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Abstract—Advance access and reuse mechanisms for large-
scale Mass Spectrometry (MS) data are essential for democra-
tizing data for the omics research community and making it
adhere to FAIR (Findable, Accessible, Interoperable, Reusable)
principles. Although a number of centralized data repositories
have been established, they have been limited to search mech-
anisms that depend on the meta-data associated with these MS
datasets. Furthermore, they require constant influx of resources
for maintenance. In this paper, we proposed an alternative novel
distributed infrastructure for direct MS/MS spectral search. We
designed and developed a simulation testhed using concepts from
computer networks, queuing theory, and stochastic simulation
methods. Results show that a distributed MS search based on
raw MS/MS spectra can scale gracefully for up-to 2000 partici-
pating nodes, while simultaneously processing queries using the
proposed networked infrastructure on the order of milliseconds
to a few seconds for up-to a total of fifty billion MS/MS spectra.

1. INTRODUCTION

The study of proteins is known as proteomics [1] and it is
vital to study the structure of proteins and their contributions
to biological processes because they are the building blocks
of life. For example, proteomics is essential for understanding
disease, designing customized drug delivery [2], and develop-
ing vaccines [3]; as witnessed during the COVID-19 pandemic.
One of the most widely used instrument for characterizing
proteins is the mass-spectrometer (mass-spec), which has en-
abled the era of shotgun proteomics. Modern high-throughput
mass-spectrometry (MS) produces large amounts of data and
thus, biologists have teamed up with computational scientists
to facilitate rapid accurate analysis via computational methods.

Proteins are made up of amino acids that form peptide
ion chains known as polypeptides. MS-based proteomics in
a lab involves the preparation of a sample by digesting it
in an enzyme such as trypsin. This fragments the proteins
into different peptide ions. Next, the fragmented peptide ions
are scanned in the mass-spec. This first scan results in a
raw spectrum which plots the mass-to-charge (m/z) ratio
against the discrete intensity/frequency peaks for each ion.
The fragmented ions pass through the second scan to generate
what is know as the raw MS/MS (or MS2) spectra [1].
With the wide-spread availability of mass-specs and advent
of high performance computing (HPC) coupled with large
centralized protein databases such as PRIDE [4] and Uniprot

[5], computational proteomics is evolving rapidly with several
research labs across the world involved in these efforts.

Being able to deduce the peptides from raw experimental
spectra is one of the most important steps in protein sequenc-
ing and mapping. Two search techniques used to achieve this
goal are spectral library search and database search. Because
the latter approach requires in silico digestion and generating
model/theoretical spectra, it can end up taking up-to hours
of execution time and terabytes of memory which makes it
more suitable for offline analysis. On the other hand, spectral
library search can be done in real time as long a database of
well-known and defined theoretical/model spectra exists.

The current pandemic has highlighted the importance of
collaborated research efforts for protein analysis. Although
centralized repositories [4]-[6] facilitate collaboration and data
sharing in proteomics, they involve searching with metadata
and downloading huge data volumes, followed by database
search [1]. Though useful, a more beneficial product for
researchers will be a search engine that can accept raw MS/MS
spectra as an input and provide matches to well-known and
sequenced peptides. PeptideAtlas [7] is a tool that allows
the user to perform such queries. This centralized repository
only comprises 13,000 spectra whereas centralized repositories
such as ProteomeXChange [6] contain billions of spectra.
Scoring thousands of queries against billions of spectra is
not scalable because of the linear time complexity of spectra
matching algorithms. In contrast, parallelizing the spectral
library search by splitting the model database across multiple
nodes can enhance the scalability because the reduction in
linear complexity computations dominates the communication
cost of modern day servers.

Although distributing proteomics search with grid com-
puting [8] and cluster computing [9] has been proposed
before, the search mechanisms are based on metadata. In
this paper, we propose a distributed framework which will
allow various research labs and data centers to offer their
stored theoretical MS/MS data for searching against raw
MS/MS spectral queries. More specifically, we will concen-
trate on demonstrating that the distributed spectral library
search system for proteomics will be scalable and outperform
centralized approaches by designing a simulation testbed. This
contribution is vital because it will help evaluate the scalability
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Fig. 1. Illustration of the online querying process with U/ users and P
compute/storage nodes.

and test some of the fundamental limits with respect to varying
loads, number of participants, and database sizes.

II. DISTRIBUTED DATABASE DESIGN

In the context of proteomics related data, each lab equipped
with MS equipment and regular workstations will analyze their
own specimens and store the post-processed theoretical spectra
locally. These stations will serve as the compute/storage nodes.
A central server or data manager will keep a record of all
spectral datasets at each node. Efficient indexing techniques
have been presented for such MS/MS data and they can be
used for this purpose [10]. Because this process is done offline
at the time of data curation, it will not be counted towards the
search time.

Whenever a user represented either by another com-
pute/storage node in a participating lab or an external entity
wants to run a spectral search, they will enter a query into
a web-based form. The query will comprise the raw MS/MS
spectra file and some other parameters such as the enzyme
and precursor mass. The central server will perform basic
preprocessing and forward the query spectra to all other nodes.
Each node will run a search algorithm against each spectra in
each of its local MS/MS dataset and generate a few matches
ranked locally. Then, they will each send the results back to
the central server in the form of scored URLs. The server will
globally re-rank the scores and send a collection of results
back to the user. Figure 1 illustrates this process.

A. Distributed Querying System Model

Consider a set of users U = {1,...,u,...,U} where each
user © € U can generate a query given by Q,. @, may
contain more than one raw spectrum up-to a certain limit.
We assume that there exists a central server S and a set
of compute/storage nodes P = {1,...,p,..., P} willing to
participate. Each node p € P has N, Vp spectral datasets
and the size of the datasets is load-balanced across P nodes.
Basically, each MS/MS dataset contains D, ; spectra itself
where i =1,..., N, Vp.
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The central server itself is connected to the nodes using
long-haul broadband links (these may be fully wired using a
combination of Ethernet and fiber). The user-server links may
also include wireless communication. To model these links,
we will utilize previous results to model the channel rate. For
example, every user can communicate to the server with an
uplink rate of R, p and the server with the downlink rate of
R, p bits/sec. Similarly, each node p can communicate to the
server with uplink rate R, ;; and downlink rate R, p bits/sec.
The server is assumed to have a computational capability of
fs Hz and each node has a capacity of f, Hz.

Any user can send a query of size L, bytes to the server.
Furthermore, we can assume that a uniform storage system
exists such that each raw MS/MS spectra is stored using Lp
bytes across all nodes, the user submitted query spectrum is
standardized by the server into Lg bytes, and each result
(pointer/URL/etc) generated by node p is stored with Lp
bytes. However, in response to a query, each node will generate
M, ¥p results or matches. The final result the server shares
with the user u after collating all the results can be of size
Lp ., bytes.

After the server has received the query spectra from any
user, the distributed system will undergo the following steps.
The server will transmit the query spectra to each com-
pute/storage node with time t, p ¥p € P. Each node p € P
will also consume time ¢, g to run the search algorithm against
every entry in its database. Lastly, each node will send M,
results back to the central server with time t,y ¥p € P.
Equations (1)-(3) represent the above described downlink,
execution, and uplink times, respectively, for each node p € P.

8Lq

o= 2 P EP (1)
tp. B = ;—; (mN +¢) YpeP (2)
8C
tpr = BLU”, VYpeP 3)
P

In general, the time consumed by node p will be a function
of the ratio of its computational capacity f, Vp to the capacity
of the reference machine f, on which the spectral search
algorithm was evaluated and the execution time in seconds.
Typically, the execution time for most spectral search algo-
rithms is of linear time complexity with respect to the number
of spectra N where m and c are the slope and intercept of the
line, respectively.

From the server’s perspective, the total time needed by one
compute/storage node t, Vp € P to return back the search
results can be described by:

)

As the server is limited by the worst performing node, the
actual time tg needed by the server to receive the results back
from all nodes can be given by:

tp,=tp,p+1lpE +ipu

3

ts = max {t,}
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Fig. 2. Illustration of single-server model represented by an M /M /1 queue.
The service rate p encompasses the distributed query search process.

ITI. SIMULATION STRATEGY

Once the user submits a query, the time taken for them
to get back the result will include the process of sending a
query spectra to the server, time spent waiting for the server to
complete the distributed processing described in section 2, and
acquiring the results (comprising ranked URLs/pointers). The
distributed query spectra dissemination and search algorithm
time dominates the communication time between the server
and user due to the linear time complexity of spectral matching
algorithms. Furthermore, the communication time between
any user and the server will impact all users differently
according to the strength of their personal networks whereas
the distributed query processing time will impact all users
equally. Therefore, we focus on modeling the impact of various
system parameters on the completion time of the distributed
query processing section.

One way to model a system where several users submit
requests that are served by one or multiple servers is a
queue. In our case, because we are focused on distributed
query processing, we can model this process as a single
server operation. This simple simulation environment can be
modeled by an M /M /1 queue as shown in Figure 2. This
implies that the arrival of queries is assumed to follow the
Exponential distribution with an average rate A and the server
processing follows the Poisson process with average service
rate p. The mean service time x = 1/p. The service time
will encapsulate the distributed search algorithm processing
described in Figure 1. Therefore, we can pre-evaluate an
average service time x + tg'? of the overall system to one
query by running Monte Carlo simulations using stochastic
models to emulate the communication links and computational
capacities of each node. For an experiment with a total of J
runs, and the maximum service time at run #j denoted by

tj; vV je{l, ..., J}, the mean service time can be given
by:
e th—"S (6)
=1
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We run this simulation for different settings by varying
the numerical values of the parameters such as the number
of spectra and the comp/comm capabilities of each com-
pute/storage node, and determine the expected average service
time z for each scenario. Previously, physical parameters
such as per node processor capability f,, uplink rate R, y,
and downlink rate R,,, have been modeled from a uniform
random distribution I [A, B] where A and B are real numbers
representing the start and end of the possible range of values of
the variable. Further details are given in the next sub-section.

Although this approach does not allow for the modeling of
packet arrivals, for query response time modeling, a different
approach has been successfully used previously [11]. Given
a mean service time of a server x, the service time T in
the presence of N, concurrent requests can be modeled as
a degradation of the original response time = by a load factor
p as shown in (7).

Ng

sl ™

A. Simulation Parameters

We assume that the there are a total of P nodes that
own a total of N spectral MS/MS datasets such that the
data is equally split among the nodes with each node p
comprising N N/P spectral datasets. We model the
number of spectra per dataset by a uniform distribution such
that D,; ~ U [400,600] x 103, i = 1,..., N,, Vp. Because
there are equal datasets per node, each node ends up with
similar number of spectra on average and hence, the system
is load-balanced.

Furthermore, modern servers can support downlink speeds
of up-to gigabits per second (Gbps) for multiple clients at
once. Because we are modeling large values of P and nodes
may comprise a combination of wireless and wired links,
we will assume uplink speeds of up-to hundreds of megabits
per second (Mbps). (In future works, we will model the
communication links as separate queues to more accurately
capture the behavior of the channels.) We will model Ry, ;7 ~
14[80,100] x 10° and R, p ~ U[100,300] x 106 bits per
second. Moreover, it is assumed that a single query spectra
will be uploaded as a packet of size Lo = 32 kilobytes
by the server whereas the results are assumed to be stored
as packets of Lp 1024 bytes Vp. We assume that each
node will generate results in the range M, ~ U[0,150] Vp.
We will assume that the server applies certain preprocessing
steps which will reduce the number of datasets needed for
comparison. We will simulate this by choosing P’ out of P
nodes for each request. The set of P — P’ dropped nodes will
be generated randomly by ignoring around 20% of the nodes
in each cycle. The corresponding datasets will also be dropped
when simulating the centralized case.

It is assumed that the processing capability of each node
varies from f, ~ U[2,3] x 10° Hz Vp. The search algorithm
employed is the SpectraST [12] which uses the underlying
algorithm described in [13]. The time taken per query spectrum
is 0.005s to run a search against N = 30000 spectra. Assuming
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Fig. 3. Response time of distributed querying across 200, 500, 1000, and 2000 node systems to (a) a single query spectra searched against up-to 50 billion
model spectra (b)-(f) up-to 10k concurrent requests for a system comprising a total of N = {2, 4, 10, 30, 50} billion theoretical spectra, respectively.

a starting point of (0,0), we can set the slope m = 0.005 *
30e—3 and ¢ = 0. These evaluation results are for an f,. = 3.4
GHz machine. The load factor is set to p = 0.001% initially
based on the capability of modern servers of handling up-to
10,000 simultaneous connections. We also test the system for
several values of the load factor p from the range of le — 6
to 1. In this case, the inability of the system to scale at all is
represented by 1 and increases as the load factor reduces.
Lastly, to simulate the performance of the central server-
node communication with increasing load, we design a load
factor that takes into account the computation and communi-
cation separately such that p = 0.5p.67,,p+0.5pcomm- Because
the query preprocessing and forwarding requires minimal
computation, p.omp 18 set to a constant value of le-4. On the
other hand, modern day servers can handle hundreds of Gigabit
connections without degradation for hundreds of channels.
Beyond that, the performance suffers due to physical layer
limitations. Therefore, p.omm is set as constant for up-to 500
nodes and then becomes inversely proportional to P. Table I
describes the parameters used for the simulation of the system.

IV. RESULTS AND DISCUSSION

Figure 3 illustrates the service times of the distributed
system to a single query and N, concurrent query spectra.
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TABLE I
LIST OF SIMULATION PARAMETERS.
Parameter | Value/Range
P {200, 500, 1000, 2000}
N 1 — 50 billion spectra
Ng 1 — 10,000 concurrent queries
fr 3.4 GHz
Fin ~U[2,3] x 10° Hz
Ry, ~ U [800,1000] Mbps
Rp.p ~ U [80,100] Mbps
Dy ~U[4,6] x 10*
My ~ U [0,150]
Lo 32*1024 bytes
Lp 512 bytes

We tested for the values of P € {200,500,1000,2000}
compute/storage nodes for total spectra in the range 1 billion
to 50 billion. As the plots clearly demonstrate, the distributed
querying systems significantly outperform the centralized
scheme. Figure 3a shows that as we increase the number
of participating nodes, the response time to a single query
reduces. For example, a system with 200 nodes can process
10 billion spectra in 30s whereas the centralized system will
consume 600s, a twenty-fold increase. Furthermore, increasing
the number of participants to 2000 nodes will result in an
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execution time of 2s, just 6.67% of the execution time needed
for 200 nodes and 0.3% compared to the centralized system.

Subsequent plots in figures 3 (b)-(f) demonstrate the ability
of the distributed system to scale for up-to 10000 concurrent
query spectra for different search database sizes ranging from
2 to 50 billion spectra. For example, a system of more than
500 nodes can provide constant time performance in the range
of a few milliseconds to seconds for up-to 1000 concurrent
queries for a search against 2 billion spectra. A system with
2000 participating nodes can provide service times of 0.5, 1,
and 7 seconds for searches against 2, 10, and 50 billion spectra,
respectively, for almost 10,000 concurrent queries.

Figure 4 illustrates the impact of the degradation of server-
node communication due to a high number of links. Recall
that the load factor was made a function of the compu-
tation (constant at 0.001%) and communication (inversely
proportional to P). It is only when the number of concurrent
requests increase from 1k to 10k that the performance degrades
exponentially for larger numbers of nodes. In all cases, the
distributed systems still perform better. For example, a 2000
node system provides lower service times compared to 1000
node systems for up-to 1k concurrent queries. In contrast, with
10k concurrent requests, 1000 nodes provide a slightly better
performance because of a reduction in scalability. However,
as all schemes start degrading exponentially at those levels of
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Fig. 5. Response times to concurrent queries with variable load factors.

load, we can say that increasing the number of nodes provides
a reduced response time for up-to a high range of concurrent
requests. In a real-system, even at high load times the requests
that are serviced will leave. Therefore, it is reasonable to
expect that less than ten thousand concurrent query spectra
will be present in the system.

A. Distributed System Resilience and Solutions

Figure 5 demonstrates the resilience of the distributed
system as opposed to the centralized scheme in responding
to multiple concurrent queries for searching against 50 billion
MS/MS spectra under variable load factors. The value of p = 1
represents the worst case scenario, where a single additional
query doubles the system workload. For a fair comparison,
we first show that given same levels of degradation for both
centralized and distributed schemes, the distributed schemes
perform better and in general, provide a lower service time in
the constant region. For example, when p = 1e—4, the service
time increases exponentially and approaches the centralized
service time only when the system has 100,000 concurrent
requests. Because the number of query spectra per is are
limited, this scenario will only occur if there is a very well
co-coordinated cyber-attack. Simple mitigation technique such
as captchas can be used for users sending excessive requests
in addition to other security measures for complex attacks.
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Fig. 6. Response time to concurrent queries with communication degradation.

Figure 6 further studies the resilience of the system under
communication link degradation only. In this scenario, we keep
the impact of multiple queries on the performance of the cen-
tralized system and the computational part of the distributed
system at (0.001%. In contrast, the communication degradation
is represented by pcomm = le — 4, le — 2, and 1. Because
the system can handle seamless parallel communication for
up-to P = 500, the performance does not degrade severely.
On the other hand, for P = 1000 and P = 2000 the system
degradation is more severe with exponential service times for
a low number of concurrent requests. Typically, it is expected
that the degradation will not reach the levels represented by
Peomm = 1 because that effectively means the central server
can communicate with 1 node at a time only.

One effective solution is to design a smart data redundancy
policy for MS/MS spectra stored at multiple locations. This
will increase the overall memory requirements but improve
system resilience. Furthermore, it will allow the central con-
troller to choose the nodes with the best links or drop nodes
where the communication capabilities fall below a pre-defined
threshold. Moreover, the nodes can also be dropped according
to the volume of concurrent requests where for lower N,. For
example, for lower N, values, P = 1000 still performs better
than P = 200 or 500. Overall, a distributed system with a
large number of nodes reduces service times by 10 to 100-
folds. The high scalability and the benefits for spectral search
makes it worthwhile to explore the design and implementation
of a distributed data access infrastructure for big proteomics
data based on paradigms such as volunteer computing.
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V. CONCLUSION

In this work, we have designed a simulation testbed to
show that a distributed system for proteomics data search
can scale and provide improved performance over centralized
databases. Moreover, it was shown that even in band-limited
channels, the system would scale well for very large numbers
of concurrent query spectra. Despite these promising results,
several limitations need to be addressed to complete the simu-
lation testbed including modeling the communication links as
separate channels, incorporating node selection strategy based
on real-time physical capabilities, and a cost-based model to
reward participating labs better for sharing their resources and
data with the proteomics community.
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