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ABSTRACT
Betweenness centrality (BC) is a shortest path centrality metric

used to measure the influence of individual vertices or edges on

huge graphs that are used for modeling and analysis of human brain,

omics data, or social networks. The application of the BC algorithm

to modern graphs must deal with the size of the graphs, as well with

highly irregular data-access patterns. These challenges are particu-

larly important when the BC algorithm is implemented on Graphics

Processing Units (GPU), due to the limited global memory of these

processors, as well as the decrease in performance due to the load

unbalance resulting from processing irregular data structures. In

this paper, we present the first GPU based linear-algebraic formula-

tion and implementation of BC, called TurboBC, a set of memory

efficient BC algorithms that exhibits good performance and high

scalability on unweighted, undirected or directed sparse graphs of

arbitrary structure. Our experiments demonstrate that our TurboBC

algorithms obtain more than 18 GTEPs and an average speedup of

31.9x over the sequential version of the BC algorithm, and are on

average 1.7x and 2.2x faster than the state-of-the-art algorithms

implemented on the high performance, GPU-based, gunrock, and

CPU-based, ligra libraries, respectively. These experiments also

show that by minimizing their memory footprint, the TurboBC

algorithms are able to compute the BC of relatively big graphs, for

which the gunrock algorithms ran out of memory.

CCS CONCEPTS
• Theory of computation→Massively parallel algorithms; •
Mathematics of computing→ Graph algorithms.
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1 INTRODUCTION
Centrality is a fundamental concept in graph analytics [2], used

to measure the influence of individual vertices or edges on huge

graphs that are used for modeling and analysis of human brain [17],

omics data [4], or social networks [15]. One of the most important

measures of centrality is the shortest-path based betweenness cen-
trality (BC), a metric used to measure the importance of vertices

and/or edges in a graph [8].

BC algorithms have enough parallelism to be implemented us-

ing all the computational power of modern Graphics Processing

Units (GPU’s) [7], however this implementation is challenging be-

cause real world graphs have some vertices whose degree are much

greater than the mean degree in the graph, resulting in data-access

patterns which are highly irregular. These type of data produces

load imbalances and warp divergences that negatively affect the

performance of the kernels in GPUs. The limited global memory

and the data-transfer bottleneck of the GPU are also important chal-

lenges to implement scalable BC algorithms for the BC computation

on modern huge graphs. These challenges result in limits in the

scalability and performance of the BC algorithms, being therefore

an active area of research [14, 16, 18–21].

In this paper, we propose TurboBC, a set of GPU-based BC al-

gorithms in the language of linear algebra. The memory efficient

and highly scalable BC algorithms on TurboBC are based on two

parallel optimizations. Our first optimization was to reduce the

space-complexity of the algorithm by limiting the number and the

size of the arrays used on the computations performed by the GPU

kernels. The second optimization was to design and implement our

BC algorithms by exploiting the sparsity of the frontier and output

vectors of the Breadth First Search (BFS) stage.

The main contributions of the paper are:

(1) We designed and implemented TurboBC, the first implemen-

tation of memory efficient and highly scalable GPU-based

BC algorithms in the language of linear algebra. The Tur-

boBC algorithms are applicable to unweighted, directed and

undirected graphs represented by sparse adjacency matrices

in the Compressed Sparse Column (CSC) and the transpose

of the Coordinate Sparse (COO) formats. In order to reduce

the memory footprint and to increase the memory efficiency

and the scalability of TurboBC, the algorithms were designed

https://doi.org/10.1145/3458744.3474047
https://doi.org/10.1145/3458744.3474047
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to use only one sparse storage format for each BC computa-

tion, also the number of auxiliary arrays on the device side

was minimized. The reduction in the memory-footprint in-

creased the memory bandwidth utilization and reduced the

number of unnecessary floating operations. The design and

implementation of the TurboBC algorithms also exploited

the sparsity of the frontier and output vectors of the Breadth

First Search (BFS) stage. These optimizations improved the

performance and the scalability of the TurboBC algorithms.

(2) A comprehensive experimental detail and results are pre-

sented to assess the performance of the GPU-based BC algo-

rithms in TurboBC. Our TurboBC algorithms obtained more

than 18 GTEPs (billions of transverse edges per second),

and an average speedup of 31.9x over the sequential ver-

sion of the BC algorithm, and were on average 1.7x and 2.2x

faster than the state-of-the-art algorithms implemented on

the high performance, GPU-based, gunrock [21], and CPU-

based, ligra [20] libraries, respectively. These experiments

also showed that by minimizing their memory footprint, the

GPU memory usage of of the gunrock library was higher

than the memory usage of the TurboBC algorithms, allowing

these algorithms to compute the BC of relatively big graphs,

for which the gunrock algorithms ran out of memory. Our ex-

periments also demonstrated that the performance obtained

by the TurboBC algorithms, measured as MTEPs, as function

of the GPU memory bandwidth, were much greater than

those obtained by the BC algorithms in the gunrock library,

showing that the GPU memory is used more efficiently by

the TurboBC algorithms.

The remaining of this paper is organized as follows: Section

2 presents a general description of the BC algorithm. Section 3

presents details of the design and implementation of the TurboBC

algorithms. Section 4 is dedicated to the experimental results. Sec-

tion 5 describes the related work, and the summary and future work

are presented in Section 6.

2 BETWEENNESS CENTRALITY ALGORITHM
The shortest-path betweenness centrality (BC) algorithm is appli-

cable to any unweighted, directed or undirected graph G = (V ,E),
whereV is the finite set of vertices and E the set of edges. Any pair

(u,v) ∈ E implies that the vertices u and v in V are connected by

an edge in G. A graph G is directed if E consists of ordered pairs,

otherwise,G is undirected. Given a source vertex s ∈ V in a graphG ,
the Breadth First Search (BFS) stage of the BC algorithm performs

a systematic search of every vertex on E that is reachable from s .
The algorithm computes the shortest path, i.e., the smallest number

of edges from s to each reachable vertex t . The number of shortest

paths between the vertices s and t is denoted by σst , and σst (v)
is equal to the number of shortest paths between s and t passing
through the vertex v ∈ V , where v is different than s and t [1, 5].

Betweenness centrality of a vertex v , BC(v), in a graph G was

formally defined by Freeman [8] as

BC(v) =
∑

s,v,t
σst (v)/σst =

∑
s,v,t

δst (v) (1)

where σst (v)/σst = 0, if σst = 0, and δst (v) = σst (v)/σst , the
pair-wise dependences, is the fraction of shortest paths between the

vertices s and t that pass through v . This definition of BC equally

applies to disconnected and connected, directed and undirected

graphs [8]. The straightforward computation of the BC of a vertexv ,
starts by computing the number and the length of all-pairs shortest

paths over the graph, followed by computing the BC for each vertex

by looking at all other pairs of vertices, and increasing the value

of BC(v) if the vertex, v , was in the corresponding shortest path. If

|V | = n, the time complexity of this BC algorithm is O(n3), and its

space complexity is O(n2).
Brandes [5], proposed a more efficient BC algorithm on which

the pair-wise dependences can be aggregated without computing

all of them explicitly. Let the one-sided dependences be defined as

δs (v) =
∑
t ∈V

δst (v) (2)

for all s,v ∈ V . Then

BC(v) =
∑
s,v

δs (v) (3)

The following recurrence relation computes the one-sided depen-

dences in the Brandes’ BC algorithm

δs (v) =
∑

w :d (s,w )=d (s,v)+1

σsv
σsw
(1 + δs (w)) (4)

where d(s,v) is the length of the shortest path from s to v . The re-
currence relation 4 computes the one-sided dependence of a vertex

s on some vertex v from the one-sided dependence of a vertex w
one edge far away. For a graph with |E | =m, the time complexity

of the Brandes’ algorithm for unweighted graphs is:O(nm), and the
space complexity: O(n +m). This algorithm is especially suitable

for graphs represented by sparse adjacency matrices.

3 BC ALGORITHMS IN THE LANGUAGE OF
LINEAR ALGEBRA FOR UNWEIGHTED
GRAPHS.

This section describes the design and implementation of our GPU-

based TurboBC algorithms in the language of linear algebra for

unweighted graphs. The TurboBC algorithmswere implemented for

graphs represented by sparse adjacency matrices in the Compressed

Sparse Column (CSC) format, as well in the COOC format which is

the transpose of the Coordinate Sparse (COO) format. Both sparse

formats are suitable to implement the sparse matrix-vector multipli-

cation operations included in the BC Algorithm 1. Figure 1 shows

an example of the CSC and COOC formats for a sparse adjacency

matrix representing an undirected, unweighted graph. For a n × n
adjacency sparse matrix A withm non-zero elements representing

unweighted graphs, the array rowA (size m) of the CSC format,

stores the corresponding row indices of the subsequent non-zero

values of the columns in the matrix, and the array CPA (size n + 1)
stores the indices of the elements in the array rowA, that start a

column. The first element of CPA is always equal to 1 (one-based

format) and the last element equal tom + 1. The COOC format con-

tains two arrays: rowA which is equal to the corresponding array in

the CSC format, and the colA (sizem) array that stores the column

indices of the non-zero values of the adjacency matrix A. In order

to reduce the memory footprint and increase the performance of

the TurboBC algorithms, the arrays that stores the non-zero values
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of the binary sparse adjacency matrix of unweighted graphs were

not used in the corresponding sparse matrix-vector multiplication

(SpMV) operations of our algorithms.

Figure 1: Example of CSC and COOC sparse storage formats
for a sparse adjacency matrix representing a directed, un-
weighted graph.

3.1 Regular and irregular graphs
We implemented two types of BC algorithms. The first type, called

scalar algorithms, computes the sparse matrix-vector multiplica-

tion with GPU kernels which assign one thread per vertex (CSC

format) or one thread per edge (COOC format). The second type of

algorithms, called vector algorithms, computes the sparse matrix-

vector multiplication with GPU kernels which assign one warp per

vertex (CSC format). In this paper, we classified the graphs in two

classes: regular graphs and irregular graphs. The regular graphs
are those for which, in our experiments, the scalar BC algorithms

obtained the best performance, while irregular graphs are those

for which the vector BC algorithms obtained the best performance.

We also used the scale free metrics, proposed in reference [13], to

approximately quantify when a graph is regular or irregular. The

scale free metrics sc f , for a graph G = (V ,E) is defined by

sc f =
∑
(u,v)∈E

degree(u) ∗ degree(v) (5)

where degree(u) is the degree of vertex u ∈ V , for directed graphs

degree(u) = out.degree(u). Our experiments showed that for regu-

lar graphs the sc f metric is in the range [1, 224], and for irregular

graphs in the range [5846, 651837], more details about these re-

sults are given in Section 4 on which the experimental results are

presented.

Algorithm 1 Linear algebra shortest path vertex betweenness centrality

algorithm for a graph represented by a sparse adjacency matrix A in the

COOC sparse storage format.

1: Input: A. ▷ sparse adjacency matrix representing a graph.

2: Output: σ (1....n) ▷ stores number of shortest paths.

3: Output: bc (1....n) ▷ betweenness centrality vector

4: procedure BC-LA(G = A : Bn×n )
5: bc ← 0

6: for s ← 1, n do ▷ s : source vertex of BFS tree
7: d ← 0 ▷ d : the current depth being examined

8: c ← 1 ▷ c: check if the vector f is equal to 0

9: S ← 0 ▷ stores depth at which a vertex is discovered

10: σ ← 0

11: while c > 0 do ▷ BFS stage starts

12: d ← d + 1
13: c ← 0

14: ft ← 0

15: if d == 1 then
16: f (s) ← 1

17: σ (s) ← 1

18: end if
19: ft ← AT f
20: if ∃σ (i) == 0 then
21: f (i) ← ft (i)
22: end if
23: if ∃f (i)! = 0 then
24: S (i) ← d
25: σ (i) ← σ (i) + f (i)
26: c ← 1

27: end if
28: end while
29: d ← d − 1
30: δ ← 0

31: while d > 1 do ▷ one-sided dependences vector stage starts

32: δu ← 0

33: δut ← 0

34: if S (i) == d and σ (i) > 0 then
35: δu (i) ← (1.0 + δ (i)) ÷ σ (i)
36: end if
37: δut ← AT δu
38: if S (i) == d − 1 then
39: δ (i) ← δ (i) + δut (i) × σ (i)
40: end if
41: d ← d − 1
42: end while
43: for v ← 1, n do ▷ update of vector bc starts
44: if v , s then
45: bc(v) ← bc(v) + δ (v)
46: end if
47: end for
48: end for
49: return bc

50: end procedure

3.2 BC algorithms
Algorithm 1 represents the linear algebra formulation of the Bran-

des’ BC algorithm for a graph G = (V ,E) with n vertices and m
edges, represented by n×n sparse adjacency matrixA in the COOC

format, withm non-zero elements. This algorithm is inspired by

the BC algorithm described on chapter 6 of reference [10]. Algo-

rithm 1 computes the betweenness centrality vector, bc , for all the
connected vertices of the graph G using a two-stages procedure.

The first stage is a forward stage on which a Breadth First Search

(BFS) from the source vertex s is performed at the first while loop

(lines 11 to 28), where d represents the current depth of the dis-

covered vertices. The final value of d is equal to the height of the

BFS tree rooted at s . The output vector σ contains the number of

shortest paths from the source vertex to the discovered vertices. The

frontier vector f contains the number of shortest paths from the
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discovered vertices in the last iteration, to the undiscovered vertices

to which there is some edge. The while loop stops when the vector

f is equal to 0, i.e., when all the vertices reachable from s have been
discovered. The vector f is updated by the sparse matrix-vector

multiplication (SpMV) operation with the adjacency matrix (line

19), followed by a mask operation (lines 20 to 22) that exploits the

sparsity of the vector σ and updates the shortest paths to vertices

on f , not yet contained on the vector σ , guaranteeing that only the
new discovered shortest paths are added to σ (line 25). By using

the sparsity of the vector f , the vectors S and σ are updated only

when the corresponding component of the vector f is not zero

(lines 23 to 27). The vector S stores the depth at which each vertex

is discovered.

The second stage of Algorithm 1 is a backward stage on which

the one-sided dependences vector,δ , is computed within the second

while loop (lines 31 to 42), using Equation 4. For the computations

in this stage, the vertices are visited in reverse order of their depth.

The computation of the vector δ starts when the auxiliary vector

δu is computed (lines 32 to 36) for those values derived from the

children at depth d , which are stored on the vector S . The vector
δu is then weighted by the adjacency matrix A with the SpMV

operation (line 37). The vector δ is updated (lines 38 to 40), with

the values corresponding at depth d −1 as determined by the vector

S . Finally, the betweenness centrality vector bc is computed, using

Equation 3, for all parent vertices, v , not equal to the source vertex

s (lines 43 to 47). For undirected graphs the computation of the

vector bc should compensate by the double counting of every pair

of vertices, hence bc(v) ← bc(v) + δ (v)/2 for these graphs [5].
The BC algorithm with the sparse adjacency matrix in the CSC

format has the same two stages of Algorithm 1, with the difference

that in the first stage, the mask operation is included in the SpMV

operation as shown in Algorithm 3.

Algorithm 2 Algorithm to implement the sequential SpMV oper-

ations of Algorithm 1 (lines 19 and 37) with the sparse adjacency

matrix in the COOC format.

1: Input: x ,r owA ,colA
2: Output: y
3: procedure scCOOC-SpMV(x ,r owA ,colA ,y)
4: for k → 1,m do
5: if x (rowA(k )) > 0 then
6: y(colA(k )) ← y(colA(k)) + x (rowA(k ))
7: end if
8: end for

9: end procedure

3.3 Sparse matrix-vector multiplication
(SpMV).

Our experimental results showed that the runtime of the SpMV

operation (lines 19 and 37) can be up to 90 % of the total runtime

of Algorithm 1, determining therefore the overall performance of

the BC algorithm. We implemented the SpMV operation with three

algorithms, the first one based in the COOC format and the other

two based on the CSC format.

There are graphs with some vertices with a much higher degree

than the mean value of the degrees in the graph, the SpMV op-

eration for these graphs creates load unbalance in the threads of

the GPU which negatively affected the performance of the SpMV

algorithm. Our experiments showed that the SpMV algorithm based

on the COOC format are less affected by this load unbalance, when

applied to regular graphs which have vertices with much higher

degrees than the mean degree of the graph. Algorithm 2 imple-

ments the sequential version of the SpMV operations on the first

and second stages (lines 19 and 37) of Algorithm 1 with the sparse

adjacency matrix in the COOC format. The sparsity of vector x is

exploited by updating the vector y only when the corresponding

component of vector x is greater than zero (line 5). The paralleliza-

tion of Algorithm 2, known as COOC-scalar (scCOOC), on a GPU

kernel assigns one thread per edge. In this paper, the acronym

TurboBC-scCOOC designated the BC algorithm using the scCOOC

algorithm for the SpMV operation.

Algorithm 3 Algorithm to implement the sequential SpMV oper-

ations of Algorithm 1 (lines 19 and 37) with the sparse adjacency

matrix in the CSC format.

1: Input: x ,CPA ,r owA
2: Output: y
3: procedure scCSC-SpMV(x ,CPA ,r owA ,y)
4: for i → 1, n do
5: if σ (i) == 0 then
6: sum ← 0

7: star t ← CPA(i)
8: end ← CPA(i + 1) − 1
9: for k → star t, end do
10: sum ← sum + x (rowA(k))
11: end for
12: if sum > 0 then
13: y(i) ← sum
14: end if
15: end if
16: end for

17: end procedure

Algorithm 4 GPU-based algorithm to implement the SpMV (veCSC)

operation of Algorithm 1 (lines 19 and 37) with the sparse adjacency matrix

in the CSC format.

1: Input: x ,CPA ,r owA
2: Output: y
3: procedure veCSC-SpMV-Kernel(x ,CPA ,r owA ,y)
4: threadid ← threadIdx .x + blockIdx .x ∗ blockDim .x
5: threadLaneid ← threadid&(threadsPerW arp − 1)
6: warpid ← threadid /threadsPerW arp
7: while col < n do
8: if σ (col ) == 0 then
9: star t ← CPA(warpid )
10: end ← CPA(warpid + threadLaneid )
11: sum ← 0

12: icp ← star t + threadLaneid
13: while icp < end do
14: sum ← sum + y(rowA(icp))
15: icp ← icp + threadsPerW arp
16: end while
17: of f set ← threadsPerW arp/2
18: while of f set > 0 do
19: sum ← sum + shfl − sync(mask, sum, of f set )
20: of f set ← of f set/2
21: end while
22: if threadLaneid == 0 ∧ sum > 0 then
23: y(warpid ) ← sum
24: end if
25: end if
26: col ← col + num −warps
27: end while

28: end procedure
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Our experiments showed that for some medium size graphs

(see Table 1), the best performance was obtained with Algorithm

3, which implements the sequential version of the SpMV opera-

tions on Algorithm 1, with the sparse adjacency matrix in the CSC

format. Algorithm 3 implements the mask operation (line 5) by

computing the components of the vector y only when the corre-

sponding component of the σ vector is equal to 0, ensuring that

only the new discovered shortest paths are added to σ (line 25 of

Algorithm 1). The sparsity of vector x is used on line 12 when the

vector y is updated only when the variable sum is greater than

zero. The straightforward parallelization of Algorithm 3, known

as CSC-scalar (scCSC), with a GPU kernel, assigns one thread per

vertex. In this paper, the acronym TurboBC-scCSC designated the

BC algorithm using the scCSC algorithm for the SpMV operation.

Our experiments for irregular graphs, showed that both the

TurboBC-scCOOC and the TurboBC-scCSC algorithms resulted in

poor performance due to uncoalesced memory access and warp

divergence. In order to improve the performance of the SpMV oper-

ation for irregular graphs, we implemented the CSC-vector(veCSC)

algorithm shown in Algorithm 4, which is similar to the CSR-vector

algorithm proposed in [3]. The veCSC algorithm assigns a warp

for vertex. This algorithm incorporates the warp shuffle instruction

(lines 18-21) to reduce the local sums by the threads in the warp

without using shared memory. The first thread in the warp outputs

the final result (lines 22-24). The veCSC algorithm solves the prob-

lems of no coalesced memory access and warp divergence of the

scalar algorithms when applied to irregular graphs. The best perfor-

mance of the veCSC algorithm is obtained for irregular graphs, on

which the warp divergence is minimized. The acronym TurboBC-

veCSC designated the BC algorithm using the veCSC algorithm for

the SpMV operation.

Figure 2: Pipeline for the CUDA implementation of Algo-
rithm 1.

3.4 CUDA implementation of the BC algorithm
We designed and implemented Algorithm 1 using the pipeline

shown in Figure 2. The BFS stage of Algorithm 1 was implemented

using two kernels, the first kernel initializes the f and σ vectors

(lines 15 to 18) and executes the SpMV (ft ← fA) operation (line

19), the second kernel computes the additional functions of this

stage. The computation of the one-sided dependences vector, δ ,
was implemented using three kernels, the first kernel updates the

vector δu (lines 34-36), the second kernel computes the SpMV op-

eration (line 37), and the third kernel updates the vector δ (lines

38-40). One additional kernel updates the vector bc (lines 43 to 47).

This implementation increased the performance of the algorithm

by reducing the overhead due to the sequential execution of too

many kernels on the GPU.

Our experiments showed that the performance of Algorithm 1

increasedwhen the SpMV operation of the BFS stage was performed

over integer data types for the f and ft vectors. Hence, in order

to minimize the memory-footprint on the GPU due to the storage

of auxiliary vectors, the deallocation of the device memory for the

vectors f and ft is followed by the allocation of device memory

to the float type vectors δ,δu , and δut . The SpMV operation with

integer data typeswas up to 2.7x faster than the same operationwith

float data types, with a very small overhead due to the allocation

and deallocation operations of the device memory.

Figure 3: GPU memory upper bounds obtained with the
TurboBC-veCSC algorithm compared with the values ob-
tained by the gunrock BC algorithms for the computation
of BC/vertex in the mycielski group of irregular graphs in-
cluded in Table 3.

In order to quantify the reduction in the memory footprint of

the TurboBC algorithms, Figure 4 shows the data flow for the BC

algorithms in the gunrock library and for our TurboBC algorithms.

The host (CPU) arrays (yellow) are shown as inputs to the memory

transfer block, the auxiliary arrays (green) are used by the GPU to
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Figure 4: Data flow for the GPU-based BC algorithms implemented in the gunrock library and in TurboBC.

compute the BC which results in the output arrays (blue). The size

of each array is given, with n as the number of vertices andm as

the number of edges. We assumed that a lower bound for the global

memory required by the GPU during the BC computation was pro-

portional to the total size of the arrays required by this computation,

which in the case of the gunrock library is equal to 9n + 2m, and

for the TurboBC is equal to 7n +m for the BC computation stage.

Figure 3 a) and b) show the expected linear relationship between

the GPU memory usage, considered an experimental GPU memory

upper bound, and the total size of the arrays for the computation

of BC with TurboBC and with the gunrock libray, respectively. Our

experimental results also showed that the reduction, proportional

to 2n +m, in the GPU global memory requirements of the TurboBC

algorithms, illustrated in Figure 5 a), allowed the computation of

the BC for the relatively big graphs given in Table 4, while the

BC algorithms in the gunrock library ran out of memory for these

type of graphs, more details about these computations are given in

Sections 4.2 and 4.3.

4 EXPERIMENTAL RESULTS
The experiments presented in this section were designed to assess

the performance of our TurboBC algorithms by comparing them to

the benchmark parallel BC algorithms available in the state-of-the-

art GPU-based gunrock [21] and CPU-based, shared memory, ligra

[20] libraries. We also compared the performance of the TurboBC

algorithms with the performance of our implementation of the

sequential version of Algorithm 1 with the sparse adjacency matrix

in the CSC format.

Our benchmark of thirty-three graphs used in the experiments

were represented by sparse adjacency matrices selected from the

SuiteSparse Matrix Collection (formerly the University of Florida

Sparse Matrix Collection) [11], and from the Stanford Large Net-

work Dataset Collection [12]. The selected adjacency matrices

represented eighteen undirected and fifteen directed graphs, cov-

ering a wide range of vertices [28 × 10
3, 214 × 10

6] and edges

[171 × 10
3, 1950 × 10

6]. The parameters for the selected graphs

are given in Tables 1,2, 3, and 4. The weighted graphs were consid-

ered unweighted graphs for all the experiments.

The average runtime (milliseconds) for each experiment was

obtained by 50 trials per experiment.We used the sequential version

of the BC algorithm to verify the results obtained from the TurboBC

algorithms, only the correct results were accepted. For all the results

presented in this section, we chose the TurboBC algorithm which

showed the best performance for each graph. For the experiments

on which the BC was computed for one vertex, the MTEPs (millions

of transverse edges by second), achieved for the BC algorithms,

were computed as the ratiom/t wherem is the number of edges

(thousands) and t is the average runtime (milliseconds). For the

exact BC experiments on which the BC was computed for all the

vertices in the graph, the MTEPs were computed asmn/t where n
is the number of vertices (t in seconds,mn in millions).

All the experiments presented in this section were performed on

a Linux server with Ubuntu operating system version 16.04.6, 22

Intel Xeon Gold 6152 processors, clock speed 2.1 GHz, and 125 GB

of RAM. The GPU in this server was a NVIDIA Titan Xp, with 30

SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB of

global memory, and CUDA version 10.1.243 with CUDA capability

of 6.1.

4.1 Experimental results for regular graphs
This section summarizes the results of the experiments performed

with the TurboBC algorithms to compute the BC of one vertex on

twenty regular graphs, twelve of them directed graphs and the rest

undirected graphs.

The number of vertices (n) and edges (m), the parameters (max-

imum, mean, standard deviation) of the degree (out-degree for

directed graphs) distribution of the graphs, as well as the depth of

the BFS tree (d), are given for each graph in Tables 1 and 2. These

Tables also include the runtime, MTPEs and the speedup obtained

by the TurboBC algorithms over the algorithms implemented on the

gunrock ((gunrock)x) and ligra ((ligra)x) libraries, and over the se-
quential algorithm ((sequential)x). The symbol OOM means that
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Table 1: Parameters and experimental runtime, MTEPs and speedup obtained with the TurboBC-scCSC algorithm over the
sequential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries for the computation
of the BC/vertex of a set of regular graphs.

File n×103 m×103 degree(max/µ/σ ) d scf runtime MTEPs (sequential)x (gunrock)x (ligra)x
mark3j060sc(D) 28 171 44/6/4 42 10 2.1 82 11.5x 2.7x 2.2x
mark3j080sc(D) 37 228 44/6/4 52 10 2.8 82 9.8x 2.5x 1.5x
mark3j100sc(D) 46 285 44/6/4 62 10 3.5 82 11.4x 2.4x 1.5x
mark3j120sc(D) 55 343 44/6/4 72 10 4.4 78 12.9x 2.2x 1.6x
g7j140sc(D) 42 566 153/14/24 15 197 1.2 472 12.5x 1.9x 2.3x
g7j160sc(D) 47 657 153/14/24 16 208 1.4 469 13.3x 1.8x 2.6x

delaunayn15(U) 33 197 18/6/1 84 13 4.7 42 14.4x 2.4x 1.2x
delaunayn16(U) 66 393 17/6/1 110 14 7.1 55 25.3x 2.2x 1.9x
luxemb-osm(U) 115 239 6/2/0 1035 2 50.0 5 24.7x 2.3x 1.0x
internet(D) 125 207 138/2/4 21 1 1.5 138 37.8x 1.9x 2.0x

Table 2: Parameters, experimental runtime, MTEPs and speedup obtained with the TurboBC-scCOOC algorithm over the se-
quential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries, for the computation of
the BC/vertex of a set of regular graphs.

File n×103 m×103 degree(max/µ/σ ) d scf runtime(ms) MTEPs (sequential)x (gunrock)x (ligra)x
g7j180sc(D) 53 747 153/14/24 17 217 1.6 467 13.9x 1.7x 1.7x
g7j200sc(D) 59 838 153/14/25 18 224 1.7 493 14.6x 1.7x 1.8x

mark3j140sc(D) 64 400 44/6/4 82 10 5.3 76 13.2x 2.1x 1.2x
smallworld(U) 100 1000 17/10/1 9 61 1.0 1000 27.6x 1.5x 1.5x
ASIC-100ks(D) 99 579 206/6/6 33 3 2.7 215 25.7x 1.6x 1.7x
ASIC-680ks(D) 683 2329 210/3/4 31 2 6.6 353 43.9x 1.0x 1.5x
com-Youtube(U) 1135 5975 28754/5/51 14 8 9.7 616 48.4x 1.0x 2.8x
mawi-12345(U) 18571 38040 16 × 106/2/3806 10 2 74.8 509 33.6x 1.0x 3.6x
mawi-20000(U) 35991 74485 33 × 106/2/5414 11 2 143.0 521 33.9x 1.0x 3.4x
mawi-20030(U) 68863 143415 63 × 106/2/7597 12 2 261.4 549 32.3x 1.0x 3.2x

Table 3: Parameters and experimental runtime, MTEPs and speedup obtained with the TurboBC-veCSC algorithm algorithm
over the sequential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries for the com-
putation of the BC/vertex on a set of irregular graphs.

File n×103 m×103 degree(max/µ/σ ) d scf runtime(ms) MTEPs (sequential)x (gunrock)x (ligra)x
mycielski15(U) 25 11111 12287/452/664 3 41166 1.7 6536 17.4x 1.2x 2.3x
mycielski16(U) 49 33383 24575/679/1078 3 82833 3.4 9819 26.6x 1.5x 3.4x
mycielski17(U) 98 100246 49151/1020/1747 3 166407 7.9 12689 34.6x 1.7x 4.4x
mycielski18(U) 197 300934 98303/1531/2817 3 333199 18.5 16267 45.8x 2.1x 5.1x
mycielski19(U) 393 903195 196607/2297/4530 3 651837 48.9 18470 53.1x 2.7x 5.2x
kron-logn18(U) 262 21166 49164/81/454 6 5846 8.7 2433 31.6x 0.9x 1.1x
kron-logn19(U) 524 43563 80676/83/541 6 6609 17.4 2504 44.7x 1.0x 0.9x
kron-logn20(U) 1049 89241 131505/85/641 6 7410 58.4 1528 34.0x 1.3x 1.0x
kron-logn21(U) 2097 182084 213906/87/756 6 8161 193.2 943 24.5x 1.1x 1.0x

the corresponding benchmark algorithm ran out-of-memory, and

the symbol 1.9x in the column ((gunrock)x) means that TurboBC

was 1.9x faster than the BC algorithms in the gunrock library.

The TurboBC-scCSC algorithm showed the best performance

for the ten regular graphs in Table 1, obtaining up to 472 MTEPs,

as well as a maximum of 37.8x and an average of 17.4x speedup

over the sequential code, a maximum of 2.7x and an average of 2.2x

speedup over the the BC algorithm available in the gunrock library,

and a maximum of 2.6x and an average of 1.8x speedup over the BC

algorithm available in the ligra library. The scale free metrics sc f
for these group of regular graphs varied in the range [1,208] and 80

% of the graphs had a value below 15 for this metric. The depth (d)

of the BFS tree was below 100 for 80 % of the graphs in this group,

and for these graphs, the TurboBC-scCSC algorithm obtained the

maximum values of speedup and MTEPs.

For the ten regular graphs in Table 2, the TurboBC-scCOOC

algorithm showed the best performance. This algorithm obtained

up to 1000 MTEPs, a maximum of 48.4x and an average of 28.7x

speedup over the sequential code, a maximum of 2.1x and average

of 1.3x speedup over the the BC algorithm available in the gunrock

library, and a maximum of 3.6x and an average of 2.2x speedup

over the BC algorithm available in the ligra library. The scale free

metrics sc f for these group of regular graphs was in the range

[2,224] and 80 % of the graphs have a value less than 100 for this

metric. Our experiments also showed that for the last four graphs

in Table 2 with vertices with a maximum degree much higher than

the mean value, the TurboBC-scCOOC based on the COOC format

had a better performance than the TurboBC algorithms based on

the CSC format, and also than the corresponding algorithms in

the ligra library, asserting that the COOC format results in scalar

algorithms that are less affected for vertices with high degrees as

compared to scalar algorithms based on the CSC format.

4.2 Experimental results for irregular graphs
This section summarizes the results of the experiments performed

to compute the BC of one vertex on the nine irregular undirected
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Figure 5: GPUmemory usage, GPUmemory upper bounds, Global Memory Load Throughput (GLT) and performance(MTEPs)
obtained with the TurboBC-veCSC algorithm compared with the values obtained by the gunrock BC algorithms for the com-
putation of BC/vertex in the mycielski group of irregular graphs included in Table 3.

Table 4: Parameters and experimental runtime,MTEPs and speedup obtainedwith the TurboBC algorithms over the sequential
algorithm ((seq)x) and over the ligra ((ligra)x) library for the computation of the BC of a set of big graphs. The BC algorithm
on gunrock ran out of memory for these graphs.

File n×106 m×106 degree(max/µ/σ ) d scf runtime(s) MTEPs (sequential)x (ligra)x
kmer-V1r(U) 214 465 8/2/1 324 2 14.3 33 94.5 0.9x
it-2004(D) 42 1151 9964/28/67 50 543 3.1 371 39.5 0.8x

GAP-twitter(D) 62 1469 3 × 106/24/1990 15 126 7.3 201 50.4 0.8x
sk-2005(D) 51 1950 12870/39/78 54 1262 6.8 287 30.5 0.7x

graphs given in Table 3. The scale free metrics sc f for these group of
graphs varied in the range [5846,651837], and as expected, the best

performance on the computation of BC for these graphs was ob-

tained by the TurboBC-veCSC algorithm. This algorithm obtained

up to 18.5 GTEPs, as well as a maximum of 53.1x and an average

of 34.7x speedup over the sequential code, a maximum of 2.7x and

an average of 1.5x speedup over the the BC algorithm available

in the gunrock library, and a maximum of 5.2x and an average of

2.7x speedup over the BC algorithm available in the ligra library.

The TurboBC-veCSC algorithm obtained the maximum values of

speedup and MTEPs for the mycielski group of graphs for which

the depth (d) of the BFS tree was equal to 3.

Figure 5a) compares the GPU memory usage by the TurboBC-

veCSC algorithm and by the BC algorithms in the gunrock library

during the computation of BC for the mycielski group of irregular

graphs in Table 3. Since the space complexity of the Brandes’ algo-

rithm is O(m+n), Fig. 5a) shows that there is a linear relationship

between the GPU memory usage and the sum of the number of

vertices plus the number of edges of the mycielski graphs. Due

to the strategy of reducing the memory footprint of the TurboBC

algorithms, the memory usage of the gunrock library was up to 60

% higher than the memory usage of the TurboBC-veCSC algorithm.

The Global Memory Load Throughput (GLT) is a GPU metric

that measures the rate at which the GPU global memory is accessed

by an SM [7], Figure 5b) compares this metric obtained by the most

important kernels of the TurboBC-veCSC algorithm, and by the

kernels of the BC algorithm in the gunrock library. The theoretical

maximum GLT achievable for the GPU (NVIDIA Titan Xp) used

in our experiments was 575 GB/s, represented by the horizontal

line in Figure 5b), the GLT obtained by the kernels in the gunrock

library were substantially below this value, while the kernels in

the TurboBC-veCSC algorithm obtained GLT values that were 60

% higher than the theoretical maximum GLT. Figure 5c) illustrates

that the MTEPs, as function of the GLT metric, obtained by the

TurboBC-veCSC algorithm were much higher than those obtained

by the BC algorithms in the gunrock library.

In summary, the experimental results presented in Figure 5,

showed that for a representative group of highly irregular big

graphs, the TurboBC algorithms used memory more efficiently

than the BC algorithms in the gunrock library.

4.3 Experimental results for the computation
of BC for big graphs

Table 4 summarizes the results of the experiments performed for

the computation of the BC/vertex of a set of of four big graphs

with the TurboBC algorithms. The first graph of this set is a reg-

ular graph for which the TurboBC-scCSC algorithm showed the

best performance, and the other three graphs are irregular directed

graphs. The directed graph sk-2005 in Table 4 is the largest graph

for which the TurboBC was computed with our available GPU. For

the it-2004 irregular graph, the best performance was obtained with

the TurboBC-scCOOC algorithm, for the other two irregular graphs

the best performance was obtained with the TurboBC-veCSC algo-

rithm, because the TurboBC-scCOOC algorithm run out of memory

(OOM). For all the graphs on the set, the BC algorithm on the gun-

rock library ran out of memory (OOM), asserting our optimization

strategy of reducing the memory footprint to design and implement

our highly scalable TurboBC algorithms.



GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

Figure 6: Experimental results for a) the speedup over the
sequential algorithm and b)MTEPs obtained for our Tur-
boBC algorithms in the computation of BC for the set of big
graphs of Table 4.

The TurboBC algorithms obtained for this BC computation, up

to 371 MTEPs, and a maximum of 94.5x and an average of 53.8x

speedup over the sequential code. Since the BC algorithms in ligra

used the CPU resources, specially the memory resources, effectively,

there were up to 1.4x faster than the TurboBC algorithms for the

computation of BC in these big graphs.

Figure 6a) shows that the greatest speedups of the TurboBC

algorithms over the sequential BC algorithm were for the regular

graph with the greatest value for the depth (d) of the BFS tree, and

that the maximum values for the METPs were obtained with the

TurboBC-veCSC algorithm applied to the irregular directed graphs,

for which the depth (d) of the BFS tree was equal to or less than 50.

4.4 Experimental results for the exact BC
computation of a set of graphs

Table 5 summarizes the experimental results obtained by the Tur-

boBC algorithms for the exact BC computation for all vertices of

the set of six graphs. The first four are directed regular graphs, and

the last two are undirected irregular graphs.

The parameters and the TurboBC algorithm used for these com-

putations for the regular graphs are included in Table 2, and for

the irregular graphs in Table 3. The parameter n ×m is included

in Table 5, because the MTEPs for the exact BC computation are

computed as the ratio between the number of edges times the num-

ber of vertices (millions) and the average runtime (seconds). The

TurboBC algorithms obtained for this exact BC computation, up

to 13.8 GTEPs and a maximum of 38.0x and an average of 18.4x

speedup over the sequential code. The results in Table 5, also show

that both the speedup and the MTEPs increased with the size of

the graph, showing the high scalability of the TurboBC algorithms

for this type of computation.

Table 5: Experimental runtime, MTEPs and speedup ob-
tained with the TurboBC algorithms over the sequential al-
gorithm ((seq.)x) for the computation of the exact BC of all
vertices of a set of undirected and directed graphs.

File d n×m ×106 runtime(s) MTEPs (seq.)x
mark3j60sc(D) 42 4694 49.3 95 8.2x
mark3j80sc(D) 52 8345 90.8 92 9.2x
g7j180sc(D) 17 39906 105.9 377 13.4x
g7j200sc(D) 17 49688 129.7 383 14.3x

mycielski16(U) 3 1639081 159.8 10257 27.5x
mycielski17(U) 3 9854152 715.2 13778 38.0x

Figure 7 shows that the maximum values for speedups and for

MTEPs were obtained, for the graphs with the smaller values of the

depth (d) of the corresponding BFS trees.

Figure 7: Experimental results for a) the speedup and b)the
MTEPs of the exact computation of BC for the graphs given
in Table 5.

5 RELATEDWORK
The implementation of Brandes’ algorithm on GPUs is an important

area of research. One of the first implementations of this algorithm

on GPU was the Jia et.al. [9] edge-parallel approach, followed by

the gpu-fan package described in [19], which was based on an

improved All-Pairs Shortest Path (APSP) algorithm. Several hybrid

GPU-CPU and multiple GPU implementations are presented in

[14, 16, 18]. The Brandes’ BC algorithm have been implemented

on high performance, parallel graphs processing libraries such as

gunrock on the GPU [21], and the CPU-based, shared memory,

ligra [20]. As far as we know, the BC algorithm in the language of
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linear algebra was first described on chapter 6 of reference [10],

and implemented in the GraphBLAS library for CPUs [6], being our

proposed TurboBC algorithms, the first GPU-based implementation

of BC inspired in this linear algebra algorithm.

The gunrock BC algorithms use techniques such as BFS push-

pull, that, as illustrated in Figure 4, require to store additional

auxiliary arrays on the GPU global memory, increasing the space

complexity of the algorithms and limiting the size of the graphs

for which the BC can be computed with limited memory GPUs.

Our approach for designing and implementing the algorithms in

TurboBC differed from the gunrock approach, because we used

memory efficient and highly scalable algorithms which were sim-

pler and hence with less overhead. We also reduced the memory

footprint of the TurboBC algorithms by using only one sparse stor-

age format for each BC computation, by minimizing the number of

auxiliary arrays on the device side, and by transferring to the GPU

only one set of the arrays that store the indices of the non-zero

values of the sparse adjacency matrices representing the graphs.

This reduction in space complexity reduced the memory usage of

the TurboBC algorithms, allowing the computation of the BC for

graphs with higher number of vertices and edges than those com-

puted by the gunrock library on the same GPU, and also increasing

the performance of the TurboBC algorithms.

6 SUMMARY AND FUTURE WORK
In this paper, as far as we know, we designed and implemented Tur-

boBC, the first memory efficient and highly scalable GPU-based set

of BC algorithms in the language of linear algebra. The algorithms

in TurboBC are applicable to unweighted, directed and undirected

graphs represented by sparse adjacency matrices.

The design goals of the TurboBC algorithms were to reduce

the GPU global memory footprint required by the algorithms, as

well as to exploit the sparsity structure of the output and fron-

tier vectors of the BFS stage. Our experiments showed that our

TurboBC algorithms obtained more than 18 GTEPs (billions of

transverse edges per second), and were on average 1.7x and 2.2x

faster than the state-of-the-art algorithms implemented on the high

performance, GPU-based, gunrock [21], and CPU-based, ligra [20]

libraries, respectively. The experimental results also showed that

by minimizing their memory footprint, the TurboBC algorithms

were able to compute the BC of relatively big graphs, for which the

gunrock algorithms ran out of memory.

Our future work will be focused on improving the performance

of the algorithms in TurboBC, especially the performance of the

algorithms computing the vector sparse matrix multiplication oper-

ations. Our goal will be to design and implement memory efficient

and scalable GPU-based BC algorithms, with higher performance

for big graphs than the state-of-the-art BC algorithms.
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