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ABSTRACT: Modern polymer science suffers from the curse of
multidimensionality. The large chemical space imposed by
including combinations of monomers into a statistical copolymer
overwhelms polymer synthesis and characterization technology
and limits the ability to systematically study structure−property
relationships. To tackle this challenge in the context of 19F
magnetic resonance imaging (MRI) agents, we pursued a
computer-guided materials discovery approach that combines
synergistic innovations in automated flow synthesis and machine
learning (ML) method development. A software-controlled,
continuous polymer synthesis platform was developed to enable
iterative experimental−computational cycles that resulted in the synthesis of 397 unique copolymer compositions within a six-
variable compositional space. The nonintuitive design criteria identified by ML, which were accomplished by exploring <0.9% of the
overall compositional space, lead to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.

■ INTRODUCTION

Next-generation challenges in soft materials will require the
discovery of polymers that perform multiple functions
simultaneously. Copolymerization, where two or more building
blocks are included in a single material, is an effective strategy
to achieve differentiated properties.1 The inclusion of multiple
unique building blocks into a copolymer, however, often has
interdependent effects on reactivity, structure, and properties,
making the a priori prediction of material function for complex
copolymers challenging.2 Additionally, traditional synthetic
technology in polymer science is iterative, labor-intensive,
capricious, and low-throughput, making rapid experimentation,
purification, and analysis impractical.3 Polymer science there-
fore remains plagued by the “curse of multidimensionality”,
where even simple combinations of monomeric building blocks
lead to a high-dimensional chemical space that is too vast to
explore without implementing limiting assumptions.
Computer-guided materials discovery has been shown to be

an effective approach to detect meaningful patterns in data sets
of high dimensionality, thus allowing the prediction of
structure−function relationships while only requiring a small
percentage of the chemical space to be experimentally
explored.4 One such approach is the use of computer
simulations to define molecular structure−property relation-
ships and target specific polymer compositions.5 However,
human intuition defines the inputs of these computational
models, which restricts the diversity of the data set due to
inherent biases or limitations in knowledge. Furthermore,

computational and experimental cycles are often physically and
temporally separated, which slows the speed of chemical
structure optimization to achieve desired performance.
The use of artificial intelligence (AI) for computer-guided

materials discovery is an alternative approach that holds
promise for dramatically accelerating the optimization of
polymer structure−property relationships, with the opportu-
nity to close the loop between computational and experimental
components of the materials discovery pipeline.6,7 Recent
advances in both automated synthetic platforms and machine
learning (ML) methods development have enabled exper-
imental systems that provide high-quality training data to
improve ML models and, at times, are driven by ML
recommendations in the areas of small-molecule synthesis8−16

and nanomaterial synthesis.17−22 In a recent example, the
Doyle group demonstrated a Bayesian optimization platform
that allows chemists to iterate between experimentation and
ML within their standard synthetic workflows, thus providing
open-source tools to increase the efficiency of chemical
synthesis.23
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Despite impressive advances using ML for small-molecule
and nanomaterial synthesis, the integration of synthesis,
characterization, and ML in polymer science has lagged
behind.24−28 A critical challenge is sourcing high-quality
experimental data to train predictive ML models, which
often requires a combination of high-throughput synthesis,
purification, and characterization methods that remain under-
developed in polymer chemistry.29,30 As an added challenge,
the field of polymer science lacks a standardized data schema
for reporting polymer structure and properties that contextu-
alize the underlying measurement and its output.31−33

Applications of ML in polymer science have therefore mostly
been isolated to a small subset of commonly reported
properties34−36 or relied on legacy data collected within a
single research group.37−39 In a seminal report, Pruksawan et
al. demonstrated the utility of the synthesis and property
evaluation of 42 epoxy adhesive samples and employed ML to
generate a predictive model that accurately described the
performance of 256 possible formulations.40 In complementary
work, Reineke and coworkers made a multiparametric library
of 43 copolymers to serve as gene-delivery vectors,30 and
separately, Appel and coworkers synthesized a combinatorial
library of 172 acrylamide hydrogels as antibiofouling coat-
ings.29 Both groups used random forest classifiers to identify
nonintuitive descriptors that led to high performance. In these
examples, however, the reliance on labor-intensive batch
synthesis or formulation, the need to probe a large percentage
(>15%) of the compositional space to optimize an accurate
model, and the lack of iterative experimental−computational
cycles limit the translation of this approach to more complex
problems in high-dimensional copolymer compositional space.
We identified the discovery of high-contrast 19F magnetic

resonance imaging (MRI) agents as a challenge in need of a
ML-driven discovery approach. 19F MRI is a high-contrast
biomedical imaging modality with the potential to track
cellular transport and quantitate oxygenation with spatiotem-
poral resolution.41−45 Synthetic polymers represent attractive
19F MRI agents due to their potential for multivalent displays
of 19F atoms and their synthetic modularity. Despite decades of
effort reporting hundreds of copolymer 19F MRI agents,
challenges persist in the development of 19F MRI agents that
are both water-soluble and contain enough fluorine nuclei to
be visualized on clinical 3 T MRI scanners.46

Herein we developed automated tools to interface
copolymer synthesis and characterization with ML, which
enabled iterative feedback through numerous experimental−
computational cycles. The nuanced structure−property trends
uncovered through this ML-guided materials discovery
approach motived us to reconsider the dogma that the 19F
solution concentration is directly related to the signal intensity
in the 19F MRI measurement and propose nonintuitive design
elements that are critical to consider for next-generation 19F
MRI agents. This combination of continuous-flow chemistry
and ML represents a powerful approach to tackle high-
dimensional challenges in polymer science, where the large
number of interdependent variables makes structure−property
relationships difficult to predict or model.

■ RESULTS AND DISCUSSION

Development of ML Approach. Given the limited initial
19F MRI data set available to build a predictive ML model, we
envisioned developing a platform that iterates between
computational (i.e., software) and experimental (i.e., hard-
ware) components to efficiently screen for high-performing 19F
MRI agents (Figure 1). The choice of a computational
approach proved to be challenging due to the conflicting
performance criteria inherent to copolymers used as 19F MRI
agents. The necessity for an imaging agent to possess a high
density of hydrophobic fluorinated comonomers while also
remaining water-soluble demands the simultaneous optimiza-
tion of multiple objectives along a trade-off curve, otherwise
known as a Pareto front.47

The capability to iterate between experiments and ML
allowed us to leverage active learning (AL) for multiobjective
optimization.48 AL is a semisupervised form of ML where the
algorithm efficiently explores the chemical space by selecting
maximally informative materials to evaluate through exper-
imentation (i.e., exploration) or more narrowly identifies high-
performing compositions (i.e., exploitation).48 Our attempt to
implement AL, however, exposed a weakness in the ML
pipeline: Almost all ML models are designed and tuned by
hand, and there is no single ML model that works for all
applications. Typically, a manuscript will report only the
successful application of a particular method, but tuning these
methods to a particular application inherently introduces
model and sample selection biases. This leads to researchers

Figure 1. Active-learning-guided discovery of copolymer 19F MRI agents relies on rapid feedback between computational and experimental nodes.
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selecting suboptimal models or investing a significant amount
of time into model tuning for a particular application.
We hypothesized that an automated ML (AutoML)

approach would streamline model development and allow a
nonexpert to search for a high-quality ML model independ-
ently.49 A variety of approaches to AutoML have been
developed recently that involve selecting an optimal ML
algorithm, preprocessing input features, and selecting hyper-
parameters, including an extension of the scikit-learn library
with meta-learning and ensemble construction50 and the use of
genetic algorithms in the TPOT library.51 Our AutoML
composite approach screens several validated ML learning
methods including the XGBoost,53 and NGBoost,54 Gaussian
Process, Random Forest, and Linear and Logistic Regression
methods, as implemented in scikit-learn.52 Here we consider
only the supervised learning setting. The models used are
limited to fixed-length vectorial representations of the polymer
composition and analytical characterization data. (See the SI
for a technical description.)
The overall design of AutoML was expressed as a black-box

optimization problem to optimize two objectives simulta-
neously. In such an AutoML workflow, the user provides data;
then, the AutoML library autonomously samples the
aforementioned methods, selects the optimal ML model
parameters for the data set, and makes decisions about
subsequent exploratory or exploitative experiments in real
time. Overall, the automated ML cycle consists of four steps
that can operate in a closed-loop fashion with the appropriate
synthetic hardware: (i) train a proxy AutoML model to
optimize for a given set of objectives on an initial data set; (ii)
use the model constructed by AutoML to virtually screen the
copolymer compositional space; (iii) select a subset of
copolymer compositions that would increase the accuracy of
the model; and (iv) perform the synthesis and experimental
measurement of selected polymers and use these data to
update the ML model(s).
Design and Implementation of Automated Continu-

ous-Flow Copolymer Synthesis. We identified continuous-
flow chemistry as an ideal experimental platform for the
iterative synthesis of novel copolymer materials due to its ease
of automation, reproducible control of reaction conditions,
potential for closed-looped optimization between synthesis and

analysis, and simple translation to manufacturing scales.55−62

The majority of the previously reported high-throughput
copolymer synthesis systems polymerize one sample at a time
and thus require extremely short reaction times to achieve a
high sample throughput. For example, Hedrick and coworkers
developed a flow reactor capable of synthesizing 100 unique
block copolymers in 8 min, but the technology relied on ring-
opening polymerizations with reaction times of <1 s.63

Unfortunately, the controlled radical polymerization techni-
ques traditionally employed to make copolymer 19F MRI
agents suffer from reaction kinetics that are orders of
magnitude slower than this example,45,64 which required the
design of a novel high-throughput flow reactor.
To combat the challenge of slow copolymerization kinetics,

we designed a more general flow platform capable of
polymerizing multiple samples simultaneously. We identified
droplet flow as an enabling approach to achieving a high
sample throughput regardless of the polymerization kinetics.
Droplet-based flow systems manipulate discrete volumes of
reaction mixtures that are separated by an immiscible inert
fluid.56,65−67 As our lab previously demonstrated, polymer-
ization in droplets reduces the residence time distribution and
improves the control of polymer composition, molar mass, and
dispersity.61 For this application, nitrogen gas was used as the
immiscible fluid between large reaction droplets, or slugs. A
custom liquid handler was fabricated that allowed precise
formulations to be loaded into a sample loop before being
injected into the heated reactor. Through experimentation, we
discovered that a wash slug of dimethylformamide (DMF) was
required between sequential reaction slugs to prevent cross-
contamination. A simplified schematic of the flow reactor is
shown in Figure 2, and a more detailed version is described in
the (Supporting Information Figure S5).
To create a modular platform that could access a broad

compositional space in a user-friendly fashion, we fully
automated the reagent selection, comonomer formulation,
slug injection sequence, and sample collection using custom
hardware and software. (See the Supplementary Videos for
visualization.) An Arduino microcontroller was chosen as the
electronics platform to control the flow system, and integration
of all individual components with LabVIEW software allowed
full automation of complex reaction sequences. The use of

Figure 2. Automated continuous-flow reactor development. (A) Simplified reactor schematic. (B) Droplet-flow reactor. (C) Rapid prototyping
enabled by 3-D printed hardware and a modular electronics platform. (D) Demonstration of droplet technology using colored dyes. Videos are
provided as supplementary files.
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readily accessible electronics and 3-D printed parts allowed for
the rapid design and prototyping of hardware components
optimized for high-throughput copolymer synthesis. The
custom liquid handler enabled the efficient and precise
formulation of reaction slugs containing radical initiators, up
to six different comonomers, and a compatible RAFT chain-
transfer agent. To achieve droplet flow, each 300 μL reaction
slug was confined on both sides by two nitrogen slugs and
loaded into the sample loop of a two-position, six-port
switching valve. At a predetermined point during the
automated reaction sequence, these slugs were injected into
the flow stream. The heated reactor consisted of tubing
embedded in a machined aluminum block, with a heating
element and thermocouple to provide accurate temperature
regulation. Upon exiting the reactor, samples were collected in
a 30-slot sample collection carousal. Rotation of the carousal
was triggered by a refractive index (RI) detector immediately
upstream, which tracked the number of eluted slugs by
monitoring the change in RI between reaction slugs and
nitrogen slugs.
The entire droplet flow system occupied a small footprint

(43 cm × 46 cm × 96 cm) and was fully touch-screen-enabled
to allow use by nonexperts. LabVIEW software controlling the
flow reactor was capable of extracting relevant reaction
parameters from comma separated value (CSV) files generated
by the user or the AL algorithm. The combination of these
efforts afforded an easy-to-use system capable of synthesizing a
new copolymer composition every 2 min, allowing the
synthesis of 30 unique copolymers in 2 h using only 12 mL
of reaction solution. The typical workflow for synthesis,
purification, and analysis was optimized to evaluate batches of
30 unique 19F MRI contrast agents. This workflow consisted of
(i) the preparation of reagent stock solutions, (ii) automated
synthesis of copolymers in flow, (iii) transfer of samples to
gravity-fed size exclusion chromatography (SEC) columns, (iv)
drying of polymer containing fractions, and (v) 19F NMR
analysis and data workup. Not including drying times, this

method allowed the evaluation of 30 samples in a single 8 h
workday. To evaluate the reproducibility of this workflow, 20
representative compositions were run in triplicate, and the
tabulated results can be found in Table S4. The accumulative
errors across all steps of the workflow resulted in a modest
average standard deviation of four signal-to-noise ratio (SNR)
units across the studied copolymer samples. Additionally, the
automated and modular flow platform described herein will
enable simple expansion to accommodate new chemistries and
reaction sequences.

Synthesis and Characterization of Copolymer 19F MRI
Agents. The inherent tension between having a high density
of hydrophobic fluorine atoms and maintaining water solubility
for 19F MRI agents has been solved in previous literature
through the statistical copolymerization of partially fluorinated
monomers such as trifluoroethyl acrylate (TFEA) with
hydrophilic monomers such as poly(ethylene-glycol) acrylate
(PEGA) to afford 19F MRI agents with moderate sensitiv-
ity.64,68−77 These copolymers provided adequate materials for
preclinical studies on high-resolution spectrometers but did
not demonstrate the required sensitivity to be used on 3 T
clinical-strength MRI instruments at realistic concentrations.
Previous work has identified that a number of different
hydrophilic and partially fluorinated comonomers can improve
the 19F MRI sensitivity in isolated examples, but an
understanding of how the polymer composition relates to
the material performance is lacking.64,69,73−77 When attempt-
ing to data-mine literature examples of 19F MRI agents to apply
ML methods, we encountered challenges in standardizing the
SNR for 19F MRI agents across studies due to differences in
the magnetic field strength, pulse sequence, reagent concen-
tration, and reporting procedure.
To significantly advance the state of the art, we hypothesized

that a systematic evaluation of the most promising fluorinated
and solubilizing comonomers would provide a more
comprehensive understanding of the structure−property
relationships that dictate the performance of 19F MRI agents

Figure 3. Synthesis of multicomponent copolymers as 19F MRI agents. (A) Six comonomers were chosen to synthesize statistical copolymers while
balancing 19F content and water solubility. (B) 19F NMR spectra of 30 representative copolymers demonstrating the diversity of resonances arising
from different copolymer compositions.
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(Figure 3A). The partially fluorinated acrylic comonomers
chosen include TFEA and the more densely fluorinated
hexafluorooxy-ethyl acrylate and nonafluorooxy-ethyl acrylate
(HexaFOEA and NonaFOEA, respectively). The water-
solubilizing acrylic comonomers include PEGA and 2-
(methylsulfiyl)ethyl acrylate and hydroxyethyl acrylate
(MSEA and HEA, respectively).
Copolymerization using thermally initiated reversible

addition−fragmentation chain transfer (RAFT) was selected
due to its tolerance of diverse functionality and its ability to
provide control over the copolymer molar mass (Mn) and
dispersity (Đ). A similar degree of polymerization (DP) was
targeted for each copolymer 19F MRI agent to decrease the
potential for chain-length effects to influence the material
performance. A common challenge for high-throughput radical
polymerization is the need to rigorously remove oxygen from
each sample and thus limit the batch-to-batch variability.78−105

We took inspiration from the “polymerizing through”

approach106−110 to oxygen-tolerant RAFT polymerization,
where a large flux of radicals is introduced at the start of the
reaction to consume dissolved oxygen, and a smaller and
consistent radical flux subsequently provides controlled
polymerization. A high radical flux was achieved through the
addition of a low concentration of V-70, an azo radical initiator
with a short half life at the reaction temperatures, in addition to
the more typical radical initiator azobisisobutyronitrile
(AIBN). (See the SI for the detailed copolymerization
methodology.) The monomer conversation was between 60
and 80% for the conditions studied, with the range attributed
to differences in the comonomer composition.
Following copolymer synthesis, we recognized that copoly-

mer purification presented a potential bottleneck to the
exploration of large compositional space. Precipitation was
not broadly applicable because copolymers of different
compositions possessed different solubilities, and dialysis was
impractical in a high-throughput fashion. A purification

Figure 4. (A) Data acquisition and ML model performance throughout the AL steps. The top panel shows the MAE error for 19F SNR ML models;
confidence intervals are obtained through 10 shuffle splits. The bottom panel shows actual data points and corresponding box plots for the data
distribution. The insoluble materials are depicted as gray points at the bottom, and the total number of molecules per batch is equal to 30 in
batches 1−8. The experiments using the coarse compositional space (10% step) are highlighted in purple, and those using the fine compositional
space (5% step) are highlighted in white. The batches run targeting exploitation are colored in pink. (B) Uniform manifold approximation and
projection (UMAP) of representative batches. Colored circles represent experimentally validated water-soluble structures and gray circles represent
insoluble samples. The background is color coded by the 19F SNR ML prediction of the given batch.
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procedure using aqueous SEC gravity desalting columns
proved to be ideal.111 The workflow included taking polymer
samples directly from the reaction and eluting them with a
known amount of deionized water through the SEC column.
This approach allowed for multiple polymers to be purified in
parallel and excluded water insoluble copolymers that
precipitated within the resin. The final isolated yields of the
materials were therefore dependent on both the monomer
conversion and the solubility.
The figure-of-merit chosen to evaluate the performance of

multicomponent polymers as 19F MRI agents was the SNR
ratio taken from 1D 19F experiments on a 400 MHz NMR.
These SNR values for 19F NMR correlate with the 19F MRI
sensitivity, with small variations that result from differences in
the pulse sequences and probe design.112 Copolymer samples
were diluted with phosphate-buffered saline (PBS) solution/
D2O (90:10 v/v) at a concentration of 20 mg/mL. Each
copolymer composition exhibited unique 19F resonances
resulting from a combination of factors that included the
copolymer composition and the copolymer solution con-
formation (Figure 3B). The unique chemical environment
resulting from the copolymer solution structure influenced the
19F chemical shift values (δ) and spin−lattice relaxation times
(T1), with shorter 19F T1 increasing the signal intensity
observed during T1-weighted MRI sequences. Furthermore,
polymers with high fluorinated comonomer content demon-
strated significant peak broadening as a result of the short
spin−spin relaxation (T2). The interdependent properties that
contribute to the SNR value of multicomponent copolymers
therefore are difficult to predict a priori and require
experimental validation.
Implementation of ML-Guided Discovery of Cham-

pion 19F MRI Agents.Whereas the six comonomers in Figure
2A established the compositional space for exploration, we
sought to establish a number of boundary conditions to define
the specific copolymer structures for synthesis and evaluation.
First, the individual comonomer compositions would change
by increments of 5%. Smaller shifts in composition were at the
limit of our liquid handling technology. Second, the
comonomers and chain-transfer agent (CTA) chosen
produced only linear polymers, thus removing the potential
for polymer topology to influence performance. Third, all
polymerizations were assumed to be statistical, with the initial
comonomer stoichiometry being the assumed stoichiometry
incorporated into the polymer. Given these boundary
conditions, the experimental exploration of six unique
monomers revealed 47 854 possible copolymer compositions
to explore. In every batch, the AutoML algorithm selected the
optimal features from a range of representations, which
included a vector of monomer fractions of length 6 for each
composition (one-hot encoding; the sum of all 6 fractions of
polymer composition equals 1 for each composition), the
fraction of fluorine, and various constitutional descriptors from
RDKit. (See the SI for a technical description.)
Typical ML approaches require a large portion of the overall

chemical space to be explored (>5%) before converging onto
an accurate model, which, in our case, would have required the
synthesis of an impractical number (>2200) of individual
copolymers. We hypothesized that because the polymer
composition is a continuous variable whose boundary
conditions can be adjusted, a hierarchical sampling of
compositional space would be a more efficient approach.
Therefore, the initial screening focused on a coarse composi-

tional space where individual comonomer compositions could
change in only 10% intervals, shrinking the explorable
compositional space from 47 854 to 2486 possible copolymer
combinations. We hypothesized that this would allow model
development with a smaller library of initial data points, and, as
the model performance improved, a switch to the larger
compositional space of 47 854 potential copolymers with a 5%
change in comonomer composition (fine compositional space)
would be feasible. Furthermore, we required an approach that
not only predicted the SNR for 19F MRI, but also overlaid that
model with one that predicted the water solubility. Therefore,
both properties are used for multiobjective optimization.
Our AL experiments were initialized from data containing

157 copolymer compositions, which represents 6.3% of the
coarse compositional space. This initial data set was gathered
from materials made previously in our lab,45 which targeted
high-performing imaging agents and samples made during
instrument optimization (Figure 4A). To simultaneously
optimize for the water solubility and the SNR, we used two
separate ML models: The first was a classification model that
predicted whether a sample would be water-soluble, and the
second was a regression model that predicted 19F NMR SNR
values. The experimental solubility was determined qualita-
tively. Materials was considered soluble if the sample was fully
transparent at a concentration of 20 mg/mL in phosphate
buffer. Therefore, the solubility was treated similarly as a
binary classification in the ML model. To balance exploration
and exploitation, we used spherical exclusion clustering113 to
reduce the number of candidate compositions to an
experimental batch size of 30 while ensuring reasonable
composition diversity. After running the system for two AL
cycles, the mean absolute error (MAE) decreased to <8 SNR
units and stabilized. Given the increasingly accurate model
performance in the coarse compositional space, we sought to
exploit the model to select high-performing materials in the
larger compositional space of 47 854 potential copolymers
(Figure 4, batch 3). This initial effort, which included data
from only 0.45% of the fine compositional space, led to an
experimental batch of 30 copolymers that were all insoluble in
water.
As evidenced by the poor performance of batch 3, moving

from a coarse (10% interval) to a fine (5% interval)
compositional space required more experimental data points.
For batch 4, we synthesized 30 copolymers to target
exploration of the fine compositional space. The SNR
predictions remained quite accurate, but the multiobjective
optimization that included the solubility required a significant
number of experimental results to converge. As shown in
Figure 4A, batches 3 and 4 resulted in the synthesis of many
insoluble samples as the algorithm worked to define solubility
parameters. Three additional rounds of exploration (batches
5−7) improved the predictive power and resulted in an ML
model that could accurately predict the SNR values of soluble
copolymers with a mean absolute error of <7 SNR units. Given
that the experimental error of the automated synthesis system
is 4 SNR units, the model reached a high value of accuracy. A
selection of the samples identified by the algorithm in each
batch and experimentally produced by the flow system is
shown in Figure 4B (full representation in Figure S2).
To study the influence of the molecular weight on the

copolymer 19F MRI performance, we analyzed a large subset of
the data by SEC, and the polymer Mn and Đ were calculated.
TheMn values were used as an input for the ML model (Figure
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S6), but no statistically significant effect on predicting the
material performance was identified. Given that all polymer-
izations targeted the same DP, the modest differences in the
Mn did not influence the polymer 19F MRI agent sensitivity.
Therefore, the design criteria identified herein could be
translated to polymers of higher or lower molecular weight
to tune application-specific properties such as the biodis-
tribution, metabolic fate, or pharmacokinetics without
significantly influencing the 19F MRI performance.
Providing the increasingly accurate model predictions, we

initiated an exploitation AL cycle by having the model greedily
select 19F MRI agents with potentially high performance
(batch 8). The batch of 30 samples included 15 copolymers
with an SNR of >80 and 2 that exceeded the values of the
highest performing copolymers reported in our previous
study.45 The batch also included 11 samples that were
insoluble, which represented a significant improvement over
the attempt at exploitation prior to model development in the
larger compositional space. Overall, this hierarchical AL model
development workflow produced a robust model to predict the
structure−performance relationships of 47 854 potential
copolymer 19F MRI agents while experimentally exploring
<0.9% of the compositional space (397 copolymers).
Analysis of Compositional Space and Structure−

Property−Performance Relationships. The central dogma

in this field is that the copolymers with the higher 19F content
have a higher SNR in 19F MRI experiments.45,64,74,76,77

Considering the three partially fluorinated monomers chosen
for this study (Figure 3A) and our previous observations,45 we
hypothesized that copolymers made with NonaFOEA would
have the highest sensitivity given that NonaFOEA has the
highest weight percent (wt %) 19F. The parallel coordinate
diagram in Figure 5A collects data for the copolymer
composition, wt % 19F, and SNR for each copolymer produced
in this study. An initial evaluation of this data demonstrated an
unexpected but clear discontinuity between the wt % 19F and
the SNR. Comparing a few representative copolymers is
instructive to describe these effects in more detail. Copolymer
1, which was identified by the ML model during the AL
exploitation step (batch 8), represents the highest performing
copolymer (SNR of 111). The sample, along with >80% of the
samples that achieved an SNR of >100, had HexaFOEA as the
fluorine-containing comonomer. Copolymer 1 contained only
21.6 wt % fluorine yet outperformed the dozens of copolymer
samples that contained a higher fluorine density. Copolymer 1
also contained more than one solubilizing comonomer, which
is a trend we observed for most high-performing copolymers
and has not been demonstrated in previous studies.
Comparing 1 to other copolymers provides comparative

structure−property information. Copolymer 2 was synthesized

Figure 5. Visualization of experimental 19F compositional space. (A) Parallel coordinate diagram of the 397 samples that describes copolymer
composition and performance, with six representative compositions colored and shown in table format. (B) UMAP projection of the copolymer
compositional space with the 19F SNR ML prediction color coded. Circled samples represent experimentally validated water-soluble structures. (C)
UMAP projection of the copolymer compositional space with the major comonomer component color coded. Circled samples represent
experimentally validated water-soluble structures. (D) Plot demonstrating the relationship between the wt % 19F in soluble copolymers and the 19F
NMR SNR.
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in batch 0 and contains approximately the same wt % fluorine
at 1, but the use of NonaFOEA instead of HexaFOEA and the
lack of solubilizing monomers beyond PEGA results in a lower
SNR of 100. Copolymers 3 and 4 both have higher wt %
fluorine than 1, but the higher fluorine density is the result of a
combination of partially fluorinated monomers in the
copolymers, which limits the SNR of any one 19F resonance.
Lastly, copolymer 5 demonstrates the limitations of TFEA to
achieve a high SNR despite its high mol % incorporation.
Figure 5B shows a 2-D UMAP of the complete composi-

tional space of all possible copolymers.114 The UMAP
estimates the topology of the high-dimensional data and uses
this information to construct a low-dimensional representation
that preserves the relationships present in the data. The
resulting projections show strong local clustering. A con-
sequence of the topology of this low dimensional data
representation is that the distance between data points in the
UMAP projection is difficult to interpret. In the context of
polymer composition, UMAP finds the nearest neighbors for
each polymer and creates a low-dimensional representation
that groups closely related compositions together in space. The
computationally derived SNR values are represented by the
color gradient in the image, whereas the soluble copolymers
samples that were produced experimentally are represented as
circular icons (UMAP including soluble and insoluble samples
in Figure S3). Most striking in this image are the many
disconnected “islands” within the chemical space where high

SNR copolymers are located. Considering this plot in tandem
with the representation of the chemical composition (Figure
5C and Figure S4) demonstrates that high-performing
copolymers predominately contain HexaFOEA and Non-
aFOEA, but identifying a pattern for the nonfluorinated
comonomers that leads to the high SNR is nonintuitive.
A visualization of the unexpected structure−property trends

can be seen in Figure 5D. The occurrence of a large population
of copolymers containing HexaFOEA above the expected
linear trend between the wt % 19F and the SNR demonstrates
its privileged selection as a fluorinated comonomer. Addition-
ally, the complexity of structure−solubility relationships is
evident by the many insoluble copolymer compositions that
have the same wt % 19F as high-performing materials.
Regression analysis (Figure S11) of the soluble copolymers
provides quantitative evidence of the privileged nature of
HexaFOEA-containing copolymers. The R2 values are 0.67 and
0.39 for TFEA-containing copolymers and HexaFOEA-
containing copolymers, respectively, revealing how the linear
relationships between the wt % 19F and the SNR is less evident
for HexaFOEA. These results underscore the importance of
the high-throughput synthesis coupled to the ML-guided
materials design, especially for identifying materials that display
nonintuitive structure−property relationships.
Contextualizing the ML model outputs by comparing both

the SNR and solubility predictions reveals the complexity of
identifying high-performing 19F MRI agents (Figure 6A). The

Figure 6. (A) UMAP representation of the copolymer compositional space with ML algorithm predictions for water solubility. Colored circles
represent experimentally validated water-soluble copolymers and gray circles represent insoluble copolymers. (B,C) Zoomed-in portion of the
copolymer compositional space where the highest performing copolymers resided. Comparison of the water solubility (B) and SNR (C) models
within this area of interest. (D) 19F MRI analysis of eight representative copolymer samples, including SNR values and phantom magnetic
resonance images.
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“islands” where the high SNR is predicted overlay quite closely
areas in which few copolymers are predicted to be soluble,
which is expected due to the intrinsic relationships between the
fluorine density and the hydrophobicity. A more detailed
visualization in Figure 6B,C shows a zoom-in on the western
region of the chemical space, with both the SNR and the water
solubility prediction shown. The solubility prediction clearly
shows the complex geography of the chemical space where the
high SNR and the water solubility coincide. Whereas this
UMAP representation communicates the ability of the ML
algorithm to differentiate subtle structure−property relation-
ships visually, the representation is only qualitative. The ML
model itself, working in a 6-D space, provides specific
predictions of the material performance and the solubility to
identify otherwise difficult-to-predict materials. Without the
aid of ML, discovering the ideal combination of comonomers
to yield a soluble copolymer is this region is unlikely. We
hypothesize that the nonintuitive relationship between the
polymer composition and the solubility is due to the subtle
influence that sequence and comonomer identity can have on
the solution conformation of a flexible polymer chain and thus
the functionality present on the exterior of the globule that
must interact with water to maintain solubility.
Eight representative copolymers with a range of SNR values

and compositions were selected for the analysis using
application-specific techniques. These included the evaluation
of 19F NMR T1 and T2 relaxation times and MRI imaging using
a T1-weighted fast low-angle shot (FLASH) pulse se-
quence115,116 Other imaging sequences can also be used for
19F MRI, and the power of our approach is that the ML
algorithm can be easily modified to optimize for output
variables that provide high performance for a particular
imaging sequence. (Figure 6D and Tables S2 and S3). These
MRI studies confirmed a number of observations that the ML
algorithm identified. First, copolymers that contained three or
more comonomers generally outperformed two-component
copolymers, which we hypothesize is a result of the difficulty
for fluorinated moieties to segregate into dense phases within a
compositionally complex polymer globule. Second, although
previous work117 set a detection limit of 126 mM 19F for
visualization on a 3 T clinical MRI scanner, we demonstrate
that the concentration of 19F alone is not an accurate predictor
of the 19F MRI sensitivity. For example, the highest performing
HexaFOEA and NonaFOEA multicomponent copolymers,
containing a concentration of ∼240 mM 19F and 230 mM 19F,
respectively, both displayed nearly 1.4 times higher 19F MRI
SNR than the highest sensitivity previously reported, which
was assessed using the same imaging sequence on the same
scanner and used NonaFOEA at a concentration of 220 mM
19F.45 Therefore, the increase in 19F MRI SNR cannot be solely
attributed to an increase in the concentration of fluorine nuclei
and further illustrates the interdependent nature of the
variables responsible for 19F MRI sensitivity. Lastly, both the
HexaFOEA and NonaFOEA copolymers reached a limit in the
achievable 19F MRI SNR at 240 mM 19F, which could
represent the threshold of fluorine concentration before the
water insolubility and detrimental 19F T2 broadening impact
the MRI sensitivity.

■ CONCLUSIONS

We demonstrated an ML-guided materials discovery approach
that combines synergistic innovations in automated flow

synthesis and ML method development. Iterative feedback
between polymer synthesis, characterization, and ML,
combined with a hierarchical exploration of compositional
space, enabled the development of an ML algorithm that
accurately predicts structure−property relationships while
requiring only <0.9% of the compositional space (397
copolymers) to be experimentally explored. Our approach
facilitated the discovery of a number of copolymer 19F MRI
agents with imaging sensitivities higher than those of
previously reported materials. Additionally, the trends
uncovered herein have conclusively demonstrated that 19F
concentration is not directly related to the signal intensity in
the 19F MRI measurement. The nonintuitive material design
elements for 19F MRI agents identified in our study, including
the privileged function of HexaFOEA as a fluorinated
comonomer, the benefits of using multiple solubilizing
comonomers in a single imaging agent, and the observation
that wt % fluorine is not directly related to the SNR, are critical
to consider in the search for next-generation 19F MRI agents.
Materials discovery typically relies on human intuition,

which suffers from inherent biases and limitations in
knowledge. As this study demonstrates, the continued
integration of software-enabled high-throughput polymer
synthesis and ML represents a powerful approach to accelerate
materials discovery, especially in areas of polymer science
where the large number of interdependent variables makes
structure−property relationships difficult to predict or model.
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