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Database peptide search algorithms deduce peptides from mass spectrometry data. There has been substantial effort in
improving their computational efficiency to achieve larger and more complex systems biology studies. However, modern serial
and high-performance computing (HPC) algorithms exhibit suboptimal performance mainly due to their ineffective parallel
designs (low resource utilization) and high overhead costs. We present an HPC framework, called HiCOPS, for efficient accel-
eration of the database peptide search algorithms on distributed-memory supercomputers. HiCOPS provides, on average, more
than tenfold improvement in speed and superior parallel performance over several existing HPC database search software. We
also formulate a mathematical model for performance analysis and optimization, and report near-optimal results for several
key metrics including strong-scale efficiency, hardware utilization, load-balance, inter-process communication and 1/0 over-
heads. The core parallel design, techniques and optimizations presented in HICOPS are search-algorithm-independent and can

be extended to efficiently accelerate the existing and future algorithms and software.

have been the cornerstone of computational research in shotgun

mass spectrometry-based proteomics for more than 30 years*
7. Modern mass spectrometry technologies allow the generation of
thousands of raw, noisy spectra in the span of a few hours, producing
several gigabytes of data'® (Supplementary Fig. 1). Database peptide
search is the most commonly employed computational approach to
identify peptides from experimental spectra®'®'>*’. In this approach,
the experimental spectra are searched against an (indexed) database
of theoretical spectra (or modeled spectra) with the goal of finding
the best-possible matches'. The theoretical spectra database (or sim-
ply the theoretical database) is constructed by simulating in silico
digestion on a proteome sequence database (Supplementary Fig.
2). The theoretical databases (and their indexed versions) expand
exponentially in space (several gigabytes to terabytes) as the post-
translational modifications (PTMs) are added in the simulation®*'
(Supplementary Fig. 3a,b). Consequently, the low computational
arithmetic intensity (operations or instructions per byte*’) inherent
to database search algorithms>** results in performance bottlenecks
due to memory contention (parallel database query), out-of-core
processing (database size>main memory), database management
(data movement) and I/O.

As demonstrated by other scientific fields*, these limitations
can be alleviated through effective exploitation of architectural
resources provided by modern high-performance computing (HPC)
systems. However, most existing HPC database peptide search algo-
rithms*~*' employ unoptimized parallelization techniques that lead
to suboptimal performance and limited application in the domain
(Supplementary Sections 1 and 2, and Supplementary Fig. 3c). The
need for efficient parallel database peptide search software is driven
by the computational demands of modern systems biology stud-
ies for proteomics, metaproteomics and proteogenomics, where
peptide identification is often the first step in the analysis. These
systems biology studies also have a direct impact on personalized
nutrition, microbiome research*>* and cancer therapeutics™.

Faster and more efficient peptide identification algorithms'~

In this paper we present an HPC framework for efficient acceler-
ation of database peptide search algorithms on large-scale symmet-
ric multiprocessor distributed-memory supercomputers. HICOPS
exhibits orders-of-magnitude improvement in speed compared
with several existing shared- and distributed-memory database
peptide search tools, allowing several gigabytes of experimental MS/
MS data to be searched against terabytes of theoretical databases in
a few minutes compared with the several hours required by exist-
ing algorithms. The proposed HiCOPS parallel design implements
an unconventional approach in which the (massive) theoretical
databases are distributed across parallel nodes in a load-balanced
fashion followed by asynchronous parallel execution of the data-
base peptide search. On completion, the locally computed results
are merged into global results in a communication-optimal man-
ner. This overhead cost-optimal design, along with several opti-
mizations, allows HiCOPS to maximize resource utilization and
alleviate performance bottlenecks®. We also formulate and perform
a performance analysis to identify the overhead costs and discuss
optimization techniques to minimize them. Finally, we implement
a shared-peak counting coupled hyperscore-based search algo-
rithm>'** in HiCOPS to demonstrate its parallel performance, but
in essence, our framework is search-algorithm oblivious, that is,
the proposed parallel design, algorithms and optimizations can be
extended or replaced to accelerate most existing and future search
algorithms.

Our comprehensive experimentation shows that HiCOPS out-
performs several existing serial and parallel database peptide search
tools by more than tenfold on average while producing correct and
consistent peptide identifications. Furthermore, we demonstrate
the application of HICOPS in a large-scale database search setting
through multiple compute- and data-intensive experiments. Note
that the HiCOPS framework does not propose a new database
search algorithm and instead relies on the underlying (portable)
search algorithmic workflow for peptide identification accuracy.
Finally, we performed an extensive performance evaluation in
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Fig. 1| Methods overview. a, Superstep 1: the massive theoretical spectra database (spectra are shown as shapes) is partitioned among parallel processes
and locally indexed. Partitioning is performed in a load-balanced fashion (similar shapes are clustered and scattered across processes). b, Superstep

2: the experimental MS/MS spectra data are indexed, tagged, preprocessed and written back to a shared memory in data parallel. ¢, Superstep 3: an
asynchronous parallel database peptide search is executed by all processes. In each process, three parallel subtasks R, I and K work in a pipeline to load the
preprocessed data, execute a local search and write the produced (sampled) local results to the shared memory, respectively. The task scheduler manages
the parallel threads between the pipeline tasks. d, Superstep 4: local or intermediate results are assembled followed by curve fitting and expected value
computation in data-parallel fashion. Results with expected values < 0.01 are communicated to their origin processes.

which we report between 70 to 80% strong-scale efficiency and
less than 25% overall performance overheads (load imbalance, I/O,
interprocess communication, pipeline halt); collectively depicting a
near-optimal parallel performance.

Results

Methods overview. HICOPS constructs the parallel database pep-
tide search workflow (task-graph) through four Single Program
Multiple Data (SPMD) Bulk Synchronous Parallel (BSP)*” super-
steps. In the BSP model, a superstep* refers to a set of distinct algo-
rithmic and data communications blocks asynchronously executed
by all parallel processes (p; € P). Synchronization between the pro-
cesses is performed at the end of each superstep, as needed. In the
first superstep (Fig. 1a), the (massive) theoretical database is par-
titioned across parallel processes in a load-balanced fashion and
locally indexed. In the second superstep (Fig. 1b), the experimen-
tal data are divided into batches and preprocessed, if required. In
the third superstep (Fig. 1c), the parallel processes execute a local
database peptide search, producing intermediate results. In the final
superstep (Fig. 1d), the intermediate results are deserialized and
assembled into complete (global) results. Supplementary Fig. 4 pro-
vides an overview of the overall task-graph as well as the workload
profile for each superstep (Methods). The current HICOPS design
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allows in-core processing so that the minimum number of nodes
(Poin) required must be > D/M, where D is the theoretical database
index size and M is the available main memory per node.

The total HiCOPS wall time (Ty) is equal to the sum of indi-
vidual superstep execution times, given as:

Tu=T1+To+Ts+ T4
Where the execution time for a superstep (j) is the maximum
time required by any parallel task (p; e P) to complete that superstep,
given as:
Ty = max(Tjp,> Typyo oo Tipy)
Or simply:

Tj = max,, (Tjp,)

Combining the above three equations, the total HICOPS runtime
is given as:

4
Ty =y max, (Tjp) (1)
j=1
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Fig. 2 | Correctness analysis. a,b, Comparison of 10,000 out of 251,000 data samples of hyperscores (a) and expected values (expectscores) (b)
computed by HiCOPS in serial (x-axis) and parallel (y-axis) runs is shown. Note that all 251,000 samples depict the same consistency across parallel
runs”, but they were not feasible to plot. €-h, Correlations between hyperscores computed by HiCOPS (x-axis) and MSFragger (y-axis) for the three
restricted-search experiments (c-e) and their corresponding open-search versions (f-h) (described in section: Correctness analysis) are shown along with

Pearson correlation coefficients (R).

Experimental setup overview. We constructed five custom datasets
(S)) by combining several Pride Archive (PXD) datasets (accession
numbers: PXDxxxxxx) for our experimentation and evaluation.
These five custom datasets are given as follows: S, (PXD009072),
S, (PXD020590), S, (PXD015890), S, (PXD007871, 009072,
010023, 012463, 013074, 013332, 014802 and 015391 combined)
and S (all of the above listed datasets combined). The datasets
were searched against several theoretical databases constructed
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by adding combinations of PTMs to databases D, (UniProt Homo
sapiens; UP000005640) and D, (UniProt SwissProt; reviewed). See
the Detailed experimental setup for detailed discussion on the set-
tings for database digestion, PTMs, theoretical spectra generation
and so on. In the rest of the paper, we will represent the workload
size for each performed experiment (exp,) as a tuple given as:
exp,=(q,D,8M), where g is experimental MS/MS dataset size in
one-million spectra, D is theoretical database size in 100 million
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Fig. 3 | Speed comparisons. a-f, Speed comparison between HiCOPS and several other tools with increasing number of parallel nodes is shown for the six
experiments described in section: Speed comparison against existing algorithms, respectively. The gray dotted line tracks the ideal speedup times for each
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NATURE COMPUTATIONAL SCIENCE | VOL 1| AUGUST 2021 550-561| www.nature.com/natcomputsci 553


http://www.nature.com/natcomputsci

ARTICLES NATURE COMPUTATIONAL SCIENCE

Table 1| A summary of the execution times for three large-scale database search experiments using HiCOPS and MSFragger.

Experiment number Tool name Nodes Dataset size (GB) Database size (GB) 6M (Da) 6F (Da) Runtime (min)
1 HiCOPS 64 20 780 500 0.01 14.55
1 MSFragger 64 20 780 500 0.01 158.8
HiCOPS 72 15 1,692 500 0.05 103.5
MSFragger 72 15 1,692 500 0.05 1,074.45
2* MSFragger 1 15 1,692 500 0.05 51130
3 HiCOPS 64 41 4,000 500 0.01 273

Peptide precursor mass tolerance and fragment-ion tolerance (in Daltons) are given as 5M and &F respectively. A single-node version of the second experiment using MSFragger (that is 2*) was run on the

local (raptor) server. The third experiment was not run using MSFragger due to feasibility issues.

spectra and 6M is the peptide precursor mass tolerance setting in
+100Da. Note that the tuple does not contain the fragment-ion
mass tolerance (6F) information as it is globally set to +0.01 Da
unless specifically mentioned as the fourth element in an experi-
ment tuple.

Runtime environment. All of the experiments were run on the
Extreme Science and Engineering Discovery Environment
(XSEDE)* Comet cluster at the San Diego Supercomputer
Center. The Comet compute nodes are equipped with 2 NUMA
nodesx64GB of Intel Xeon E5-2680v3 processors (total: 24
cores), 2 NUMA nodesx 64GB (total: 128 GB) DRAM, 56 Gbps
FDR InfiniBand interconnect and a Lustre shared file system. The
maximum number of nodes allowed per job is 72 and the maxi-
mum allowed job time is 48 hours. Furthermore, the single-node
experiments for the Crux and X!Tandem tools requiring more than
48hours (XSEDE limit) execution time were run on a (comparable)
local machine named raptor, equipped with Intel Xeon Gold 6152
processor (22 cores), 128 GB DRAM and a 6 TB SSD HDD.

Correctness analysis. We evaluated the HiCOPS’s correctness
using a two-step approach. In the first step, we verified the consis-
tency of results across parallel runs by searching all five datasets S,
against both protein sequence databases D, using various settings
and PTM combinations. The correctness was evaluated in terms of
identified peptide sequences and the corresponding hyperscores
and expected values (expectscores) assigned (within three decimal
points). A comparison of hyperscores and expectscores between the
serial (x-axis) and parallel runs (y-axis)—obtained by searching S,
against D, with no PTMs—is shown in Fig. 2a,b. The results show
over 99.5% consistency in scores. A small error was observed in a
negligible number of results due to the sampling and floating-point
precision losses (Methods and Fig. 1d).

In the second step, we verified the quality of the implemented
search algorithm by comparing the HiCOPS-computed and
MSFragger-computed hyperscores, as both frameworks employ a
similar scoring algorithm, that is, shared-peak counting coupled
hyperscore. Note that the hyperscores computed by MSFragger and
HiCOPS cannot be exactly identical as MSFragger uses several pre-
processing and boosting features that affect the final scores. These
features could not be replicated in HiCOPS as MSFragger is a pro-
prietary software. We designed and executed six experiments: three
with restricted-search (SM=1Da) and three with open-search
(6M>100Da) settings. The experimental MS/MS data preprocess-
ing and database search settings were kept identical (and as minimal
as possible) for both tools for fair comparison.

In the first experiment, a subset of 860,000 spectra from S,
was searched against D, modified with methionine oxidation
and NQ-deamidation as PTMs yielding a theoretical database of
18 million spectra at SM=1Da. In the second experiment, S; was
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searched against D, modified with methionine oxidation and STY-
phosphorylation yielding a theoretical database of 66 million spec-
tra at M =1Da. In the third experiment, S, was searched against
D, modified with methionine oxidation and serine phosphorylation
yielding a database of 80 million spectra at M =1Da. In the fourth
experiment: the entirety of S; was searched against D, modified with
methionine oxidation and NQ-deamidation yielding a theoretical
database of 18 million spectra at SM=200Da. In the fifth experi-
ment, S; was searched against D, modified with methionine oxidation
and ST-phosphorylation yielding a theoretical database of 56 million
spectra at 6M=100Da. In the sixth experiment, S, was searched
against D, modified with methionine oxidation and serine phos-
phorylation yielding a database of 80 million spectra at SM =200 Da.

For our comparisons, first, a correlation between the hyper-
scores assigned by both tools to commonly identified peptide-to-
spectrum matches (PSMs) was computed (shown in Fig. 2c-h). The
PSMs from both tools were then filtered at a g-value (false discovery
rate) of 1% and compared (shown in Supplementary Fig. 5). Fig.
2c-e depicts a strong-correlation (R>0.90) between the hyper-
scores computed by both tools in the first three (restricted-search)
experiments. However, the correlation between the hyperscores
slightly drops between 0.70<R<0.90 for the last three (open-
search) experiments (Fig. 2f-h, respectively). We suspect that the
divergence in hyperscores may have stemmed from open-search
specific spectral processing, reconstruction and/or score reranking
algorithms implemented in MSFragger. Furthermore, the results in
Supplementary Fig. 5 show about 50% overlap between the g-value
filtered PSMs from HiCOPS and MSFragger. The results also show
that the MSFragger’s scoring algorithm outperformed the underly-
ing scoring algorithm in HiCOPS in identified peptides, as expected.
Recall that the HiCOPS is designed as algorithm oblivious, that is,
the underlying algorithms can be customized or ported with more
sophisticated versions to improve the identification while delivering
similar performance.

Speed comparison against existing algorithms. We compared the
HiCOPS speed against many existing shared- and distributed-mem-
ory database peptide search algorithms including Tide/Crux v.3.2
(ref. ?), Comet v.2020.01 (ref. *°), MSFragger v.3.0 (ref. ?), X!Tandem
v.17.2.1 (ref. ), X!!'Tandem v.10.12.1 (ref. *°) and SW-Tandem (ref.
#%). Parallel versions of the shared-memory tools were also imple-
mented and run through Python and Bash wrapper scripts execut-
ing the following workflow: run parallel instances of the tool on
XSEDE Comet nodes with equal partitions (random partitioning)
of the experimental MS/MS data files. This technique also indirectly
simulated the workflows of cloud-based tools such as MS-PyCloud
(via parallel MSGF+) and Bolt (via parallel MSFragger). We also
tried to run the UltraQuant HPC tool, which implements a parallel
MaxQuant; however, it crashed with unhandled exceptions every
time it was run on more than one node.
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performance evaluation experiments (labeled as tuples: exp, in section: Performance evaluation). The black dotted lines (ref) show the ideal speedup and

efficiency in a and b, respectively.

We designed six experiments, which are listed as a—f in increas-
ing order of their experimental workload sizes (that is, database and
dataset sizes, and experimental settings). In the first two experiments
(a, b), a subset of 8,000 spectra from S; (file: 7Sep18_Olson_WT24)
was searched against D, modified with variable methionine oxida-
tion and tyrosine biotin-tyramide yielding a theoretical database of
93.5 million spectra at M =10 Da and M = 500 Da, respectively. In
the third experiment (c), S; was searched against D, modified with
variable methionine oxidation and tyrosine biotin-tyramide yield-
ing a theoretical database of 7.1 million spectra at 5M =500 Da. In
the fourth (d) and fifth (e) experiments, the entire S, was searched
against the theoretical database of experiments a and b (the database

NATURE COMPUTATIONAL SCIENCE | VOL 1| AUGUST 2021 550-561| www.nature.com/natcomputsci

with 93.5 million spectra) at 5M=10Da and M =500Da, respec-
tively. In the sixth (f) experiment, S, was searched against D, modi-
fied with variable methionine oxidation, STY-phosphorylation and
NQ-deamidation yielding a theoretical database of 213 million
spectra at 6M =100 Da. The slower tools such as Comet, MSGF+,
Crux and X!Tandem variants were only run for smaller experiments
due to XSEDE maximum job time limits.

The obtained wall time results (Fig. 3a—f) show that the HICOPS
outperforms all other tools by more than 10X on average in speed,
especially for experiments with larger workloads (Fig. 3d—f). It can
also be observed that the HiICOPS exhibits better strong-scale par-
allel efficiency than other tools as the experimental workload size
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increases (a—f). For smaller workloads (Fig. 3a-c), the parallel
efficiency is limited by the Amdahl’s law. The scalability is shown
as the deviation (positive is sublinear whereas negative is hyperlin-
ear) from the ideal speedup track (dotted gray) lines in each experi-
ment in Fig. 3a-f. The parallel efficiency results for MSFragger were
particularly peculiar as it appears to be scaling superlinearly up to
a certain number of parallel nodes and then dropping to sublin-
ear. To explain this, the runtime components of MSFragger were

further analyzed in detail. The results (Fig. 3g-i) show that a large
percentage of MSFragger’s runtime is composed of I/O and load
imbalance, which results in a low overhead/compute ratio (effec-
tive resource utilization). Comparatively, HICOPS exhibits substan-
tially improved memory performance (Fig. 3h,j), resulting in lower
runtime even though the effective search times (useful compute
time) for MSFragger and HiCOPS are comparable. The results (Fig.
3a-c) show that the existing HPC tools—including X!!Tandem,
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SW-Tandem, parallel Comet and parallel MSGF+ (MS-PyCloud)—
are >100X slower even for small-scale experiments. Finally, we
observed zero parallel efficiency for SW-Tandem in all experiments,
meaning, no speedups whatsoever (Supplementary Section 3).

Application in tera-scale experimentation. Application of
HiCOPS in tera-scale experiments was demonstrated using three
further experiments. In the first experiment, S, was searched
against a theoretical database of 766 million spectra (780GB) at
OM==+500Da and 6F=+0.01Da. In the second experiment, S,
was searched against a theoretical database of 1.59 billion spectra
(1.7TB) at SM==+500Da and 6F=+0.05Da. In the third experi-
ment, S, was searched against a theoretical database of 3.89 billion
spectra (4 TB) at M ==+500Da and §F==+0.01 Da. HICOPS com-
pleted these three experiments in 14.55min (64 nodes), 103.5min
(72 nodes) and 27.3 min (64 nodes). By contrast, MSFragger com-
pleted the execution of first experiment in 158.8 min (64 nodes; ten-
times slower). The second experiment was completed by MSFragger
in 18h (72 nodes; 10.3X slower) and 35.5 days when using one node
(494x slower). The other experiments were intentionally not run
on MSFragger or other tools due to feasibility issues. The results for
this set of experiments are summarized in Table 1.

Performance evaluation. Twelve experiments of varying work-
load sizes were designed using combinations of aforementioned
D, and S, PTMs and precursor peptide mass tolerance windows
(6M) for an extensive performance evaluation. These experimental
workloads varied from extremely small to massive-scale covering a
wide-range of application. The twelve experiment sets in the tuple
form are listed as follows: exp,=(0.3, 0.84, 0.1), exp,=(0.3, 0.84,
2), exp,=(3.89, 0.07, 5), exp,=(1.51, 2.13, 5), exps;=(6.1, 0.93, 5),
exp,=(3.89, 7.66, 5), exp,=(1.51, 19.54, 5), exp,=(1.6, 38.89, 5),
exp,=(3.89, 15.85, 5), exp,,=(3.89, 1.08, 5), exp,, = (1.58, 2.13, 1)
and exp,,=(0.305, 0.847, 5). Note that the fragment-ion tolerance is
set to 6F=+0.01 Da in all of these experiments.

Parallel scalability. Strong-scale efficiency for all twelve experi-
ments was measured and the results (Fig. 4a,b) depict that the over-
all strong-scale efficiency ranges between 70-80% for sufficiently
large experimental workloads. For smaller experiments, the parallel
speedup quickly dampens as there is not enough parallel work to
be done (Amdahl’'s Law). Superstep-level dissection of the speedup
results in Supplementary Fig. 6 further confirm that the superstep
3 constitutes the largest fraction of the overall runtime, indicating
its importance in optimizations. Note that the minimum number
of nodes (P,;,) required by HiCOPS for each experiment must be:
P..»>D/M. The speedup and efficiency calculations were therefore
performed using the runtime for the experiment with minimum
nodes as the base case. The serial runtime (7;) was first computed
using the base case experiment runtime (Tp,, ) as Ts = Pin X Tp
. The speedups and efficiency were then computed relative to
Tp,,. for experiments with nodes > P, using the computed T,
Essentially, the speedups are relative to the base case runtime, which
may not be the one-node time depending on the P, (limitation
of HiCOPS). Furthermore, superlinear speedups were observed
in several experiments with larger workloads. To explain this, the
following hardware counters-based metrics were also recorded
for all experiments: instructions per cycle, last-level cache misses
per all cache-level misses, and the cycles stalled due to writes per
total stalled cycles. The results (Fig. 4c—e) show that the CPU, cache
and memory bandwidth utilization improves as the workload per
node (wf/P) increases reaching to an optimum point after which
it saturates due to memory bandwidth contention as the database
search algorithms employed (and also in general) are highly mem-
ory intensive. Beyond this saturation point, increasing the number
of parallel nodes for the same experimental workload resulted in

min
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a substantial improvement (superlinear) in performance as wf/P
reduces to the normal (optimal) range. For instance, the experiment
set exp; depicts superlinear speedups (Fig. 4a) that can be correlated
to the hardware performance surge in Fig. 4c.

Performance overhead. Several metrics including load imbal-
ance, I/O, communication, and pipeline halt time costs were also
measured to identify and quantify the performance overheads.
The obtained results (Fig. 5a-c) depict that the load imbalance,
I/O and intertask communication costs remain <10%, <10% and
<5%, respectively, in most experiments. Note that the load imbal-
ance is a direct measure of synchronization cost. Figure 5e shows a
time-series of the per-batch producer-consumer pipeline halt time
(see superstep 3 in the Methods) when searching three datasets of
increasing size. The wait time is the time when any of the pipeline
subtasks wait for a batch of data from its predecessor. The results
(Fig. 5e) show that our task-scheduling algorithm actively performs
counter measures (reallocates threads) as soon as a pipeline-stall is
detected due to speed mismatches between parallel subtasks keep-
ing the total cost to <5% in most experiments (Fig. 5d).

Discussion

Recent trends in HPC have shifted towards heterogeneous archi-
tectures* as several top-500 supercomputers combine CPUs with
GPUs and field-programmable gate arrays (FPGAs) to deliver
petascale (and in the near future, exascale”) computing powers.
However, the presented SPMD-BSP-based HiCOPS design limits its
application to only the homogeneous (CPU-only) parallel nodes in
a supercomputer. This technological shift in HPC drives our future
efforts that include a GPU-accelerated design for HICOPS.

Peptide identification rates achieved by HiCOPS are limited by
the underlying data processing, scoring and statistical modeling
algorithms it executes. In our current design, we implement a basic
shared-peak coupled hyperscoring algorithm® without making an
explicit effort to improve these algorithms. Furthermore, in some
cases, searching against smaller databases (on single nodes) results
in better performance (smaller workloads) and search quality
(high-confidence separation of true positives from false positives).
Although the proposed parallel design is algorithm-independent;
meaning, underlying algorithms can be trivially ported and updated,
we focus our future efforts on implementing (heterogeneous) HPC
versions of several modern algorithms, and machine- and deep-
learning models”**** within HiCOPS.

Finally, we believe that the computational tools are the enablers
of new and more exciting science—science that one might not envi-
sion today due to the limitations of the infrastructure that is at our
disposal. We are therefore confident that our current and future
efforts will provide useful advances in enabling scientific investiga-
tions in this application domain.

Methods

Notations and symbols. For the rest of the paper, we will denote the number of
peptide sequences in the database as ¢, the average number of PTMs per peptide
sequence as m, the total theoretical database index size as {X2™" =D, the number
of parallel nodes or processes as P, the number of cores per parallel process as cp,
the size of experimental MS/MS dataset (that is, the number of experimental/query
spectra) as g, the average length of a query spectrum as f and the total dataset size
as gf. The runtime for executing superstep j by p, will be denoted as Tj,, and the
generic overheads due to boilerplate code, OS delays, memory allocation and so on
will be captured via y,,. Note that we shall refer the theoretical database as simply
the database for the rest of the paper.

Runtime cost model. As the HiCOPS parallel processes run in SPMD fashion,
the cost analysis for any parallel process (with variable input size) is applicable

for the entire system. Also, the runtime cost for p,eP to execute a superstep j can
be modeled by only its local input size (database and dataset sizes) and available
resources (the number of cores, memory bandwidth). The parallel processes may
execute the algorithmic work in a data-parallel, task-parallel, or hybrid fashion. As
an example, the execution runtime (cost) for p; to execute superstep j, which first
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generates D model-spectra using algorithm k; and then sorts them using algorithm
k, in a data-parallel fashion (using all ¢y, cores) will be given as follows:

Tip, = ki (D) + k(D) + 7,, @

Similarly, if the above steps k, are performed in a hybrid (task and data-parallel)
fashion, the number of cores allocated to each k;, must also be considered. For
instance, in the above example, if the two algorithmic steps are executed in subtask
parallel fashion with ¢,,/2 cores each, the execution time will be given as

Tjp, = max(kji (D, ¢y,/2), ki (D; ¢,/2)) + v, 3)

For analysis purposes, if the time complexity of the algorithms used for step
k;, is known (for example, O(.)), we will convert it into a linear function k’ with
its input data size multiplied by its runtime complexity. This conversion will
allow better quantification of serial and parallel runtime portions as seen in later
sections. If, for example, it is known that the sorting algorithms used for k;, have
time complexity: O(Nlog N), then equation (2) can be modified to

Tjp, = k(D) + kj,(Dlog D) + 7, (4)

Remarks. The formulated model will be used to analyze the runtime cost for each
superstep, quantify the serial, parallel and overhead costs in the overall design, and
optimize the overheads.

Superstep 1: database partitioning. In this superstep, the HICOPS parallel
processes construct a local database partition through the following three
algorithmic data-parallel steps (Fig. 1a): (1) generate and extract a (balanced) local
partition of the (peptides+ PTM variants) database; (2) generate the theoretical
spectra data; and (3) index the local peptide and model-spectra to build the
theoretical database index (suffix array and the fragment-ion index).

The database partitions are constructed using the LBE algorithm* (illustrated
in Supplementary Fig. 7). The LBE algorithm first clusters similar model-spectra
in the database, which are then scattered across parallel nodes cluster by cluster
to achieve the balance* as also depicted in Supplementary Algorithm 1. In this
work, we supplement the LBE algorithm with a new additional distance metric
for clustering. We call this metric the Mod Distance (Am), which allows better
separation of database spectral-pairs that cannot be separated by the normalized
Edit Distance (Ae) metric introduced in the LBE algorithm (see Supplementary
Section 5 for more information on Mod Distance). Consequently, the new distance
metric allows better load balance between the database partitions as corroborated
by our experimental results. To the best of our knowledge, LBE is the only existing
technique for efficient theoretical database partitioning.

Mod Distance. For a pair of model-spectra in the database (x, y), assuming the sum
of unedited amino acid sequence lengths from both peptide sequence termini is
(a), Am is given as follows:

a

Am(xy) =2 - max(len(x), len(y))

Cost analysis. The first step generates the entire database of size D and separates
out a local partition (of roughly the size D/P = D,) in runtime k,,(D). The second
step generates the model-spectra from the partitioned database using the standard
simulation model'>*” in runtimeki, (Dj, ). The third step constructs a fragment-
ion index similar to refs. ***! in runtime O(Nlog N). In our implementation,

we employed the CFIR Index”' algorithm due to its smaller memory footprint
resulting in runtime k’(Dj,log Dy, ). Collective runtime for this superstep is given
by equation (5):

Ty = maxy, (ki1 (D) + ki2(Dy,) + ki5(Dplog Dy,) + 7p,) (5)

Remarks. Equation (5) depicts that the serial execution time, k;,(D) bottlenecks the
parallel efficiency.

Superstep 2: experimental MS/MS data preprocessing. In this superstep,

the HiCOPS parallel processes preprocess a partition of experimental MS/MS
spectra data through the following three algorithmic data-parallel steps (Fig. 1b):
(1) read the dataset files, create a batch index and initialize internal structures;
(2) preprocess (normalize, clear noise, reconstruct and so on) a partition of
experimental MS/MS data; and (3) write back the preprocessed data.

The experimental spectra are split into batches such that a reasonable parallel
granularity is achieved when these batches are searched against the database. By
default, the maximum batch size is set to 10,000 spectra and the minimum number
of batches per dataset is set to P. The batch information is indexed using a queue
and a pointer stack to allow quick access to the preprocessed experimental data in
the superstep 3.
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Cost analysis. The first step reads the entire dataset (size=gf}) and creates a batch
index in runtime: k,,(gf). The second step may preprocess a partition of the dataset
(of roughly q3/P = Qp, in size) using a data preprocessing algorithm such as in
refs. >**7 in runtime ky;(Qp,). The third step may write the preprocessed data

back to the file system in runtime k»3(Qy, ). Note that the second and third steps
may altogether be skipped in subsequent runs when the input data are already
preprocessed. Collective runtime for this superstep is given by equation (6):

To = maxy, (ka1 (45) + k22(Qp) + k23 (Qp,) +7,,) (6)

Remarks. Equation (6) depicts that the parallel efficiency of superstep 2 is highly
limited by its dominant serial portion, that is, k,,(qf5). Moreover, this superstep
is sensitive to the file system bandwidth since large volumes of data may be
communicated to/from the shared file system.

Superstep 3: database peptide search. This is the most important superstep in
the HiCOPS workflow and is responsible for 80-90% of the total algorithmic
workload. In this superstep, the HICOPS parallel processes search the preprocessed
experimental spectra against their local database partitions through the following
three hybrid (task and data parallel) steps (Fig. 1c and Supplementary Fig. 4): (1)
load the preprocessed experimental MS/MS data batches into memory; (2) search
the loaded spectra batches against the (local) database partition and produce
intermediate results; and (3) serialize and write the intermediate results to the
shared file system assigning them unique tags.

Three parallel subtasks are created (R, I and K) that work in a producer-
consumer pipeline to execute the algorithmic work (Fig. 1c). The data flow
between the subtasks is handled through queues to create a buffer between
the producers and consumers. The first subtask (R) loads batches of the
preprocessed experimental spectra data and puts them in queue (g;) as depicted in
Supplementary Algorithm 2. Subtask R may also perform minimal computations
on the experimental spectra before putting them in queue. For example, peak
selection and/or intensity normalization. The parallel cores assigned to R are given
by: |7|. The second subtask (I) extracts batches from g, performs the database
peptide search (currently: shared-peak counting coupled hyperscore computation)
against its local database partition and puts the produced intermediate (local)
results in queue (g;) as depicted in Supplementary Algorithm 3. The parallel cores
assigned to I are given by: |if; I also recycles the memory buffers back to R using the
queue (g,). The third subtask (K) serializes and writes the intermediate results to
a shared memory using |k| cores. Given an experimental spectrum (¢), a database
peptide (y), the number of shared b-ions between them (1,) with intensities (i, ),
and the number of shared y-ions between them (n,) with intensities (i), the
hyperscore between them is given as

y "y
hyperscore(g, y) = log (n,!) + log (n,!) + log Z ipj | + log <Z iy)k>

j=1 k=1

Cost analysis. Subtask R reads the experimental data batches in runtime k,(gf);
Subtask [ iteratively filters the database and computes spectral comparisons against
the database (scoring step). Database peptide search algorithms use two or three
database filtration steps, most commonly, peptide precursor mass tolerance’”,
shared fragment-ions>* and sequence tags”'’. In current implementation, we

use the first two filtration methods, which execute in runtimes k3 (gDj,) and
ks2(qPay, ), respectively. Here, a,, represents the average filtered database size
filtered from the first step. The currently implemented scoring mechanism
computes hyperscores' in runtime ks3(qfoy,) + kss(qu,, ). Here, op, and p,,
represent the average number of filtered shared-ions an(i‘7 model-spectra per
experimental spectrum. Note that the scoring algorithm in this superstep is
portable as the parallel design does not depend on it. Finally, subtask K writes the
intermediate results to the shared file system in runtime k,(q).

Overhead costs. Overhead factors stemming from load imbalance, producer—
consumer pipeline halt, file system bandwidth congestion affect the performance of
this superstep. We therefore capture them using an extra runtime cost V}, (g, Dy, P).
Several optimizations including buffering, task scheduling, load balancing and data
sampling (discussed in section: Optimizations) were implemented to alleviate these
overhead costs. Collective runtime for this superstep is given by equation (10).

The runtime of R, t,,(r, |r|), is given as

tp, (. I7]) = kso(a/, 71) ™)
The runtime of I, t,, (i, |i]), is given as

tp, (i i) = ka1 (qDp,, |il) + ks2(aPap,, |il) + ks (afop,) + kaa(quy,, |il)

ty, (i, i) = k3, (qlog (Dy,), |il) + ks, (qplog (ap,), lil)+
kss(apop, lil) + ksa(qpy, 1il)

(8)
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The runtime of K, t,, (k, |k|), is given as
tp, (k |k|) = kas (g, [k|) (©)]
Combining equations (7-9), we have

T3 = max,, (max(t},,(r, I7]), o, (i 1)), ty, (K, [K]))+
(10)
V(¢ Dy, P) + J’,,‘)

Remarks. Equations (7-10) depict that the parallel runtime portion of this
superstep grows quadratically superseding the serial portion if the experimental
load is sufficient.

Superstep 4: result assembly. In this superstep, the HICOPS parallel processes
assemble the intermediate results from the last superstep into complete results
through the following hybrid algorithmic steps (Fig. 1d): (1) read a set of intermediate
result batches, assemble them into complete results, and send the assembled results to
their parent processes; (2) receive complete results from other parallel processes and
synchronize; and (3) write the complete results to the file system.

Two parallel subtasks are created to execute the algorithmic steps in this
superstep. The first subtask reads sets of intermediate results from the shared
file system (or shared memory) (satisfying: tag mod P = p;; p,¢ MPI ranks),
deserializes them and assembles the complete results. The expectation scores
are then computed and communicated to their origin processes. For example,
the process with MPI rank 4 will process the all intermediate result batches with
tag 0x8_i,where i=0,1,...,P— 1. The assembly process is done through signal
addition and shift operations (Fig. 1d). The expected values are computed by first
smoothing the assembled data through Savitzky-Golay filter and then applying
the null test through either the Linear-Tail Fit" or the log-Weibull (Gumbel)

Fit method (Fig. 1d). The computed expected values, along with additional
information (total =16 bytes), are queued to be sent to the HICOPS process that
recorded the most significant database hit (origin). The final results are stored
in a map data structure for collective communication at the end of all batches.
All available cores (c),) are assigned to this subtask. Supplementary Algorithm 4
depicts the algorithmic work performed by this subtask.

The second subtask runs waits for P— 1 packets of results from other HICOPS
processes. This task runs asynchronously using an oversubscribed thread and only
activates when incoming data is detected. Finally, once the two subtasks complete
(join), the complete results are written to the file system in data-parallel fashion
using all available threads.

Cost analysis. The first subtask reads the intermediate results, performs

regression and sends computed results to other processes in runtime:

ka1(Qp,> ¢p;) + ka2(Qp,» ¢, ) + kaz (P, 1) time. The second subtask receives complete
results from other tasks in runtime: k,,(P, 1). Finally, the complete results are
written in runtime kys(Qp, ). Collectively, the runtime for this superstep is given by
equation (11).

Ty = maxy, (max(ky (Qp,, ¢p,) + ka2 (Qp,» ¢p,)+
kg3 (P, 1), kaa(P, 1)) + kas(Qp,) + 7,,)

(11)

To simplify equation (11), we can rewrite it as a sum of computation costs plus
the communication overheads (k,,,,(P,1)) as:

Ty = maxy, (ka1 (Qp;» ¢p,) + ka2 (Qpy> ¢p,) + keom (P, 1) + ks (Qp,) + }’P‘) (12)
Assuming that the network latency is denoted as w, bandwidth is denoted

as wand (16Qy,) is the average data packet size in bytes, the interprocess

communication overhead cost (k,,(P, 1)) in seconds is estimated to be:

keom(P, 1) = 2(P — 1)(w + 16Q,, /1)

Remarks. As the communication per process are limited to only one data exchange
between any pair of processes, the overall runtime given by equation (12) is highly
scalable. The effective communication cost depends on the amount of overlap with
computations and the network parameters at the time of experiment.

Performance analysis. To quantify the parallel performance, we decompose
the HICOPS’s time (T};) (equation (1)) into three runtime components: parallel
runtime (), serial runtime (T;) and overheads runtime (T,) given as:

4
Ty = Zmaxp,(i},ﬂ) =To+Ts+ Ty
=1

(13)

Using equations (1), (5), (6), (10) and (12), we separate the three runtime
components as
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To = Vp, (g Dy, P) + 7, (14)
Ts = ki1 (D) 4 k21(gf) + keom (P, 1) (15)
and
Tp = klz(Dp,) + kig(Dp,log Dp,) + kZZ(Qp‘) + kzs(Qp,)—i-
max(tp, (1, 1)), tp, (i, |i]), tp, (K, 1k])) + kar (Qpy> €,)+ (16)

ka2 (Qp, ¢p,) + kas(Qp,)

T, is the minimum serial time required for HiICOPS execution and cannot be
further reduced. We will therefore focus on optimizing the remaining runtime (7Ty)
given as: T,= T, + T,. Using equations (14) and (16), we have

Tr = ki2(Dp,) + ki3(Dylog Dp,) + k2 (Qp,) + ka3 (Qp,)+
max (tp, (1, |r]), tp, (i [i]), tp, (ks [K])) + ka1 (Qp,» )+
k42(Qp,, Cp,) + k45(Qp,) + T,

17)

As the HiCOPS parallel processes divide the database and experimental dataset
roughly fairly in supersteps 1 and 2, the first four terms and the sixth term in T, are
already almost optimized, so we can prune them from T}:

Tr = max(tpy, ( 1)) tp, (i; [i]) tp, (ks [K])) + ka1 (Qpys cp,)+
k42(Qp,; ) + +k45(Qp,) + T,

(18)

Recall that the superstep 4 runtime is optimized for maximum parallelism (and
least interprocess communication) and that the superstep 3 performs the largest
fraction of overall algorithmic workload. We can thus also remove the superstep 4
terms from T to simplify analysis:

T = max(ty, (1, [7]), tp, (i [i]), ty, (ks [K])) + To

Furthermore, as the superstep 3 is executed in a producer-consumer pipeline
(Fig. 1c) where R must produce all data before it can be consumed by I meaning its
runtime must also be smaller than ¢, (i, |i|) and t,, (k, |k|) allowing a safe removal
from the above equation, yielding

Tr = max(ty, (i, |i]), ty, (k [k])) + T

In the above equation we can rewrite the max(.) term as the time to complete
subtask I: (t,, (i, |i|)) plus the extra time to complete subtask K (the last consumer):
t(k). Using equation (9) we have:

Tr = k3, (qlog (Dp,), |il) + ki, (qplog (ap,), lil)+
kss(apop, [il) + ksa(apy, |il) + t(k) + To

(19)

We can prune the first two terms in the equation (19) as well as their runtime
contribution O(log N) will be relatively very small. Finally, using equation (14) in
(19), we have:

T = ks3(qBop, |il) + kaa(quy,s i) + te(k) + V(4 Dp, P) + 7, (20)

Optimizations. The following sections discuss the optimization techniques
employed to alleviate the overhead costs in equation (20).

Buffering. Four queues—the forward queue (qy), recycle queue (g,) and result queues
(g and q;)—are initialized and routed between the producer-consumer subtasks

in superstep 3 (Fig. 1c) as R— I, R« I, I— K and I« K, respectively; g, is initialized
with (default: 20) empty buffers for subtask R to fill the preprocessed experimental
data batches and push in g Subtask I removes a buffer from g, consumes it
(searches it) and pushes back to g, for re-use. The results are pushed to g, which are
consumed by subtask K and pushed back to gj, for re-use. Three regions are defined
for g on the basis of the number of data buffers it contains at any time. i.e. w;:
(len(g) <5); wy: (5<len(g) <15); and w;: (len(q) > 15). These regions (w;) are used
by the task-scheduling algorithm discussed in the following section.

Task scheduling. The task-scheduling algorithm is used to maintain a synergy
between the producer-consumer (subtask) pipeline in the superstep 3. The
algorithm initializes a thread pool of ¢, + 2 threads, where ¢, is the number of
available cores. In the first iteration, two threads are assigned to the subtasks R
and K, whereas the remaining c,, — 2 threads are assigned to subtask I. Then,

in each iteration, the g, region (w;) and the q.pop() time for I (given by f,,) are
monitored. A time-series is built to forecast the next ¢, (that is, #,) using double
exponential smoothing®; ¢, is also accumulated into f,,,. Two thresholds are

‘wait cum*
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defined: the minimum wait (t,;,) and maximum cumulative wait (¢,,,). Using
all this information, a thread is removed from I and added to R if the following
conditions are satisfied:

1R = (bwait > tmin A (fum + tet) > tmax) V (W = w1 A |r| = 0)

t.um 18 Set to 0 every time a thread is added to R. Similarly, a thread is removed from
R and added to I if the following conditions are satisfied. All threads are removed
from R if the queue g;becomes full or there is no more experimental MS/MS data
left to be loaded.

R = (Wp=ws Alr| >1)V qf.full()

K uses its two oversubscribed threads to perform the overlapped I/O operations
concurrently (Fig. 1¢).

Load balancing. The algorithmic workload in equation (20) is given by

k33(qBoy,. |il) + ksa(qu,,, |i]). Here, the terms g and q are constants
(experimental data size), whereas the terms o), and p,, are variables representing
the filtered database size for a parallel HICOPS process (p;) and thus must be
balanced across processes. We do this statically by constructing balanced database
partitions (hence a balanced workload) using the LBE algorithm supplemented
with our new Mod Distance metric in superstep 1 (Methods, Fig. 1a and
Supplementary Fig. 6). The correctness of the LBE algorithm for load balancing is
proven in Supplementary Section 6. We plan to devise and develop dynamic load
balancing techniques for better results in the future.

Sampling. Sampling is used to reduce the interprocess communication required
in result assembly (superstep 4) without compromising on the assembly accuracy.
For each experimental spectrum, the HiICOPS processes (p;) produce a local
result consisting of the number of local hits, the hyperscore for the top hits

and so on (12 bytes), and the local null distribution histogram of hyperscores
(2,048 bytes). Communicating this, the size of each data packet (1 per batch)

will be ~20 MB, which can result in serious overheads. It has been shown that

the null distribution of hyperscore (and several other scoring algorithms) in
database peptide search follow a log-Weibull or Gumbel curve*'. This means that
most of the data are localized around the mean. We exploit this information to
reduce the communication footprint as follows: we first locate the mean of the
local null distribution and sample the most intense non-zero data points around
it. If the total number of non-zero samples exceed s (default: 120), we prioritize
the samples towards the head of the distribution as we can reconstruct the tail
fairly accurately through curve fitting. The sampled data are further encoded into
unsigned short instead of int to fit inside a buffer of 256 bytes, resulting in a
1.5 MB data packet size which is instantly written/read from the shared file system
reducing the overhead costs including (k) (see equation (20)). Supplementary
Fig. 7 illustrates an example of sampling.

Detailed experimental setup. The two databases (D, and D,) were digested

in silico using trypsin as enzyme (fully tryptic) with two allowed missed
cleavages, peptide lengths between 6 and 46, and peptide masses between

500 Da and 5,000 Da. The theoretical spectra were simulated by generating

b- and y-ions of up to +3 charge with zero isotope error and no decoys. Cysteine
carbamidomethylation was set as fixed modification for all experiments, whereas
the variable modifications were chosen from the combinations of methionine
oxidation; arginine and glutamine deamidation; serine, threonine and tyrosine
phosphorylation; cysteine and lysine Gly-Gly adducts; and tyrosine biotin-
tyramide across experiments. The maximum number of allowed modified
residues (amino acid letters) per peptide was set to 5. The number and type of
PTMs used in database expansion, and the search settings including peptide
precursor mass tolerance (6M), were varied across experiments to cover both the
open- (6M = +500Da) and closed-search (6M <+ 10Da) scenarios. The closed-
search criterion was set to a few Daltons (<1 Da in correctness analysis and
<10Da in performance evaluation) instead of 10-20 ppm to cover the differences
in calculated peptide precursor masses due to monoisotopic or average masses,
and isotopic masses across search tools. All experimental MS/MS datasets

were converted to MS2 format before use. The experimental MS/MS spectra
preprocessing settings for all tools were set to minimal so that all tools execute a
nearly identical algorithmic work (fairness). Some of these settings are listed as
follows: allowed precursor masses, 500 to 5,000 Da; precursor charges, +1 to +4;
minimum number of matched peaks for PSM candidacy, 4; minimum number
of database hits for statistical scoring, 4; denoising, only top-100 peaks picked
(by intensity); peak transformations, none; mass calibration, no; precursor peak
removal, no; partial spectrum reconstruction, no; clip #-term M, no.

Data availability

All of the datasets used in this study are publicly available from PXD and can be
accessed via https://www.ebi.ac.uk/pride/archive/projects/<AccessionNum>,
where AccessionNum is the accession number for each dataset mentioned in
the text (for example, to access S, PXD009072, use https://www.ebi.ac.uk/pride/

archive/projects/PXD009072). The Homo sapiens protein sequence database

can be downloaded from UniProtKB via https://www.uniprot.org/proteomes/
UP000005640. The UniProt SwissProt (reviewed) database can be downloaded via
https://www.uniprot.org/uniprot/?query=reviewed:yes. Source data are provided
with this paper.

Code availability

The HiCOPS software has been implemented using object-oriented C++17, MPI,
OpenMP, Python, Bash and CMake. Instrumentation interface is implemented via
Timemory* for performance analysis. Command-line tools for MPI task mapping
(Supplementary Section 7), database processing, file format conversion and result
post-processing are also distributed with the software. HiCOPS is under active
development and all documentation updates, source code releases and so on will be
updated on the same web page. The source code is available open-source at https://
doi.org/10.5281/zenodo.5094072 (ref. *°) and https://github.com/hicops/hicops.
Please refer to https://hicops.github.io for detailed documentation, licensing and
future software updates.
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