
OpenChem: A Deep Learning Toolkit for Computational Chemistry
and Drug Design
Maria Korshunova,* Boris Ginsburg, Alexander Tropsha, and Olexandr Isayev*

Cite This: J. Chem. Inf. Model. 2021, 61, 7−13 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Deep learning models have demonstrated outstanding results in many data-rich areas of research, such as computer
vision and natural language processing. Currently, there is a rise of deep learning in computational chemistry and materials
informatics, where deep learning could be effectively applied in modeling the relationship between chemical structures and their
properties. With the immense growth of chemical and materials data, deep learning models can begin to outperform conventional
machine learning techniques such as random forest, support vector machines, and nearest neighbor. Herein, we introduce
OpenChem, a PyTorch-based deep learning toolkit for computational chemistry and drug design. OpenChem offers easy and fast
model development, modular software design, and several data preprocessing modules. It is freely available via the GitHub
repository.

■ INTRODUCTION

Deep Learning is undergoing a rise in various fields of
computational chemistry, including chemical reaction design,
drug discovery, and material science. Machine learning has been
a widely used technique in computational chemistry for the past
70 years but mainly for building models for small molecule
activity/property prediction from their chemical descriptors.
Known as Quantitative Structure−Activity Relationship/
Quantitative Structure−Property Relationship (QSAR/
QSPR),1 machine learning approaches have been applied to
solving activity or property classification and regression
problems. Both types of problems can be solved with deep
learning models; however, until recently, chemical data were not
big enough to train robust and reliable neural networks.
Currently, computational chemistry is entering the age of big
data. For instance, a repository of chemical bioactivity data
known as PubChem2 comprises more than 100 million chemical
structures, and more than 250 million experimentally measured
bioactivities (https://pubchemdocs.ncbi.nlm.nih.gov/
statistics). Thus, the use of deep neural networks to analyze
big bioactivity data becomes increasingly justified. Moreover,
there are many interesting classical problems in computational
chemistry that have never been tackled with machine learning

before the deep learning era. An excellent example of such a
problem is the de novo generation of molecules with optimized
properties. Previously, this problem was attacked with
combinatorial methods.3,4 However, such an approach is not
efficient since chemical space is big (with estimates up to 1060

molecules5), and an efficient sampling technique should be
“smart”, which makes deep learning models a good fit for this
problem. Models for de novo molecular design require a lot of
unlabeled data, which is available at much less cost than labeled
data. For example, Enamine REAL database (https://enamine.
net/hit-finding/compound-collections/real-database) contains
3.7 billion real organic molecules and can be used to train a deep
generative neural network as to how to generate new realistic
molecules. There have been various flavors of deep generative
models for molecules in multiple representations, with the most

Received: August 20, 2020
Published: January 4, 2021

Application Notepubs.acs.org/jcim

© 2021 American Chemical Society
7

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

D
ow

nl
oa

de
d

vi
a

C
A

R
N

EG
IE

 M
EL

LO
N

 U
N

IV
 o

n
M

ar
ch

 2
3,

 2
02

2
at

 2
0:

24
:0

7
(U

TC
).

Se
e

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Korshunova"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Boris+Ginsburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+Tropsha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olexandr+Isayev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.0c00971&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=tgr1&ref=pdf
https://pubchemdocs.ncbi.nlm.nih.gov/statistics
https://pubchemdocs.ncbi.nlm.nih.gov/statistics
https://enamine.net/hit-finding/compound-collections/real-database
https://enamine.net/hit-finding/compound-collections/real-database
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/61/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/1?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf

common ones being SMILES6 andmolecular graphs.7 There are
also multiple property optimization strategies in the literature,
such as reinforcement learning, Bayesian optimization, and
optimization in the latent space.8−12

From a practical perspective, there are two main frameworks
used for developing deep learning neural networks, which are
PyTorch13 and Tensorflow.14 We decided to use PyTorch since
it is more suitable for easy experimentation and fast prototyping.
In other words, we wanted to build a tool that would let
scientists quickly try an idea with as little engineering efforts as
possible. Here comes another pitfall for computational chemists,
who, in many cases, are not computer scientists or software
engineers. Even with focused deep learning libraries such as
PyTorch and Tensorflow, building a deep learning network does
require an extensive software engineering background. There
exist several community-maintained libraries for computational
chemistry, such as RDKit,15 DeepChem (https://deepchem.io),
and ATOM Modeling Pipeline16 which extends DeepChem.
RDKit offers functionality for manipulating chemical objects
such as atoms, bonds, and molecules. While this functionality is
extremely useful for data processing, it is not designed for
building machine learning models. Another library we
mentioned, DeepChem, is aimed at building deep neural
networks for chemistry and built uponTensorflow. Developing a
newmodel with DeepChem requires writing a lot of Tensorflow
code; furthermore, DeepChem does not enable modular design
features such as encapsulation and reusability of standard deep
neural network blocks, such as encoders, decoders, and
embedding layers.
Another critical question is the reproducibility of computa-

tional experiments. Frequently, results reported in papers cannot
be reproduced by independent researchers. This could happen
due to various factors, including the absence of standardized
package environments, well-tracked log files, and protocols for
reproducing the results, to name a few.
To address the issues discussed above, we developed

OpenChem, a deep learning library for computational chemistry
built upon the PyTorch framework. OpenChem offers modular
design, where building blocks can be combined; ease of use by
letting the users define a model with a single config file; and
advanced deep learning features such as built-in multi-GPU
support. In this application note, we introduce OpenChem
design and present three case studies. All data and models to

reproduce these examples are available from https://github.
com/Mariewelt/OpenChem.

■ OPENCHEM DESIGN
OpenChem is a deep learning toolkit for computational
chemistry and drug design with a PyTorch backend. The
primary purpose of OpenChem is to provide computational
chemists with a tool for easy experimentation with deep learning
models, i.e., quick implementation of architectures, fast training,
debugging, result interpretation, and visualization. The main
idea is implementing a toolkit as a set of building blocks with a
unified API that will be combined into a single custom
architecture by a user.
OpenChem introduces several model types: Feature2Label,

Smiles2Label, Graph2Label, SiameseModel, GenerativeRNN,
and MolecularRNN. These high-level model types consist of
lower level modules, such as embeddings, encoders, and
multilayer perceptron. Modules are built from layers, which
could be PyTorch or custom layers. Examples of custom layers
implemented in OpenChem are graph convolutions, convolu-
tions combined with batch normalization and ReLU, and stack
augmentation. Another OpenChem object type is a data set. The
OpenChem data set inherits from the PyTorch data set and
additionally provides features for converting inputs into tensors
for the OpenChem model. OpenChem has a data set for
converting SMILES into feature vectors, tokens, and molecular
graphs and for converting protein sequences into tokens.
Overall, OpenChem is implemented to offer users a modular

design; i.e., blocks with the same input and output formats can
be used interchangeably by adjusting the settings in the
configuration file. For example, there are several different
options for the encoder block, such as the RNN encoder, CNN
encoder, or Graph CNN encoder, that could be used to calculate
representation vectors for molecules. OpenChem allows
choosing these options from the configuration file. OpenChem
also supports built-in multi-GPU training and offers several
features for logging and debugging. Figure 1 summarizes the
types of models, modules, and tasks that are currently
implemented in OpenChem. Users can train predictive models
for classification, regression, and multitask problems, as well as
develop generative models for producing novel molecules with
optimized properties. OpenChem can work both with SMILES
strings and molecular graphs. Data layers offer utilities for data
preprocessing, such as converting SMILES strings to molecular

Figure 1. Main OpenChem objects.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

8

https://deepchem.io
https://github.com/Mariewelt/OpenChem
https://github.com/Mariewelt/OpenChem
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

graphs and calculating standard structural features for such
graphs.
Models in OpenChem are defined in the Python config-

uration file as a dictionary of parameters. The dictionary must
contain parameters that define how to run/train/evaluate a
model, as well as parameters defining model architecture.
OpenChem provides scripts for model training, and it also
natively supports multi-GPU training. After the training process
is finished, OpenChem saves model parameters, as well as log
files, to a designated folder so that the experiment can be
reproduced later.
Configuration File. The configuration file must define a

model, which should be any class derived from Open-
ChemModel and dictionary model_params, which
specifies model hyperparameters. A detailed list of standard
training parameters is provided in Table S1.
We consider three use cases, which illustrate how models are

defined and used in OpenChem.
Case Study 1: Graph Convolution Neural Network for

Predicting logP. Data and Model Description. In this case
study, we built a Graph Convolution Neural Network
(GraphCNN)17 for predicting the n-octanol/water partition
coefficient (logP) from molecular graphs. This task is an
example of a regression problem, as logP covers a range of
continuous values. A detailed model description is provided in
the Supporting Information. We used five atomic properties as
node attributes: atom type, valence, charge, hybridization, and
aromaticity. OpenChem provides a module for declaring an
attribute, where a user can specify attribute type (node or edge)
and attribute label (e.g., categorical) list all possible values for
categorical attributes, and more. The GraphCNN model also
requires a user-defined function for calculating node attributes.
It is a Python function that receives the RDKit atom object as an
input and returns a dictionary of atomic attributes for the input
atom.
First, we loaded the logP data set (described below) and split

it into train and test subsets. OpenChem provides function
read_smiles_property_file that accepts the path to
the file and indices of the columns to be read from the file as
arguments and returns a list where each element is a column
from the file. In this example, we loaded the logP_labels.csv file,
read columns number 1 and 2, split the data into training and
test subsets, and saved the subsets into new files using the
save_smiles_property_file utility from OpenChem.
Next, we created graph data layers from the saved files with train
and test subsets. OpenChem provides a GraphDataset
class, which can convert SMILES strings to molecular graphs
and calculate node and edge attributes. The GraphDataset
also accepts a user-defined dictionary of atomic (node)
attributes, such as valency, hybridization, and aromaticity, and
functions for computing these attributes. Other parameters to

the GraphDataset include a path to the text file with data, a
list of columns that will be read from the file, and a column
delimiter.
Our model consists of five layers of Graph Convolutions with

a hidden size of 128, followed by two layers of multilayer
perceptron (MLP) with ReLU nonlinearity and hidden
dimensionalities of 128 and 1. We trained the model for 100
epochs with an Adam18 optimizer with an initial learning rate of
0.01, and a MultiStepLR learning scheduler with step size 15,
and gamma factor of 0.5, meaning that the learning rate is
decreased by half every 15 epochs of training starting from the
initial learning rate of 0.01. For external evaluation, we used R2

score. We also printed the intermediate progress report on the
training and evaluation metrics every 10 epochs and saved the
model checkpoint every 5 epochs. We specified all these
parameters in the dictionary below.

Figure 2. Scheme of multitask SMILES2Label model. Input SMILES string is converted to a matrix of embeddings by the dictionary of learnable
embeddings. Next, thematrix of embeddings is passed to the RNN encoder with a LSTM layer. The RNN encoder converts thematrix of embedding to
a representation vector, which is used by the multilayer perceptron to make predictions for the input SMILES.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

9

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00971/suppl_file/ci0c00971_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00971/suppl_file/ci0c00971_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

Results. We trained a GraphCNN for predicting the n-
octanol/water partition coefficient (logP) directly from the
molecular graph. Themodeling data set of 14,500molecules was
obtained based on the public version of the PHYSPROP
database.19 The data set was curated according to our well-
established protocol.20 Structural standardization, cleaning of
salts, and removal of mixtures, inorganics, and organometallics
were performed using ChemAxon. In the case of replicate
compounds, InChI Keys were generated to resolve duplicates. In
the case of conflicting property values, the entries were
discarded. Using 5-fold cross-validation, we obtained the
model accuracy expressed as R2 = 0.90 and root-mean-square
error RMSE = 0.56 This is significantly better than traditional
QSPR models (R2 = 0.86 and RMSE = 0.78) obtained on the
same data set using physicochemical descriptors and E-state
indices.21

Case Study 2: Tox21 Challenge. Data and Model
Description. In this case study, we built a Recurrent Neural
Network (RNN) (Figure 2) for multitask prediction of
bioactivity for 12 receptors using data from the Tox21
challenge.22 This model receives a SMILES string6 for a ligand
as an input and returns a vector of size 12, where each
component is interpreted as a probability that the input ligand
binds to a corresponding receptor. In other words, multitask
allows solving 12 independent binary classification problems
with a single model. Since any SMILES string is a sequence of
characters, we can use Recurrent Neural Networks to calculate a
representation vector for a given molecule.10 Each symbol of the
SMILES string st is processed sequentially. At each time step, the
model takes a single character st from the SMILES string and
converts it to a numerical embedding vector xt with a learnable
embedding dictionary layer. Then, xt is passed to the LSTM
layer

= + + ++h W x b W h bt x t x h t h1

where ht is the intermediate hidden state for the SMILES prefix
of length t. When the whole SMILES string is processed, hidden
state hT from the final time step is used as a representation vector
for the next feed-forward layer, which outputs the vector of
prediction for the input SMILES.
Defining Model in OpenChem. The Tox21 data set is

available as a benchmark data set, and it can be loaded from the
OpenChem GitHub with the read_smiles_proper-
ty_file function. As Tox21 is a multitarget data set, some of
the labels are not available and, therefore, left empty. To account
for dummy labels, we used MultitaskLoss from Open-
Chem, which is a binary cross-entropy loss, averaged across
multiple classes. MultitaskLoss also does not accumulate
losses for dummy labels to the final loss in backpropagation. We
filled themwith a dummy index that was ignored during training.
We also extracted unique tokens from the whole data set before
splitting it into training and test subsets to avoid the situation
where some of the tokens are not present in one of the pieces of
the data set. After this step, we split data randomly into training
and test subsets and saved these subsets to new files with the
OpenChem save_smiles_property_file utility.
Next, we created the SMILES data layer from input files and

added data augmentation by SMILES enumeration23 for the
training data set. The idea behind it is to include noncanonical
notation for SMILES. Augmentation is enabled by setting the
argument augment=True when creating an object of class
SmilesDataset. Since this task is multitarget, we needed to
implement a custom evaluation function for calculating

classification accuracy separately for each task. As for accuracy
metrics, we used the AUC-ROC averaged across all classes.
Next, we defined the model architecture with Smiles2Label
modality. This model consists of an Embedding block, a
Recurrent Encoder with four LSTM layers, and MLP. We also
used dropout with a high probability to enable regularization to
avoid model overfitting.

Results. In this example, we trained a multitask model for
predicting biological activity for 12 assays from the Tox21
challenge. The similarity (and dissimilarity) between the tasks is
exploited to enrich a model.24 We obtained a mean AUC of
∼0.84 with the following per target AUC values on the test set:

• NR-AR 0.85
• NR-AR-LBD 0.90
• NR-AhR 0.87
• NR-Aromatase 0.84
• NR-ER 0.76
• NR-ER-LBD 0.82
• NR-PPAR-gamma 0.80
• SR-ARE 0.78
• SR-ATAD5 0.85
• SR-HSE 0.84
• SR-MMP 0.87
• SR-p53 0.86

These results are comparable to the results reported in the
literature previously.22 Our single multitask model approached
the accuracy of the winning model,25 which was a complex
ensemble combination of different models and descriptor
schemes.

Case Study 3: Generation of Molecular Graphs with
Maximized Melting Temperature. Data and Model
Description. In the final case study, we built a MolecularRNN26

model for the generation of molecular graphs and further
optimization of the specific property of the generated molecules.
This model generates molecular graphs in an autoregressive
manner, i.e., atom by atom. At each time step, themodel predicts

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

10

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

the chemical type of a new atom and the edge connections
(including edge types) between the new atom and previously
generated ones. Here, we only briefly mention the overall
training pipeline. Please see the full example at https://github.
com/Mariewelt/OpenChem.
Unsupervised Pretraining Stage. At this stage, the model is

pretrained on a vast unlabeled data set of real molecules from the
ChEMBL database to produce valid and realistic molecules. In
other words, during this stage, MolecularRNN learns the
distribution over molecular graphs from the training data set.
Thus, the generated molecular graphs are similar in structure
and properties to known bioactive molecules.
Property Optimization Stage. At this stage, we use a policy

gradient algorithm27 to shift the distribution of the generated
samples for the desired numerical property. Examples of such
properties are solubility, biological activity for the target protein,
and toxicity. In this setting, the generative model is used as a
policy network. We use an external predictive model to estimate
the values of the desired property. This can be a machine
learning model (such as neural network built with OpenChem),
or it can be any other black box function that accepts molecule as
the input and outputs the numerical value of the desired
property. Following the policy gradient algorithm, the objective
function to be maximized is defined as the expected reward

∑θ γ θ= − · · |
=

−L r s p s s() () log (;)
i

N

N
i

i i
1

1

where sN is the generated molecular graph, si, i = 1,···, N is the
subgraph of sN with 0 < i <N nodes, γ is the discount factor, p(si|
si−1); θ) is the transition probability obtained from the
generative model,and r(sN) is the value of the reward function
for the generated molecular graph on the output of the
predictive model for the desired property.
Defining the Model in OpenChem. The MolecularRNN

model was pretrained on the curated ChEMBL24 data set of 1.5
million molecules. We performed the optimization of model
parameters to maximize the melting temperature of the
generated molecular graphs. The MolecularRNN model had
four GRU28 layers with 256 hidden activations in both
NodeRNN and EdgeRNN. The model learns a dictionary of
embeddings for nine atoms types (C, N, O, F, P, S, Cl, Br, I) and
three bond types (single, double, and triple). We used the
kekulized form of molecules according to RDKit15 which
eliminated the need to specify aromatic bonds explicitly.

Figure 3. (A) Distribution shift in melting temperature. (B) Examples of generated molecules with high predicted melting temperatures.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

11

https://github.com/Mariewelt/OpenChem
https://github.com/Mariewelt/OpenChem
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

We also defined structural parameters of the molecular graphs
above, such as minimum and the maximum number of nodes
and valency constraints for each atom type.
Results. Currently, common modeling frameworks do not

allow simultaneous ML model building, new compound
generation, and property optimization. OpenChem library
bridges this gap. Briefly, to optimize melting temperature
(Tmelt), we started with our pretrainedmodel and used the policy
gradient algorithm. We trained a GraphCNN regression model
to predict Tmelt.The model has a RMS error of 39.5 °C that is
comparable to the state-of-the-art performance for the same data
set of 54,000 molecules.29 See ref 26 for complete technical
details. Figure 3 shows the shift in the distribution of predicted
melting temperature before and after optimization with the
policy gradient algorithm, as well as examples of the generated
molecules with high predicted melted temperature values.

■ CONCLUSIONS
Deep learningmethods have emerged as a powerful approach for
a variety of different tasks, including predictive, discriminative,
and generative models. The OpenChem library was created to
enable high-performance implementations of deep learning
algorithms for drug discovery and molecular modeling
applications. Built upon the PyTorch framework, OpenChem
is optimized for execution on GPUs and large data sets. One
could quickly train ML models from data sets with hundreds of
thousands or evenmillions of data points. OpenChem’s modular
API allows easy experimentation and fast model prototyping
without substantial programming effort. Calculations with
OpenChem could be scaled in the Cloud and HPC clusters. It
provides well-tracked log files and sharable protocols and
models for reproducible results. In this application note, we
described just three examples of practical tasks that can be solved
with OpenChem. However, the functionality of the proposed
framework includes a wide variety of tasks, covering binary,
multiclass, and multitask classification; regression and gener-
ative modeling; and property optimization. In all three
demonstrated examples, we quickly obtained a state-of-the-art
performance of models without extensive programming of each
model. Our plans include extending the model list and adding
new tasks such as message passing neural networks and
multiproperty optimization with reinforcement learning.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971.

Information as mentioned in the text (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Maria Korshunova − Computational Biology Department,
School of Computer Science and Department of Chemistry,
Mellon College of Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, United States; orcid.org/
0000-0003-4391-8228; Email: mariewelt@cmu.edu

Olexandr Isayev − Computational Biology Department, School
of Computer Science and Department of Chemistry, Mellon
College of Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, United States; orcid.org/0000-0001-
7581-8497; Email: olexandr@olexandrisayev.com

Authors
Boris Ginsburg − NVIDIA Corporation, Santa Clara,
California 95050, United States

Alexander Tropsha − UNC Eshelman School of Pharmacy,
University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina 27599, United States; orcid.org/0000-
0003-3802-8896

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c00971

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

A.T. acknowledges NIH 1R01GM114015 and ONR N00014-
16-1-2311. O.I. acknowledges support from the National
Science Foundation (NSF CHE-1802789) and Eshelman
Institute for Innovation (EII) award. M.P. acknowledges The
Molecular Sciences Software Institute (MolSSI) Software
Fellowship and the NVIDIAGraduate Fellowship. We gratefully
acknowledge the support and hardware donation from NVIDIA
Corporation and personally Jonathan Lefman.

■ REFERENCES
(1) Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.;
Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, I. I.; Varnek, A.;
Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-
Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A.
QSAR without Borders. Chem. Soc. Rev. 2020, 49, 3525.
(2) Wang, Y.; Bryant, S. H.; Cheng, T.; Wang, J.; Gindulyte, A.;
Shoemaker, B. A.; Thiessen, P. A.; He, S.; Zhang, J. PubChemBioAssay:
2017 Update. Nucleic Acids Res. 2017, 45 (D1), D955−D963.
(3) Cho, S. J.; Zheng, W.; Tropsha, A. Rational Combinatorial Library
Design. 2. Rational Design of TargetedCombinatorial Peptide Libraries
Using Chemical Similarity Probe and the Inverse QSAR Approaches. J.
Chem. Inf. Comput. Sci. 1998, 38 (2), 259−268.
(4) Gillet, V. J.; Khatib, W.; Willett, P.; Fleming, P. J.; Green, D. V. S.
Combinatorial Library Design Using a Multiobjective Genetic
Algorithm. J. Chem. Inf. Comput. Sci. 2002, 42, 375.
(5) Bohacek, R. S.; McMartin, C.; Guida, W. C. The Art and Practice
of Structure-Based Drug Design: A Molecular Modeling Perspective.
Med. Res. Rev. 1996, 16, 3.
(6) Weininger, D. SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules. J. Chem.
Inf. Model. 1988, 28 (1), 31−36.
(7) Bonchev, D.; Rouvray, D. H. Chemical Graph Theory: Introduction
and Fundamentals; Abacus Press, 1991.
(8) Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P. Optimization of
Molecules via Deep Reinforcement Learning. Sci. Rep. 2019, 10752.
(9) Ikebata, H.; Hongo, K.; Isomura, T.; Maezono, R.; Yoshida, R.
Bayesian Molecular Design with a Chemical Language Model. J.
Comput.-Aided Mol. Des. 2017, 31 (4), 379−391.
(10) Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement
Learning for de Novo Drug Design. Sci. Adv. 2018, 4, eaap7885.
(11) Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.;
Aladinskaya, A. V.; Aliper, A.; Zhavoronkov, A. Adversarial Threshold
Neural Computer for Molecular de Novo Design. Mol. Pharmaceutics
2018, 15, 4386.
(12) Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.;
Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D.
A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.;
Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.;
Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A.
Deep Learning Enables Rapid Identification of Potent DDR1 Kinase
Inhibitors. Nat. Biotechnol. 2019, 37 (9), 1038−1040.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

12

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00971/suppl_file/ci0c00971_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Korshunova"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4391-8228
http://orcid.org/0000-0003-4391-8228
mailto:mariewelt@cmu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olexandr+Isayev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7581-8497
http://orcid.org/0000-0001-7581-8497
mailto:olexandr@olexandrisayev.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Boris+Ginsburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+Tropsha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3802-8896
http://orcid.org/0000-0003-3802-8896
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00971?ref=pdf
https://dx.doi.org/10.1039/D0CS00098A
https://dx.doi.org/10.1093/nar/gkw1118
https://dx.doi.org/10.1093/nar/gkw1118
https://dx.doi.org/10.1021/ci9700945
https://dx.doi.org/10.1021/ci9700945
https://dx.doi.org/10.1021/ci9700945
https://dx.doi.org/10.1021/ci010375j
https://dx.doi.org/10.1021/ci010375j
https://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://dx.doi.org/10.1021/ci00057a005
https://dx.doi.org/10.1021/ci00057a005
https://dx.doi.org/10.1038/s41598-019-47148-x
https://dx.doi.org/10.1038/s41598-019-47148-x
https://dx.doi.org/10.1007/s10822-016-0008-z
https://dx.doi.org/10.1126/sciadv.aap7885
https://dx.doi.org/10.1126/sciadv.aap7885
https://dx.doi.org/10.1021/acs.molpharmaceut.7b01137
https://dx.doi.org/10.1021/acs.molpharmaceut.7b01137
https://dx.doi.org/10.1038/s41587-019-0224-x
https://dx.doi.org/10.1038/s41587-019-0224-x
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

(13) Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
Facebook, Z. D.; Research, A. I.; Lin, Z.; Desmaison, A.; Antiga, L.; Srl,
O.; Lerer, A. Automatic Differentiation in PyTorch. In Proceedings of the
32nd International Conference on Neural Information Processing Systems,
2019.
(14) Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.;
Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M.; Levenberg,
J.; Monga, R.; Moore, S.; Murray, D. G.; Steiner, B.; Tucker, P.;
Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X. Tensor Flow:
A System for Large-Scale Machine Learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, 2016.
(15) Landrum, G. RDKit: Open-source Cheminformatics, 2006.
(16) Minnich, A. J.; McLoughlin, K.; Tse, M.; Deng, J.; Weber, A.;
Murad, N.; Madej, B. D.; Ramsundar, B.; Rush, T.; Calad-Thomson, S.;
Brase, J.; Allen, J. E. AMPL: A Data-DrivenModeling Pipeline for Drug
Discovery. J. Chem. Inf. Model. 2020, 60 (4), 1955−1968.
(17) Kipf, T. N.; Welling, M. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on
Learning Representations, ICLR 2017 - Conference Track Proceedings,
2019.
(18) Kingma, D. P.; Ba, J. L. Adam: A Method for Stochastic
Optimization. In 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Conference Track Proceedings, 2015.
(19) Beauman, J. A.; Howard, P. H. Physprop Database. In Syracuse
Res., Syracuse, NY, USA, 1995.
(20) Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify: On the
Importance of Chemical Structure Curation in Cheminformatics and
QSAR Modeling Research. J. Chem. Inf. Model. 2010, 50 (7), 1189−
1204.
(21) Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P. Prediction of N-
Octanol/Water Partition Coefficients from PHYSPROP Database
Using Artificial Neural Networks and E-State Indices. J. Chem. Inf.
Comput. Sci. 2001, 41, 1407.
(22) Capuzzi, S. J.; Politi, R.; Isayev, O.; Farag, S.; Tropsha, A. QSAR
Modeling of Tox21 Challenge Stress Response and Nuclear Receptor
Signaling Toxicity Assays. Front. Environ. Sci. 2016, na DOI: 10.3389/
fenvs.2016.00003.
(23) Bjerrum, E. J. SMILES Enumeration as Data Augmentation for
Neural Network Modeling of Molecules. arXiv1703.07076, 2017.
(24) Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41.
(25) Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Deep
Tox: Toxicity Prediction Using Deep Learning. Front. Environ. Sci.
2016, na DOI: 10.3389/fenvs.2015.00080.
(26) Popova, M.; Shvets, M.; Junier, O.; Isayev, O. Molecular RNN:
Generating Realistic Molecular Graphs with Optimized Proper-
ties.arXiv:1905.13372, 2019.
(27) Williams, R. J. Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning.Mach. Learn. 1992, 8 (3-4),
229−256.
(28) Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated Feedback
Recurrent Neural Networks. In 32nd International Conference on
Machine Learning, ICML 2015, 2015.
(29) Tetko, I. V.; Sushko, Y.; Novotarskyi, S.; Patiny, L.; Kondratov, I.;
Petrenko, A. E.; Charochkina, L.; Asiri, A. M. How Accurately Can We
Predict the Melting Points of Drug-like Compounds? J. Chem. Inf.
Model. 2014, 54 (12), 3320−3329.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00971
J. Chem. Inf. Model. 2021, 61, 7−13

13

https://dx.doi.org/10.1021/acs.jcim.9b01053
https://dx.doi.org/10.1021/acs.jcim.9b01053
https://dx.doi.org/10.1021/ci100176x
https://dx.doi.org/10.1021/ci100176x
https://dx.doi.org/10.1021/ci100176x
https://dx.doi.org/10.1021/ci010368v
https://dx.doi.org/10.1021/ci010368v
https://dx.doi.org/10.1021/ci010368v
https://dx.doi.org/10.3389/fenvs.2016.00003
https://dx.doi.org/10.3389/fenvs.2016.00003
https://dx.doi.org/10.3389/fenvs.2016.00003
https://dx.doi.org/10.3389/fenvs.2016.00003?ref=pdf
https://dx.doi.org/10.3389/fenvs.2016.00003?ref=pdf
https://dx.doi.org/10.1023/A:1007379606734
https://dx.doi.org/10.3389/fenvs.2015.00080
https://dx.doi.org/10.3389/fenvs.2015.00080
https://dx.doi.org/10.3389/fenvs.2015.00080?ref=pdf
https://dx.doi.org/10.1007/BF00992696
https://dx.doi.org/10.1007/BF00992696
https://dx.doi.org/10.1021/ci5005288
https://dx.doi.org/10.1021/ci5005288
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00971?ref=pdf

