2021 IEEE Intemational Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-3577-2/20/$31.00 ©2021 IEEE | DOI: 10.1109/IPDPSW52791.2021.00084

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

TurboBFS: GPU Based Breadth-First Search (BES)
Algorithms in the Language of Linear Algebra

Oswaldo Artiles, Life Senior Member, IEEE
School of Computing and Information Sciences
Florida International University
Miami, Florida
Email: {oarti001 @fiu.edu}

Abstract—Graphs that are used for modeling of human brain,
omics data, or social networks are huge, and manual inspection
of these graph is impossible. A popular, and fundamental,
method used for making sense of these large graphs is the
well-known Breadth-First Search (BFS) algorithm. However,
BFS suffers from large computational cost especially for big
graphs of interest. More recently, the use of Graphics processing
units (GPU) has been promising, but challenging because of
limited global memory of GPU’s, and irregular structures of
real-world graphs. In this paper, we present a GPU based
linear-algebraic formulation and implementation of BFS, called
TurboBFS, that exhibits excellent scalability on unweighted,
undirected or directed sparse graphs of arbitrary structure. We
demonstrate that our algorithms obtain up to 40 GTEPs, and are
on average 15.7x, 5.8x, and 1.8x faster than the other state-of-
the-art algorithms implemented on the SuiteSparse:GraphBLAS,
GraphBLAST, and gunrock libraries respectively. The codes to
implement the algorithms proposed in this paper are available
at https://github.com/pcdslab.

Index Terms—GPU, CUDA, graph parallel algorithms, BFS,
linear algebra.

I. INTRODUCTION

Graphs that are used for modeling of human brain [4], omics
data [11], or social networks [12], are huge, making manual
inspection of these graph practically impossible. A popular,
and fundamental, method used for making sense of these
large graphs is the well-known Breadth-First Search (BFS)
algorithm with many interesting applications. For instance, the
BFS algorithm is the first stage of the betweenness centrality
(BC) algorithm due to Brandes [7], [13]. However, the high
complexity of BFS algorithms is a severe bottleneck for
numerous computational problems. Due to its importance, and
high computational complexity with numerous applications;
Graph 500 benchmark uses BFS as one of the algorithms for
ranking supercomputers [2].

BFS algorithms, and its applications are both interesting,
and challenging for Graphics Processing Units (GPU’s) [16],
because these algorithms (and architecture) have enough paral-
lelism, but the data-access patterns are highly irregular. Other
challenges for implementing BFS in a scalable fashion include
limited global memory of the GPU’s, the data-transfer PCle
bottleneck, and warp divergence on the GPU kernels. These
challenges are primary reasons for limits on the size of the
graph that can be processed in a scalable fashion by the

Fahad Saeed, Senior Member, IEEE
School of Computing and Information Sciences
Florida International University
Miami, Florida
Email: {fsaced@fiu.edu}

available BFS algorithms, and to elicit limited-speedups on
CPU-GPU architectures, being therefore an active area of
research [17], [19], [20]

In this paper, we propose TurboBFS, a highly scalable GPU-
based BFS algorithms in the language of linear algebra. The
algorithms on TurboBFS are based on parallel optimizations
selected to solve some of the problems associated to the
challenges that we just discussed. We implemented a top-
down BFS algorithm exploiting the sparsity of the frontier
vector, which contains the number of shortest paths from the
discovered vertices to the connected undiscovered vertices.
Further exploitation of the sparsity is acquired by using the
sparsity of the output vector, which contains the number of
shortest paths from the root vertex to the discovered vertices.
We also implemented the bottom up BFS algorithm presented
in reference [5], as well as an algorithm that combined both
approaches [6], which showed the best performance for some
group of graphs. In order to optimize the use of the limited
global memory of the GPU, we considered all the graphs
unweighted, i.e, represented by Boolean sparse adjacency
matrices [13], so that, the value arrays of the corresponding
sparse formats were not stored. This result in reduction in the
memory-footprint of the algorithms, resulting in substantial
bandwidth utilization. Our algorithms were also designed to
use only one type of sparse compressed format with the
corresponding reduction in the memory footprint.

Contributions of the paper : The main contributions
of the paper are:

1) We designed and implemented TurboBEFS, a highly
scalable GPU-based set of top-down and bottom-up BFS
algorithms in the language of linear algebra. These algo-
rithms are applicable to unweighted, directed and undi-
rected graphs represented by sparse adjacency matrices
in the Compressed Sparse Column (CSC) format, and
the transpose of the Coordinate (COO) format, which
were equally applicable to direct and undirected graphs.
We considered all the graphs unweighted for which
the adjacency matrices can be considered as Boolean
matrices [13], so that the corresponding value arrays
are not needed. This optimization resulted in substantial
reduction of the GPU global memory footprint required
by the algorithms, as well as an increased performance

978-1-6654-3577-2/21/$31.00 ©2021 IEEE 520
DOI 10.1109/IPDPSW52791.2021.00084

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY . Downloaded on March 25,2022 at 14:26:31 UTC from |IEEE Xplore. Restrictions apply.



due to reduction in the number of unnecessary floating
operations. In our design, we also used the sparsity
property of the frontier and output vectors to improve
the performance of our BFS algorithms without using
any additional memory.

A comprehensive experimental detail and results are
presented to assess the performance of the GPU-based
BFS algorithms in TurboBFS. Our BES algorithms ob-
tained up to 40 GTEPs (billions of transverse edges per
second), and were on average 15.7x, 5.8x, and 1.8x
faster than the state-of-the-art algorithms implemented
on the SuiteSparse:GraphBLAS [1], GraphBLAST [20],
and gunrock [19] libraries respectively.

2)

Organization of the paper : The paper is organized
as follows: Section II briefly describes the top-down and
the bottom-up BFS algorithms. Section III presents the BFS
algorithms for directed and undirected unweighted graphs in
the language of linear algebra. Section IV is dedicated to the
experimental results. Section V describes the related work, and
the summary and future work are presented in Section VL.

II. BACKGROUND

BFS algorithms : The breadth-first search (BFS) algo-
rithm is applicable to any unweighted, directed or undirected
graph G = (V, E), where V is the finite set of vertices and
E the set of edges. Any pair (u,v) € E implies that the
vertices u and v in V are connected by an edge in G. A
graph G is directed if F consists of ordered pairs, otherwise,
G is undirected. Given a graph G = (V, E) and a root vertex
r € V, the top-down BFS algorithm performs a systematic
search of every vertex on E that is reachable from r. The
algorithm computes the shortest path (smallest number of
edges) from r to each reachable vertex, producing a BFS
tree of the graph G. For connected graphs, the BFS tree is a
spanning tree. On every step of the BFS algorithm, the frontier
between discovered and undiscovered vertices is expanded.
The algorithm discovers all the vertices at depth d, before
discovering all the vertices at depth d + 1 on the BFS tree.
On every step of the top-down BFS there are three sets of
vertices. The first set, ¢, contains the number of shortest
paths from the root vertex to the discovered vertices, the
second set, f, contains the number of shortest paths from the
discovered vertices to the connected undiscovered vertices, and
the third set are the undiscovered vertices, ie., V — o — f.
The set f represents the frontier between the discovered and
the undiscovered vertices. For a graph G with n vertices and
m edges represented by a sparse adjacency matrix, the time
complexity of the sequential BFS algorithm is O(n?) [9].

In every step of the top-down BFS algorithm, the vertices
in f are like parents discovering their children among their
neighbors. The step only finishes when each parent has
searched for all the potential children. In the bottom-up BES
algorithm [5], the searching process is reversed, i. e., at every
step, the undiscovered vertices are like children searching for
parents, when a vertex finds a parent among its neighbors, the

521

searching process finishes for that vertex. More details about
our implementation of this algorithm are given in Section III

III. BFS ALGORITHMS IN THE LANGUAGE OF LINEAR
ALGEBRA FOR UNWEIGHTED GRAPHS.

This section presents our versions of the top-down and
bottom-up BFS algorithms in the language of linear algebra
for directed and undirected unweighted graphs. For the design
and implementation of our algorithms, we used the Coordi-
nate column COOC (transpose of the COO format) and the
Compressed Sparse Column CSC sparse storage formats to
represent the sparse adjacency matrices of the graphs. These
formats are the best choice to compute the transpose sparse
matrix vector multiplication (y = ATx) performed in the
top-down Algorithm 1, as well as the operations needed for
the bottom-up Algorithm 6. Fig. 1 shows examples of these
formats for a sparse adjacency matrix representing a directed,
unweighted graph. For a n x n adjacency sparse matrix A with
nnz non-zero elements representing unweighted graphs, the
array row, (size nnz) stores the corresponding row indices
of these non-zero values. The array C P4 (size n + 1) stores
the indices that start a column, the first element of this array
is always equal to 1 and the last element equal to nnz + 1.
The array rows of the COOC format are identical to the
corresponding arrays of the CSC format, while the array col 4
(size nnz) stores the corresponding column indices of the non-
zero values in A. In order to reduce the memory footprint
and increase the performance of the TurboBFS algorithms, the
arrays that stores the non-zero values of the sparse adjacency
matrix of unweighted graphs were not used by our algorithms.

In this paper, we classified the graphs in two classes: regular
graphs and irregular graphs. The regular graphs were those
with a degree distribution with a regular pattern, i.e., with
relatively low values of maximum, mean and variance, while
irregular graphs were graphs having some vertices with maxi-
mum degree which are many orders of magnitude greater than
their mean, and standard deviations relatively larger than those
shown by regular graphs. Fig. 2 shows the differences between
the degree distribution of these two classes of graphs. This
Figure shows the relative histogram for the degree distribution
of a regular graph, delaunay23, with a maximum, mean and
standard deviation equal to 28, 6.0 and 1.0 respectively, as
well as the relative histogram for the degree distribution of
an irregular graph, mycielskianl9, with a maximum, mean
and standard deviation of their degree distribution equal to
196607, 2297 and 4530 respectively. The dispersion of the
degree distribution for the irregular graph is as expected much
greater than the corresponding dispersion for the regular graph.
In our experiments we found that the depth d of the BFS tree
for irregular graphs is much lower than the depth for regular
graphs. A greater depth means that the runtime of the BFS
algorithm increases, for example, for the delaunay23 graph,
with 8.4 x 108 vertices and 50 x 10% edges, d was equal to
1213 and the runtime 2014 ms, while for the mycielskian19
graph, with 393215 vertices and 903 x 10% edges, d was equal
to 3 and the runtime 31 ms. Therefore, the topology of the

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY . Downloaded on March 25,2022 at 14:26:31 UTC from |IEEE Xplore. Restrictions apply.



graphs which determines the depth of the BFS trees had a
huge impact on the performance of the TurboBFS algorithms.

00110
100 10
A=|01 0 0 0
00101
O 01 00
osC cooC
mw‘.\_|231 .15124] row,\—[231 4 5 1 2 4]
CPx=[1 2 3 6 8 8 coly =1 2 3 3 3 4 4 5]

Fig. 1: Examples of COOC and CSC sparse storage formats for
a sparse adjacency matrix representing a directed, unweighted
graph.

20 22
80 b
18

70
16|
L ?“
%50 i
5 i
8

30
6

20
ol
10 I 2l
0- - ol

1,000 2,000 3,000 4,000 5,000
degree (mycielskian)

o 2 4 6 8 10
degree (delaunay)

0

Fig. 2: Relative histogram of the degree distribution for the
delaunay and mycielskian undirected group of graphs.

A. Top-Down BFS algorithm for undirected and directed
unweighted graphs represented by sparse adjacency matrices
in the COOC and CSC sparse storage formats.

Algorithm 1 represents the linear algebra formulation of
the top-down BFS algorithm for a graphs G = (V, E) with n
vertices and nnz edges, represented by n x n sparse adjacency
matrix A in the COOC format, with nnz non-zero elements.
Algorithm 2 is the implementation of the same algorithm for
the CSC format. These algorithms are inspired by the BFS
algorithm described on chapter 6 of reference [13], where it
is presented as a first step of the linear algebra version of
the betweenness centrality algorithm [7]. The main innovation
of our Algorithms 1 and 2 was the utilization of the sparsity
of the frontier vector f and output vector o to substantially
improve the performance of the algorithms described in [13].

Algorithm 1 computes a top-down BES from the root vertex
r, with d representing the current depth of the discovered
vertices. The final value of d is equal to the height of the BFS
tree rooted on r. The output vector o contains the number of
shortest paths from the root vertex to the discovered vertices.
The frontier vector f contains the number of shortest paths
from the discovered vertices to the undiscovered vertices to
which there is some edge. The while loop stops when the

522

vector f is equal to O, i.e., when all the vertices reachable
from r have been discovered (lines 21 to 23). The vector f
is updated by the sparse matrix-vector multiplication (SpMV)
operation with the the transpose of the adjacency matrix (line
16), followed by a mask operation (lines 18 to 20) that updates
on f the shortest paths to vertices no yet contained on the
vector ¢, guaranteeing that only the new discovered shortest
paths are added to o (lines 21 to 22).

Algorithm 1 Linear algebra formulation of the top-down BFS
algorithm for an unweighted graph G = (V, F) represented by a
sparse adjacency matrix A in the COOC format.

1: Input: A

2: Input: r.

3: Output: o(1....n)

4 procedure TDBFS-LA-UG(A,o.r.n)

b d+0

6: c+1

T: f+0o

8: o+ 0

9: while ¢ > 0 do

10: di—d+1

11: c+0

12: ifd==1 then
13: flr)+1

14: o(r) +1

15: end if

16: fe— ATy

17: f+0

18: if Jo(z) == 0 then
19: £(3) + fuld)
20: end if
21: if 3f(:)! =0 then
22: o(i) + o(i) + f(z)
23: c+1
24: end if
25: end while

26: end procedure

Algorithm 2 represents the linear algebra formulation of
the BFS algorithm for a graphs G = (V, E') with the sparse
adjacency matrix A in the CSC sparse storage format. This
algorithm is similar to Algorithm 1, with the difference that
due to the properties of the CSC format, the performance of
the algorithm is improved by including the mask operation in
the SpMV operation, as shown in Algorithm 4 .

B. Transposed sparse matrix-vector multiplication (SpMV) for
the top-down and bottom-up BFS algorithms.

Our experimental results showed that the runtime of the
SpMV operation on Algorithms 1 and 2 can be up to 90
% of their total runtime. Hence the overall performance of
these algorithms was mainly determined by the performance of
this operation. Algorithm 3 implements the sequential SpMV
(ft + AT ¥) operation of Algorithm 1. The parallel version
of this algorithm, designated as scCOOC, assigns one thread
per edge of the graph. The top-down BFS algorithm using the
scCOOC algorithm for the SpMV operation was designated
as TurboBFS-tdscCOOC.

Algorithm 4 implements the sequential version of the SpMV
operation on Algorithm 2. The mask operation (line 2) is
implemented by computing the components of the vector f;

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 14:26:31 UTC from IEEE Xplore. Restrictions apply.



only when the corresponding component of the o vector is
equal to 0, ensuring that only the new discovered shortest
paths are added to o (lines 19 to 20 of Algorithm 2). The
straightforward parallelization of Algorithm 4, known as CSC-
scalar (scCSC), on a GPU kernel assigns one thread per vertex.
In this paper, the acronym TurboBFS-tdscCSC designated the
top-down BFS algorithm using the scCSC algorithm for the
SpMV operation.

Algorithm 2 Linear algebra formulation of the top-down BFS
algorithm for an unweighted graph G = (V, E) represented by sparse
adjacency matrices A in the CSC format.

1: Input: A

2 Input: r.

3: Output: o(1...

4: procedure BFS- LA UG(A,o.m,1)

s d+0

6 c+1

T f+0o

8 o+ 0

L o while c > 0 do

10: d+d+1

11: c+0

7. fe+— 0

13: ifd==1 then
14: flr)+1

15: o(r) +1

16: end if

17: fi +— ATF

18: f—r

19: if 3f(2)! =0 then
20: o(i) + o(i) + f(7)
21: c+1

22: end if

23: end while

24: end procedure

Algorithm 3 Algorithm to implement the sequential f; «+
AT operation of the BFS algorithm 1 with the sparse
adjacency matrices in the COOC format.

1: for k — 1,nnz do
L if f(rowa(k)) >0 then

3: fr(cola (k)) + fi(cola(k)) + f(rowa (k))
4 end if
5 end for

For irregular graphs, the scCSC kernel results in poor
performance due to uncoalesced memory access and warp
divergence. In order to improve the performance of the SpMV
operation for irregular graphs, we implemented the CSC-
vector(veCSC) algorithm shown in Algorithm 5, which is
similar to the CSR-vector algorithm proposed in [3]. The
veCSC algorithm assigns a warp per vertex. This algorithm
incorporates the warp shuffle instruction (lines 18-22) to
reduce the local sums by the threads in the warp without
using shared memory. The first thread in the warp outputs
the final result (lines 23-25). The veCSC algorithm solves
the problems of no coalesced memory access and the warp
divergence of the scCSC algorithm. The best performance of
the veCSC algorithm is obtained for irregular graphs, on which
the warp divergence is minimized. The acronym TurboBFS-

523

tdveCSC designated the top-down BFS algorithm using the
veCSC algorithm for the SpMV operation.

Algorithm 4 Algorithm (scCSC) to implement the sequential
fi « ATf operation of the BFS algorithm 2 for sparse
adjacency matrix in the CSC format .

cfori— 1,ndo

1

2 if o(i) == 0 then

3 sum + 0

4: start + CPy (i)

5 end + CPa(i+1)-1
[ for k — start,end do

7 sum + sum + f(row, (k))
8: end for

9: if sum > 0 then

10: fi (i) + sum

11: end if

12: end if

13: end for

Algorithm 5 GPU-based algorithm (veCSC) to implement the
sparse matrix-vector multiplication fi < AT f with the sparse
adjacency matrix in the CSC format.

1: Input: CPa,rowa.f
2: Output: f;
3: procedure VECSC-MVSP-KERNEL(C' P4 ,row 4, f)

4 thread;g + threadldx.x + blockldx.x * blockDim.x
s threadLane;g + thread;y & (threadsPerWarp — 1)
[ warpyg + thread,q/threadsPerWarp

T: col + warpyg

8: while col < n do

9: if o(col) == 0 then

10: start + CPa (col)

11; end + CPjp (col + threadLaneg)

12: sum + 0

13 icp + start + threadLane;g

14 while icp < end do

15: sum + sum + f(row 4 (icp))

16: icp + icp + threadsPerWarp

17: end while

18: offset + threadsPerWarp/2

19: while of fset > 0 do

20: sum 4+ sum + shfl — down — sync(offset)
21: offset + offset/2

22: end while

23: if threadLane;; == 0 then

24: fi(warpia) + sum

25: end if

26: end if

7 col + col + numWarp

28: end while

29: end procedure

C. Bottom-Up BFS algorithm for undirected and directed
unweighted graphs represented by sparse adjacency matrices
in the CSC sparse storage format.

Algorithm 6 computes a bottom-up BFS from the root ver-
tex r, with d representing the current depth of the discovered
vertices. This algorithm is the linear algebra version of the
algorithm described in reference [5]. The final value of d
is equal to the height of the BFS tree rooted on r. The
output vector S contains the level d at which each vertex
is discovered. If the vertex v is undiscovered (line 12), the
searching for the parent of v starts at line 15 by searching

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY . Downloaded on March 25,2022 at 14:26:31 UTC from |IEEE Xplore. Restrictions apply.



all the incidents vertices to v, when a parent is found (line
16), the corresponding element of the matrix S(v) is updated
with the next to the current level (d + 1). After discovering
the parent of v, the searching process is completed with the
break instruction on line 17. This early termination of the
searching process is the main difference with the top-down
BFS Algorithms 1 and 2 on which all the potential children
have to be checked on each searching step of the algorithm.
The straightforward parallelization of Algorithm 6 by a GPU
kernel assigns one thread per vertex, we used the acronym
TurboBFS-busc to designate this algorithm.

Algorithm 6 Linear algebra formulation of the bottom-up BFS
algorithm for an unweighted graph G = (V, E) represented by sparse
adjacency matrices A in the CSC format.

1: Input: A

2: Input: r.

3: Output: S(1...n)

4: procedure BUBFS-LA-UG(A,S.r.n)

o d+0

6 c+1

T S+ -1

8 S(r) «d

9: while ¢ > 0 do

10: c+0

11: for v —+ 1,n do

12: if S(v) == —1 then
13 k+ CPa(v)

14 end + CPa(v+1)—1
15: while k > end do
16: if S(I(k)) ==d then
17: S(w)+d+1
18 c+ 1

19: break

20: end if

21: kE+—Ek+1

22 end while

23: end if

24: end for

25: di—d+1

26: end while
27: end procedure

For irregular graphs, the TurboBFS-busc kernel results in
poor performance due to uncoalesced memory access and warp
divergence. In order to improve the performance of Algorithm
6 for irregular graphs, we implemented the TurboBFS-buve
Algorithm 7, which is a simplified version of Algorithm 5 and
where a warp is assigned to each vertex. The TurboBFS-buve
algorithm solves the problems of no coalesced memory access
and the warp divergence of the TurboBFS-busc algorithm for
irregular graphs.

The bottom-up BFS algorithm has the best performance
when a large fraction of the vertices are in the frontier [5]. At
the beginning of the BFS search, the frontier vector is sparse
and the top-down BFS is more efficient than the bottom-up ap-
proach. Hence, to yield the best performance, both algorithms
can be combined, running the top-down BFS at the beginning
of the process, and when the frontier vector becomes dense to
switch to the bottom-up algorithm, in a direction optimizing
BES algorithm [6]. We designed and implemented a combined
BES algorithm on which the searching process starts with

the top-down Algorithm 2, and then when the frontier vector
f becomes dense, the searching process continues with the
bottom-up Algorithm 6. We use the heuristics proposed in
reference [6], to switch from the top-down to the bottom-up
algorithm when the frontier vector has a minimum of 10%
of nonzero elements. We used the acronym TurboBFS-tdbu to
designate this combined algorithm.

Algorithm 7 TurboBFS-buve:GPU-based implementation of Algo-
rithm 6, using one warp per vertex.

I: Input: CPy.row4.5.d

2: OQutput: §

3: procedure VECSC-MVSP-KERNEL(C P, ;row 4,5.d),

4 thread;g + threadldx.x + blockldx.x * blockDim.x
5 threadLaneig + threadig & (threadsPerWarp — 1)
[ warpyq + thread,;g/threadsPerWarp

7: col + warpia

8: break + 0

9: while !break and col < n and S(eol) == —1 do

10 start + CPa(col)

11: end + CPp (col + threadLaneyg)

1z icp + start + threadLane;g

13: while !break and icp < end do

14 if S(rowa(icp)) == d then

15: S(col) +d

16: c+1

17: break + 1

18: end if

1% icp + icp + threadsPerWarp

20 end while

21- col + col + numWarp

22: end while
23: end procedure

thread
Jo+— fA
fefi
ge—o+f
fi—fA
f<fi
agi—a+f
fee fA
FE= T

olwlc o
el =R=]
=

P [ PN P
-

bae] | VR SV SV

=

Lo 5|0 bS bI| = = =

=
=]
o
=
=

Fig. 3: Example of computation of the BFS for the graph in
Fig. 1 using the TurboBFS-scCSC version of Algorithm 2.

D. CUDA implementation of the BFS algorithms

We designed and implemented Algorithm 1 and Algorithm 2
with only two kernels on the GPU. The first kernel initializes
the f and o vectors and executes the SpMV(f, +— ATf)

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 14:26:31 UTC from IEEE Xplore. Restrictions apply.



operation, the second kernel computes the additional functions
of the algorithms. This implementation increased the perfor-
mance of the algorithm by reducing the overhead due to the
sequential execution of more than two kernels on the GPU.
The implementation of the bottom-up BFS Algorithm 6 used
only one GPU kernel.

Fig. 3 shows the computation of the top-down BFS for the
root vertex 2 of the graph in the example of Fig. 1, using
the TurboBFS-tdscCSC version of Algorithm 2. The example
assigns one thread per vertex, and shows the values assigned
to the vectors ¢ and f on each one of the two steps of the
BEFS computation.

IV. EXPERIMENTAL RESULTS

The experiments presented in this section were designed
to assess the performance of our TurboBFS algorithms by
comparing it to the performance of the benchmark algorithms
available in the SuiteSparse:GraphBLAS library [1], and in the
GPU based GraphBLAST [20], and gunrock [19] libraries.

Our benchmark of sixty-nine graphs used in the experiments
are represented by sparse adjacency matrices selected from
the SuiteSparse Matrix Collection (formerly the University
of Florida Sparse Matrix Collection) [10], [14], some of
these graphs are also in the Stanford Large Network Dataset
Collection [15]. The selected adjacency matrices represent
thirty-nine undirected and thirty directed graphs, with up to
1900 x 108 edges and up to 214 x 10° vertices. The parameters
for each graph are given in the Tables I, II, and III. The
weighted graphs were considered unweighted graphs for all
the experiments.

The average running time (milliseconds) for each experi-
ment was obtained by 50 trials per experiment. The MTEPs
(millions of transverse edges by second) achieved for each
BES algorithm were computed as the ratio between the num-
ber of edges (thousands of edges) and the average running
time (milliseconds). We also implemented a sequential BFS
algorithm to verify the results obtained from the GPU-based
algorithms, only the correct results were accepted. For all
the results presented in this section, we chose the TurboBFS
algorithm with the best performance.

All the experiments presented in this section were per-
formed on a Linux server with Ubuntu operating system
version 16.04.6, 22 Intel Xeon Gold 6152 processors, clock
speed 2.1 GHz, and 125 GB of RAM. The GPU in this
server was a NVIDIA Titan Xp, with 30 SM, 128 cores/SM,
maximum clock rate of 1.58 GHz, 12196 MB of global
memory, and CUDA version 10.1.243 with CUDA capability
of 6.1.

A. Experimental results for regular graphs

This section summarizes the results of the experiments
performed for the computation of BES on thirty-eight regular
graphs, nineteen of them direct graphs and the rest undi-
rected graphs. The number of vertices and edges, as well
as the parameters (maximum, mean, standard deviation) of
the degree (out-degree for directed graphs) distribution of

525

the graphs, are given for each graph in Table 1. This Table
also include the MTPEs and the speedup of the TurboBFS
algorithms over the algorithms implemented on the Graph-
BLAST ((GBLAST)x), gunrock ((gunrock)x), and SuiteS-
parse:GraphBLAS ((GBLAS)x) libraries. The symbol OOM
mean that the corresponding benchmark algorithm ran out-
of-memory, and the symbol 2.2x in the column ((gunrock)x)
means that TurboBFS was 2.2x faster then the BFS algorithms
in the gunrock libray.

The TurboBFS algorithms obtained up to 2000 MTEPs,
and were on average 7.4x, 2.0x, and 11.7x faster than the
BFS algorithms available on the GraphBLAST, gunrock, and
SuiteSparse:GraphBLAS libraries respectively. The top-down
TurboBC-tdscCSC algorithm obtained the best performance
for twenty-one (55 %) of the graphs, and the bottom-up
TurboBFS-busc algorithm showed the best performance for
fifteen (40 %) of the graphs in this group.

=
g
& |
im:
'BI I I
| I
0 I .

g

graph

W GAP-twtior

B GAF-web

W s

W imeaza

W kmeFia
kmeir

W sk200s

W e

@

"

twitter
2008
uattar?

hmar¥ir
Bk

migrAia
kP 18

GAP.mon

GAP:

graph

Fig. 4: Experimental results for the speedup obtained by the
TurboBFS algorithms in the computation of BC for the set of
big graphs of Table III.

B. Experimental results for irregular graphs

This section presents the results of the experiments per-
formed for the computation of BFS on twenty-three irregular
graphs, six of them direct graphs and seventeen undirected
graphs.The parameters of the graphs as well as the speedup
obtained with the TurboBFS algorithms are summarized in
Table II. The TurboBFS algorithms obtained up to 40 GTEPs,
and were on average 3.0x, 1.3x, and 22.4x faster than the
BFS algorithms available on the GraphBLAST, gunrock, and
SuiteSparse:GraphBLAS libraries respectively.

The top-down TurboBFS-tdveCSC algorithm obtained the
best performance for seven (30 %), the bottom-up TurboBFS-
buve algorithm for five (21.7 %), and the combined top-
down bottom-up TurboBFS-tdbu algorithm for six (26.1 %)
of the irregular graphs in Table II. The top-down TurboBFS-
tdscCOOC algorithm obtained the best performance for five
(21.7 %) of these irregular graphs, including the most irregular
graphs, the mawi graphs, in the group, showing that the COOC
format is the most suitable format for these highly irregular

graphs.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 14:26:31 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Parameters and experimental MTEPs and speedup over the GraphBLAST ((GBLAST)x), gunrock ((gunrock)x),
and SuiteSparse:GraphBLAS ((GBLAS)x) libraries, obtained with the TurboBFS algorithms for the computation of BFS for a

set of regular graphs.

File Vx10° | Ex10° | degree(max/p/a) d MTEPs | (GBLAST)x | (gunrock)x | (GBLAS)x
g7jac100sc(D) 30 385 153/13/22 14 769 8.4x 2.2x 10.4x
gT7jac120sc(D) 36 475 153/13/23 14 792 7.0x 2.0x 8.3x
gT7jac140sc(D) 42 566 153/14/24 15 1132 9.0x 2.4x 15.6x
g7jac160sc(D) 47 657 153/14/24 16 1094 8.0x 2.5x 13.3x
g7jac180sc(D) 53. 4T 153/14/24 17 1068 7.4x 2.3x 13.4x
g7jac200sc(D) 59 838 153/14/25 17 1047 6.2x 2.4x 10.6x
cit-HepPh(D) 35 422 411/12/15 33 703 22.7x 4.2x 13.3x

email-Enron(U) 37 368 1383/10/36 10 613 4.5x 1.7x 6.3x
delaunayn15(U) 33 197 18/6/2 84 109 9.0x 3dx 8.5x
delaunayn16(U) 66 393 17/6/2 110 164 8.9x 3.4x 11.7x
delaunayn17(U) 131 786 17/6/1 157 161 7.6x 2.2x 15.9x
delaunayn18(U) 262 1573 21/6/1 197 225 9.1x 2.0x 12.7x
delaunayn19(U) 524 3146 21/6/1 306 115 3.6x 1.0x 9.2x
astro-ph(U) 17 243 360/15/21 10 808 15.0x 2.7x 12.7x
ri2010(U) 25 126 44/5/3 66 90 11.1x 3.2x T.4x
me2010(U) 70 336 73/5/3 108 112 9.4x 2.5x 8.3x
az2010(U) 242 1196 137/5/4 128 150 4.1x 1.3x 9.4x
nc2010(U) 289 1417 83/5/3 207 104 4.6x 1.2x 9.1x
f12010(U) 484 2346 177/5/4 151 165 3.8x 0.9x 10.6x
ca2010(U) 710 3489 141/5/3 216 126 2.9x 0.8x 8.0x
enron(D) 69 276 1392/4 / 28 8 690 8.8x 2.0x 13.0x
Wordnet3(D) 83 133 64/2/2 20 190 10.6x 2.3x 6.6x
ASIC-100ks(D) 99 579 206,/6/6 33 482 9.0x 2.7x 14.2x
ASIC-320ks(D) 322 1828 412/6/8 31 870 7.6x 1.8x 17.1x
ASIC-680ks(D) 683 2329 210/3/4 31 776 5.1x 1.4x 21.7x
smallworld(U) 100 1000 17/10/1 9 2000 8.0x 2.4x 24.2x
luxemb-osm(U) 115 239 6/2/1 1035 20 16.8x 6.7x 3.5x
netherl-osm(U) 2217 4883 7/2/1 1796 26 2.5x 0.8x 1.9x
internet(D) 125 207 138/2/4 21 345 8.3x 3.2x 29.2x
amazon0302(D) 262 1235 5/5/1 72 363 6.8x 2 lx 11.8x
amazon0312(D) 401 3200 10/8/3 45 593 3.5x 0.9x 9.1x
amazon0601(D) 403 3387 1/8/3 36 847 3.9x 1.0x 12.0x
amazon0505(D) 410 3357 10/8/3 36 839 3.9x 1.0x 13.3x
amazon-2008(D) 735 5158 10/7/4 32 992 2.9x 0.8x 14.2x
web-NtDame(D) 326 1497 3455/5/22 52 454 9.5x 1.6x 8.5x
roadNet-PA(U) 1091 3084 9/3/1 542 71 4.3x 1.0x 9.5x
roadNet-TX(U) 1393 3843 12/31 723 62 4.0x 0.9x 8.8x
roadNet-CA(U) 1971 5533 12/3/1 555 87 3.6x 1.0x 10.1x
v 1 tively big graphs with the TurboBEFS algorithms. The directed
140 | o graph sk-2005 in the Table is the largest graph for which the
P :EKE?: BFS was computed with our available GPU. The first three
- ol graphs of this set are regular graphs for which the bottom-up
- TurboBFS-busc algorithm showed the best performance, and
£ the other five graphs are irregular graphs for which the best
. performance was obtained with the combined top-down and
g bottom-up TurboBFS-tdbu algorithm. For all the graphs on
= the set, the BFS algorithms on the gunrock and GraphBLAST

ol o - . - = libraries ran out of memory (OOM), asserting our optimization

H E § g § H % H strategy of reducing the memory footprint to design and
i s — implement our highly scalable TurboBFS algorithms.

Fig. 5: Experimental results for the MTEPs obtained by the
TurboBFS algorithms in the computation of BFS for the set
of big graphs of Table IIL

C. Experimental results for the computation of BFS for big
graphs

Table III summarizes the results of the experiments per-
formed for the computation of the BES of a set of eight rela-

Fig. 4 shows that the greatest speedups of the TurboBC
algorithms were obtained for the regular graphs. This Figure
also shows that the maximum speedup of the TurboBFS-tdbu
algorithm over the BES algorithm on the GraphBLAS library
was obtained for twitter7, the most irregular graph in the group
with the smallest value for the depth (d) of the BFS tree. Fig.
5 shows that the largest value for the MTEPs was obtained for
the twitter7 graph, while the smallest values for the METPs
were obtained for the regular graphs which had the greatest

526

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 14:26:31 UTC from IEEE Xplore. Restrictions apply.



TABLE II: Parameters and experimental MTEPs and speedup over the GraphBLAST ((GBLAST)x), gunrock ((gunrock)x),
and SuiteSparse:GraphBLAS ((GBLAS)X) libraries, obtained with the TurboBFS algorithms for the a set of irregular graphs.

File Vx10° | Ex10° | degree(max/u /o) d MTEPs | (GBLAST)x | (gunrock)x | (GBLAS)x
mycielskil2(U) 3 407 1535/133/149 3 2036 5.5x 2.2% 7.5x
mycielskil3(U) 6 1228 3071,/200/247.0 2 4092 3.9x 1.8x 12.5x
mycielskil4(U) 12 3696 6143/301/407 2 6159 2.0x 1.5x 23.3x
mycielskil5(U) 24 11111 12287 /452/664 3 T 1.3x 1.7x 30.9x
mycielskil6(U) 49 33383 24575 /679/1080 3 16691 1.1x 1.5x 36.2x
mycielskil7(U) 98 100246 49151,/1020/1747 3 22277 0.8x 1.5x 42.2x
mycielskil8(U) 196.6 300934 98303/1531 /2817 3 31347 0.8x 1.7x 48.0x
mycielskil9(U) 393 903195 196607 /2297 /4530 3 39778 O0OM 1.8x 57.3x

EAT-SR(D) 23.2 326 78/14/20 7 1085 6.3x 2 x 16.7x
kron-logn16(U) 66 4913 17999/75/313 6 4466 2.1x 1.2x 28.3x
kron-lognl7 (U) 131.1 10229 29937/78/378 6 4447 1.7x 0.8x 16.7x
kron-logn18(U) 262 21166 49164/81/454 6 5292 1.3x 0.9x 30.0x
kron-logn19(U) 524 43563 80676/83/541 6 5808 1.1x 0.9x L
kron-logn20(U) 1049 89241 131505/85/641 6 3984 1.1x 1.1x 24.6x
kron-logn21(U) 2097 182084 213906/87 /756 6 2642 0.9x 1.2x 15.4x
soc-Epiniol(D) 76 509 1801/7/26 11 848 8.0x 2.3x 16.7x

Linux-call(D) 324 1209 712/4/6 45 432 6.5x 1:2% 3.2x
web-Stanf (D) 282 2313 255/8/11 147 160 6.8x 0.8x 3:3x%
com-Live] (D) 3998 69362 14815/17/43 14 1286 0.9x 0.8x 9.6x
com-Orkut(U) 3072 234370 33133/76/155 8 1698 0.9x 0.8x 6.4x
soc-LiveJourl(D) 4848 68994 20293/14/36 15 940 1.3x 0.9x 7.5x
mawi-12345(U) 18571 38040 16.4 x 106/2;’3806 11 1330 hotx 0.7x 28.4x
mawi-20000(U) 35991 74485 I2.5:% 106,’2/5414 11 1357 5.2x 0.7x 29.1x

TABLE III: Parameters, experimental MTEPs and speedup over the SuiteSparse:GraphBLAS ((GBLAS)x) libraries, obtained
with the TurboBFS algorithms for a set of big graphs.

File Vx10° | Ex10° | degree(max/u/o) d MTEPs | (GBLAST)x | (gunrock)x | (GBLAS)x
kmer-Pla(U) 139 298 40/2/1 487 110 OOM O0OM 10.0x
kmer-A2a(U) 171 361 40/2/1 515 109 OOM O0OM 11.5x
kmer-V1r(U) 214 465 8/2/1 342 240 OOM O0OM 19.1x

it-2004(D) 41 1151 9964 /28 /67 50 892 OOM O0OM 3.3x
twitter7(D) 42 1468 3 x 108/35/2420 13 1537 OOM O0OM 10.2x
GAP-twitter(D) 62 1468 3 x 108 /24/1990 15 811 OOM O0OM 8.3x
GAP-web(D) 51 1930 12869/38/78 56 1038 OOM O0OM 4.0x
sk-2005(D) 51 1949 12870/39/78 54 1147 OOM O0OM 4.6x

values for the depth (d) of the BFS tree.

V. RELATED WORK

The Breadth-First Search (BFS) algorithm is one of the
most important building blocks for more sophisticated graph
algorithms with a wide range of applications for modeling
human brain [4], omics data [11], or social networks [12].
For example, the BFS algorithm is the first stage of the
betweenness centrality (BC) algorithm due to Brandes [7]. Due
to its importance and complexity, the Graph 500 benchmark
uses BFS as one of the algorithms for ranking supercomputers
[2].

The BFS algorithm had been used to evaluate the perfor-
mance of practically all the high performance graphs process-
ing libraries such as Ligra for shared memory machines [18],
Gunrock on the GPU [19], SuiteSparse:GraphBLAS [1], the
implementation fo the GraphBLAS standard, and the GPU
based GraphBLAST library built over the GrapBLAS library
[20].

As far as we know, the first BFS algorithm in the language
of linear algebra was described on chapter 6 of reference [13]
as a first step of the Brandes’ betweenness centrality algorithm

[71, [13]. This algorithm was implemented on the SuiteS-
parse:GraphBLAS and GraphBLAST libraries. In reference
[20], the performances of both GPU-Based BFS algorithms
were compared.

GraphBLAST and gunrock algorithms use a combined top-
down bottom-up BES algorithms that requires to store the
arrays of the CSC and CSR formats simultaneously on the
GPU for directed graphs, increasing the space complexity of
the algorithms and limiting the size of the graphs for which
the BFS can be computed. Our approach for designing and
implementing the algorithms in TurboBFS differed from the
GraphBLAST and the gunrock approaches, because we used
highly scalable algorithms which were simpler and hence with
less overhead. We also reduced the memory footprint of the
TurboBFS algorithms by using only the CSC format for both
directed and undirected graphs, and by transferring to the GPU
only one set of the arrays that store the indices of the non-
zero values of the sparse adjacency matrices representing the
graphs, allowing us to compute the BFS for graphs with higher
number of edges than those computed by GraphBLAST and
the gunrock libraries on the same GPU. This reduction in space
complexity also increased the performance of the TurboBFS

527

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY . Downloaded on March 25,2022 at 14:26:31 UTC from |IEEE Xplore. Restrictions apply.



algorithms.

VI. SUMMARY AND FUTURE WORK

In this paper, we designed and implemented TurboBFS,
a highly scalable GPU-based set of BFS algorithms in the
language of linear algebra. The algorithms in TurboBFS are
applicable to unweighted, directed and undirected graphs
represented by sparse adjacency matrices. The design goals of
TurboBFS were to reduce the GPU global memory footprint
required by the algorithms, as well as to exploit the spar-
sity structure of the output and frontier vectors of the BFS
algorithms. Our experiments showed that the algorithms in
TurboBFS obtained up to 40 GTEPs, and were on average
15.7x, 5.8x, and 1.8x faster than the state-of-the-art algorithms
implemented on the SuiteSparse:GraphBLAS, GraphBLAST,
and gunrock libraries respectively. Our algorithms were able
to compute the BFS for relatively big graphs for which
the GraphBLAST and gunrock libraries ran out of memory,
asserting our strategy of reducing the GPU global memory
footprint required by our algorithms.

Our future work will be focused on improving the perfor-
mance of the algorithms in TurboBFS, especially the perfor-
mance of the algorithms computing the vector sparse matrix
multiplication operations. Our goal will be to design and
implement GPU-based BFS algorithms with higher perfor-
mance than the state-of-the-art algorithms available on the
GraphBLAST and gunrock libraries. We are also working
on implementing a high-performance, highly scalable linear
algebra version of the vertex and edge betweenness centrality
algorithms proposed by Brandes [7], [13], using the GPU-
based BFS algorithms presented in this paper.

VII. ACKNOWLEDGEMENTS

This research was supported by the National Science Foun-
dations (NSF) under the Award Numbers CAREER OAC-
1925960. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the
National Science Foundation. We would also like to acknowl-
edge the donation of a K-40c Tesla GPU and a TITAN Xp
GPU from NVIDIA which was used for all the GPU-based
experiments performed in this paper.

REFERENCES

[1] M. Aznaveh et al., "Parallel GraphBLAS with OpenMP”, 2020 Pro-
ceedings of the SIAM Workshop on Combinatorial Scientific Computing,
2020, pp. 138-148

D.A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K.
Madduri, W. Mann and Theresa Meuse, "HPCS Scalable Synthetic
Compact Applications 2 Graph Analysis (SSCA 2 v2.2 Specification)”,
5 September 2007.http://graph500.org

N.Bell and M. Garland. “Efficient Sparse Matrix-Vector Multiplication
in CUDA”, NVIDIA Technical Report NVR-2008-004, Dec. 2008.

D. S Bassett and Ol Sporns, "Network neuroscience”, Nat Neurosci.
2017 February 23; 20(3): 353-364

S. Beamer, K. Asanovic and D. Patterson, “Direction-optimizing
Breadth-First Search,” SC *12: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, UT, 2012, pp. 1-10.

2]

3

[4]

[5]

528

[6] S. Beamer, A. Bulug, K. Asanovic and D. Patterson, "Distributed Mem-
ory Breadth-First Search Revisited: Enabling Bottom-Up Search.” 2013
IEEE International Symposium on Parallel and Distributed Processing,
Workshops and Phd Forum, Cambridge, MA, 2013, pp. 1618-1627.

U. Brandes. "On variants of shortest-path betweenness centrality and
their generic computation”, Social Networks, 30, No. 2, 2008, pp.136-
145.

J. Cheng, M. Grossman and T. McKercher, Professional CUDA C
Programming, John Wiley and Sons, Ltd., Indianapolis, Indiana, USA,
2014.

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction
to Algorithms, Third Edition, The MIT Press, Cambridge, USA, 2009.
T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection”, ACM Transactions on Mathematical Software 38, 1, Article
1, December 2011, https://sparse.tamuwedu.

N. Gehlenborg, 5. O’Donoghue, N. Baliga, et al. "Visualization of omics
data for systems biology™, Nat Methods 7, S56-S68 (2010)

W. Jiang, GWang, Z. A. Bhuiyan, Ji. Wu, "Understanding Graph-
based Trust Evaluation in Online Social Networks: Methodologies and
Challenges”, ACM Computing Surveys, Volume 49 , Issue 1, July 2016,
Article No.: 10, pp 1-35

J. Kepner and J. Gilbert (editors), Graph Algorithms in the Language of
Linear Algebra, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, USA, 2011.

S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, TA. Davis, M.
Henderson, Y. Hu and R. Sandstrom,”The SuiteSparse Matrix Collection
Website Interface,” Journal of Open Source Software 4, 35 (March
2019), pages 1244-1248, https://sparse.tamu.edu.

J. Leskovec and A. Krevl, "SNAP Datasets: Stanford Large Network
Dataset Collection™, http://snap.stanford.edw/data, jun 2014.

NVIDIA corporation, CUDA C++ PROGRAMMING GUIDE, PG-
02829-001 V11.1, June 2020

Y. Pan, Y. Wang, Y. Wu, C. Yang and J. D. Owens, "Multi-GPU Graph
Analytics,” 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Orlando, FL, 2017, pp. 479-490.

J. Shun and G. E. Blelloch, "Ligra: A Lightweight Graph Processing
Framework for Shared Memory”, PPoPP "13: Proceedings of the 18th
ACM SIGPLAN symposium on Principles and practice of parallel
programming, February 2013, pp.135-146

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel and J. D. Owens,
"Gunrock: A High-Performance Graph Processing Library on the GPU™.
PPoPP "16: 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming Barcelona, Spain, March 2016, pp. 1-12.

C. Yang, A. Buluc and J. D. Owens, "GraphBLAST: A High-
Performance Linear Algebra-based Graph Framework on the GPU™,
arXiv:1908.01407v3 [cs.DC]

7

8

9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 14:26:31 UTC from IEEE Xplore. Restrictions apply.



