cation bounds calculated in this paper remain unchanged. �
Corollary 2. Fragment-Ion Index (based on MSFragger) scoring does not 
change the communication bounds of �(mn) of the current parallel al-
gorithmic approaches.

Proof. Fragment-Ion index is based on indexing the peaks for each 
of the theoretical spectra. If the indexing is taking place on the 
head node then �(mn) communication has to take place to dis-
tribute the index on each of the processing nodes. �
Theorem 6. We prove that much tighter lower-bounds are possible for 
parallel algorithms (that are yet to be discovered). Combining the lower-
bounds on W , L, and F will yield lower-bounds on the overall run 
time possible for processor with M ≤ (mn + 2qr

p ) memory available. 
Therefore, the lower-bounds possible for parallel algorithms is equal to 
�(

nmq
p ).

Proof. Combining the lower-bounds on W , L, and F will yield 
lower-bounds on the overall run time of the existing HPC al-
gorithms. In our theorems we have proved that L = ( 2

mpn2
) + 

F = qm(2n−1)
p + W = m2

pm+2q . This summation gives us a result of 
�(

2mnq
p ). �

As can be seen from Theorem 5 that the existing HPC algorithm 
achieves only �(mn) run time irrespective of the number of pro-
cessors that are used for the computations. Any advantage that is 
observed in the experiments are likely due to the smaller subset 
of spectra q that needs to be processor on each processor. How-
ever, with high throughput mass spectrometers q is approaching 
the theoretical databases, and any advantage is by a constant fac-
tor than asymptotic.

On the other hand, we can see the Theorem 6 predicts �(nm
2

p )

as the overall run time possible for database and spectra search 
when m is approx, equal to q. Although estimate of the lower-
bound can be done by approximating q to m which allow for much 
simpler mathematical expressions but overestimates the lower-
bound of the run time. In reality the run time is closer to �(

nmq
p )

which incurs a parameter for the number of spectra as well in the 
expression. However, with the latest usage of database search algo-
rithms that require more number of post-translations modification 
parameters, and larger window size; the dominating factor will re-
main the communication costs related to the theoretical database.

We specifically note here, that none of the HPC techniques pro-
posed till date achieve this lower-bound of computation and com-
munication. Significant research efforts are needed to ensure that 
parallel algorithms can be designed which achieve these lower-
bounds both in theory and in practice.

5. Meta-analysis of results of current HPC methods

To confirm our lower-bounds that we have proved for the ex-
isting methods, and lower-bounds on communication that might 
be possible we did a thorough evaluation of the existing meth-
ods. These existing methods [22,17,25,9,31,20,5,23,24,28,6,10] in-
cluded MPI-based memory-distributed implementations, Map-
41
Reduce/Hadoop implementations, and GPU-based methods. Since 
we are assuming a memory-distributed architecture for our bounds; 
we have concentrated on those studies. Further, we have elimi-
nated studies that have been conducted on a cloud-based Hadoop 
systems since communication patterns, and infrastructure infor-
mation is generally not available for commercial or shared facil-
ities. We have also discarded numbers for CPU-GPU based algo-
rithms since it is a distinctly different architecture than a homo-
geneous memory-distributed machines assumed for our calcula-
tions.

We concentrated on two metrics to make sure that the com-
parisons are fair for methods that may have been tested on dif-
ferent set of architectures, and systems. One of these metrics is
the amount of total communication for a given parallel algorithm, 
and this metric is going to be independent of machines, and sys-
tems. The second key metric used for estimating the efficiency of 
these parallel algorithms is speedups. Similar to the communication 
metric, speedups are also independent metric that is not based on 
comparison with other architectures.

For evaluation, we downloaded all the results [22,17,25,9,31,
20,5,23,24,28,6,10] that have been reported till date. This infor-
mation included, the database size, the number of spectra, serial 
and parallel times, and the speedups. Memory (GB) was also noted 
whenever reported. Using this information, we plotted the com-
munication message that was required for the method to complete. 
Note that we only consider the amount of data that needs to be 
communicated as a function of theoretical database, and neglecting 
the length of the theoretical spectra. We then plotted the commu-
nication bounds that we have calculated for the current methods, 
as well as the communication bounds that are theoretically pos-
sible. As can be seen in Fig. 3, that most of the results that are 
reported are close to the bounds that we have calculated. Also 
note that as the number of processor increase, the number of mes-
sages that need to be transmitted (theoretically) rapidly decrease; 
however, such behavior is not exhibited by real-world implemen-
tations. Clearly, this is because majority of existing HPC methods 
do not consider the communication cost in their design.

We are only aware of this study [20] which allowed splitting 
the database among parallel nodes. However, as our later analysis 
shows that the speedups attained by this method is still less than 
linear. This is because the communication-costs are masked by on-
the-fly computations leading to high compute times and limited 
(around 50%) parallel efficiency. The study also assumes that the 
number of spectra are much less than the theoretical database 
which is no longer valid due to high-throughput mass spectrome-
ters.

To validate that our estimates were correct; we went one step 
further and looked closely into the speedups that were being re-
ported. The speedups that are reported as shown in Fig. 4 con-
clusively show that increasing the number of processors decreased 
the speedups that were obtained for these state-of-the-art meth-
ods. The decrease in speeds-up, of course, is due to increase in the 
communication, and the gap between the current methods, and 
the theoretical bounds that can be achieved; but are currently not 
attainable. Thus, the rigor of the prior research suggests that there 
is significant effort that is needed to investigate parallel algorithms 
that can achieve the lower-bounds that we have proved, and thus 
give reasonable performance with increasing number of processors, 
and data.

6. Experimental evaluation of current HPC methods

We evaluated several existing database peptide search tools 
including MSFragger [19], Comet-MS [13], MSGF+ (MS-PyCloud) 
[18], [7], X!Tandem (X!!Tandem) [6] and SW-Tandem [23] in 
parallel configuration by searching increasing size experimental 
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Fig. 3. The graph shows the amount of communication that takes place with increasing number of processors. As can be seen that the most of the HPC methods that are 
listed do not achieve the lower-bounds on the communication. The gap increases rapidly between the communication required for the state-of-the-art HPC algorithms, and 
the communication that can be theoretically achieved.

Fig. 4. This graph represents that speedups that are reported by the papers, and the corresponding linear-speedup that can be achieved with increasing number of processors. 
Note that reported results that are listed here are also the results that are depicted in Fig. 3 and shows a one-to-one correspondence between the amount of communication 
and the speedups with increasing number of processors.
data against various size custom database search-spaces in both 
open- (precursor mass tolerance > 100Da) and restricted- (pre-
cursor mass tolerance ≤ 1Da) search modes. The custom database 
search-spaces were created by increasingly adding variable post-
42
translational modifications (PTMs) to the Uniprot homo sapiens 
(UP000005640) database. The experimental datasets were created 
by splitting the dataset: PXD015890 into 3 subsets each contain-
ing: 25%, 50% and 100% of the experimental spectra data. In the 
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first experiment, the 25% subset was searched against the human 
database incorporating methionine oxidation (M + 15.99Da) modi-
fication in restricted-mode. In the second, third and fourth experi-
ments, the 25%, 50% and 100% experimental subsets were searched 
against a human database search-space incorporating methionine 
oxidation (M + 15.99Da), STY-phosphorylation (STY + 79.97Da) and 
N-Term acetylation (n-term + 42.02Da) in restricted search mode 
respectively. In the fifth and sixth experiments, the 50% and 100% 
subsets were searched against the custom search space incorporat-
ing methionine oxidation (M + 15.99Da) and STY-phosphorylation 
(STY + 79.97Da) in open-search mode respectively. The three-
custom search-spaces grew to 7.6 million, 76 million and 108 
million peptides and variants respectively. The fragment mass tol-
erance was set to 0.01 Da where applicable. The experimental 
spectra charge range was set between 1 and 4, minimum and max-
imum precursor mass range between 500 and 5000 amu, and the 
minimum and maximum peptide length was set to 6 and 46 re-
spectively. The experiments were performed on a cluster machine 
where each node was equipped with a 16 core processor and 
32 GB RAM, interconnected with 100 GB/s HDR InfiniBand, also 
connected to a Lustre-based shared storage system via the same 
interconnect.

The scalability results depicted in Fig. 5 show that in case of re-
stricted search mode (Fig. 5 a to d), the search tools depict lower 
scalability than the linear (the positive deviation from the dotted 
gray line depicting ideal scalability) as most of the time is spent in 
I/O and data communication with minimal time spent in perform-
ing the computations. In open-search mode, MSFragger depicts 
near linear scalability until a certain number of parallel nodes but 
drops to sub-linear beyond that point. The reason for this is the 
poor parallelization technique employed within existing HPC tools 
(replicate the entire database on all nodes and partition the exper-
imental data among them) which results in higher communication 
overheads due to memory bandwidth exhaustion. Fig. 6 further de-
picts the percentage total time for MSFragger spent in I/O showing 
that in case of restricted-search mode, the I/O time dominates the 
parallel performance whereas in open-search mode the I/O time 
percentage drops. Note that the load imbalance increases dramati-
cally in case of open-search for MSFragger, which can further neg-
atively impact the overall performance. Finally, we confirmed by 
profiling MSFragger using Intel VTune in open-search mode that 
its performance is heavily (> 70%) memory-bandwidth bounded as 
the custom database search-space size increases. Tools that do not 
take advantage of modern indexing strategies such as Crux, Comet-
MS, MSFG+ and X!Tandem perform orders-of-magnitude slower 
than MSFragger.

7. Discussions

There is an urgent need for provably scalable parallel algo-
rithms for large-scale MS systems biology studies which has di-
rect impact on personalized nutrition, microbiome research, and 
cancer therapeutics. This is especially true for non-model pro-
teomics, meta-proteomics, and proteogenomic studies where the 
search-space traversal needed to make peptide deductions are 
massive. Our theoretical results indicate that further formal de-
sign, and evaluation is warranted for scalable infrastructure for 
MS based omics database-workflows. In order to make progress, 
the next generation of parallel algorithms will have to acquire 
provably demonstrated superior performance on multicore, GPU, 
memory-distributed supercomputers, and cloud-computing infras-
tructure. Such contributions are expected to be significant because 
it will open up novel, and faster ways to analyze MS data for vari-
ous omics (read: preteomics, proteogenomic, meta-proteomics etc.) 
studies considered “too large-scale”. Following are few points that 
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would help the reader interpret the theoretical results in this pa-
per:

1. For the purposes of this paper we have assumed a single par-
allel computing strategy for deducing peptides. We do realize 
that the HPC methods that have been proposed till date have 
variation such as scoring, getting the candidate theoretical 
spectra etc. However, the parallel strategy that is used by these 
HPC methods is similar (as described in the 3.1 section) and 
we are estimating the communication lower-bounds of these 
parallel algorithms. Since the data are managed in the same 
way for all of the HPC methods; variations (including theo-
retical spectra generation) will only modify some constants in 
these communication bounds.

2. We further show that the pre-dominant way of proteomics 
algorithms to increase efficiency by reducing the number of 
computations (using mass filtering or filtering using other 
characteristics of mass spectrometry data) does not change 
the communication-bounds that are being depicted by current
state-of-the-art parallel algorithms. However, we also show 
that parallel algorithms with much tighter bounds are possi-
ble (but are not yet discovered).

3. We design and implement parallel computing solutions for 
problems that are compute- or memory-intensive. Further, 
such parallelization is accomplished when the problem is not 
scalable for a single node i.e. it is very large in data or compu-
tations. Note that communication-bounds that we have proved 
are with the assumption that the theoretical database (or spec-
tra that needs processing) is very large and do not fit in mem-
ory M of single machine. If the size of the data is not that 
large (i.e. all database and spectra are fitting in a Memory M) 
then parallelizing will result in speedups that may be expected 
to be larger than the bounds that we just proved. However, 
these results and speedup will just be a artifact of the system 
and/or data being analyzed and will not be a generalizable re-
sult. That is why we repeatedly see that adding more number 
of processor do not significantly scale the computations and 
the experimental results that are published are for relatively 
small datasets.

4. For the current bounds we have assumed that the theoreti-
cal database is on the master node and is communicated via 
the network. However, if the whole database is not commu-
nicated (e.g. only if database sequences are communicated), 
then the amount of communication is substituted by compu-
tation costs that would be needed for further computations i.e. 
O (nm2/p). Therefore, the lower-bounds that are achieved by 
the current HPC methods still hold true. This is also confirmed 
by the meta-analysis of HPC methods published results.

5. For calculating our bounds we assume that whole database is 
needed for computations. One can argue that ‘candidate spec-
tra’ are the only real-computations that are done by the algo-
rithms. This reasoning also does not effect the lower-bounds 
that are calculated. The reason is that having ‘candidate-
spectra’ does reduce the amount of computations. However, 
we have shown that the amount of communication is the 
real bottleneck for these parallel algorithms. Since calcula-
tion of candidate-spectra still requires access, and communi-
cation of the theoretical spectra-database; the communication 
bounds (i.e. bottleneck) remains unchanged even when only 
candidate-spectra are used for computations.

8. Conclusions

For the past 30 years, significant efforts have been invested 
for the design, and development of efficient search engines for 
MS based omics data analysis. These methods are numerical al-
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Fig. 5. Experimental run times for several tools in log-log scale. The gray dotted lines depict the ideal scalability for each experiment. (a to d) Modern index-based database 
search tools (such as MSFragger) show a poor parallel performance due to low compute/communication ratio in restricted-search experiment mode. However, it still performs 
faster than older index-free tools such as MSGF+ or X!Tandem. (e, f) The scalability is significantly improved in open-search mode however drops to sub-linear beyond a 
certain number of parallel nodes due to memory bandwidth saturation.

Fig. 6. The I/O to overall run time ratio is more than 60% for MSFragger in restricted-
search experiments and drops dramatically as the number of nodes is increased (I/O 
per node is decreased). In case of open-search, the I/O to compute ratio is much 
lower.

gorithms developed for MS based peptide deduction, and are de-
signed by assuming arithmetic operations as the sole metric for 
efficiency. In the last decade, the technological trend of the Moore’s 
law has kept making the arithmetic operations faster. As a result, 
bottleneck for many MS algorithms has shifted from computational 
arithmetic operations efficiency to communication of data between 
different levels of memory-hierarchy or between different nodes in 
a distributed-memory architecture. This bottleneck has resulted in 
unusually long processing times even for high-performance com-
puting algorithms. However, the poor scalability of these MS based 
omics algorithms has been considered an artifact of the data, or 
the architectures, and have been subjective and anecdotal, till date.

In this paper, we formulate, and quantify the efficiency of the 
current state of the art HPC algorithms for MS data analysis. We 
have presented and proved lower bounds on the amount of com-
munication that is achieved by the current MS based omics HPC 
methods. We also prove the lower-bounds that can be achieved by 
parallel algorithms on a distributed-memory architecture. To the 
best of our knowledge, this is the first study to formulate a theo-

retical framework showing that the existing parallel strategies for 
44
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MS based omics data analysis are not achieving the communication 
bounds that are possible, and that continued improvements are 
needed in this area of research. Meta-analysis of existing literature 
agrees with our theoretical analysis i.e. sup-optimal communica-
tion costs are achieved by existing MS based omics HPC tools. 
The experiments that we have performed also concur with these 
bounds. Therefore, novel parallel algorithms that exhibit optimal-
communication costs are needed that can close the communica-
tion gap between theory, and practice for MS based omics al-
gorithms. Improved design, development, and implementation of 
such communication-avoiding parallel algorithms will allow com-
putations of MS based proteomics, meta-proteomics, and proteoge-
nomic data that could scale gracefully with increasing number of 
processors.

In contrast to existing methods, the next generation of HPC 
algorithms must be designed by considering both computational, 
and communication costs as metrics for efficiency. These designs 
will allow us to experiment by varying balance points between 
communication, and computation, and with different computing 
platforms including distributed-memory clusters, supercomputers, 
and commodity AWS cluster which is primarily used for cloud-
computing. We assert that next generation of parallel algorithms 
that can scale (at least) linearly with increasing number of proces-
sors, size of the (theoretical) database, and spectra will be essen-
tial for scalable MS omics studies. The proposed HPC framework 
can significantly help cross-model deep-learning networks such 
as SpeCollate [32] and lead to superior peptide deduction per-
formance. To this end, recently introduced HPC frameworks that 
optimize both communication and computations exhibit excellent 
scalability for tera-scale data using large homogeneous supercom-
puters [14] as well as heterogeneous architectures [21]; confirming 
the theoretical foundations built in this paper.
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