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Abstract—Database algorithms play a crucial part in systems
biology studies by identifying proteins from mass spectrometry
data. Many of these database search algorithms incur huge
computational costs by computing similarity scores for each
pair of sparse experimental spectrum and candidate theoretical
spectrum vectors. Modern MS instrumentation techniques which
are capable of generating high-resolution spectrometry data
require comparison against an enormous search space, further
emphasizing the need of efficient accelerators. Recent research
has shown that the overall cost of scoring, and deducing peptides
is dominated by the communication costs between different
hierarchies of memory and processing units. However, these
communication costs are seldom considered in accelerator-based
architectures leading to inefficient DRAM accesses, and poor
data-utilization due to irregular memory access patterns. In
this paper, we propose a novel communication-avoiding micro-
architecture to compute cross-correlation based similarity score
by utilizing efficient local cache, and peptide pre-fetching to min-
imize DRAM accesses, and a custom-designed peptide broadcast
bus to allow input reuse. An efficient bus arbitration scheme was
designed, and implemented to minimize synchronization cost and
exploit parallelism of processing elements. Our simulation results
show that the proposed micro-architecture performs on average
24x better than a CPU implementation running on a 3.6 GHz
Intel i7-4970 processor with 16GB memory.

Index Terms—cross-correlation, protein identification, SE-
QUEST, accelerator, micro-architecture

I. INTRODUCTION

Mass-spectrometry based analysis has been the preferred

method for identification of proteins from complex biological

samples [1]. The last two decades have seen tremendous

developments in data acquisition and analysis techniques

which have enabled many powerful proteomic applications.

Database search algorithms such as SEQUEST [7], X!Tandem

[6], and MSFragger [9] can now search high resolution mass-

spectrometry data against an ever increasing protein database

to produce high quality matches. This has drastically increased

the compute load for existing implementations of the database

search algorithms. In this regard, several studies have used par-

allelization strategies using high-performing compute clusters

[10], [16], [18], GPUs [3], [11], [13], and FPGAs [4], [5], [15],

[19] to speed up the computation process. However, a recent

study suggests that the major bottleneck in mass-spectrometry

based analysis is the cost of communication i.e cost of moving

input and output data between different hierarchies of a system

[17]. Thus, even though CPUs are operating at a much higher

frequency, their performance gain for proteomics studies relies

on efficiently utilizing system cache or some other input reuse

technique [2] to minimize the number of DRAM accesses.

Consequently, the implementation of Crux [12], state-of-the-

art software for computing cross-correlation (Xcorr) scores,

utilizes processor registers to store peptide fragment ions to

allow peptide reuse. While this allows one-side data reuse,

the cost of accessing experimental spectra from main memory

is not minimized as generally CPU registers are not large

enough to hold the entire experimental spectrum. On the

other hand custom architectures using FPGAs can achieve

better performance for memory bound applications by utilizing

the abundant on-chip RAM resources and custom-designed

communication minimizing pipelines to allow experimental

spectrum reuse [14].

In this paper, we propose a communication-avoiding micro-

architecture to accelerate the Xcorr score computation which

achieves two-side data reuse by utilizing the on-chip RAM to

cache an entire experimental spectrum and a peptide broadcast

bus to decrease the number of DRAM accesses. Our experi-

ments show that these optimizations result in 600x reduction

in the average number of DRAM accesses compared with a

no-caching approach and 24x times speed-up over Crux. The

main contributions of this paper are as follows:

1) We implemented a block RAM based cache of size 2kB

to store experimental spectra and minimize redundant

DRAM accesses.

2) We pre-sorted the peptide database which allows the use

of binary search to search candidate peptides. The search

operation needs to be performed only once per spectrum

as next peptide can be pre-fetched, hence achieving input

locality.

3) To allow input reuse, we designed a peptide broadcast

bus to make it accessible to all the processing elements.

4) We implemented a first-come first-serve (FCFS) based

bus arbitration scheme to minimize the synchronization

time of processing elements sharing the system bus.

The rest of the paper is organized as follows. Section II

explains the background of Xcorr computation problem and

related work. Section III describes the proposed architecture.

Section IV presents the experimental results. Section V con-

cludes the paper.
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II. BACKGROUND

A. Xcorr theoretical formulation
The Xcorr score between a theoretical spectrum vector X

and an experimental spectrum vector Y of length n is defined

in [8] as,

Xcorr =

n−1∑
i=0

X[i]Y [i]− 1

151

n−1∑
i=0

τ=75∑
τ=−75

X[i]Y [i− τ ] (1)

where τ is the amount by which vector is being seri-

ally shifted. However, SEQUEST implementation performs

an optimization by pre-processing the experimental spectrum

to perform dot product only once as described in [7] and

summarized below,

YP =
n−1∑
i=0

(
Y [i]− 1

151

τ=75∑
τ=−75

Y [i− τ ]

)
(2)

using (2) reduces the Xcorr computation to

Xcorr =
n−1∑
i=0

X[i]YP [i]

B. Related work
A significant amount of work has been done on accel-

eration of peptide deduction algorithms using FPGA based

architectures. Bogdan, Coca and Beynon [5] designed a FPGA

based accelerator for peptide deduction using Profound [20]

algorithm by instantiating 48 parallel search processors to

achieve 950× speed-up over a single core processor. Another

study accelerated the scoring process of X!Tandem [15] by

instantiating 6 score generation modules and one fragment ion

generation module to achieve 17× speed-up over a CPU only

implementation. In [19], a complete CPU-FPGA system which

was based on [15] but included support for multiple FPGAs

and achieved 10-fold speed-up for the entire search operation.

To the best of our knowledge, there hasn’t been any studies

performed on accelerating the SEQUEST [3] algorithm, which

is widely used in proteomics.

III. PROPOSED ARCHITECTURE

The architectural setting of the heterogeneous computational

system for Xcorr is shown in Fig. 1. Host CPU communicates

with PCIe DMA via the PCIe link to transfer the experimental

spectra from host memory to FPGA memory. A set of directly

accessible core control registers, hold computation parameters,

and control the operation. Each step of the algorithm takes

place inside the processing element (PE) i.e. reading experi-

mental spectrum vectors one by one, searching for candidate

peptides, generating theoretical spectrum, computing dot prod-

uct scores, and writing the results back to main memory. The

system allows deployment of multiple PEs which execute the

computations in a parallel and asynchronous manner. Since

all the PEs share the same memory bus, we implemented a

first come first serve (FCFS) based bus arbitration scheme to

achieve maximum bandwidth utilization. The detailed view of

the bus arbitration scheme is described in Fig. 3.

Fig. 1. Complete system architecture shows host CPU communicates with
FPGA RAM via PCIe DMA bridge which is connected to Intel’s Avalon
memory mapped bus. Core registers module contains the computation param-
eters and is also used for FPGA-CPU communication. To allow efficient use
of the Avalon memory mapped bus, all PEs are connected to FCFS based bus
arbiter which is in turn connected to Avalon memory mapped bus.

A. Processing Element construction

Each PE takes over the computation of a single spectrum

with all the candidate peptides. At the heart of a PE, sits a

controller which determines the flow of computation as shown

in Fig. 2. The controller copies an experimental spectrum in

the form of m/z and ion intensity values from the external

memory into on-chip RAM and starts the computation. Once

the scores have been computed, they are collected in the on-

chip RAM and a request for bus access is generated again to

copy the scores into the DRAM.

B. Bus Arbiter Design

To ensure load-balancing among the PEs, we designed a

bus-arbiter shown in Fig. 3 which aimed to minimize total

wait time for all the PEs. All the PEs requiring access to the

bus connect with the ”bus request” signal which is connected

to a wait counter register. The wait counter register keeps track

of the wait time of every bus master so that the decision of

contest for bus access is based on fairness i.e. access is granted

to a master which has been wait for the longest.

C. Ion-Matching Kernel

To compute the dot product scores between experimental

spectra and a candidate peptide, the processing element moves

a 64-byte word from the on-chip RAM and a theoretically

generated ion-pair from the candidate peptide to the peak-

matching circuit. Each 64-byte word has 16 ion-pairs (using

16-bit floating point representation for intensity and 16 bit

binary representation for m/z) from the experimental spectrum

which is stored in 16 32-bit registers inside the peak-matching

circuit. The m/z value of the theoretical ion is compared with

all the experimental m/z values using a set of 16 parallel com-

parators as shown in Fig. 4 and the corresponding matching

intensity value of the peak is multiplied and accumulated in

the output register. Once all the ions are traversed, the final
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Fig. 2. Detailed internal construction of a single processing element. At the
heart is the control logic which controls the function of all the sub-modules
in the figure. Binary search module fetches a candidate peptide and stores it
in a peptide FIFO. Ion generator reads the peptide and generates fragment
ions. A 512 bit packet containing 16 32-bit ion mz and intensity pair values
along with a 32-bit theoretical ion and intensity pair values are fed to the ion-
matching kernel which finds the matching peak and stores the partial score
in on-chip RAM.

Xcorr score is sent to the local on-chip RAM and the process

repeats for the next candidate peptide.

IV. EXPERIMENTS

A. Methodology

We designed the entire hardware using Intel Quartus Pro

and Qsys system builder for Intel Stratix 10 FPGA. VHDL

description was compiled using Quartus Pro to verify the

maximum operable frequency of 200MHz. To evaluate the

timing performance of our design, we implemented a cycle

accurate simulator in python which mimicked the exact timing

response of the hardware. In our simulator, we modeled each

sub-module as a class whose data objects represented the

internal and external signals of the module and a clock-event()
method which updated the signals whenever a clock edge

occurred.

For our experiments, we used the PXD000612 dataset

from PRIDE database which contained 90494 experimental

spectra to score against human proteome dataset containing

669964 peptides. The experimental spectra were stored in the

compressed sparse row (CSR) format with ion m/z value as

the data index and ion intensity value as data element. Ion m/z

values were stored in a 16 bit binary format and ion intensity

values were represented using 16 bit half-precision floating

point format.

Fig. 3. Brief logic description of bus arbitration module. Bus request lines
from all the PEs are coming into the arbiter. When a PE is denied service, its
wait count register is incremented, dynamically increasing its priority for the
next turn. Find max module is a comparator tree which finds which registers
has the maximum value and grants access to the corresponding PE.

Fig. 4. The ion-matching circuit receives a 512 bit packet containing 16
experimental ions which are all compared with a theoretical ion in one cycle.
The matched ions are multiplied and accumulated in the score register. If the
theoretical ion is outside the range of current experimental ions, next packet
is requested from the onchip-RAM by incrementing the counter.

B. Results

The performance gains in our design come from a com-

bination of optimizations which minimize DRAM accesses

and allow input reuse by using an on-chip RAM as a local

cache. To find the optimal cache size, we performed a design

space exploration for four different cache sizes along with the

number of instantiated PEs in the design. The results of these

experiments are presented in Fig. 5.

We analyzed the performance of our design by elaborating
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(a) (b)

(c) (d)

Fig. 5. (a), Total computation time vs number of instantiated PEs for cache
size of 512B, 1kB, 2kB, and 4kB is shown. The search time decreases
consistently with increasing number PEs for cache size 2kB and 4kB but its
saturates for 512B and 1kB after 6 PEs due to increased memory requests. (b)
Average synchronization time per PE in the system. This is the time spent by
PE waiting for memory bus access. The wait time increases exponentially
for cache size below 2kB. (c) Average computation time per PE in the
system. This is the time spent on actual computation which decreases with
the increasing number of PEs but is not affected by cache size. (d) Average
I/O time per PE is also higher for cache size below 2kB. However there is
little difference in performance between 2kB and 4kB.

the total processing time spent on computation and communi-

cation. To understand the effect of cache size, we further divide

the communication time in terms of I/O and waiting time. We

define these terms as Average computation time: average

time each PE spends on computing dot product. Average I/O
time: average time spent by each PE on DRAM read/write

operations. Average waiting time: average time each PE

spends on waiting to get access to system bus. The total

processing time for dot product computations is shown in Fig.

5a, it is evident that increasing the number of PEs from 1 to

31 displayed significant speed up until 15 processing elements

for a cache size of 2kB and 4kB, while for cache size below

2kB the speed up is plateaued after 6 processing elements.

Fig. 5b, 5c, and 5d show the breakdown of the total

processing time in terms of computation, I/O and waiting time

for a single PE. Fig. 5b shows that waiting time is zero for 1

PE as memory bus is not being shared. As the number of PEs

are increased, there is an almost exponential increase in the

average waiting time of a PE for cache-sizes below 2kB. The

waiting times for 2kB and 4kB cache stay constant even when

31 PEs are instantiated. The average computation time per PE

is not impacted by the size of cache, but it decreases sharply

when processing elements are increased to 11. Fig. 5d shows

that the total I/O time i.e. total number of DRAM accesses are

orders of magnitude greater for cache size below 2kB. Table I

further illustrates that increasing cache-size from 1kB to 2kB

results in 600× reduction in the average I/O time.

Based on our experiments, in our final design we instanti-

TABLE I
EFFECT OF CACHE SIZE ON AVERAGE I/O AND SYNCHRONIZATION TIME

WHILE USING 16 PES

Cache I/O Waiting Total communication
size time time time

512B 1.01s 11.57s 12.58s
1kB 0.52s 5.19s 5.71s
2kB 0.86ms 2.2ms 3.06ms
4kB 0.84ms 2.1ms 2.95ms

ated 16 processing elements to achieve maximum performance

from the system. We compared the total search time of our

design with Crux [12] for 6 different values of precursor

mass window. Table II presents the total run-time of Crux

running on a 3.6GHz Intel i7-4970 processor with 16GB of

system memory and the run-time of our proposed hardware

accelerator running at 200MHz clock frequency.

TABLE II
RUN-TIME COMPARISON OF FPGA ACCELERATOR WITH CRUX RUNNING

ON 3.6GHZ INTEL I7-4970 USING 8 THREADS AND 16GB MEMORY.

Precursor mass Dot product Hardware Relative
Tolerance (Da) operations Crux Accelerator Speed-up

1.5 162.79M 53.2s 1.25s 42
3 325.41M 75s 2.45s 30
5 541.42M 86s 4.10s 21

10 1.07B 139s 7.782s 20
25 1.99B 304s 20.75s 15
50 3.076B 648s 39.6s 16

V. CONCLUSION

In this paper we designed, and developed an efficient

communication-avoiding micro-architecture. By using exten-

sive experimentation, we demonstrated the applicability of cus-

tom hardware design approach to accelerate crucial memory

bound problems in MS based omics. We presented optimiza-

tions for input reuse at all stages of the computation including

cache implementation, pre-fetching, and input broadcasting.

Although the system was designed for SEQUEST, it can easily

be applied for other scoring techniques which involve dot

product computation with little modification. Our simulation

results suggest that our design is scalable for up-to 32 PEs

with linear speed-ups. In future, we plan to extend this work to

include the complete peptide identification process involving

protein digestion, and build towards a general purpose pro-

teomics processor.
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