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Faster and more efficient peptide identification algorithms1–3 
have been the cornerstone of computational research in shotgun 
mass spectrometry-based proteomics for more than 30 years2–

17. Modern mass spectrometry technologies allow the generation of 
thousands of raw, noisy spectra in the span of a few hours, producing 
several gigabytes of data18 (Supplementary Fig. 1). Database peptide 
search is the most commonly employed computational approach to 
identify peptides from experimental spectra2,10,19,20. In this approach, 
the experimental spectra are searched against an (indexed) database 
of theoretical spectra (or modeled spectra) with the goal of finding 
the best-possible matches1. The theoretical spectra database (or sim-
ply the theoretical database) is constructed by simulating in silico 
digestion on a proteome sequence database (Supplementary Fig. 
2). The theoretical databases (and their indexed versions) expand 
exponentially in space (several gigabytes to terabytes) as the post-
translational modifications (PTMs) are added in the simulation2,21 
(Supplementary Fig. 3a,b). Consequently, the low computational 
arithmetic intensity (operations or instructions per byte22) inherent 
to database search algorithms2,9,23 results in performance bottlenecks 
due to memory contention (parallel database query), out-of-core 
processing (database size > main memory), database management 
(data movement) and I/O.

As demonstrated by other scientific fields24, these limitations 
can be alleviated through effective exploitation of architectural 
resources provided by modern high-performance computing (HPC) 
systems. However, most existing HPC database peptide search algo-
rithms25–31 employ unoptimized parallelization techniques that lead 
to suboptimal performance and limited application in the domain 
(Supplementary Sections 1 and 2, and Supplementary Fig. 3c). The 
need for efficient parallel database peptide search software is driven 
by the computational demands of modern systems biology stud-
ies for proteomics, metaproteomics and proteogenomics, where 
peptide identification is often the first step in the analysis. These 
systems biology studies also have a direct impact on personalized 
nutrition, microbiome research32,33 and cancer therapeutics34.

In this paper we present an HPC framework for efficient acceler-
ation of database peptide search algorithms on large-scale symmet-
ric multiprocessor distributed-memory supercomputers. HiCOPS 
exhibits orders-of-magnitude improvement in speed compared 
with several existing shared- and distributed-memory database 
peptide search tools, allowing several gigabytes of experimental MS/
MS data to be searched against terabytes of theoretical databases in 
a few minutes compared with the several hours required by exist-
ing algorithms. The proposed HiCOPS parallel design implements 
an unconventional approach in which the (massive) theoretical 
databases are distributed across parallel nodes in a load-balanced 
fashion followed by asynchronous parallel execution of the data-
base peptide search. On completion, the locally computed results 
are merged into global results in a communication-optimal man-
ner. This overhead cost-optimal design, along with several opti-
mizations, allows HiCOPS to maximize resource utilization and 
alleviate performance bottlenecks35. We also formulate and perform 
a performance analysis to identify the overhead costs and discuss 
optimization techniques to minimize them. Finally, we implement 
a shared-peak counting coupled hyperscore-based search algo-
rithm2,11,36 in HiCOPS to demonstrate its parallel performance, but 
in essence, our framework is search-algorithm oblivious, that is, 
the proposed parallel design, algorithms and optimizations can be 
extended or replaced to accelerate most existing and future search 
algorithms.

Our comprehensive experimentation shows that HiCOPS out-
performs several existing serial and parallel database peptide search 
tools by more than tenfold on average while producing correct and 
consistent peptide identifications. Furthermore, we demonstrate 
the application of HiCOPS in a large-scale database search setting 
through multiple compute- and data-intensive experiments. Note 
that the HiCOPS framework does not propose a new database 
search algorithm and instead relies on the underlying (portable) 
search algorithmic workflow for peptide identification accuracy. 
Finally, we performed an extensive performance evaluation in 
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which we report between 70 to 80% strong-scale efficiency and 
less than 25% overall performance overheads (load imbalance, I/O, 
interprocess communication, pipeline halt); collectively depicting a 
near-optimal parallel performance.

Results
Methods overview. HiCOPS constructs the parallel database pep-
tide search workflow (task-graph) through four Single Program 
Multiple Data (SPMD) Bulk Synchronous Parallel (BSP)37 super-
steps. In the BSP model, a superstep38 refers to a set of distinct algo-
rithmic and data communications blocks asynchronously executed 
by all parallel processes (pi ϵ P). Synchronization between the pro-
cesses is performed at the end of each superstep, as needed. In the 
first superstep (Fig. 1a), the (massive) theoretical database is par-
titioned across parallel processes in a load-balanced fashion and 
locally indexed. In the second superstep (Fig. 1b), the experimen-
tal data are divided into batches and preprocessed, if required. In 
the third superstep (Fig. 1c), the parallel processes execute a local 
database peptide search, producing intermediate results. In the final 
superstep (Fig. 1d), the intermediate results are deserialized and 
assembled into complete (global) results. Supplementary Fig. 4 pro-
vides an overview of the overall task-graph as well as the workload 
profile for each superstep (Methods). The current HiCOPS design 

allows in-core processing so that the minimum number of nodes 
(Pmin) required must be ≥ D/M, where D is the theoretical database 
index size and M is the available main memory per node.

The total HiCOPS wall time (TH) is equal to the sum of indi-
vidual superstep execution times, given as:

TH = T1 + T2 + T3 + T4

Where the execution time for a superstep (j) is the maximum 
time required by any parallel task (pi ϵ P) to complete that superstep, 
given as:

Tj = max(Tj,p1 , Tj,p2 , ..., Tj,pP )

Or simply:

Tj = maxpi (Tj,pi )

Combining the above three equations, the total HiCOPS runtime 
is given as:

TH =

4∑

j=1
maxpi (Tj,pi ) (1)
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Fig. 1 | Methods overview. a, Superstep 1: the massive theoretical spectra database (spectra are shown as shapes) is partitioned among parallel processes 
and locally indexed. Partitioning is performed in a load-balanced fashion (similar shapes are clustered and scattered across processes). b, Superstep 
2: the experimental MS/MS spectra data are indexed, tagged, preprocessed and written back to a shared memory in data parallel. c, Superstep 3: an 
asynchronous parallel database peptide search is executed by all processes. In each process, three parallel subtasks R, I and K work in a pipeline to load the 
preprocessed data, execute a local search and write the produced (sampled) local results to the shared memory, respectively. The task scheduler manages 
the parallel threads between the pipeline tasks. d, Superstep 4: local or intermediate results are assembled followed by curve fitting and expected value 
computation in data-parallel fashion. Results with expected values < 0.01 are communicated to their origin processes.
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Experimental setup overview. We constructed five custom datasets 
(Si) by combining several Pride Archive (PXD) datasets (accession 
numbers: PXDxxxxxx) for our experimentation and evaluation. 
These five custom datasets are given as follows: S1 (PXD009072), 
S2 (PXD020590), S3 (PXD015890), S4 (PXD007871, 009072, 
010023, 012463, 013074, 013332, 014802 and 015391 combined) 
and S5 (all of the above listed datasets combined). The datasets 
were searched against several theoretical databases constructed 

by adding combinations of PTMs to databases D1 (UniProt Homo 
sapiens; UP000005640) and D2 (UniProt SwissProt; reviewed). See 
the Detailed experimental setup for detailed discussion on the set-
tings for database digestion, PTMs, theoretical spectra generation 
and so on. In the rest of the paper, we will represent the workload 
size for each performed experiment (expn) as a tuple given as: 
expn = (q, D, δM), where q is experimental MS/MS dataset size in 
one-million spectra, D is theoretical database size in 100 million 
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Fig. 2 | Correctness analysis. a,b, Comparison of 10,000 out of 251,000 data samples of hyperscores (a) and expected values (expectscores) (b) 
computed by HiCOPS in serial (x-axis) and parallel (y-axis) runs is shown. Note that all 251,000 samples depict the same consistency across parallel 
runs51, but they were not feasible to plot. c–h, Correlations between hyperscores computed by HiCOPS (x-axis) and MSFragger (y-axis) for the three 
restricted-search experiments (c–e) and their corresponding open-search versions (f–h) (described in section: Correctness analysis) are shown along with 
Pearson correlation coefficients (R).
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Fig. 3 | Speed comparisons. a–f, Speed comparison between HiCOPS and several other tools with increasing number of parallel nodes is shown for the six 
experiments described in section: Speed comparison against existing algorithms, respectively. The gray dotted line tracks the ideal speedup times for each 
tool (log–log scale) in experiments. The δM window for MSGF+ and Comet was further tightened in some experiments (indicated by @ labels) due to tool 
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spectra and δM is the peptide precursor mass tolerance setting in 
±100 Da. Note that the tuple does not contain the fragment-ion 
mass tolerance (δF) information as it is globally set to ±0.01 Da 
unless specifically mentioned as the fourth element in an experi-
ment tuple.

Runtime environment. All of the experiments were run on the 
Extreme Science and Engineering Discovery Environment 
(XSEDE)39 Comet cluster at the San Diego Supercomputer 
Center. The Comet compute nodes are equipped with 2 NUMA 
nodes × 64 GB of Intel Xeon E5-2680v3 processors (total: 24 
cores), 2 NUMA nodes × 64 GB (total: 128 GB) DRAM, 56 Gbps 
FDR InfiniBand interconnect and a Lustre shared file system. The 
maximum number of nodes allowed per job is 72 and the maxi-
mum allowed job time is 48 hours. Furthermore, the single-node 
experiments for the Crux and X!Tandem tools requiring more than 
48 hours (XSEDE limit) execution time were run on a (comparable) 
local machine named raptor, equipped with Intel Xeon Gold 6152 
processor (22 cores), 128 GB DRAM and a 6 TB SSD HDD.

Correctness analysis. We evaluated the HiCOPS’s correctness 
using a two-step approach. In the first step, we verified the consis-
tency of results across parallel runs by searching all five datasets Si 
against both protein sequence databases Di using various settings 
and PTM combinations. The correctness was evaluated in terms of 
identified peptide sequences and the corresponding hyperscores 
and expected values (expectscores) assigned (within three decimal 
points). A comparison of hyperscores and expectscores between the 
serial (x-axis) and parallel runs (y-axis)—obtained by searching S1 
against D1 with no PTMs—is shown in Fig. 2a,b. The results show 
over 99.5% consistency in scores. A small error was observed in a 
negligible number of results due to the sampling and floating-point 
precision losses (Methods and Fig. 1d).

In the second step, we verified the quality of the implemented 
search algorithm by comparing the HiCOPS-computed and 
MSFragger-computed hyperscores, as both frameworks employ a 
similar scoring algorithm, that is, shared-peak counting coupled 
hyperscore. Note that the hyperscores computed by MSFragger and 
HiCOPS cannot be exactly identical as MSFragger uses several pre-
processing and boosting features that affect the final scores. These 
features could not be replicated in HiCOPS as MSFragger is a pro-
prietary software. We designed and executed six experiments: three 
with restricted-search (δM = 1 Da) and three with open-search 
(δM ≥ 100 Da) settings. The experimental MS/MS data preprocess-
ing and database search settings were kept identical (and as minimal 
as possible) for both tools for fair comparison.

In the first experiment, a subset of 860,000 spectra from S4 
was searched against D1 modified with methionine oxidation 
and NQ-deamidation as PTMs yielding a theoretical database of 
18 million spectra at δM = 1 Da. In the second experiment, S3 was 

searched against D1 modified with methionine oxidation and STY-
phosphorylation yielding a theoretical database of 66 million spec-
tra at δM = 1 Da. In the third experiment, S3 was searched against 
D2 modified with methionine oxidation and serine phosphorylation 
yielding a database of 80 million spectra at δM = 1 Da. In the fourth 
experiment: the entirety of S3 was searched against D1 modified with 
methionine oxidation and NQ-deamidation yielding a theoretical 
database of 18 million spectra at δM = 200 Da. In the fifth experi-
ment, S3 was searched against D1 modified with methionine oxidation 
and ST-phosphorylation yielding a theoretical database of 56 million 
spectra at δM = 100 Da. In the sixth experiment, S3 was searched 
against D2 modified with methionine oxidation and serine phos-
phorylation yielding a database of 80 million spectra at δM = 200 Da.

For our comparisons, first, a correlation between the hyper-
scores assigned by both tools to commonly identified peptide-to-
spectrum matches (PSMs) was computed (shown in Fig. 2c–h). The 
PSMs from both tools were then filtered at a q-value (false discovery 
rate) of 1% and compared (shown in Supplementary Fig. 5). Fig. 
2c–e depicts a strong-correlation (R ≥ 0.90) between the hyper-
scores computed by both tools in the first three (restricted-search) 
experiments. However, the correlation between the hyperscores 
slightly drops between 0.70 ≤ R ≤ 0.90 for the last three (open-
search) experiments (Fig. 2f–h, respectively). We suspect that the 
divergence in hyperscores may have stemmed from open-search 
specific spectral processing, reconstruction and/or score reranking 
algorithms implemented in MSFragger. Furthermore, the results in 
Supplementary Fig. 5 show about 50% overlap between the q-value 
filtered PSMs from HiCOPS and MSFragger. The results also show 
that the MSFragger’s scoring algorithm outperformed the underly-
ing scoring algorithm in HiCOPS in identified peptides, as expected. 
Recall that the HiCOPS is designed as algorithm oblivious, that is, 
the underlying algorithms can be customized or ported with more 
sophisticated versions to improve the identification while delivering 
similar performance.

Speed comparison against existing algorithms. We compared the 
HiCOPS speed against many existing shared- and distributed-mem-
ory database peptide search algorithms including Tide/Crux v.3.2 
(ref. 3), Comet v.2020.01 (ref. 40), MSFragger v.3.0 (ref. 2), X!Tandem 
v.17.2.1 (ref. 41), X!!Tandem v.10.12.1 (ref. 26) and SW-Tandem (ref. 
29). Parallel versions of the shared-memory tools were also imple-
mented and run through Python and Bash wrapper scripts execut-
ing the following workflow: run parallel instances of the tool on 
XSEDE Comet nodes with equal partitions (random partitioning) 
of the experimental MS/MS data files. This technique also indirectly 
simulated the workflows of cloud-based tools such as MS-PyCloud 
(via parallel MSGF+) and Bolt (via parallel MSFragger). We also 
tried to run the UltraQuant HPC tool, which implements a parallel 
MaxQuant; however, it crashed with unhandled exceptions every 
time it was run on more than one node.

Table 1 | A summary of the execution times for three large-scale database search experiments using HiCOPS and MSFragger.

Experiment number Tool name Nodes Dataset size (GB) Database size (GB) δM (Da) δF (Da) Runtime (min)

1 HiCOPS 64 20 780 500 0.01 14.55

1 MSFragger 64 20 780 500 0.01 158.8

2 HiCOPS 72 15 1,692 500 0.05 103.5

2 MSFragger 72 15 1,692 500 0.05 1,074.45

2* MSFragger 1 15 1,692 500 0.05 51,130

3 HiCOPS 64 41 4,000 500 0.01 27.3

Peptide precursor mass tolerance and fragment-ion tolerance (in Daltons) are given as δM and δF respectively. A single-node version of the second experiment using MSFragger (that is 2*) was run on the 
local (raptor) server. The third experiment was not run using MSFragger due to feasibility issues.
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We designed six experiments, which are listed as a–f in increas-
ing order of their experimental workload sizes (that is, database and 
dataset sizes, and experimental settings). In the first two experiments 
(a, b), a subset of 8,000 spectra from S3 (file: 7Sep18_Olson_WT24) 
was searched against D2 modified with variable methionine oxida-
tion and tyrosine biotin-tyramide yielding a theoretical database of 
93.5 million spectra at δM = 10 Da and δM = 500 Da, respectively. In 
the third experiment (c), S3 was searched against D1 modified with 
variable methionine oxidation and tyrosine biotin-tyramide yield-
ing a theoretical database of 7.1 million spectra at δM = 500 Da. In 
the fourth (d) and fifth (e) experiments, the entire S3 was searched 
against the theoretical database of experiments a and b (the database  

with 93.5 million spectra) at δM = 10 Da and δM = 500 Da, respec-
tively. In the sixth (f) experiment, S4 was searched against D1 modi-
fied with variable methionine oxidation, STY-phosphorylation and 
NQ-deamidation yielding a theoretical database of 213 million 
spectra at δM = 100 Da. The slower tools such as Comet, MSGF+, 
Crux and X!Tandem variants were only run for smaller experiments 
due to XSEDE maximum job time limits.

The obtained wall time results (Fig. 3a–f) show that the HiCOPS 
outperforms all other tools by more than 10× on average in speed, 
especially for experiments with larger workloads (Fig. 3d–f). It can 
also be observed that the HiCOPS exhibits better strong-scale par-
allel efficiency than other tools as the experimental workload size 
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increases (a → f). For smaller workloads (Fig. 3a–c), the parallel 
efficiency is limited by the Amdahl’s law. The scalability is shown 
as the deviation (positive is sublinear whereas negative is hyperlin-
ear) from the ideal speedup track (dotted gray) lines in each experi-
ment in Fig. 3a–f. The parallel efficiency results for MSFragger were 
particularly peculiar as it appears to be scaling superlinearly up to 
a certain number of parallel nodes and then dropping to sublin-
ear. To explain this, the runtime components of MSFragger were 

further analyzed in detail. The results (Fig. 3g–i) show that a large 
percentage of MSFragger’s runtime is composed of I/O and load 
imbalance, which results in a low overhead/compute ratio (effec-
tive resource utilization). Comparatively, HiCOPS exhibits substan-
tially improved memory performance (Fig. 3h,j), resulting in lower 
runtime even though the effective search times (useful compute 
time) for MSFragger and HiCOPS are comparable. The results (Fig. 
3a–c) show that the existing HPC tools—including X!!Tandem, 
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SW-Tandem, parallel Comet and parallel MSGF+ (MS-PyCloud)—
are >100× slower even for small-scale experiments. Finally, we 
observed zero parallel efficiency for SW-Tandem in all experiments, 
meaning, no speedups whatsoever (Supplementary Section 3).

Application in tera-scale experimentation. Application of 
HiCOPS in tera-scale experiments was demonstrated using three 
further experiments. In the first experiment, S3 was searched 
against a theoretical database of 766 million spectra (780 GB) at 
δM = ± 500 Da and δF = ± 0.01 Da. In the second experiment, S4 
was searched against a theoretical database of 1.59 billion spectra 
(1.7 TB) at δM = ± 500 Da and δF = ± 0.05 Da. In the third experi-
ment, S2 was searched against a theoretical database of 3.89 billion 
spectra (4 TB) at δM = ± 500 Da and δF = ± 0.01 Da. HiCOPS com-
pleted these three experiments in 14.55 min (64 nodes), 103.5 min 
(72 nodes) and 27.3 min (64 nodes). By contrast, MSFragger com-
pleted the execution of first experiment in 158.8 min (64 nodes; ten-
times slower). The second experiment was completed by MSFragger 
in 18 h (72 nodes; 10.3× slower) and 35.5 days when using one node 
(494× slower). The other experiments were intentionally not run 
on MSFragger or other tools due to feasibility issues. The results for 
this set of experiments are summarized in Table 1.

Performance evaluation. Twelve experiments of varying work-
load sizes were designed using combinations of aforementioned 
Di and Si, PTMs and precursor peptide mass tolerance windows 
(δM) for an extensive performance evaluation. These experimental 
workloads varied from extremely small to massive-scale covering a 
wide-range of application. The twelve experiment sets in the tuple 
form are listed as follows: exp1 = (0.3, 0.84, 0.1), exp2 = (0.3, 0.84, 
2), exp3 = (3.89, 0.07, 5), exp4 = (1.51, 2.13, 5), exp5 = (6.1, 0.93, 5), 
exp6 = (3.89, 7.66, 5), exp7 = (1.51, 19.54, 5), exp8 = (1.6, 38.89, 5), 
exp9 = (3.89, 15.85, 5), exp10 = (3.89, 1.08, 5), exp11 = (1.58, 2.13, 1) 
and exp12 = (0.305, 0.847, 5). Note that the fragment-ion tolerance is 
set to δF = ± 0.01 Da in all of these experiments.

Parallel scalability. Strong-scale efficiency for all twelve experi-
ments was measured and the results (Fig. 4a,b) depict that the over-
all strong-scale efficiency ranges between 70–80% for sufficiently 
large experimental workloads. For smaller experiments, the parallel 
speedup quickly dampens as there is not enough parallel work to 
be done (Amdahl’s Law). Superstep-level dissection of the speedup 
results in Supplementary Fig. 6 further confirm that the superstep 
3 constitutes the largest fraction of the overall runtime, indicating 
its importance in optimizations. Note that the minimum number 
of nodes (Pmin) required by HiCOPS for each experiment must be: 
Pmin ≥ D/M. The speedup and efficiency calculations were therefore 
performed using the runtime for the experiment with minimum 
nodes as the base case. The serial runtime (Ts) was first computed 
using the base case experiment runtime (TPmin) as Ts = Pmin × TPmin
. The speedups and efficiency were then computed relative to 
TPmin for experiments with nodes ≥ Pmin using the computed Ts. 
Essentially, the speedups are relative to the base case runtime, which 
may not be the one-node time depending on the Pmin (limitation 
of HiCOPS). Furthermore, superlinear speedups were observed 
in several experiments with larger workloads. To explain this, the 
following hardware counters-based metrics were also recorded 
for all experiments: instructions per cycle, last-level cache misses 
per all cache-level misses, and the cycles stalled due to writes per 
total stalled cycles. The results (Fig. 4c–e) show that the CPU, cache 
and memory bandwidth utilization improves as the workload per 
node (wf/P) increases reaching to an optimum point after which 
it saturates due to memory bandwidth contention as the database 
search algorithms employed (and also in general) are highly mem-
ory intensive. Beyond this saturation point, increasing the number 
of parallel nodes for the same experimental workload resulted in 

a substantial improvement (superlinear) in performance as wf/P 
reduces to the normal (optimal) range. For instance, the experiment 
set exp5 depicts superlinear speedups (Fig. 4a) that can be correlated 
to the hardware performance surge in Fig. 4c.

Performance overhead. Several metrics including load imbal-
ance, I/O, communication, and pipeline halt time costs were also 
measured to identify and quantify the performance overheads. 
The obtained results (Fig. 5a–c) depict that the load imbalance, 
I/O and intertask communication costs remain ≤10%, ≤10% and 
≤5%, respectively, in most experiments. Note that the load imbal-
ance is a direct measure of synchronization cost. Figure 5e shows a 
time-series of the per-batch producer-consumer pipeline halt time 
(see superstep 3 in the Methods) when searching three datasets of 
increasing size. The wait time is the time when any of the pipeline 
subtasks wait for a batch of data from its predecessor. The results 
(Fig. 5e) show that our task-scheduling algorithm actively performs 
counter measures (reallocates threads) as soon as a pipeline-stall is 
detected due to speed mismatches between parallel subtasks keep-
ing the total cost to ≤5% in most experiments (Fig. 5d).

Discussion
Recent trends in HPC have shifted towards heterogeneous archi-
tectures42 as several top-500 supercomputers combine CPUs with 
GPUs and field-programmable gate arrays (FPGAs) to deliver 
petascale (and in the near future, exascale43) computing powers. 
However, the presented SPMD-BSP-based HiCOPS design limits its 
application to only the homogeneous (CPU-only) parallel nodes in 
a supercomputer. This technological shift in HPC drives our future 
efforts that include a GPU-accelerated design for HiCOPS.

Peptide identification rates achieved by HiCOPS are limited by 
the underlying data processing, scoring and statistical modeling 
algorithms it executes. In our current design, we implement a basic 
shared-peak coupled hyperscoring algorithm2 without making an 
explicit effort to improve these algorithms. Furthermore, in some 
cases, searching against smaller databases (on single nodes) results 
in better performance (smaller workloads) and search quality 
(high-confidence separation of true positives from false positives). 
Although the proposed parallel design is algorithm-independent; 
meaning, underlying algorithms can be trivially ported and updated, 
we focus our future efforts on implementing (heterogeneous) HPC 
versions of several modern algorithms, and machine- and deep-
learning models9,44,45 within HiCOPS.

Finally, we believe that the computational tools are the enablers 
of new and more exciting science—science that one might not envi-
sion today due to the limitations of the infrastructure that is at our 
disposal. We are therefore confident that our current and future 
efforts will provide useful advances in enabling scientific investiga-
tions in this application domain.

Methods
Notations and symbols. For the rest of the paper, we will denote the number of 
peptide sequences in the database as ζ, the average number of PTMs per peptide 
sequence as m, the total theoretical database index size as ζ×2m = D, the number 
of parallel nodes or processes as P, the number of cores per parallel process as cpi, 
the size of experimental MS/MS dataset (that is, the number of experimental/query 
spectra) as q, the average length of a query spectrum as β and the total dataset size 
as qβ. The runtime for executing superstep j by pi will be denoted as Tj,pi, and the 
generic overheads due to boilerplate code, OS delays, memory allocation and so on 
will be captured via γpi. Note that we shall refer the theoretical database as simply 
the database for the rest of the paper.

Runtime cost model. As the HiCOPS parallel processes run in SPMD fashion, 
the cost analysis for any parallel process (with variable input size) is applicable 
for the entire system. Also, the runtime cost for piϵP to execute a superstep j can 
be modeled by only its local input size (database and dataset sizes) and available 
resources (the number of cores, memory bandwidth). The parallel processes may 
execute the algorithmic work in a data-parallel, task-parallel, or hybrid fashion. As 
an example, the execution runtime (cost) for pi to execute superstep j, which first 
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generates D model-spectra using algorithm k1 and then sorts them using algorithm 
k2 in a data-parallel fashion (using all cpi cores) will be given as follows:

Tj,pi = kj1(D) + kj2(D) + γpi (2)

Similarly, if the above steps kz are performed in a hybrid (task and data-parallel) 
fashion, the number of cores allocated to each kjz must also be considered. For 
instance, in the above example, if the two algorithmic steps are executed in subtask 
parallel fashion with cpi /2 cores each, the execution time will be given as

Tj,pi = max(kj1(D, cpi /2), kj2(D, cpi /2)) + γpi (3)

For analysis purposes, if the time complexity of the algorithms used for step 
kjz is known (for example, O(.)), we will convert it into a linear function k′ with 
its input data size multiplied by its runtime complexity. This conversion will 
allow better quantification of serial and parallel runtime portions as seen in later 
sections. If, for example, it is known that the sorting algorithms used for kj2 have 
time complexity: O(NlogN), then equation (2) can be modified to

Tj,pi = kj1(D) + k′j2(DlogD) + γpi (4)

Remarks. The formulated model will be used to analyze the runtime cost for each 
superstep, quantify the serial, parallel and overhead costs in the overall design, and 
optimize the overheads.

Superstep 1: database partitioning. In this superstep, the HiCOPS parallel 
processes construct a local database partition through the following three 
algorithmic data-parallel steps (Fig. 1a): (1) generate and extract a (balanced) local 
partition of the (peptides + PTM variants) database; (2) generate the theoretical 
spectra data; and (3) index the local peptide and model-spectra to build the 
theoretical database index (suffix array and the fragment-ion index).

The database partitions are constructed using the LBE algorithm46 (illustrated 
in Supplementary Fig. 7). The LBE algorithm first clusters similar model-spectra 
in the database, which are then scattered across parallel nodes cluster by cluster 
to achieve the balance46 as also depicted in Supplementary Algorithm 1. In this 
work, we supplement the LBE algorithm with a new additional distance metric 
for clustering. We call this metric the Mod Distance (Δm), which allows better 
separation of database spectral-pairs that cannot be separated by the normalized 
Edit Distance (Δe) metric introduced in the LBE algorithm (see Supplementary 
Section 5 for more information on Mod Distance). Consequently, the new distance 
metric allows better load balance between the database partitions as corroborated 
by our experimental results. To the best of our knowledge, LBE is the only existing 
technique for efficient theoretical database partitioning.

Mod Distance. For a pair of model-spectra in the database (x, y), assuming the sum 
of unedited amino acid sequence lengths from both peptide sequence termini is 
(a), Δm is given as follows:

Δm(x, y) = 2 −

a
max(len(x), len(y))

Cost analysis. The first step generates the entire database of size D and separates 
out a local partition (of roughly the size D/P = Dpi) in runtime k11(D). The second 
step generates the model-spectra from the partitioned database using the standard 
simulation model12,40 in runtimek12(Dpi ). The third step constructs a fragment-
ion index similar to refs. 2,23,21 in runtime O(NlogN). In our implementation, 
we employed the CFIR Index21 algorithm due to its smaller memory footprint 
resulting in runtime k′(Dpi logDpi ). Collective runtime for this superstep is given 
by equation (5):

T1 = maxpi (k11(D) + k12(Dpi ) + k′13(Dpi logDpi ) + γpi ) (5)

Remarks. Equation (5) depicts that the serial execution time, k11(D) bottlenecks the 
parallel efficiency.

Superstep 2: experimental MS/MS data preprocessing. In this superstep, 
the HiCOPS parallel processes preprocess a partition of experimental MS/MS 
spectra data through the following three algorithmic data-parallel steps (Fig. 1b): 
(1) read the dataset files, create a batch index and initialize internal structures; 
(2) preprocess (normalize, clear noise, reconstruct and so on) a partition of 
experimental MS/MS data; and (3) write back the preprocessed data.

The experimental spectra are split into batches such that a reasonable parallel 
granularity is achieved when these batches are searched against the database. By 
default, the maximum batch size is set to 10,000 spectra and the minimum number 
of batches per dataset is set to P. The batch information is indexed using a queue 
and a pointer stack to allow quick access to the preprocessed experimental data in 
the superstep 3.

Cost analysis. The first step reads the entire dataset (size = qβ) and creates a batch 
index in runtime: k21(qβ). The second step may preprocess a partition of the dataset 
(of roughly qβ/P = Qpi in size) using a data preprocessing algorithm such as in 
refs. 5,44,47 in runtime k22(Qpi ). The third step may write the preprocessed data 
back to the file system in runtime k23(Qpi ). Note that the second and third steps 
may altogether be skipped in subsequent runs when the input data are already 
preprocessed. Collective runtime for this superstep is given by equation (6):

T2 = maxpi (k21(qβ) + k22(Qpi ) + k23(Qpi ) + γpi ) (6)

Remarks. Equation (6) depicts that the parallel efficiency of superstep 2 is highly 
limited by its dominant serial portion, that is, k21(qβ). Moreover, this superstep 
is sensitive to the file system bandwidth since large volumes of data may be 
communicated to/from the shared file system.

Superstep 3: database peptide search. This is the most important superstep in 
the HiCOPS workflow and is responsible for 80–90% of the total algorithmic 
workload. In this superstep, the HiCOPS parallel processes search the preprocessed 
experimental spectra against their local database partitions through the following 
three hybrid (task and data parallel) steps (Fig. 1c and Supplementary Fig. 4): (1) 
load the preprocessed experimental MS/MS data batches into memory; (2) search 
the loaded spectra batches against the (local) database partition and produce 
intermediate results; and (3) serialize and write the intermediate results to the 
shared file system assigning them unique tags.

Three parallel subtasks are created (R, I and K) that work in a producer–
consumer pipeline to execute the algorithmic work (Fig. 1c). The data flow 
between the subtasks is handled through queues to create a buffer between 
the producers and consumers. The first subtask (R) loads batches of the 
preprocessed experimental spectra data and puts them in queue (qf) as depicted in 
Supplementary Algorithm 2. Subtask R may also perform minimal computations 
on the experimental spectra before putting them in queue. For example, peak 
selection and/or intensity normalization. The parallel cores assigned to R are given 
by: ∣r∣. The second subtask (I) extracts batches from qf, performs the database 
peptide search (currently: shared-peak counting coupled hyperscore computation) 
against its local database partition and puts the produced intermediate (local) 
results in queue (qk) as depicted in Supplementary Algorithm 3. The parallel cores 
assigned to I are given by: ∣i∣; I also recycles the memory buffers back to R using the 
queue (qr). The third subtask (K) serializes and writes the intermediate results to 
a shared memory using ∣k∣ cores. Given an experimental spectrum (φ), a database 
peptide (χ), the number of shared b-ions between them (nb) with intensities (ib,j), 
and the number of shared y-ions between them (ny) with intensities (iy,k), the 
hyperscore between them is given as

hyperscore(φ, χ) = log (nb!) + log (ny!) + log




nb∑

j=1
ib,j



 + log
( ny∑

k=1

iy,k

)

Cost analysis. Subtask R reads the experimental data batches in runtime k30(qβ); 
Subtask I iteratively filters the database and computes spectral comparisons against 
the database (scoring step). Database peptide search algorithms use two or three 
database filtration steps, most commonly, peptide precursor mass tolerance3,29, 
shared fragment-ions2,23 and sequence tags9,10. In current implementation, we 
use the first two filtration methods, which execute in runtimes k31(qDpi ) and 
k32(qβαpi ), respectively. Here, αpi represents the average filtered database size 
filtered from the first step. The currently implemented scoring mechanism 
computes hyperscores13 in runtime k33(qβσpi ) + k34(qμpi ). Here, σpi and μpi 
represent the average number of filtered shared-ions and model-spectra per 
experimental spectrum. Note that the scoring algorithm in this superstep is 
portable as the parallel design does not depend on it. Finally, subtask K writes the 
intermediate results to the shared file system in runtime k35(q).

Overhead costs. Overhead factors stemming from load imbalance, producer–
consumer pipeline halt, file system bandwidth congestion affect the performance of 
this superstep. We therefore capture them using an extra runtime cost Vpi (q, Dpi , P).  
Several optimizations including buffering, task scheduling, load balancing and data 
sampling (discussed in section: Optimizations) were implemented to alleviate these 
overhead costs. Collective runtime for this superstep is given by equation (10).

The runtime of R, tpi (r, |r|), is given as

tpi (r, |r|) = k30(qβ, |r|) (7)

The runtime of I, tpi (i, |i|), is given as

tpi (i, |i|) = k31(qDpi , |i|) + k32(qβαpi , |i|) + k33(qβσpi ) + k34(qμpi , |i|)

Or

tpi (i, |i|) = k′31(qlog (Dpi ), |i|) + k′32(qβlog (αpi ), |i|)+

k33(qβσpi , |i|) + k34(qμpi , |i|)
(8)
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The runtime of K, tpi (k, |k|), is given as

tpi (k, |k|) = k35(q, |k|) (9)

Combining equations (7–9), we have

T3 = maxpi
(
max(tpi (r, |r|), tpi (i, |i|), tpi (k, |k|))+

Vpi (q, Dpi , P) + γpi

) (10)

Remarks. Equations (7–10) depict that the parallel runtime portion of this 
superstep grows quadratically superseding the serial portion if the experimental 
load is sufficient.

Superstep 4: result assembly. In this superstep, the HiCOPS parallel processes 
assemble the intermediate results from the last superstep into complete results 
through the following hybrid algorithmic steps (Fig. 1d): (1) read a set of intermediate 
result batches, assemble them into complete results, and send the assembled results to 
their parent processes; (2) receive complete results from other parallel processes and 
synchronize; and (3) write the complete results to the file system.

Two parallel subtasks are created to execute the algorithmic steps in this 
superstep. The first subtask reads sets of intermediate results from the shared 
file system (or shared memory) (satisfying: tagmod P = pi; piϵ MPI ranks), 
deserializes them and assembles the complete results. The expectation scores 
are then computed and communicated to their origin processes. For example, 
the process with MPI rank 4 will process the all intermediate result batches with 
tag 0x8_i,where i = 0, 1, ... , P − 1. The assembly process is done through signal 
addition and shift operations (Fig. 1d). The expected values are computed by first 
smoothing the assembled data through Savitzky–Golay filter and then applying 
the null test through either the Linear-Tail Fit48 or the log-Weibull (Gumbel) 
Fit method (Fig. 1d). The computed expected values, along with additional 
information (total = 16 bytes), are queued to be sent to the HiCOPS process that 
recorded the most significant database hit (origin). The final results are stored 
in a map data structure for collective communication at the end of all batches. 
All available cores (cpi) are assigned to this subtask. Supplementary Algorithm 4 
depicts the algorithmic work performed by this subtask.

The second subtask runs waits for P − 1 packets of results from other HiCOPS 
processes. This task runs asynchronously using an oversubscribed thread and only 
activates when incoming data is detected. Finally, once the two subtasks complete 
(join), the complete results are written to the file system in data-parallel fashion 
using all available threads.

Cost analysis. The first subtask reads the intermediate results, performs 
regression and sends computed results to other processes in runtime: 
k41(Qpi , cpi ) + k42(Qpi , cpi ) + k43(P, 1) time. The second subtask receives complete 
results from other tasks in runtime: k44(P, 1). Finally, the complete results are 
written in runtime k45(Qpi ). Collectively, the runtime for this superstep is given by 
equation (11).

T4 = maxpi (max(k41(Qpi , cpi ) + k42(Qpi , cpi )+

k43(P, 1), k44(P, 1)) + k45(Qpi ) + γpi )
(11)

To simplify equation (11), we can rewrite it as a sum of computation costs plus 
the communication overheads (kcom(P, 1)) as:

T4 = maxpi (k41(Qpi , cpi ) + k42(Qpi , cpi ) + kcom(P, 1) + k45(Qpi ) + γpi ) (12)

Assuming that the network latency is denoted as ω, bandwidth is denoted 
as π and (16Qpi ) is the average data packet size in bytes, the interprocess 
communication overhead cost (kcom(P, 1)) in seconds is estimated to be:

kcom(P, 1) ≈ 2(P − 1)(ω + 16Qpi /π)

Remarks. As the communication per process are limited to only one data exchange 
between any pair of processes, the overall runtime given by equation (12) is highly 
scalable. The effective communication cost depends on the amount of overlap with 
computations and the network parameters at the time of experiment.

Performance analysis. To quantify the parallel performance, we decompose 
the HiCOPS’s time (TH) (equation (1)) into three runtime components: parallel 
runtime (Tp), serial runtime (Ts) and overheads runtime (To) given as:

TH =

4∑

j=1
maxpi (Tj,pi ) = To + Ts + Tp (13)

Using equations (1), (5), (6), (10) and (12), we separate the three runtime 
components as

To = Vpi (q, Dpi , P) + γpi (14)

Ts = k11(D) + k21(qβ) + kcom(P, 1) (15)

and

Tp = k12(Dpi ) + k′13(Dpi logDpi ) + k22(Qpi ) + k23(Qpi )+

max(tpi (t, |r|), tpi (i, |i|), tpi (k, |k|)) + k41(Qpi , cpi )+

k42(Qpi , cpi ) + k45(Qpi )

(16)

Ts is the minimum serial time required for HiCOPS execution and cannot be 
further reduced. We will therefore focus on optimizing the remaining runtime (TF) 
given as: TF = Tp + To. Using equations (14) and (16), we have

TF = k12(Dpi ) + k′13(Dpi logDpi ) + k22(Qpi ) + k23(Qpi )+

max(tpi (t, |r|), tpi (i, |i|), tpi (k, |k|)) + k41(Qpi , cpi )+

k42(Qpi , cpi ) + k45(Qpi ) + To

(17)

As the HiCOPS parallel processes divide the database and experimental dataset 
roughly fairly in supersteps 1 and 2, the first four terms and the sixth term in Tp are 
already almost optimized, so we can prune them from TF:

TF = max(tpi (t, |r|), tpi (i, |i|), tpi (k, |k|)) + k41(Qpi , cpi )+

k42(Qpi , cpi ) + +k45(Qpi ) + To
(18)

Recall that the superstep 4 runtime is optimized for maximum parallelism (and 
least interprocess communication) and that the superstep 3 performs the largest 
fraction of overall algorithmic workload. We can thus also remove the superstep 4 
terms from TF to simplify analysis:

TF = max(tpi (t, |r|), tpi (i, |i|), tpi (k, |k|)) + To

Furthermore, as the superstep 3 is executed in a producer–consumer pipeline 
(Fig. 1c) where R must produce all data before it can be consumed by I meaning its 
runtime must also be smaller than tpi (i, |i|) and tpi (k, |k|) allowing a safe removal 
from the above equation, yielding

TF = max(tpi (i, |i|), tpi (k, |k|)) + To

In the above equation we can rewrite the max(.) term as the time to complete 
subtask I: (tpi (i, |i|)) plus the extra time to complete subtask K (the last consumer): 
tx(k). Using equation (9) we have:

TF = k′31(qlog (Dpi ), |i|) + k′32(qβlog (αpi ), |i|)+

k33(qβσpi , |i|) + k34(qμpi , |i|) + tx(k) + To
(19)

We can prune the first two terms in the equation (19) as well as their runtime 
contribution O(logN) will be relatively very small. Finally, using equation (14) in 
(19), we have:

TF = k33(qβσpi , |i|) + k34(qμpi , |i|) + tx(k) + Vpi (q, Dpi , P) + γpi (20)

Optimizations. The following sections discuss the optimization techniques 
employed to alleviate the overhead costs in equation (20).

Buffering. Four queues—the forward queue (qf), recycle queue (qr) and result queues 
(qk and q′k)—are initialized and routed between the producer–consumer subtasks 
in superstep 3 (Fig. 1c) as R → I, R ← I, I → K and I ← K, respectively; qr is initialized 
with (default: 20) empty buffers for subtask R to fill the preprocessed experimental 
data batches and push in qf. Subtask I removes a buffer from qf, consumes it 
(searches it) and pushes back to qr for re-use. The results are pushed to qk, which are 
consumed by subtask K and pushed back to q′k for re-use. Three regions are defined 
for qf on the basis of the number of data buffers it contains at any time. i.e. w1: 
(len(qf) < 5); w2: (5 ≤ len(qf) < 15); and w3: (len(qf) ≥ 15). These regions (wl) are used 
by the task-scheduling algorithm discussed in the following section.

Task scheduling. The task-scheduling algorithm is used to maintain a synergy 
between the producer–consumer (subtask) pipeline in the superstep 3. The 
algorithm initializes a thread pool of cpi + 2 threads, where cpi is the number of 
available cores. In the first iteration, two threads are assigned to the subtasks R 
and K, whereas the remaining cpi − 2 threads are assigned to subtask I. Then, 
in each iteration, the qf region (wl) and the qf.pop() time for I (given by twait) are 
monitored. A time-series is built to forecast the next twait (that is, tfct) using double 
exponential smoothing49; twait is also accumulated into tcum. Two thresholds are 
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defined: the minimum wait (tmin) and maximum cumulative wait (tmax). Using 
all this information, a thread is removed from I and added to R if the following 
conditions are satisfied:

cI→R = (twait ≥ tmin ∧ (tcum + tfct) > tmax) ∨ (wl = w1 ∧ |r| = 0)

tcum is set to 0 every time a thread is added to R. Similarly, a thread is removed from 
R and added to I if the following conditions are satisfied. All threads are removed 
from R if the queue qf becomes full or there is no more experimental MS/MS data 
left to be loaded.

cR→I = (wl = w3 ∧ |r| > 1) ∨ qf.full()

K uses its two oversubscribed threads to perform the overlapped I/O operations 
concurrently (Fig. 1c).

Load balancing. The algorithmic workload in equation (20) is given by 
k33(qβσpi , |i|) + k34(qμpi , |i|). Here, the terms qβ and q are constants 
(experimental data size), whereas the terms σpi and μpi are variables representing 
the filtered database size for a parallel HiCOPS process (pi) and thus must be 
balanced across processes. We do this statically by constructing balanced database 
partitions (hence a balanced workload) using the LBE algorithm supplemented 
with our new Mod Distance metric in superstep 1 (Methods, Fig. 1a and 
Supplementary Fig. 6). The correctness of the LBE algorithm for load balancing is 
proven in Supplementary Section 6. We plan to devise and develop dynamic load 
balancing techniques for better results in the future.

Sampling. Sampling is used to reduce the interprocess communication required 
in result assembly (superstep 4) without compromising on the assembly accuracy. 
For each experimental spectrum, the HiCOPS processes (pi) produce a local 
result consisting of the number of local hits, the hyperscore for the top hits 
and so on (12 bytes), and the local null distribution histogram of hyperscores 
(2,048 bytes). Communicating this, the size of each data packet (1 per batch) 
will be ~20 MB, which can result in serious overheads. It has been shown that 
the null distribution of hyperscore (and several other scoring algorithms) in 
database peptide search follow a log-Weibull or Gumbel curve41. This means that 
most of the data are localized around the mean. We exploit this information to 
reduce the communication footprint as follows: we first locate the mean of the 
local null distribution and sample the most intense non-zero data points around 
it. If the total number of non-zero samples exceed s (default: 120), we prioritize 
the samples towards the head of the distribution as we can reconstruct the tail 
fairly accurately through curve fitting. The sampled data are further encoded into 
unsigned short instead of int to fit inside a buffer of 256 bytes, resulting in a 
1.5 MB data packet size which is instantly written/read from the shared file system 
reducing the overhead costs including tx(k) (see equation (20)). Supplementary  
Fig. 7 illustrates an example of sampling.

Detailed experimental setup. The two databases (D1 and D2) were digested  
in silico using trypsin as enzyme (fully tryptic) with two allowed missed  
cleavages, peptide lengths between 6 and 46, and peptide masses between  
500 Da and 5,000 Da. The theoretical spectra were simulated by generating  
b- and y-ions of up to +3 charge with zero isotope error and no decoys. Cysteine 
carbamidomethylation was set as fixed modification for all experiments, whereas 
the variable modifications were chosen from the combinations of methionine 
oxidation; arginine and glutamine deamidation; serine, threonine and tyrosine 
phosphorylation; cysteine and lysine Gly–Gly adducts; and tyrosine biotin-
tyramide across experiments. The maximum number of allowed modified 
residues (amino acid letters) per peptide was set to 5. The number and type of 
PTMs used in database expansion, and the search settings including peptide 
precursor mass tolerance (δM), were varied across experiments to cover both the 
open- (δM ≈ ±500 Da) and closed-search (δM ≤ ± 10 Da) scenarios. The closed-
search criterion was set to a few Daltons (≤1 Da in correctness analysis and 
≤10 Da in performance evaluation) instead of 10–20 ppm to cover the differences 
in calculated peptide precursor masses due to monoisotopic or average masses, 
and isotopic masses across search tools. All experimental MS/MS datasets 
were converted to MS2 format before use. The experimental MS/MS spectra 
preprocessing settings for all tools were set to minimal so that all tools execute a 
nearly identical algorithmic work (fairness). Some of these settings are listed as 
follows: allowed precursor masses, 500 to 5,000 Da; precursor charges, +1 to +4; 
minimum number of matched peaks for PSM candidacy, 4; minimum number 
of database hits for statistical scoring, 4; denoising, only top-100 peaks picked 
(by intensity); peak transformations, none; mass calibration, no; precursor peak 
removal, no; partial spectrum reconstruction, no; clip n-term M, no.

Data availability
All of the datasets used in this study are publicly available from PXD and can be 
accessed via https://www.ebi.ac.uk/pride/archive/projects/<AccessionNum>, 
where AccessionNum is the accession number for each dataset mentioned in 
the text (for example, to access S1 PXD009072, use https://www.ebi.ac.uk/pride/

archive/projects/PXD009072). The Homo sapiens protein sequence database 
can be downloaded from UniProtKB via https://www.uniprot.org/proteomes/
UP000005640. The UniProt SwissProt (reviewed) database can be downloaded via 
https://www.uniprot.org/uniprot/?query=reviewed:yes. Source data are provided 
with this paper.

Code availability
The HiCOPS software has been implemented using object-oriented C++17, MPI, 
OpenMP, Python, Bash and CMake. Instrumentation interface is implemented via 
Timemory42 for performance analysis. Command-line tools for MPI task mapping 
(Supplementary Section 7), database processing, file format conversion and result 
post-processing are also distributed with the software. HiCOPS is under active 
development and all documentation updates, source code releases and so on will be 
updated on the same web page. The source code is available open-source at https://
doi.org/10.5281/zenodo.5094072 (ref. 50) and https://github.com/hicops/hicops. 
Please refer to https://hicops.github.io for detailed documentation, licensing and 
future software updates.
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