TurboBC: A Memory Efficient and Scalable GPU Based
Betweenness Centrality Algorithm in the Language of Linear
Algebra

Oswaldo Artiles
oarti001@fiu.edu
School of Computing and Information Sciences, Florida
International University
Miami, Florida, USA

ABSTRACT

Betweenness centrality (BC) is a shortest path centrality metric
used to measure the influence of individual vertices or edges on
huge graphs that are used for modeling and analysis of human brain,
omics data, or social networks. The application of the BC algorithm
to modern graphs must deal with the size of the graphs, as well with
highly irregular data-access patterns. These challenges are particu-
larly important when the BC algorithm is implemented on Graphics
Processing Units (GPU), due to the limited global memory of these
processors, as well as the decrease in performance due to the load
unbalance resulting from processing irregular data structures. In
this paper, we present the first GPU based linear-algebraic formula-
tion and implementation of BC, called TurboBC, a set of memory
efficient BC algorithms that exhibits good performance and high
scalability on unweighted, undirected or directed sparse graphs of
arbitrary structure. Our experiments demonstrate that our TurboBC
algorithms obtain more than 18 GTEPs and an average speedup of
31.9x over the sequential version of the BC algorithm, and are on
average 1.7x and 2.2x faster than the state-of-the-art algorithms
implemented on the high performance, GPU-based, gunrock, and
CPU-based, ligra libraries, respectively. These experiments also
show that by minimizing their memory footprint, the TurboBC
algorithms are able to compute the BC of relatively big graphs, for
which the gunrock algorithms ran out of memory.

CCS CONCEPTS

« Theory of computation — Massively parallel algorithms; «
Mathematics of computing — Graph algorithms.

KEYWORDS
GPU, CUDA, graph parallel algorithms, centrality, linear algebra.

ACM Reference Format:

Oswaldo Artiles and Fahad Saeed. 2021. TurboBC: A Memory Efficient and
Scalable GPU Based Betweenness Centrality Algorithm in the Language
of Linear Algebra. In 50th International Conference on Parallel Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP Workshops 21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08...$15.00
https://doi.org/10.1145/3458744.3474047

Fahad Saeed
fsaced@fiu.edu
School of Computing and Information Sciences, Florida
International University
Miami, Florida, USA

Workshop (ICPP Workshops ’21), August 9-12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3458744.3474047

1 INTRODUCTION

Centrality is a fundamental concept in graph analytics [2], used
to measure the influence of individual vertices or edges on huge
graphs that are used for modeling and analysis of human brain [17],
omics data [4], or social networks [15]. One of the most important
measures of centrality is the shortest-path based betweenness cen-
trality (BC), a metric used to measure the importance of vertices
and/or edges in a graph [8].

BC algorithms have enough parallelism to be implemented us-
ing all the computational power of modern Graphics Processing
Units (GPU’s) [7], however this implementation is challenging be-
cause real world graphs have some vertices whose degree are much
greater than the mean degree in the graph, resulting in data-access
patterns which are highly irregular. These type of data produces
load imbalances and warp divergences that negatively affect the
performance of the kernels in GPUs. The limited global memory
and the data-transfer bottleneck of the GPU are also important chal-
lenges to implement scalable BC algorithms for the BC computation
on modern huge graphs. These challenges result in limits in the
scalability and performance of the BC algorithms, being therefore
an active area of research [14, 16, 18-21].

In this paper, we propose TurboBC, a set of GPU-based BC al-
gorithms in the language of linear algebra. The memory efficient
and highly scalable BC algorithms on TurboBC are based on two
parallel optimizations. Our first optimization was to reduce the
space-complexity of the algorithm by limiting the number and the
size of the arrays used on the computations performed by the GPU
kernels. The second optimization was to design and implement our
BC algorithms by exploiting the sparsity of the frontier and output
vectors of the Breadth First Search (BFS) stage.

The main contributions of the paper are:

(1) We designed and implemented TurboBC, the first implemen-
tation of memory efficient and highly scalable GPU-based
BC algorithms in the language of linear algebra. The Tur-
boBC algorithms are applicable to unweighted, directed and
undirected graphs represented by sparse adjacency matrices
in the Compressed Sparse Column (CSC) and the transpose
of the Coordinate Sparse (COO) formats. In order to reduce
the memory footprint and to increase the memory efficiency
and the scalability of TurboBC, the algorithms were designed

https://doi.org/10.1145/3458744.3474047
https://doi.org/10.1145/3458744.3474047

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

to use only one sparse storage format for each BC computa-
tion, also the number of auxiliary arrays on the device side
was minimized. The reduction in the memory-footprint in-
creased the memory bandwidth utilization and reduced the
number of unnecessary floating operations. The design and
implementation of the TurboBC algorithms also exploited
the sparsity of the frontier and output vectors of the Breadth
First Search (BFS) stage. These optimizations improved the
performance and the scalability of the TurboBC algorithms.
(2) A comprehensive experimental detail and results are pre-
sented to assess the performance of the GPU-based BC algo-
rithms in TurboBC. Our TurboBC algorithms obtained more
than 18 GTEPs (billions of transverse edges per second),
and an average speedup of 31.9x over the sequential ver-
sion of the BC algorithm, and were on average 1.7x and 2.2x
faster than the state-of-the-art algorithms implemented on
the high performance, GPU-based, gunrock [21], and CPU-
based, ligra [20] libraries, respectively. These experiments
also showed that by minimizing their memory footprint, the
GPU memory usage of of the gunrock library was higher
than the memory usage of the TurboBC algorithms, allowing
these algorithms to compute the BC of relatively big graphs,
for which the gunrock algorithms ran out of memory. Our ex-
periments also demonstrated that the performance obtained
by the TurboBC algorithms, measured as MTEPs, as function
of the GPU memory bandwidth, were much greater than
those obtained by the BC algorithms in the gunrock library,
showing that the GPU memory is used more efficiently by
the TurboBC algorithms.
The remaining of this paper is organized as follows: Section
2 presents a general description of the BC algorithm. Section 3
presents details of the design and implementation of the TurboBC
algorithms. Section 4 is dedicated to the experimental results. Sec-
tion 5 describes the related work, and the summary and future work
are presented in Section 6.

2 BETWEENNESS CENTRALITY ALGORITHM

The shortest-path betweenness centrality (BC) algorithm is appli-
cable to any unweighted, directed or undirected graph G = (V, E),
where V is the finite set of vertices and E the set of edges. Any pair
(u,v) € E implies that the vertices u and v in V are connected by
an edge in G. A graph G is directed if E consists of ordered pairs,
otherwise, G is undirected. Given a source vertex s € V in a graph G,
the Breadth First Search (BFS) stage of the BC algorithm performs
a systematic search of every vertex on E that is reachable from s.
The algorithm computes the shortest path, i.e., the smallest number
of edges from s to each reachable vertex t. The number of shortest
paths between the vertices s and t is denoted by o5, and o5;(v)
is equal to the number of shortest paths between s and t passing
through the vertex v € V, where v is different than s and ¢ [1, 5].

Betweenness centrality of a vertex v, BC(v), in a graph G was
formally defined by Freeman [8] as

BC)= Y. ou@)fosi= Y 85(v) (1

SEUEL SEUEL
where o54(v)/osy = 0, if o5y = 0, and §54(v) = os:(v)/0st, the
pair-wise dependences, is the fraction of shortest paths between the

Artiles and Saeed

vertices s and ¢ that pass through v. This definition of BC equally
applies to disconnected and connected, directed and undirected
graphs [8]. The straightforward computation of the BC of a vertex v,
starts by computing the number and the length of all-pairs shortest
paths over the graph, followed by computing the BC for each vertex
by looking at all other pairs of vertices, and increasing the value
of BC(v) if the vertex, v, was in the corresponding shortest path. If
|V| = n, the time complexity of this BC algorithm is O(n?), and its
space complexity is O(n?).

Brandes [5], proposed a more efficient BC algorithm on which
the pair-wise dependences can be aggregated without computing
all of them explicitly. Let the one-sided dependences be defined as

85(0) =) 85(v) (2)
tev
for all s,v € V. Then
BO@) =)" 85(v) 3)
s#Fv

The following recurrence relation computes the one-sided depen-
dences in the Brandes’ BC algorithm

ds(v) =

w:d(s,w)=d(s,v)+1

52, (1 4 55(w)) @)

sw

where d(s, v) is the length of the shortest path from s to v. The re-
currence relation 4 computes the one-sided dependence of a vertex
s on some vertex v from the one-sided dependence of a vertex w
one edge far away. For a graph with |E| = m, the time complexity
of the Brandes’ algorithm for unweighted graphs is: O(nm), and the
space complexity: O(n + m). This algorithm is especially suitable
for graphs represented by sparse adjacency matrices.

3 BC ALGORITHMS IN THE LANGUAGE OF
LINEAR ALGEBRA FOR UNWEIGHTED
GRAPHS.

This section describes the design and implementation of our GPU-
based TurboBC algorithms in the language of linear algebra for
unweighted graphs. The TurboBC algorithms were implemented for
graphs represented by sparse adjacency matrices in the Compressed
Sparse Column (CSC) format, as well in the COOC format which is
the transpose of the Coordinate Sparse (COO) format. Both sparse
formats are suitable to implement the sparse matrix-vector multipli-
cation operations included in the BC Algorithm 1. Figure 1 shows
an example of the CSC and COOC formats for a sparse adjacency
matrix representing an undirected, unweighted graph. Foran X n
adjacency sparse matrix A with m non-zero elements representing
unweighted graphs, the array rowy (size m) of the CSC format,
stores the corresponding row indices of the subsequent non-zero
values of the columns in the matrix, and the array CP4 (size n + 1)
stores the indices of the elements in the array rowy, that start a
column. The first element of CPy is always equal to 1 (one-based
format) and the last element equal to m + 1. The COOC format con-
tains two arrays: rows which is equal to the corresponding array in
the CSC format, and the coly (size m) array that stores the column
indices of the non-zero values of the adjacency matrix A. In order
to reduce the memory footprint and increase the performance of
the TurboBC algorithms, the arrays that stores the non-zero values

GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra

of the binary sparse adjacency matrix of unweighted graphs were
not used in the corresponding sparse matrix-vector multiplication
(SpMV) operations of our algorithms.

>

I
cooroOo
corROO
== Oo oM
CoOo =K
o oOoO

CSC

rowa=[2 3 1 4 5 1 2 4]
CPo=[1 2 3 6 8 9

COoOocC

rowa=[2 3 1 4 5 1 2 4]
cola=[1 2 3 3 3 4 4 5]

Figure 1: Example of CSC and COOC sparse storage formats
for a sparse adjacency matrix representing a directed, un-
weighted graph.

3.1 Regular and irregular graphs

We implemented two types of BC algorithms. The first type, called
scalar algorithms, computes the sparse matrix-vector multiplica-
tion with GPU kernels which assign one thread per vertex (CSC
format) or one thread per edge (COOC format). The second type of
algorithms, called vector algorithms, computes the sparse matrix-
vector multiplication with GPU kernels which assign one warp per
vertex (CSC format). In this paper, we classified the graphs in two
classes: regular graphs and irregular graphs. The regular graphs
are those for which, in our experiments, the scalar BC algorithms
obtained the best performance, while irregular graphs are those
for which the vector BC algorithms obtained the best performance.
We also used the scale free metrics, proposed in reference [13], to
approximately quantify when a graph is regular or irregular. The
scale free metrics scf, for a graph G = (V, E) is defined by

scf = Z degree(u) * degree(v) (5)
(u,v)€E

where degree(u) is the degree of vertex u € V, for directed graphs
degree(u) = out.degree(u). Our experiments showed that for regu-
lar graphs the scf metric is in the range [1, 224], and for irregular
graphs in the range [5846,651837], more details about these re-
sults are given in Section 4 on which the experimental results are
presented.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Algorithm 1 Linear algebra shortest path vertex betweenness centrality
algorithm for a graph represented by a sparse adjacency matrix A in the
COOC sparse storage format.

1: Input: A.

2: Output: o(1....n)
3: Output: be(1....n)
4: procedure BC-LA(G = A : B"™*")

> sparse adjacency matrix representing a graph.
> stores number of shortest paths.
> betweenness centrality vector

5 bec —0

6 fors < 1, n do > s: source vertex of BFS tree
7: de—0 > d: the current depth being examined
8: ce—1 > c: check if the vector f is equal to 0
9: S—0 > stores depth at which a vertex is discovered
10: o—0

11: while ¢ > 0 do > BFS stage starts
12: d—d+1

13: c—0

14: ft <0

15: if d == 1 then

16: f(s) <1

17: o(s) « 1

18: end if

19: fi « ATf

20: if 3o (i) == 0 then

21: £G0) — fi0)

22: end if

23: if 3f(i)! =0 then

24: S(i) —d

25: o(i) « o(i) + f(i)

26: ce—1

27: end if

28: end while

29: de—d-1

30: 50

31: while d > 1do > one-sided dependences vector stage starts

32: Sy —0

33: Sut — 0

34: if S(i) == d and o(i) > 0 then

35: Sy (i) « (1.0 + 6(i)) + o (i)

36: end if

37: Sur — AT S,

38: if S(i)==d —1 then

39: (i) « (i) + Sy (i) X o (i)

40: end if

41: d—d-1

42: end while

43: forv « 1, ndo > update of vector bc starts
44: if v #s then

45: be(v) « be(v) + 6(v)

46: end if

47: end for

48: end for

49: return be

50: end procedure

3.2 BC algorithms

Algorithm 1 represents the linear algebra formulation of the Bran-
des’ BC algorithm for a graph G = (V, E) with n vertices and m
edges, represented by n X n sparse adjacency matrix A in the COOC
format, with m non-zero elements. This algorithm is inspired by
the BC algorithm described on chapter 6 of reference [10]. Algo-
rithm 1 computes the betweenness centrality vector, bc, for all the
connected vertices of the graph G using a two-stages procedure.
The first stage is a forward stage on which a Breadth First Search
(BFS) from the source vertex s is performed at the first while loop
(lines 11 to 28), where d represents the current depth of the dis-
covered vertices. The final value of d is equal to the height of the
BFS tree rooted at s. The output vector o contains the number of
shortest paths from the source vertex to the discovered vertices. The
frontier vector f contains the number of shortest paths from the

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

discovered vertices in the last iteration, to the undiscovered vertices
to which there is some edge. The while loop stops when the vector
f isequal to 0, i.e., when all the vertices reachable from s have been
discovered. The vector f is updated by the sparse matrix-vector
multiplication (SpMV) operation with the adjacency matrix (line
19), followed by a mask operation (lines 20 to 22) that exploits the
sparsity of the vector o and updates the shortest paths to vertices
on f, not yet contained on the vector o, guaranteeing that only the
new discovered shortest paths are added to o (line 25). By using
the sparsity of the vector f, the vectors S and o are updated only
when the corresponding component of the vector f is not zero
(lines 23 to 27). The vector S stores the depth at which each vertex
is discovered.

The second stage of Algorithm 1 is a backward stage on which
the one-sided dependences vector, 8, is computed within the second
while loop (lines 31 to 42), using Equation 4. For the computations
in this stage, the vertices are visited in reverse order of their depth.
The computation of the vector & starts when the auxiliary vector
8y is computed (lines 32 to 36) for those values derived from the
children at depth d, which are stored on the vector S. The vector
8, is then weighted by the adjacency matrix A with the SpMV
operation (line 37). The vector & is updated (lines 38 to 40), with
the values corresponding at depth d — 1 as determined by the vector
S. Finally, the betweenness centrality vector bc is computed, using
Equation 3, for all parent vertices, v, not equal to the source vertex
s (lines 43 to 47). For undirected graphs the computation of the
vector be should compensate by the double counting of every pair
of vertices, hence bc(v) < be(v) + §(v)/2 for these graphs [5].

The BC algorithm with the sparse adjacency matrix in the CSC
format has the same two stages of Algorithm 1, with the difference
that in the first stage, the mask operation is included in the SpMV
operation as shown in Algorithm 3.

Algorithm 2 Algorithm to implement the sequential SpMV oper-
ations of Algorithm 1 (lines 19 and 37) with the sparse adjacency
matrix in the COOC format.

1: Input: x,rowa,coly

2: Output: y

3: procedure scCOOC-SPMV(x,rowa,cola.y)
4 fork — 1, mdo

5 if x(rowa(k)) > 0 then

6 y(cola(k)) « y(cola(k)) + x(rowa(k))
7: end if
8

9:

end for

end procedure

3.3 Sparse matrix-vector multiplication
(SpMV).

Our experimental results showed that the runtime of the SpMV
operation (lines 19 and 37) can be up to 90 % of the total runtime
of Algorithm 1, determining therefore the overall performance of
the BC algorithm. We implemented the SpMV operation with three
algorithms, the first one based in the COOC format and the other
two based on the CSC format.

There are graphs with some vertices with a much higher degree
than the mean value of the degrees in the graph, the SpMV op-
eration for these graphs creates load unbalance in the threads of

Artiles and Saeed

the GPU which negatively affected the performance of the SpMV
algorithm. Our experiments showed that the SpMV algorithm based
on the COOC format are less affected by this load unbalance, when
applied to regular graphs which have vertices with much higher
degrees than the mean degree of the graph. Algorithm 2 imple-
ments the sequential version of the SpMV operations on the first
and second stages (lines 19 and 37) of Algorithm 1 with the sparse
adjacency matrix in the COOC format. The sparsity of vector x is
exploited by updating the vector y only when the corresponding
component of vector x is greater than zero (line 5). The paralleliza-
tion of Algorithm 2, known as COOC-scalar (scCOOC), on a GPU
kernel assigns one thread per edge. In this paper, the acronym
TurboBC-scCOOC designated the BC algorithm using the scCOOC
algorithm for the SpMV operation.

Algorithm 3 Algorithm to implement the sequential SpMV oper-
ations of Algorithm 1 (lines 19 and 37) with the sparse adjacency
matrix in the CSC format.

1: Input: x,CP4,rowy
2: Output: y
3: procedure scCSC-SPMV(x,CP4,rowa.y)

4: fori —» 1, ndo

5: if (i) == 0 then

6: sum «— 0

7: start « CPa(i)

8: end «— CPa(i+1)—1
9: for k — start, end do
10: sum < sum + x(row(k))
11: end for

12: if sum > 0 then

13: y(i) « sum

14: end if

15: end if

16: end for

17: end procedure

Algorithm 4 GPU-based algorithm to implement the SpMV (veCSC)
operation of Algorithm 1 (lines 19 and 37) with the sparse adjacency matrix
in the CSC format.
1: Input: x,CPy,rowy
2: Output: y
3: procedure VECSC-SPMV-KERNEL(X,CP4.r owa,y)
: thread;q « threadldx.x + blockIdx.x = blockDim.x

4
5: threadLane;q < thread; &(threadsPerWarp —1)
6: warp;q < thread;q/threadsPerWarp

7: while col < n do
8 if o(col) == 0 then

9: start <« CPa(warp;q)
10: end «— CPy(warp;q + threadLane;)
11: sum «— 0
12: icp « start + threadLane;q
13: while icp < end do
14: sum « sum + y(rowa(icp))
15: icp « icp + threadsPerWarp
16: end while
17: of fset « threadsPerWarp/2
18: while of fset > 0do
19: sum « sum + shfl — sync(mask, sum, of fset)
20: of fset — of fset/2
21: end while
22: if threadLane;g == 0 A sum > 0 then
23: y(warp;q) < sum
24: end if
25: end if
26: col « col + num — warps

27: end while

28: end procedure

GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra

Our experiments showed that for some medium size graphs
(see Table 1), the best performance was obtained with Algorithm
3, which implements the sequential version of the SpMV opera-
tions on Algorithm 1, with the sparse adjacency matrix in the CSC
format. Algorithm 3 implements the mask operation (line 5) by
computing the components of the vector y only when the corre-
sponding component of the ¢ vector is equal to 0, ensuring that
only the new discovered shortest paths are added to o (line 25 of
Algorithm 1). The sparsity of vector x is used on line 12 when the
vector y is updated only when the variable sum is greater than
zero. The straightforward parallelization of Algorithm 3, known
as CSC-scalar (scCSC), with a GPU kernel, assigns one thread per
vertex. In this paper, the acronym TurboBC-scCSC designated the
BC algorithm using the scCSC algorithm for the SpMV operation.

Our experiments for irregular graphs, showed that both the
TurboBC-scCOOC and the TurboBC-scCSC algorithms resulted in
poor performance due to uncoalesced memory access and warp
divergence. In order to improve the performance of the SpMV oper-
ation for irregular graphs, we implemented the CSC-vector(veCSC)
algorithm shown in Algorithm 4, which is similar to the CSR-vector
algorithm proposed in [3]. The veCSC algorithm assigns a warp
for vertex. This algorithm incorporates the warp shuffle instruction
(lines 18-21) to reduce the local sums by the threads in the warp
without using shared memory. The first thread in the warp outputs
the final result (lines 22-24). The veCSC algorithm solves the prob-
lems of no coalesced memory access and warp divergence of the
scalar algorithms when applied to irregular graphs. The best perfor-
mance of the veCSC algorithm is obtained for irregular graphs, on
which the warp divergence is minimized. The acronym TurboBC-
veCSC designated the BC algorithm using the veCSC algorithm for
the SpMV operation.

4>{ allocate device memory (f.f_t) |

‘ BFS stage |

)

free device memory (ff_t)
allocate device memory (delta, delta_u,delta_ut)

@ No ‘P

one-sided dependences
stage

‘ bc update

free device memory (delta, delta_u,delta_ut)

Figure 2: Pipeline for the CUDA implementation of Algo-
rithm 1.

3.4 CUDA implementation of the BC algorithm

We designed and implemented Algorithm 1 using the pipeline
shown in Figure 2. The BFS stage of Algorithm 1 was implemented
using two kernels, the first kernel initializes the f and ¢ vectors

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

(lines 15 to 18) and executes the SpMV (f; «— fA) operation (line
19), the second kernel computes the additional functions of this
stage. The computation of the one-sided dependences vector, 6,
was implemented using three kernels, the first kernel updates the
vector 8y (lines 34-36), the second kernel computes the SpMV op-
eration (line 37), and the third kernel updates the vector § (lines
38-40). One additional kernel updates the vector bc (lines 43 to 47).
This implementation increased the performance of the algorithm
by reducing the overhead due to the sequential execution of too
many kernels on the GPU.

Our experiments showed that the performance of Algorithm 1
increased when the SpMV operation of the BFS stage was performed
over integer data types for the f and f; vectors. Hence, in order
to minimize the memory-footprint on the GPU due to the storage
of auxiliary vectors, the deallocation of the device memory for the
vectors f and f; is followed by the allocation of device memory
to the float type vectors 8, 8y, and 8y¢. The SpMV operation with
integer data types was up to 2.7x faster than the same operation with
float data types, with a very small overhead due to the allocation
and deallocation operations of the device memory.

2 3000

02 04 06 08 10
TurboBC: GPU size of arrays (7n+m) 1e9

a) GPU memory upper bound TurboBC

12000

10000

gunrock GPU Memory Usage (MB)
3
g
8

025 050 0.75 100 125 150 175 200
gunrock: GPU size of arrays (9n +2m) le9

b) GPU memory upper bound gunrock

Figure 3: GPU memory upper bounds obtained with the
TurboBC-veCSC algorithm compared with the values ob-
tained by the gunrock BC algorithms for the computation
of BC/vertex in the mycielski group of irregular graphs in-
cluded in Table 3.

In order to quantify the reduction in the memory footprint of
the TurboBC algorithms, Figure 4 shows the data flow for the BC
algorithms in the gunrock library and for our TurboBC algorithms.
The host (CPU) arrays (yellow) are shown as inputs to the memory
transfer block, the auxiliary arrays (green) are used by the GPU to

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Artiles and Saeed

backward_in(n)

h_bc_values(n)

|

h_sigma(n)
h_labels(n)
CSR sparse format

h_row_offset(n)
h_col_indices(m)

Memory Transfer
Host to Device

|- d_bc_values(n)

GPU

BC computation [>__d_sigma(n)

> d_labels(n)

h_node_values(n)
h_edge_values(m)

forward_out(n)[

forward_queu(n) |

predecessors(n)

a) gunrock: GPU-based BC data flow

> d_bc(n)

> d_bc(n)
GPU
BC

Stage

— d_sigma(n) |—>

> d_S(n) |—>

> d_sigma(n)

>

h_bc(n) —>
h_sigma(n) —>
Memory Transfer GPU
h_S(n) Host to Device |°|BFS computation
Stage
CSC sparse format
h_CPA(n) —>
h_rowA(m)
fum) | f(n)

d_S(n)

‘ delta(n) [delta_u(n) |

delta_ut(n)

b) TurboBC: GPU-based BC data flow

Figure 4: Data flow for the GPU-based BC algorithms implemented in the gunrock library and in TurboBC.

compute the BC which results in the output arrays (blue). The size
of each array is given, with n as the number of vertices and m as
the number of edges. We assumed that a lower bound for the global
memory required by the GPU during the BC computation was pro-
portional to the total size of the arrays required by this computation,
which in the case of the gunrock library is equal to 9n + 2m, and
for the TurboBC is equal to 7n + m for the BC computation stage.
Figure 3 a) and b) show the expected linear relationship between
the GPU memory usage, considered an experimental GPU memory
upper bound, and the total size of the arrays for the computation
of BC with TurboBC and with the gunrock libray, respectively. Our
experimental results also showed that the reduction, proportional
to 2n + m, in the GPU global memory requirements of the TurboBC
algorithms, illustrated in Figure 5 a), allowed the computation of
the BC for the relatively big graphs given in Table 4, while the
BC algorithms in the gunrock library ran out of memory for these
type of graphs, more details about these computations are given in
Sections 4.2 and 4.3.

4 EXPERIMENTAL RESULTS

The experiments presented in this section were designed to assess
the performance of our TurboBC algorithms by comparing them to
the benchmark parallel BC algorithms available in the state-of-the-
art GPU-based gunrock [21] and CPU-based, shared memory, ligra
[20] libraries. We also compared the performance of the TurboBC
algorithms with the performance of our implementation of the
sequential version of Algorithm 1 with the sparse adjacency matrix
in the CSC format.

Our benchmark of thirty-three graphs used in the experiments
were represented by sparse adjacency matrices selected from the
SuiteSparse Matrix Collection (formerly the University of Florida
Sparse Matrix Collection) [11], and from the Stanford Large Net-
work Dataset Collection [12]. The selected adjacency matrices
represented eighteen undirected and fifteen directed graphs, cov-
ering a wide range of vertices [28 X 103,214 x 10°] and edges
[171 x 103,1950 x 10°]. The parameters for the selected graphs

are given in Tables 1,2, 3, and 4. The weighted graphs were consid-
ered unweighted graphs for all the experiments.

The average runtime (milliseconds) for each experiment was
obtained by 50 trials per experiment. We used the sequential version
of the BC algorithm to verify the results obtained from the TurboBC
algorithms, only the correct results were accepted. For all the results
presented in this section, we chose the TurboBC algorithm which
showed the best performance for each graph. For the experiments
on which the BC was computed for one vertex, the MTEPs (millions
of transverse edges by second), achieved for the BC algorithms,
were computed as the ratio m/t where m is the number of edges
(thousands) and t is the average runtime (milliseconds). For the
exact BC experiments on which the BC was computed for all the
vertices in the graph, the MTEPs were computed as mn/t where n
is the number of vertices (¢ in seconds, mn in millions).

All the experiments presented in this section were performed on
a Linux server with Ubuntu operating system version 16.04.6, 22
Intel Xeon Gold 6152 processors, clock speed 2.1 GHz, and 125 GB
of RAM. The GPU in this server was a NVIDIA Titan Xp, with 30
SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB of
global memory, and CUDA version 10.1.243 with CUDA capability
of 6.1.

4.1 Experimental results for regular graphs

This section summarizes the results of the experiments performed
with the TurboBC algorithms to compute the BC of one vertex on
twenty regular graphs, twelve of them directed graphs and the rest
undirected graphs.

The number of vertices (n) and edges (m), the parameters (max-
imum, mean, standard deviation) of the degree (out-degree for
directed graphs) distribution of the graphs, as well as the depth of
the BFS tree (d), are given for each graph in Tables 1 and 2. These
Tables also include the runtime, MTPEs and the speedup obtained
by the TurboBC algorithms over the algorithms implemented on the
gunrock ((gunrock)x) and ligra ((ligra)x) libraries, and over the se-
quential algorithm ((sequential)x). The symbol OOM means that

GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Table 1: Parameters and experimental runtime, MTEPs and speedup obtained with the TurboBC-scCSC algorithm over the
sequential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries for the computation

of the BC/vertex of a set of regular graphs.

File nx10° [mx10% [degree(max/u/o) d scf | runtime | MTEPs | (sequential)x | (gunrock)x | (ligra)x
mark3j060sc(D) 28 171 44/6/4 42 10 2.1 82 11.5x 2.7x 2.2x
mark3j080sc(D) 37 228 44/6/4 52 10 2.8 82 9.8x 2.5x 1.5x
mark3j1005c(D§ 46 285 44/6/4 62 10 3.5 82 11.4x 2.4x 1.5x
mark3j120sc(D 55 343 44/6/4 72 10 4.4 78 12.9x 2.2x 1.6x

g7]14OSC() 42 566 153/14/24 15 | 197 1.2 472 12.5x 1.9x 2.3x
7j160sc(D) 47 657 153/14/24 16 208 1.4 469 13.3x 1.8x 2.6x
delaunayn15(U) 33 197 18/6/1 84 13 4.7 42 14.4x 2.4x 1.2x
delaunayn16(U) 66 393 17/6/1 110 14 7.1 55 25.3x 2.2x 1.9x
luxemb-osm(U) 115 239 6/2/0 1035 2 50.0 5 24.7x 2.3x 1.0x
internet(D) 125 207 138/2/4 21 1 1.5 138 37.8x 1.9x 2.0x

Table 2: Parameters, experimental runtime, MTEPs and speedup obtained with the TurboBC-scCOOC algorithm over the se-
quential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries, for the computation of

the BC/vertex of a set of regular graphs.

File nx10° | mx103 [degree(max/u/c) [d | scf [runtime(ms) | MTEPs | (sequential)x | (gunrock)x [(ligra)x
g7j180sc(D) 53 747 153/14/24 17 | 217 .6 467 13.9x 1.7x 1.7x
g7jZOOSC(D) 59 838 153/14/25 18 | 224 1.7 493 14.6x 1.7x 1.8x

mark3j140sc(D) 64 400 44/6/4 82 10 5.3 76 13.2x 2.1x 1.2x
smallworld(U) 100 1000 17/10/1 9 61 1.0 1000 27.6x 1.5x 1.5x
ASIC-100ks(D 99 579 206/6/6 33 3 2.7 215 25.7x 1.6x 1.7x
ASIC-680ks(D 683 2329 210/3/4 31 2 6.6 353 43.9x 1.0x 1.5x
com-Youtube(U) 1135 5975 28754/5/51 14 8 9.7 616 48.4x 1.0x 2.8x
mawi-12345(U) 18571 38040 16 X 106/2/3806 10 2 74.8 509 33.6x 1.0x 3.6x
mawi-20000(U) 35991 74485 33 X 106/2/5414 11 2 143.0 521 33.9x 1.0x 3.4x
mawi-20030(U) 68863 143415 63 X 106/2/7597 12 2 261.4 549 32.3x 1.0x 3.2x

Table 3: Parameters and experimental runtime, MTEPs and speedup obtained with the TurboBC-veCSC algorithm algorithm
over the sequential algorithm ((sequential)x) and over the gunrock ((gunrock)x) and the ligra ((ligra)x) libraries for the com-

putation of the BC/vertex on a set of irregular graphs.

File nx10° | mx10® [degree(max/u/o) | d scf runtime(ms) | MTEPs | (sequential)x | (gunrock)x | (ligra)x
mycielski15(U) 25 11111 12287/452/664 3 41166 1.7 6536 17.4x 1.2x 2.3x
myecielskil6(U) 49 33383 24575/679/1078 3 82833 3.4 9819 26.6x 1.5x 3.4x
myecielskil7(U) 98 100246 49151/1020/1747 3 166407 7.9 12689 34.6x 1.7x 4.4x
mycielskil8(U) 197 300934 98303/1531/2817 3 | 333199 18.5 16267 45.8x 2.1x 5.1x
mycielski1l9(U) 393 903195 196607/2297/4530 3 | 651837 48.9 18470 53.1x 2.7x 5.2x
kron-logn18(U) 262 21166 49164/81/454 6 5846 8.7 2433 31.6x 0.9x 1.1x
kron-logn19(U) 524 43563 80676/83/541 6 6609 17.4 2504 44.7x 1.0x 0.9x
kron-logn20(U) 1049 89241 131505/85/641 6 7410 58.4 1528 34.0x 1.3x 1.0x
kron-logn21(U) 2097 182084 213906/87/756 6 8161 193.2 943 24.5x 1.1x 1.0x

the corresponding benchmark algorithm ran out-of-memory, and
the symbol 1.9x in the column ((gunrock)x) means that TurboBC
was 1.9x faster than the BC algorithms in the gunrock library.

The TurboBC-scCSC algorithm showed the best performance
for the ten regular graphs in Table 1, obtaining up to 472 MTEPs,
as well as a maximum of 37.8x and an average of 17.4x speedup
over the sequential code, a maximum of 2.7x and an average of 2.2x
speedup over the the BC algorithm available in the gunrock library,
and a maximum of 2.6x and an average of 1.8x speedup over the BC
algorithm available in the ligra library. The scale free metrics scf
for these group of regular graphs varied in the range [1,208] and 80
% of the graphs had a value below 15 for this metric. The depth (d)
of the BFS tree was below 100 for 80 % of the graphs in this group,
and for these graphs, the TurboBC-scCSC algorithm obtained the
maximum values of speedup and MTEPs.

For the ten regular graphs in Table 2, the TurboBC-scCOOC
algorithm showed the best performance. This algorithm obtained
up to 1000 MTEPs, a maximum of 48.4x and an average of 28.7x

speedup over the sequential code, a maximum of 2.1x and average
of 1.3x speedup over the the BC algorithm available in the gunrock
library, and a maximum of 3.6x and an average of 2.2x speedup
over the BC algorithm available in the ligra library. The scale free
metrics scf for these group of regular graphs was in the range
[2,224] and 80 % of the graphs have a value less than 100 for this
metric. Our experiments also showed that for the last four graphs
in Table 2 with vertices with a maximum degree much higher than
the mean value, the TurboBC-scCOOC based on the COOC format
had a better performance than the TurboBC algorithms based on
the CSC format, and also than the corresponding algorithms in
the ligra library, asserting that the COOC format results in scalar
algorithms that are less affected for vertices with high degrees as
compared to scalar algorithms based on the CSC format.

4.2 Experimental results for irregular graphs

This section summarizes the results of the experiments performed
to compute the BC of one vertex on the nine irregular undirected

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

14000

Artiles and Saeed

20000

== TurboBC & 1800 o TehesCaCY -_;_- TurboBC
=i gunrock urboSC-BL-5pl 17500 gunrock
__ 12000 o % 1600 | == TurboBC-BFS-SpMV
£ -" 2 1400 | & Qunrock-forvard 7 15000
< 10000 & L £ =@ gunrock-backward &
-3 g 1200 | == Theoretical maximum GLT E 12500
5 £ 1000 g
= - 4+ = £ 10000
g 3 - === = =2 g
] 800
£ S 4 % § 7500 l'.\.
= 2 600 el 1 n
z E & 5000 W
g § 400
= 0 2500
2 JE——— e e
0 - -] i 0+ - . :
0.0 02 04 06 08 10 © 0.0 02 04 06 08 10 0 200 400 600 800 1000

Number of edges plus vertices 1e9

a) GPU memory usage

Number of edges

b) Global Memory Load Throughput (GB/s)

1e9 Global Memory Load Throughput (GB/s)

c) Performance(MTEPS)

Figure 5: GPU memory usage, GPU memory upper bounds, Global Memory Load Throughput (GLT) and performance(MTEPs)
obtained with the TurboBC-veCSC algorithm compared with the values obtained by the gunrock BC algorithms for the com-
putation of BC/vertex in the mycielski group of irregular graphs included in Table 3.

Table 4: Parameters and experimental runtime, MTEPs and speedup obtained with the TurboBC algorithms over the sequential
algorithm ((seq)x) and over the ligra ((ligra)x) library for the computation of the BC of a set of big graphs. The BC algorithm

on gunrock ran out of memory for these graphs.

File nx10° | mx10° [degree(max/u/c) d scf | runtime(s) | MTEPs | (sequential)x | (ligra)x
kmer-V1r(U) 214 465 8/2/1 324 2 14.3 33 94.5 0.9x
it-2004(D) 42 1151 9964/28/67 50 543 3.1 371 39.5 0.8x
GAP-twitter(D) | 62 1469 3x10°/24/1990 | 15 | 126 7.3 201 50.4 0.8x
sk-2005(D) 51 1950 12870/39/78 54 1262 6.8 287 30.5 0.7x

graphs given in Table 3. The scale free metrics sc f for these group of
graphs varied in the range [5846,651837], and as expected, the best
performance on the computation of BC for these graphs was ob-
tained by the TurboBC-veCSC algorithm. This algorithm obtained
up to 18.5 GTEPs, as well as a maximum of 53.1x and an average
of 34.7x speedup over the sequential code, a maximum of 2.7x and
an average of 1.5x speedup over the the BC algorithm available
in the gunrock library, and a maximum of 5.2x and an average of
2.7x speedup over the BC algorithm available in the ligra library.
The TurboBC-veCSC algorithm obtained the maximum values of
speedup and MTEPs for the mycielski group of graphs for which
the depth (d) of the BFS tree was equal to 3.

Figure 5a) compares the GPU memory usage by the TurboBC-
veCSC algorithm and by the BC algorithms in the gunrock library
during the computation of BC for the mycielski group of irregular
graphs in Table 3. Since the space complexity of the Brandes’ algo-
rithm is O(m+n), Fig. 5a) shows that there is a linear relationship
between the GPU memory usage and the sum of the number of
vertices plus the number of edges of the mycielski graphs. Due
to the strategy of reducing the memory footprint of the TurboBC
algorithms, the memory usage of the gunrock library was up to 60
% higher than the memory usage of the TurboBC-veCSC algorithm.

The Global Memory Load Throughput (GLT) is a GPU metric
that measures the rate at which the GPU global memory is accessed
by an SM [7], Figure 5b) compares this metric obtained by the most
important kernels of the TurboBC-veCSC algorithm, and by the
kernels of the BC algorithm in the gunrock library. The theoretical
maximum GLT achievable for the GPU (NVIDIA Titan Xp) used
in our experiments was 575 GB/s, represented by the horizontal

line in Figure 5b), the GLT obtained by the kernels in the gunrock
library were substantially below this value, while the kernels in
the TurboBC-veCSC algorithm obtained GLT values that were 60
% higher than the theoretical maximum GLT. Figure 5c¢) illustrates
that the MTEPs, as function of the GLT metric, obtained by the
TurboBC-veCSC algorithm were much higher than those obtained
by the BC algorithms in the gunrock library.

In summary, the experimental results presented in Figure 5,
showed that for a representative group of highly irregular big
graphs, the TurboBC algorithms used memory more efficiently
than the BC algorithms in the gunrock library.

4.3 Experimental results for the computation
of BC for big graphs

Table 4 summarizes the results of the experiments performed for
the computation of the BC/vertex of a set of of four big graphs
with the TurboBC algorithms. The first graph of this set is a reg-
ular graph for which the TurboBC-scCSC algorithm showed the
best performance, and the other three graphs are irregular directed
graphs. The directed graph sk-2005 in Table 4 is the largest graph
for which the TurboBC was computed with our available GPU. For
the it-2004 irregular graph, the best performance was obtained with
the TurboBC-scCOOC algorithm, for the other two irregular graphs
the best performance was obtained with the TurboBC-veCSC algo-
rithm, because the TurboBC-scCOOC algorithm run out of memory
(OOM). For all the graphs on the set, the BC algorithm on the gun-
rock library ran out of memory (OOM), asserting our optimization
strategy of reducing the memory footprint to design and implement
our highly scalable TurboBC algorithms.

GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra

graph

9 u GAP-twitter
it-2004
80- ® kmer-Vir
70 W sk-2005
§| 60
g 50
E 40+
@
30
20
10+
o —
[} A o =
e S 3 3
&
depth BFS tree
a) Speedup
400+ graph
= GAP-twitter
350- it-2004
W kmer-Vir
» 20 ™ sk-2005
& 250
i 250
5
& 200
o
]
£ 150
2
100
50
0 || L
° 3 3 3
8
depth BFS tree
b) MTEPs

Figure 6: Experimental results for a) the speedup over the
sequential algorithm and b)MTEPs obtained for our Tur-
boBC algorithms in the computation of BC for the set of big
graphs of Table 4.

The TurboBC algorithms obtained for this BC computation, up
to 371 MTEPs, and a maximum of 94.5x and an average of 53.8x
speedup over the sequential code. Since the BC algorithms in ligra
used the CPU resources, specially the memory resources, effectively,
there were up to 1.4x faster than the TurboBC algorithms for the
computation of BC in these big graphs.

Figure 6a) shows that the greatest speedups of the TurboBC
algorithms over the sequential BC algorithm were for the regular
graph with the greatest value for the depth (d) of the BFS tree, and
that the maximum values for the METPs were obtained with the
TurboBC-veCSC algorithm applied to the irregular directed graphs,
for which the depth (d) of the BFS tree was equal to or less than 50.

4.4 Experimental results for the exact BC
computation of a set of graphs

Table 5 summarizes the experimental results obtained by the Tur-
boBC algorithms for the exact BC computation for all vertices of
the set of six graphs. The first four are directed regular graphs, and
the last two are undirected irregular graphs.

The parameters and the TurboBC algorithm used for these com-
putations for the regular graphs are included in Table 2, and for
the irregular graphs in Table 3. The parameter n X m is included
in Table 5, because the MTEPs for the exact BC computation are
computed as the ratio between the number of edges times the num-
ber of vertices (millions) and the average runtime (seconds). The
TurboBC algorithms obtained for this exact BC computation, up
to 13.8 GTEPs and a maximum of 38.0x and an average of 18.4x
speedup over the sequential code. The results in Table 5, also show
that both the speedup and the MTEPs increased with the size of

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

the graph, showing the high scalability of the TurboBC algorithms
for this type of computation.

Table 5: Experimental runtime, MTEPs and speedup ob-
tained with the TurboBC algorithms over the sequential al-
gorithm ((seq.)x) for the computation of the exact BC of all
vertices of a set of undirected and directed graphs.

File d [nxm x10° | runtime(s) | MTEPs | (seq.)x
mark3j60sc(D) | 42 4694 49.3 95 8.2x
mark3j80sc(D) 52 8345 90.8 92 9.2x

27j180sc(D) 17 39906 105.9 377 13.4x
£7j200sc(D) 17 49688 129.7 383 14.3x
mycielskil6(U) 3 1639081 159.8 10257 27.5x
mycielskil7(U) 3 9854152 715.2 13778 38.0x

Figure 7 shows that the maximum values for speedups and for
MTEPs were obtained, for the graphs with the smaller values of the
depth (d) of the corresponding BFS trees.

graph

™ g7jac180
35 97jac200
» mark3j60
30 o mark3jg0
= mycielskian16
§25 W mycielskian17
|
a
,E 20
215
10
5
° g s @ S o o
S g 3 3
] c 3 £
N IS =3

£ &
depth BFS tree

a) Speedup
14,000 araph
™ g7jac180
12,000 a7jac200
» mark3j60
«» 10,000 - msvt_d‘ﬂq
& W mycielskian16
E 8,000 ® mycielskian17
Q
2 6000
£
5
F 4,000
2,000
-—
g g) S g]
S S S S
2 o 3 I3
® &

® ®
depth BFS tree

b) MTEPs

Figure 7: Experimental results for a) the speedup and b)the
MTEPs of the exact computation of BC for the graphs given
in Table 5.

5 RELATED WORK

The implementation of Brandes’ algorithm on GPUs is an important
area of research. One of the first implementations of this algorithm
on GPU was the Jia et.al. [9] edge-parallel approach, followed by
the gpu-fan package described in [19], which was based on an
improved All-Pairs Shortest Path (APSP) algorithm. Several hybrid
GPU-CPU and multiple GPU implementations are presented in
[14, 16, 18]. The Brandes’ BC algorithm have been implemented
on high performance, parallel graphs processing libraries such as
gunrock on the GPU [21], and the CPU-based, shared memory,
ligra [20]. As far as we know, the BC algorithm in the language of

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

linear algebra was first described on chapter 6 of reference [10],
and implemented in the GraphBLAS library for CPUs [6], being our
proposed TurboBC algorithms, the first GPU-based implementation
of BC inspired in this linear algebra algorithm.

The gunrock BC algorithms use techniques such as BFS push-
pull, that, as illustrated in Figure 4, require to store additional
auxiliary arrays on the GPU global memory, increasing the space
complexity of the algorithms and limiting the size of the graphs
for which the BC can be computed with limited memory GPUs.
Our approach for designing and implementing the algorithms in
TurboBC differed from the gunrock approach, because we used
memory efficient and highly scalable algorithms which were sim-
pler and hence with less overhead. We also reduced the memory
footprint of the TurboBC algorithms by using only one sparse stor-
age format for each BC computation, by minimizing the number of
auxiliary arrays on the device side, and by transferring to the GPU
only one set of the arrays that store the indices of the non-zero
values of the sparse adjacency matrices representing the graphs.
This reduction in space complexity reduced the memory usage of
the TurboBC algorithms, allowing the computation of the BC for
graphs with higher number of vertices and edges than those com-
puted by the gunrock library on the same GPU, and also increasing
the performance of the TurboBC algorithms.

6 SUMMARY AND FUTURE WORK

In this paper, as far as we know, we designed and implemented Tur-
boBC, the first memory efficient and highly scalable GPU-based set
of BC algorithms in the language of linear algebra. The algorithms
in TurboBC are applicable to unweighted, directed and undirected
graphs represented by sparse adjacency matrices.

The design goals of the TurboBC algorithms were to reduce
the GPU global memory footprint required by the algorithms, as
well as to exploit the sparsity structure of the output and fron-
tier vectors of the BFS stage. Our experiments showed that our
TurboBC algorithms obtained more than 18 GTEPs (billions of
transverse edges per second), and were on average 1.7x and 2.2x
faster than the state-of-the-art algorithms implemented on the high
performance, GPU-based, gunrock [21], and CPU-based, ligra [20]
libraries, respectively. The experimental results also showed that
by minimizing their memory footprint, the TurboBC algorithms
were able to compute the BC of relatively big graphs, for which the
gunrock algorithms ran out of memory.

Our future work will be focused on improving the performance
of the algorithms in TurboBC, especially the performance of the
algorithms computing the vector sparse matrix multiplication oper-
ations. Our goal will be to design and implement memory efficient
and scalable GPU-based BC algorithms, with higher performance
for big graphs than the state-of-the-art BC algorithms.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundations
(NSF) under the Award Numbers CAREER OAC-1925960. The con-
tent is solely the responsibility of the authors and does not necessar-
ily represent the official views of the National Science Foundation.
We would also like to acknowledge the donation of a K-40c Tesla

Artiles and Saeed

GPU and a TITAN Xp GPU from NVIDIA which was used for all
the GPU-based experiments performed in this paper.

REFERENCES

[1] Oswaldo Artiles and Fahad Saeed. 2021. TurboBFS: GPU Based Breadth-First
Search (BFS) Algorithms in the Language of Linear Algebra. In 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE
(Ed.). IEEE, IEEE Publishing, New York, USA, 520-528.

[2] Alex Bavelas. 1948. A MATHEMATICAL MODEL FOR GROUP STRUCTURES.
Applied Anthropology 7, 3 (1948), 16-30.

[3] Nathan Bell and Michael Garland. 2008. Efficient Sparse Matrix-Vector Multiplica-
tion in CUDA. Technical Report NVR-2008-004. NVIDIA.

[4] Bonnie Berger, Jian Peng, and Mona Singh. 2013. Computational solutions for
omics data. Nature Reviews Genetics 14, 5 (2013), 333-346.

[5] Ulrik Brandes. 2008. On variants of shortest-path betweenness centrality and
their generic computation. Social Networks 30, 2 (2008), 136-145.

[6] Aydin Bulug, Tim Mattson, Scott McMillan, Jose Moreira, and Carl Yang. 2017.
Design of the GraphBLAS API for C. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE Press, New Orleans,
Lousianna, 643-652.

[7] NVIDIA corporation. 2021. CUDA C++ PROGRAMMING GUIDE. Technical Report
PG-02829-001-v11.3. NVIDIA.

[8] Linton C. Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.
Sociometry 40, 1 (March 1977), 35-41.

[9] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C. Hart. 2012.
Chapter 2 - Edge v. Node Parallelism for Graph Centrality Metrics. In GPU
Computing Gems Jade Edition. Morgan Kaufmann, Boston, 15-28.

[10] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of
Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA.
Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A.
Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. 2019. The SuiteSparse
Matrix Collection Website Interface. Journal of Open Source Software 4, 35 (2019),
1244.
[12] Jure Leskovec and Rok Sosic. 2016. SNAP: A General-Purpose Network Analysis
and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. 8, 1 (2016), 1-20.
[13] LunLi, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger. 2005.
Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications
(Extended Version). Technical Report CIT-CDS-04-006. California Institute of
Technology.
[14] Adam McLaughlin and David A. Bader. 2014. Scalable and High Performance
Betweenness Centrality on the GPU. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE Press,
New Orleans, Louisana, 572—583.
Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node centrality in
weighted networks: Generalizing degree and shortest paths. Social Networks 32,
3(2010), 245-251.
Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and J. D. Owens. 2017.
Multi-GPU Graph Analytics. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE Press, Orlando, Florida, 479-490.
Mikail Rubinov and Olaf Sporns. 2010. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 3 (2010), 1059-1069.
Ahmet Erdem Sariyuce, Kamer Kaya, Erik Saule, and Umit V. Catalyurek. 2013.
Betweenness Centrality on GPUs and Heterogeneous Architectures. In Proceed-
ings of the 6th Workshop on General Purpose Processor Using Graphics Processing

Units. ACM, Houston, Texas, USA, 76-85.

Zhiao Shi and Bing Zhang. 2011. Fast network centrality analysis using GPUs.
BMC Bioinformatics 12, 1 (2011), 149.

[20] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. ACM, Shenzhen, China,
135-146.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. 2016. Gunrock: A High-Performance Graph Processing Library
on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, Barcelona, Spain, 1-12.

[11

[15

[16

(17

=
&

[19

[21

A ONLINE RESOURCES

The codes to implement the algorithms proposed in this paper are
available at https://github.com/pcdslab.

	Abstract
	1 Introduction
	2 Betweenness centrality algorithm
	3 BC algorithms in the language of linear algebra for unweighted graphs.
	3.1 Regular and irregular graphs
	3.2 BC algorithms
	3.3 Sparse matrix-vector multiplication (SpMV).
	3.4 CUDA implementation of the BC algorithm

	4 Experimental results
	4.1 Experimental results for regular graphs
	4.2 Experimental results for irregular graphs
	4.3 Experimental results for the computation of BC for big graphs
	4.4 Experimental results for the exact BC computation of a set of graphs

	5 Related work
	6 Summary and future work
	Acknowledgments
	References
	A Online resources

