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neuroscience [1]–[3], has been fundamental in the advances
of modern neuroscience. However, the variability results of
the statistical analysis of functional human brain networks
depend on multiple factors such as: the sources of the fMRI
data, the choice of suitable brain parcellations [4]–[7], as well
as on the selected graph theory measures [8]–[10], and on
the threshold values applied to the functional connectivity
matrices [11], [12], to derive the adjacency matrices that
represent sparse graphs. Such variability on the results of the
statistical analysis, produces classification and characterization
methods that may not be reliable, or reproducible for fMRI
data obtained from various sources [13].

TABLE I: International Imaging Sites from ABIDE prepro-
cessed fMRI data used in this paper [14].

International Imaging Site Control ASD
California Inst. Tech. (Caltech) 18 19

Kennedy Krieger Institute (KKI) 28 20
L. Maximilians U. (MaxMun) 28 24
NYU Langone Medical (NYU) 100 75

University Pittsburgh (Pitt) 27 29
Social Brain Lab (SBL) 15 15

University California LA (UCLA-1) 28 20
University Michigan (UM-1) 53 53

University Utah (USM) 25 46
Yale University (Yale) 28 28

TOTAL) 353 350

In this paper we present the preliminary results of a multi-
factorial assessment of the statistical analysis of functional
human brain networks. The assessment was performed in the
functional human brain networks obtained from the resting
state fMRI data provided by the Autism Brain Imaging Data
Exchange (ABIDE) preprocessed functional magnetic reso-
nance database [14] from the ten imaging sites shown in Table
I, with six different functional brain parcellations, six different
graph theory measures, and three different threshold values
applied to the corresponding connectivity matrices to obtain
sparse graphs. To ensure the consistency of the statistical anal-
ysis to detect differences between the networks representing
autism and control subjects, four different statistical methods
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in the functional human brain networks obtained from the resting 
state fMRI data of ten imaging sites provided by the Autism 
Brain Imaging Data Exchange (ABIDE) preprocessed functional 
magnetic resonance database, with six different functional brain 
parcellations, six different graph theory measures, and three 
different threshold values applied to the corresponding connec-
tivity matrices to obtain sparse graphs. The statistical analysis 
to detect differences between the networks representing autism 
and control subjects were performed with four different statistical 
methods, using the p-values to determine the levels of significance 
of the analysis. Our main results show a strong dependence of 
functional human brain networks statistical analysis on the brain 
parcellations, and on the graph theory measures. Our results 
further show that the results of these analysis are less dependent 
on the statistical tests methods and on the threshold values of 
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global levels of significance o btained b y averaging t he r esults of 
all the sites, implying that the best results on the analysis of 
functional human brain networks are obtained when the source 
of the fMRI data is the same for all the data. Since reproducibility 
and reliability of functional brain network statistical analysis is 
strongly dependent on the graphs obtained from fMRI data; our 
expectation is that the novel results presented in this paper would 
further help researchers in this field to develop methods that are 
reliable and reproducible.
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I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is non-
invasive imaging technique widely used in neuroscience to
understand the functional connectivity of the human brain.
The modeling and analysis of fMRI data with complex graph
theory as functional human brain networks, known as network
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were chosen for this analysis, using the corresponding p-values
that determine their level of significance.

The main contribution of the paper is the implementation
of methods for the assessment of the multiple factors which
determine the variability of the results obtained with the
statistical analysis of functional human brain networks. These
methods allowed us to demonstrate that there is a strong
dependence of functional human brain networks statistical
analysis on the brain parcellations, and on the graph theory
measures. Our results further show that the results of these
analysis are less dependent on the statistical tests methods and
on the threshold values of the sparse graphs for all practical
purposes. An additional result is that the levels of significance
of the statistical tests obtained for individual sites were much
higher than the global levels of significance obtained by
averaging the results of all the sites, implying that the best
results on the statistical analysis of functional human brain
networks are obtained when the source of the fMRI data is
the same for all the data.

The rest of the paper is organized as follows: Section II
describes the fMRI data and the implemented methods, Section
III presents the main results, Section IV analyzes the main
results, the final conclusions and future work are presented in
Section V.

II. FMRI DATA AND METHODS

A. ABIDE rest-fMRI preprocessed data

The resting state fMRI data used in our experiments was
obtained from the publicly available Autism Brain Imaging
Data Exchange (ABIDE) preprocessed database, for the ten
international imaging sites listed in Table I, with a total
of 353 control and 350 autism subjects [14]. The prepro-
cessing pipeline chosen for this data was the Configurable
Pipeline for the Analysis of Connectomes (CPAC), and the
filt-global preprocessing strategy, which are described in de-
tail in the ABIDE Preprocessed website (http://preprocessed-
connectomes-project.org/abide/index.html). For each site, the
fMRI data for six ROI atlases were chosen, three atlases de-
rived from fMRI data: cc200, cc400 [15], dosenbach160 [16],
and three atlases derived from structural anatomic information:
Automated Anatomical Labeling (aal) [17], Eickhoff-Ziles (ez)
[18], and Talaraich and Tournoux (tt) [19], more information
about these atlases is given in [20], [21].

B. ABIDE fMRI data processing pipeline

Figure 1 shows the pipeline implemented to perform the
statistical analysis of the graph theory measures computed
from the human brain functional networks representing the
ABIDE fMRI preprocessed data listed in Table I. The first step
in this pipeline was to compute the normalized connectivity
matrices from the corresponding fMRI data for each autism
and control subjects, using the Pearson correlation function
available in the NumPy library (https://numpy.org). Then, the
absolute values of the weights of the connectivity matrices
were computed, from which two average absolute connectivity
matrices were obtained for each site and for each atlas: one

for the control subjects and another for the autism subjects,
obtaining twelve average absolute connectivity matrices per
site with normalized weights. Three threshold values: 0.1,
0.2, 0.3 were applied to the average absolute connectivity
matrices resulting in adjacency matrices representing three
sparse graphs for the control subjects and three for the autism
subjects, obtaining thirty-six adjacency matrices per site. An
undirected weighted functional graph was computed from
each adjacency matrix with the algorithms available in the
Networkx package [22]. Then, six graph theory measures were
computed for each functional graph (details in Section II-C
below). Finally, statistical analysis of the graph measures was
performed for the functional graphs representing the control
and autism subjects, to detect statistical differences between
these two groups of fMRI data (details in Section II-D below).

C. graph theory measures

The graph theory measures implemented for the func-
tional graphs were: normalized measure of node strength,
closeness centrality, node betweenness centrality (BC), edge
betweenness centrality (EBC), Rich-Club coefficient (RC), and
clustering coefficient (CC). A node strength is computed as
the sum of the weights of the edges attached to the node. The
closeness centrality of a node is equal to the inverse of the
average shortest path distance to the node. A node betweenness
centrality (BC) measures the proportion of shortest paths
between all pair of nodes in the graph that passes through
the node, and the edge betweenness centrality is the same
measure applied to the edges of the graph. The Rich-Club
coefficient at each level of degree, k, is defined as the ratio of
the number of edges in the subgraph comprising only nodes
with degree greater than k, relative to the total possible number
of edges in this subgraph. The clustering coefficient of a
node is the proportion of closed triangles that are attached
to the node, relative to the total number of closed triangles
that are possible between the neighbors of the node. These
measures were computed with the corresponding algorithms
implemented in the NetworkX package. More details about
these graph measures in [8], [11], [22], [23].

D. Statistical tests methods

In order to ensure the consistency of the statistical results,
four statistical tests methods were used to perform the sta-
tistical analysis of the control and autism graphs measures.
The chosen methods were: The parametric t-test (tt), and three
nonparametric tests: the Kolmogorov–Smirnov test (kst), the
Kruskal–Wallis H-test (krust), and the Mann–Whitney U test
(mwt). The t-test is used to determine if the means of two
sets of data are statistically different from each other. The
nonparametric tests compute several test statistics to determine
if two set of data are samples of the same distribution. All the
statistics methods are implemented in the stats sub-package
of the SciPy library in Python (https://scipy.org), more details
about these methods in [24]–[26].

The p-value computed by a statistical test is the probability
of type I error, that is the probability of rejecting the null
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Fig. 1: Pipeline to perform the statistical analysis of the graph theory measures computed from the human brain functional
networks representing the ABIDE rest-fMRI preprocessed data obtained from the control and autism subjects.

Fig. 2: Histograms of the normalized p-values-counts for the intervals p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1,
obtained from the average of these values corresponding to each atlas. The a) Average histogram shows the average for all
sites of the p-values-counts intervals, while the b) Caltech histogram shows the same information for the Caltech site.

hypothesis H0 when H0 is true, where in this paper H0 is
the hypothesis that the graph measures of the autism and
control functional graphs are from the same distribution. The
p-value is also known as the observed level of significance.
The smaller the p-value, the more significant is the statistical
test result [24]. In order to classify the statistical test results,
four significance levels: 0.001, 0.01, 0.05, 0.1 were defined
for the p-values, that resulted in the following five intervals:
p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1.
These p-values intervals were used to classify the statistical

tests results obtained for example for a graph measure, by
counting the number of times the p-values fall in a particular
interval. The greater the number of p-values counted in the first
four intervals, the greater the capability of the graph measure
to detect statistical differences between the measures computed
for the graphs representing control and autism subjects.

III. RESULTS.

The average of all the statistics tests results corresponding
to each atlas was computed for each imaging site, obtaining

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 25,2022 at 15:22:41 UTC from IEEE Xplore.  Restrictions apply. 



3529

Fig. 3: Histograms of the normalized p-values-counts for the intervals p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1,
obtained from the average of these values obtained for each graph measure. The a) Average histogram shows the average for
all sites of the p-values-counts intervals, while the b) Caltech histogram shows the same information for the Caltech site.

Fig. 4: Histograms of the normalized p-values-counts for the intervals p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1,
obtained from the average of these values obtained for each statistical test. The a) Average histogram shows the average for
all sites of the p-values-counts intervals, while the b) Caltech histogram shows the same information for the Caltech site.

the normalized p-values counts for the intervals p ≤ 0.001,
p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1, for each atlas per
imaging site. The histogram of Figure 2 b) shows these results
for the Caltech site. To facilitate the reading of this Figure,
the numbers between brackets map each p-value interval with
the corresponding atlas.

The average of the averages of the p-values per site, were
computed to obtain global averages of the p-values counts
values corresponding to all the fMRI data provided for the ten
imaging sites of Table I. The histogram of Figure 2 a) shows
these global results.

Figures 3, 4, and 5 show similar results for the normalized
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Fig. 5: Histograms of the normalized p-values-counts for the intervals p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, p ≤ 0.1, and p > 0.1,
obtained from the average of these values corresponding to the sparse graphs for each threshold value. The a) Average histogram
shows the average for all sites of the p-values-counts intervals, while the b) Caltech histogram shows the same information
for the Caltech site.

p-values counts for the graph measures, for the statistical
tests, and for the sparse graphs corresponding to the selected
threshold values respectively.

Al the results presented in this section are easily repro-
ducible since the fMRI data and the software packages used
for computing them are publicly available.

IV. DISCUSSION

The results shown in Figure 2 a), demonstrated that the
level of significance of the statistical analysis of the graph
measures are strongly dependent on the type of atlas used
as brain parcellations. These results also showed that the
level of significance obtained with the atlases derived from
functional data, i.e., cc200, cc400, and dosenbach160 are,
in average, much higher than the corresponding levels of
significance of the anatomical derived atlases. The highest
level of significance was obtained with the cc400 atlas. The
results obtained for the Caltech site (Figure 2 b)) showed
levels of significance much higher than the global average, also
showing much better results for the anatomical derived atlases,
especially those corresponding to the Automated Anatomical
Labeling (aal) atlas.

The high level of significance obtained for the graph theory
measures: strength, closeness centrality, and edge betweenness
centrality (EBC) (Figure 3 a)) showed a strong dependence of
the corresponding results of the functional network statistical
analysis on these measures. These results were confirmed by
the level of significance obtained for these measures with the

Caltech site fMRI data (Figure 3 a)), which are much higher
than the corresponding global average.

The levels of significance corresponding to the statistical
tests methods (Figure 4 a)) are on average similar among
the tests, with the Mann–Whitney U test (mwt) showing the
highest level of significance. This result was confirmed by the
corresponding level of significance obtained for the Caltech
site (Figure 4 b)), which are much higher than the average
values. These results also confirmed the consistency of the
statistical tests methods used in this research. The levels of
significance corresponding to the sparse graphs obtained with
the selected threshold values are also very homogeneous,
especially those corresponding to the threshold values 0.1
and 0.2 (Figure 5). These results showed that the functional
network statistical analysis results are less dependent on the
statistical tests methods, and on the threshold values applied
to the connectivity matrices to obtain the adjacency matrices
of the sparse graphs.

The higher levels of significance showed for the Caltech site
compared to the average case suggested that the best results
on the statistical analysis of functional human brain networks
are obtained when the source of the fMRI data is the same
for all the data.

V. CONCLUSION AND FUTURE WORK

In order to improve and enhance the scope of the methods
presented here, we will incorporate brain parcellations directly
computed from the fMRI data using decomposition methods
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such as Independent Component Analysis (ICA) [7], which
will complement the statistical results obtained with the atlases
included in this paper. We also will improve the methods to
compute the sparse graphs by selecting thresholds for which
the graphs, representing autism and control subjects, have
the same density and the same number of edges, improving
therefore the statistical comparison of the corresponding graph
measures. The results of this research will be presented in a
paper which is under preparation.

Machine learning, especially deep learning, techniques have
been widely used in network neuroscience research for the
diagnosis of mental disorders by accurately classifying patients
with these type of disorders [27]. Considering the promising
future and high potential of success of this area of research,
our future work will be focused on improving our methodol-
ogy by incorporating machine learning techniques to perform
functional network statistical analysis, in order to determine
the main factors that strongly affect the reproducibility and
reliability of the results of this analysis.

Since reproducibility and reliability of functional brain
network statistical analysis is strongly dependent on the type
of fMRI data, brain parcellations, and graph theory measures;
our expectation is that the novel results presented in this paper
would further help researchers in this field to develop standard
workflows to perform reliable and reproducible functional
networks analysis, that may be adapted by the neuroscience
community.
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