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Abstract—The novel Coronavirus Disease 2019 (COVID-19) is
a global pandemic that has infected millions of people causing
millions of deaths around the world. Reverse Transcription
Polymerase Chain Reaction (RT-PCR) is the standard screen-
ing method for COVID-19 detection but it requires specific
molecular-biology training. Moreover, the general workflow is
difficult e.g. sample collection, processing time, and analysis
expertise, etc. Chest radiographic image analysis can be a good
alternative screening method that is faster, more efficient, and
requires minimal clinical or molecular biology trained laboratory
personnel. Early studies have shown that abnormalities on the
chest radiographic images are likely to be the consequence of
COVID-19 infection. In this study, we propose DeepCOVIDNet,
a deep learning based COVID-19 detection model. Our proposed
deep-learning model is a multiclass classifier that can distinguish
COVID-19, viral pneumonia, bacterial pneumonia, and healthy
chest X-ray images. Our proposed model classifies radiographic
images into four distinct classes and achieves the accuracy of
89.47 % along with a high degree of precision, recall and F1 score.
On a different dataset setting (COVID-19, bacterial pneumonia,
viral pneumonia) our model achieves the maximum accuracy of
98.25%. We demonstrate generalizability of our proposed method
using 5-fold cross validation for COVID-19 vs pneumonia and
COVID-19 vs healthy classification that also manifests promising
results.

Index Terms—COVID-19, neural network, pneumonia, trans-
fer learning, RT-PCR

I. INTRODUCTION
A. Motivation

The novel Coronavirus disease 2019 (COVID-19) is caused
by SARS-CoV-2 virus that is a new member of the coronavirus
family [1]. According to the CDC, COVID-19 patients exhibit
a range of symptoms including but not limited to cough,
shortness of breath, fever, chills, muscle pain, headache, sore
throat, and loss of taste or smell [2]. Diagnosis of COVID-19
requires assessment of symptoms across settings and ruling out
the presence of co-occurring and/or alternative diagnoses that
share notable features with COVID-19 such as pneumonia.
However, lack of uniformity in practice guidelines and our
limited understanding of COVID-19 may lead to misdiagnosis,
especially for similar symptoms.

This verification for COVID-19 is usually accomplished
using RT-PCR test [3]. However, RT-PCR test identifies the
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SARS-Coronavirus-2 (SARS-CoV-2) RNA that is normally
detectable in the acute phase of the infection. In other words,
some patients may develop severe symptoms before they are
tested positive in COVID-19. Further, RT-PCR is time consum-
ing and highly sensitive, requiring complicated manual pro-
cesses carried out by trained laboratory personnel. Therefore,
an easy to administer, low-cost test that may require minimal
personnel training to determine the presence of COVID-19
before acute symptoms is highly desirable. Recent studies
have focused on data analytics for COVID-19 prediction [4].
However, there is still a gap in using medical information for
COVID-19 detection.

B. Related works

In recent years, the emergence of deep learning (DL) has
shown great potential in various fields such as computer vision,
text processing, and medical image classification. Moreover,
applications of DL have achieved state-of-the-art results in
numerous areas including natural language processing, object
detection, detection and diagnosis of skin cancer and detection
of cerebral microhemorrhage [5]. Deep learning models espe-
cially convolutional neural networks (CNN) have become a
popular choice among researchers for medical image analysis
because of its remarkable success in histopathological images
[6], Magnetic Resonance Imaging (MRI) [7], skin related
diseases [8], and brain tumor segmentation [9].

The gradient-based learning applied to document recog-
nition was the first successful CNN architecture developed
by Yann Lecun in 1998 to recognize handwritten digits on
checks [10]. He is well known for his work on optical
character recognition and considered as the founding father of
convolutional nets. The model he proposed is LeNet-5, a 7-
layer convolutional network, that was applied by several banks
to recognize hand-written numbers on checks. LeNet-5 was
applied to MNIST dataset and achieved the accuracy of 95%.

After more than 12 years of LeNet, a new CNN based model
named AlexNet won the ImageNet challenge in 2012 with
a large margin that rose the interest in CNNs [11]. AlexNet
had a very similar architecture as LeNet but it was deeper,
with more filters per layer, and with stacked convolutional
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layers. AlexNet was trained for 6 days simultaneously and
achieved a top-5 error of 15.3% in ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012.

In 2014 ILSVRC challenge, VGG Net addressed the major
shortcomings of AlexNet by replacing large kernel-sized filters
with multiple smaller filters (3x3 kernel-sized filters) [12].
The architecture of the model is very uniform with 3%*3
convolutional filters and 2*2 max pooling layer with a stride
of 1. It achieved top-5 accuracy of 92.7% on ILSVRC 2014
challenge. The winner of ILSVRC 2014 challenge is the
GoogLeNet architecture that is well known for the inception
module. It achieved a top-5 accuracy rate of 93.33% [13].
In ILSVRC 2015 challenge, ResNet was able to solve the
“vanishing gradient” problem and minimized error rate even
if it had 152 layers and achieved state-of-the-art accuracy of
96.3% [14], [15].

Trimps-Soushen, the third research institute of ministry
of public security in China, won the Ist place of ILSVRC
2016 object classification task with the top-5 error rate of
2.99% [15]. In 2017 ILSVRC challenge, Hu et al. developed
Squeeze-and-Excitation Network (SENet) that introduced a
new architectural unit termed as “Squeeze-and-Excitation”
(SE) block [16]. The SENet won the first place with state-
of-the-art performance that reduced top-5 error rate to 2.25%.

The evolution of CNN models, their architectural descrip-
tion and performance comparison are highlighted in table
I: LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, Trimps-
Soushen and SENet.

Considering the success of CNN based architectures for
object classification, we asked the question: can we detect
COVID-19 from chest radiographic images? There are some
initial investigations into developing machine-learning solu-
tions using X-ray images for diagnosing COVID-19 disease.
Fang et. al. have shown that the sensitivity of CT for COVID-
19 infection is 98% compared to RT-PCR sensitivity of 71%
[18]. This result supports the use of chest CT for screening
especially when RT-PCR is negative. Linda Wang and Alexan-
der Wong have developed a deep neural network based method
for the detection of COVID-19 from chest X-ray images [19].
A DL based segmentation system is also developed by Shan
et al. that can automatically quantify the infected regions of
interest as well as their volumetric ratios with respect to lungs
[20]. To screen COVID-19 disease from CT images, Wang
et. al. developed an Artificial Intelligence (Al) based system
that has shown promising results with 82.9% accuracy, 80.5%
specificity and 84% sensitivity [21].

The idea of transfer learning with the incorporation of
various pre-trained deep learning models such as VGG-19,
MobileNetV2, DenseNet201 and InceptionResNetV2 that are
trained on ImageNet dataset is also investigated in [22]-
[24] and has shown reasonable performance in COVID-19
detection. For example, the work of presented by loannis
and Tzani achieved a good result with the accuracy of
96.78% where Brunese et al. proposed a three-fold method
to detect and localise the infected areas [25]. Ismael et al.
also demonstrated achievements of fine-tuning pretrained deep
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CNN models (ResNet18, ResNet50, ResNet101, VGG16, and
VGG19) for COVID-19 classification where accuracy of the
pretrained models VGG16, ResNet18, ResNet50, ResNet101
and VGG19 are 85.26%, 88.42%, 92.63% 87.37% and 89.47%
respectively in normal vs COVID-19 classification setting [26].
The deep learning model for automatic COVID-19 detection
introduced by Ozturk et al. presents classification accuracy
of 98.08% for binary classes (COVID vs. No-Findings) and
87.02% for multi-class cases (COVID vs. No-Findings vs.
Pneumonia) [27]. The CovidAID method presented by Mangal
et al. obtained an accuracy of 87.2% for 4-class classification
configuration [28]. In transfer learning a model developed to
solve a task is reused as the starting point to solve another
task in the same or similar domain. For example, a person
who can play guitar can learn faster to play violin comparing
others who don’t have any previous experience on playing
musical instruments as both of them are musical instruments
that have some commonalities. But transfer learning cannot
always work successfully especially when tasks have very less
commonalities and this phenomenon is termed as negative
transfer [29]. An example would be, having experience to
play guitar can not help to learn faster to ride a bicycle.
Pretrained models (transfer learning) are trained on ImageNet
dataset that consists of millions of image data over thousands
of different categories such as ballon, strawberry and dog.
ImageNet dataset is very different than X-ray images that
has different data distribution which might lead to negative
transfer. Considering this issue, we built our DeepCOVIDNet
model rather than applying transfer learning that shows rea-
sonably good or similar performance compared with transfer
learning techniques. In table II we have shown prior works on
COVID-19 detection, their dataset settings and performance
accuracy.

In this paper, we present DeepCOVIDNet, a convolutional
deep learning model that can detect COVID-19 disease from
chest radiographic images. Our proposed model is able to
classify COVID-19, bacterial pneumonia, viral pneumonia
and healthy (normal) chest X-ray images without including
any further information such as demographics. DeepCOVID-
Net manifests a novel CNN architecture including data pre-
processing and augmentation strategy that allows training of
our deep-learning model using minimal datasets. Performance
of the model is evaluated by confusion matrix, precision,
recall, F-1 score and accuracy. Our model has achieved
promising results with more than 97% accuracy for classifying
COVID-19 vs pneumonia, and COVID-19 vs healthy. An in
multi-class classification, it achieved 89.47% accuracy.

C. Contributions

As we mentioned in the related works, bacterial pneumonia
and viral pneumonia chest X-rays have not been addressed
while detecting COVID-19 that exhibits similar symptoms
of COVID-19 infection. In order to detect COVID-19, we
propose DeepCOVIDNet: a multiclass classifier that can dis-
tinguish COVID-19, viral pneumonia, bacterial pneumonia,
and healthy chest X-ray images. Our contributions include:
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TABLE I: Architectural description and performance comparison of various CNN models: LeNet, AlexNet, VGGNet,
GoogleNet, ResNet, Trimps-Soushen and SENet. (The error rate for ImageNet dataset: top-5 error rate)

g;frl:;tecture Year Main contribution Parameters Error Rate Depth Reference

LeNet 1998 | First popular CNN architecture 0.060 M MNIST: 5.0% 5 LeCun et al., 1998 [10]
Deeper and wider than LeNet . o Krizhevsky et al.,

AlexNet 2012 Uses relu, droupout and pooling 60M ImageNet: 16.4% 8 2012 [11]
Homogenous topology . Simonyan and Zisserman,

VGGNet 2014 Uses small sized kernels 138 M ImageNet: 7.3% 19 2015, [12]

GoogLeNet 2014 | Introduced inception module 4 M ImageNet: 6.7% 22 Szegedy et al., 2015 [13]

ResNet 2015 | Introduced residual module 256 M ImageNet: 3.7% 152 He et al., 2015 [14]
Ensembled the pretrained models

Trimps of Inception-v3, Inception-v4, .

-Soushen 2016 ResNet-200, Inception-ResNet-v2, ) ImageNet: 2.99% B Zhang et al., 2016 [17]
and Wide ResNet
Introduced a new architectural unit

SENet 2017 | termed as ”Squeeze-and-Excitation” | Additional ~10% | ImageNet: 2.25% 154 Hu et al., 2017 [16]
(SE) block

TABLE II: Existing works, dataset settings and accuracy

Related works Dataset setting Accuracy
Brunese et al. [25] Healthy vs disease 96%
Disease vs COVID-19 98%
Ismael et al. [26] Normal vs COVID-19 90.3%
Wang et al. [3] COVID-19, pneumonia, 93.3%
normal
Arpan et al. [28] COVID-19, pneumonia, 90.5%
normal
Gozes et al. [30] COVID-19 vs normal 94%
Yang et al. [31] COVID vs non-COVID CT 83.3%
Bacterial pneomonia,
Born et al. [32] COVID-19 and healthy 89%
Tulin et al. [27] COVID vs No-Findings 98.08%
COVID vs No F{ldmgs 87.02%
vs Pneomonia
Bacterial pneumonia, viral
Harsh et al. [33] pneumonia, COVID-19 88.10%
and healthy

o A deep convolutional neural network (DeepCOVIDNet)
to detect COVID-19 that improved state-of-the-art results
by increasing the accuracy about 2% from 87.2% [25] to
89.47%. In a large scale population the improvement of
2% could play a significant role.

e An end-to-end structure without manual feature extrac-
tion and selection methods.

« Data augmentation technique to prevent overfitting and
to enhance the model’s generalizability and dataset size.
Moreover, a data preprocessing method to remove noises
from the dataset.

o DeepCOVIDNet classifier that classifies COVID-19, viral
pneumonia, bacterial pneumonia, and healthy chest X-ray
images.

Moreover, in order to highlight our contributions as com-

pared with prior works, we have compared our work with
existing methods in table III.

D. Organization

The paper is organized as follows: II presents the method-
ology of the work including data pre-processing and augmen-
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tation. Section III presents the dataset description. Section IV
represents experimental setup. Section V is dedicated for result
analysis, followed by section VI that concludes the paper.

II. PROPOSED METHOD

The proposed method is illustrated in Figure 1, in which
chest X-ray images are used as the input data. Our proposed
model DeepCOVIDNet is a 11 layer convolutional network
with 6 convolutional layer, 3 max pooling layer, 1 global
average pooling layer where the final layer is a fully connected
dense layer. Max pooling and average pooling layers reduce
variance and computational complexity, and extract low level
features. Different numbers of (3,3) sized kernels are employed
in the convolutional layers while (2,2) max pooling layers
are used for subsampling. As it is a classification problem,
softmax activation function is applied in the final layer and a
(2,2) rectified linear unit (ReLU) is implemented in all other
layers to introduce non-linearity. The model is optimized using
the Adam optimizer, categorical crossentropy loss function is
utilized for calculating loss and the learning rate is set as
0.001. The model is trained on 120 epochs on multi-class
configurations and 25 epochs for pneumonia vs COVID-19
classification and pneumonia vs normal configurations, and
20 epochs for COVID-19 vs normal configurations.

A. Data Augmentation and Preprocessing

Data preprocessing is a crucial part in deep learning ar-
chitectures to eliminate anomalies that may lead to inaccurate
interpretation of machine-learning artifacts. It includes remov-
ing noise and redundant data, and making the data suitable
so that model can learn and predict accurate results. In our
pneumonia and normal dataset, there were some noises such as
letter R’ in the x-ray images. As, noise is not expected in the
dataset and it may lead to inconsistent results, noise is removed
from the x-ray images. The process is done by analyzing pixel
value and comparing it with its neighbor pixels. Noise is in
white color and based on our empirical analysis, we have
found that the pixel value of it is greater than 245. So, we
changed the pixels’ values that have the value greater than
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TABLE III: Existing methods and our proposed work comparison

Related works Contributions

Our proposed work

Provided promising results with 88.9% accuracy in
COVIDx dataset (pneumonia and Covid-19) that includes
COVID-19 images.

Wang et al. [19]

Our proposed work further classifies COVID-19,
bacterial pneumonia, viral pneumonia and healthy
X-ray images.

Implemented transfer learning that achieved good results
with the accuracy of 96.78% for COVID-19 detection.
The two dataset presented in this paper are imbalanced.

Toannis and Tzani

[23]

We present similar approach but we classified
bacterial and viral pneumonia further with
balanced dataset.

Proposed method can automatically quantify infected
regions of interest as well as their volumetric ratios with
respect to lungs.

Shan et al. [20]

Our predictive model classifies COVID-19
where Shan’s model automatically segments
infected regions.

Have used ResNet50, InceptionV3 and Inception-ResNetV2
pretrained models for prediction COVID-19 from chest
X-ray images. A very small dataset (50 COVID-19 vs

50 normal) is being used in this experiment.

Narin et al. [34]

Created our own model.

Experiment is carried out on relatively larger dataset.
Data augmentation and data preprocessing are also
implemented.

Presented a three-fold method to detect the presence
of pneumonia, classification between pneumonia vs
COVID-19 and highlighted the important regions for
prediction.

Brunese et al. [25]

Demonstrated the classification between COVID-19
vs pneumonia, COVID-19 vs normal, pneumonia vs
normal and multiclass.

Proposed DarkCovidNet: a deep learning model for

Ozturk et al. [27] the automatic diagnosis of COVID-19.

Demonstrated the effectiveness of DeepCOVIDNet to
detect COVID-19 in multiple classification scenarios.

Presented CovidAID: COVID-19 Al detector that achieved
an accuracy of 87.2% for 4-class classification
configuration and 90.5% for the 3-class classification.

Mangal et al. [28]

DeepCOVIDNet model achieved 89.47% accuracy
for 4-class classification where COVID-19 vs
Pneumonia and COVID-19 vs normal configurations
it achieved 97.44% and 97.37% accuracy.
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Fig. 1: DeepCOVIDNet: Deep learning model for multiclass classification: Bacterial pneumonia, COVID-19, Viral pneumonia

and Healthy patient from chest X-ray images

245. Moreover, to make the change similar to its surrounding
pixels, we have also considered its neighbor pixels (Figure
2). If the image size is [p, q], we iterate through each pixel
x;,y; where i € [0,p],7 € [0, ¢]. Based on equation 1, for a
random pixel x;—q,y;—=p, Where the pixel value Px;—,,y;—p
is more than 245 we calculate the minimum (m) of the four
neighbor pixels. Then, based on equation 2, we generate a
random number within the range of m and m + 10 that we
have found from equation 1 and assign this random value in
f%i—a, yj=p; otherwise we assign Pxi—q, Yj=p in fTi—a, Yj=b-

Figure 3 shows the result before and after this operation
is performed. And, there is a clear indication that noise is
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removed effectively from the dataset.

m = min((Tiza—10, Yj=b), (Ti=at10, Yj=b),

(il?i:a—107 yj:b+10)a ($¢:a+10, yj:b+10))

)

Pxi—a,Yj=b

f:v- ) L if, Pti—q, Yj=b <= 245
i=a> Yj=b *= \ random(m, m + 10)

otherwise
2

Data augmentation improves model accuracy and robust-
ness. It increases the number of training samples that reduces
overfitting and improves model generalization [35]. It also
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Fig. 2: Data preprocessing: Here x;—q, Y= is a random pixel
(orange color) that has value more than 245. To change the
pixel value, we considered four neighbor pixels (light green
color)

alleviates scarcity of training data when the dataset is relatively
small. After data preprocessing, training data is augmented by
random cropping and, using shearing and zooming with values
of 0.2 and 0.2. Moreover, input images are resized to 64x64
and rescaled by 1./255.

(a) (a) Before processing: Normal
X-ray image with letter "R”

(b) (b) After processing: Normal
X-ray image without letter "R”
Fig. 3: Data preprocessing: Noise Removal(e.g R letter) from
X-ray images

B. Pneumonia (bacterial and viral) and Healthy classification

People affected by bacterial or viral pneumonia also show
similar symptoms of COVID-19 like cough, fever, shaking
or chills, fatigue, sweating and weakness. As a result, it is
hard to determine whether a person is infected by COVID-
19 or by pneumonia. Initially, we built a model for classifying
pneumonia (bacterial and viral) and healthy patients from chest
radiographic images. Our dataset contains 1583 pneumonia
and 1583 normal chest X-ray images from where 1314 images
of each class are used for model training, 234 for validation
and 35 for testing.

C. COVID-19 and other classification

This section discusses COVID-19 vs healthy, COVID-19
vs pneumonia, and COVID-19, bacterial pneumonia, viral
pneumonia and healthy classification.

In here, we classified COVID-19 and healthy chest X-ray
images. But this classification result might not be enough
because a person infected by pneumonia virus can also show
similar symptoms of COVID-19. As a result, we have carried
our work further for classifying COVID-19 vs pneumonia and
COVID-19, bacterial pneumonia, viral pneumonia and normal
classification. For this multiclass classification, we have used
120 epochs and for pneumonia vs COVID-19 classification 25
epochs are being used. Moreover, in both classifications 60, 19
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and 10 images of each class are used as training, validation and
testing data. Figure 1 shows the architecture of our multiclass
classifier.

1) 5 Fold Cross Validation: Cross validation is the tech-
nique that we have used to evaluate our model performance.
Model is validated by giving some data that the model didn’t
see before. We split the dataset into training and testing.
The model learns from training dataset and validates from
the unseen testing dataset. In our COVID-19 vs normal and
COVID-19 vs pneumonia classification, we have used a 5-
fold cross validation method. The whole dataset is divided
into 80% training set and 20% testing set. Figure 4 explains
the structure of our 5 fold cross validation method. After 5
iterations, average model performance (AMP) is calculated
according to equation 3.

5
1
AMP = 3 Z per formance; 3)

i=1

Validation Fold Training Fold

\ —

1st Iteration Performance 1

2nd lteration Performance 1

3rd Iteration Performance 1

Performance 1

b

|
|
|
|

5th Iteration Performance 1

|
[ |
[
[ |
[ |
[

4th Iteration ‘

|

Fig. 4: 5 fold cross validation architecture

)

III. DATASET DESCRIPTION

The dataset we have used in this experiment contains
bacterial pneumonia, viral pneumonia, COVID-19, and healthy
chest X-ray images. Data was collected from two different
sources. The COVID-19 dataset was collected from IEEE
open source Github repository created by Joseph Paul Cohen,
Paul Morrison and Lan Dao [36]. The repository contains 100
COVID-19 positive chest X-ray images in which 89 X-rays
are taken from the frontal position and the rest of the images
are taken from either top or side view. The other dataset was
collected from Kaggle that contains chest X-ray images of
2780 bacterial pneumonia, 1493 viral pneumonia, and 1583
healthy patients [37].

IV. EXPERIMENTAL SETUP

The entire experiment is carried out in Windows 10 op-
erating system using python programming language. The
deep learning classifiers have been implemented using python
version 3.7.3 and the Keras package with TensorFlow version
2.0.0 on Intel(R) Core(TM) i7-3.6 GHz processor. In addition,
the experiment is executed using the NVIDIA Quadro k620
graphics processing unit (GPU) with 2GB GPU memory.
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V. RESULT ANALYSIS

In this experiment, we study COVID-19 detection from
chest radiology images. Initially, we investigate COVID-19 vs
normal chest X-ray classification. Then, we classify COVID-
19, viral pneumonia, bacterial pneumonia, and normal chest
radiology images. Moreover, normal and pneumonia classifi-
cation, COVID-19 and normal classification, and COVID-19
and pneumonia classifications are also analyzed. Besides, to
reduces biasness in performance evaluation we have imple-
mented 5-fold cross validation.

Performance of the model is measured through training and
validation accuracy, receiver operating characteristic (ROC)
curve, confusion matrix, precision, recall and F1 score. The
formula for calculating precision, recall and F1 score is
presented in equations 4, 5, 6 where tp = True positive; fp
= False positive; tn = True negative; fn = False negative.

.. tp
Precision(P) = ——— €]
) tp+ fp
__tp
Recall(R) = bt n )
PxR
—1=2 6
/ *PTR ©

As we have a limited amount of available data, in COVID-
19 vs normal classification, we have randomly selected 60
images for training, 19 images for validation and 10 images for
testing for normal class. After 20 epochs, the model achieved
97.37% accuracy with the precision, recall and F1 score of
1. Figure 5 shows training and validation accuracy graph. In
figure 6, we demonstrate the training and validation accuracy
and loss of the 5 fold cross validation where model has
achieved an average accuracy of 96.12% (table V). The 5-
fold cross validation is also experimented for COVID-19 vs
pneumonia classification where model achieved an average
accuracy of 97.65%.

10 - Training accuracy

Validatien accuracy

=)
@

Accuracy
o

125 150 175

EID 2‘5 EI{] ?‘5 Jl]I ]
Number of Epoch
Fig. 5: COVID-19 and normal classification: Training and
validation accuracy

In COVID-19, bacterial pneumonia, viral pneumonia and
healthy chest X-ray classification our model has achieved
an accuracy of 89.47%. Moreover, in figure 7 we analyse
the ROC curve where area under the curve (AUC) value of
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each class is 1, 1, 0.91 and 0.9 respectively. We have also
achieved high precision, recall and F-1 score for this multi-
class setting (table IV). In another multi-class dataset setting
(COVID-19, bacterial pneumonia, viral pneumonia) we have
achieved 98.25% accuracy with a good precision, recall, f-1
scores. Figure 8 shows training loss and accuracy result of the
experiment. Results of the COVID-19 vs pneumonia, COVID-
19 vs normal and pneumonia vs normal X-ray images are also
investigated where accuracy of these classifiers are 97.44%,
97.37% and 88.03% respectively (table IV).

Train acc of fold 0
Validation accuracy 0
Train acc of fold 1
Validation accuracy 1
Train acc of fold 2
Validation accuracy 2
Train acc of fold 3
Validation accuracy 3
Train acc of fold 4
= Validation accuracy 4

oo 25 50 125 15.0 17.5

75 10.0
Number of Epoch

(a) (a) Training and validation accuracy

Train loss of fold 0
wal loss of fold 0
Train loss of fold 1
Wal loss of fold 1
Train loss of fold 2
Wal loss of fold 2
Train loss of fold 3
Wal loss of fold 3
Train loss of fold 4
Wal loss of fold 4

Loss

oo 25 50 125 15.0 17.5

75 100
Number of Epoch

(b) (b) Training and validation loss

Fig. 6: 5 fold cross validation of normal and COVID-19
classification. (a) training and validation accuracy; (b) training
and validation loss

ola o’s
False Positive Rate

Fig. 7: Receiver Operating Characteristic (ROC) Curve for
the classification of COVID-19, bacterial pneumonia, viral
pneumonia and normal X-ray images. Here, Class 0 - bacterial
pneumonia, class 1 - COVID-19, class 2 - normal and class 3
- viral pneumonia

It can be noted from table 4 that the model has achieved
best performance in 3-class classification setting, and 2-class
classification settings except pneumonia vs normal classi-
fication where it performed comparatively less. In 4-class
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TABLE IV: COVID-19 vs pneumonia, COVID-19 vs normal, pneumonia vs normal and multiclass X-ray images classification:
Precision, Recall and F-1 scores are calculated from the test dataset and the accuracy shown from the validation dataset

. Training | Validation | Test ..

Classifier Class Dataset Dataset Dataset Precision | Recall | F1 Score | Accuracy v.(%)
COVID-19 vs | 5y 19 60 20 10 | 1 1 97.44
Pneumonia

Pneumonia 60 20 10 1 1 1
COVID-19vs | Gyp.19 60 19 10 ! ] ! 97.37
Normal

Normal 60 9 0 T T T
Pneumonia vs | p o onia 1314 234 35 0.86 0.91 0.89 88.03
Normal

Normal 1314 234 35 0.01 0.86 0.88

Bacterial 60 19 10 1.00 1.00 1.00

pneumonia
Multiclass COVID-19 60 9 0 0.01 10 0.95

Normal 60 19 0 0.86 0.60 0.71 89.47

Viral 60 19 10 0.67 0.80 0.73

Pneumonia

Bacterial 60 19 10 091 1 0.95

pneumoma
Multiclass COVID-19 60 19 10 0.9 0.9 0.9 98.25

vial 60 19 10 0.89 0.80 0.84

Pneumonia

Ty Tk VI. CONCLUSION AND FUTURE WORKS

10 - —— Training acc

[=]
I

IC 2::' 4::' EJI:' E::' _1':.' o _12: o
Number of Epoch

Fig. 8: COVID-19 bacterial pneumonia, viral pneumonia clas-
sification: Training accuracy and loss

classification, model classified COVID-19 better than normal
and viral pneumonia and, obtained precision, recall and f-1
score values are 0.91, 1.0 and 0.95 respectively.

TABLE V: 5 fold cross validation model accuracy

Classification g‘:;gg: Accuracy(%) Ac?::;g%(e% )
1 100
2 100
COVID-19 vs 3 91.18 97.65
Pneumonia
4 97.06
5 100
1 100
2 94.12
COVID-19 vs 3 97.06 96.12
Normal
4 94.12
5 95.24

1709

In this study, we have presented DeepCOVIDNet in the
detection of COVID-19, based on chest X-ray images. Our
proposed model achieved notable performance for classifying
COVID-19, pneumonia (bacterial and viral) and healthy X-ray
images. Although COVID-19 and pneumonia exhibit similar
symptoms, our muticlass classification model successfully
classified them with the accuracy of 89.47%. We have also
demonstrated other classification scenarios such as COVID-
19 vs pneumonia, COVID-19 vs normal and pneumonia vs
normal where our model achieved significant performance.
Data preprocessing and augmentation is applied to remove
noises and improve model’s generalizability.

In future, we plan to experiment our model with large
dataset so that we can have better inference before the de-
velopment of clinical diagnostic models.
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