PROJECT MUSE’

Sofic homological invariants and the Weak Pinsker Property

Lewis Bowen AMERICAN JOURNAL

OF MATHEMATICS

American Journal of Mathematics, Volume 144, Number 1, February 2022, S
pp. 169-226 (Article) 4

Published by Johns Hopkins University Press g s o
DOI: https://doi.org/10.1353/ajm.2022.0003

= For additional information about this article
https://muse.jhu.edu/article/844461/summary


https://doi.org/10.1353/ajm.2022.0003
https://muse.jhu.edu/article/844461/summary

SOFIC HOMOLOGICAL INVARIANTS AND THE WEAK
PINSKER PROPERTY

By LEWIS BOWEN

Abstract. A probability-measure-preserving transformation has the Weak Pinsker Property (WPP) if
for every € > 0 it is measurably conjugate to the direct product of a transformation with entropy < e
and a Bernoulli shift. In a recent breakthrough, Tim Austin proved that every ergodic transforma-
tion satisfies this property. Moreover, the natural analog for amenable group actions is also true. By
contrast, this paper provides a counterexample in which the group I' is a non-abelian free group and
the notion of entropy is sofic entropy. The counterexample is a limit of hardcore models on random
regular graphs. In order to prove that it does not have the WPP, this paper introduces new measure
conjugacy invariants based on the growth of homology of the model spaces of the action. The main
result is obtained by showing that any action with the WPP has subexponential homology growth in
dimension 0, while the counterexample has exponential homology growth in dimension 0.
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1. Introduction. This paper is concerned with the general problem of clas-
sifying measure-preserving actions of countable groups on probability spaces. To
be precise, fix a countable group I' and let (X, ux ), (Y, 1y) be standard probabil-
ity spaces. Then two actions I' ~ (X, ux ), I' ~ (Y, uy ) are measurably conjugate
or isomorphic if there exists a measure-preserving isomorphism @ : (X, ux) —
(Y, puy) that intertwines the actions in the sense that ®(gz) = g®(x) for every
gelandae. z € X.

Anti-classification theorems convincingly show it is not possible to classify
all actions up to measure-conjugacy [17, 16]. In spite of this, there are interest-
ing structural results. To explain these, it is necessary to introduce Bernoulli shifts,
which are some of the most fundamental actions. Let (K, ) be a standard prob-
ability space and equip the product space K = {z : T — K} with the product
measure x' . The group acts on this space by (gz)(f) = (g~ f). This action is
called the Bernoulli shift over T with base (K, k).

A classical example of a general structural result is Sinai’s factor Theorem. It
states that, when I' = Z, any action with positive entropy factors onto a Bernoulli
shift. Moreover, the factor can be chosen so that the relative entropy is zero. These
statements have recently been generalized to arbitrary countable groups by Seward
[35].

Another example comes from Pinsker. In 1960, Pinsker conjectured that any
ergodic measure-preserving transformation 7" : X — X of a standard probability
space (X, ;1) is measurably conjugate to a direct product 7'~ S x U such that S has
zero entropy and U is a K -transformation (which means that every nontrivial factor
of U has positive entropy) [31]. This was falsified by Ornstein [30, 29]. The study
of such systems led Thouvenot to introduce the Weak Pinsker Property (WPP)
for measure-preserving transformations: 7" has the WPP if for every € > 0, T" is
measurably conjugate to a direct product S x U such that S has entropy < e and
U is isomorphic to a Bernoulli shift. He asked whether all ergodic transformations
have the WPP and proved important structural properties of this class [37].

In recent breakthrough work, Tim Austin has proven that indeed every ergodic
transformation has the WPP [3]. Moreover, the analogous statement for measure-
preserving actions of amenable groups is also true.
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The purpose of this paper is to give an example of an ergodic action of a non-
abelian free group without the WPP. In this context there are two main entropy
notions: sofic and Rokhlin. Sofic entropy was initiated in [9] and Rokhlin entropy
in [33] (see [10, 11] for an introduction and survey). This paper uses sofic entropy
although the results also apply with Rokhlin entropy because it upper bounds sofic
entropy.

The sofic entropy of a measure-preserving action a :=I" ~ (X, ) depends
apriori on a choice of sofic approximation X to I'. So it will be referred to here as
Y-entropy and denoted by hy;(a). The action has the Weak Pinsker Property (WPP)
with respect to X if for every € > 0, a is isomorphic to a direct product b x ¢ such
that ¢ has Y-entropy < € and b is isomorphic to a Bernoulli shift. For example, if a
has nonpositive Y-entropy, then it automatically has the WPP because b is allowed
to be the trivial action (which can be thought of as a Bernoulli shift with trivial
base space). The main result of this paper is:

THEOREM 1.1. Let F,. denote the free group of rank r. Then there is an rg
such that for all v > rq, there exists a sofic approximation Y. to F,. and an ergodic
essentially free action F,. ~ (X, u) that does not have the Weak Pinsker Property
with respect to X..

Remark 1. An action a has the Weak Pinsker Property with respect to Rokhlin
entropy if for every € > 0, a is isomorphic to a direct product b x ¢ such that b
has Rokhlin entropy < € and ¢ is isomorphic to a Bernoulli shift. Because Rokhlin
entropy upper bounds Y-entropy (for every X), this property is apriori stronger than
the WPP with respect to 3. In particular, the action in Theorem 1.1 does not have
the WPP with respect to Rokhlin entropy.

1.1. Homological measure-conjugacy invariants. The proof of Theorem
1.1 is in two steps, the first of which is a construction of a family of new measure-
conjugacy invariants based on the asymptotic homology of model spaces. Here is
a brief sketch in the special case that j is a shift-invariant measure on X where
X is a finite alphabet. In this case, the sofic approximation ¥ is a sequence > =
{on}nen of maps o, : I' — sym(V},) where each V, is a finite set and sym(V},)
is the symmetric group of V;,. For every open neighborhood O of p in the space
of probability measures on X! there is a subset Q(0,0,) C XV consisting of
vertex-labelings whose “empirical measure” is in O. The sets (O, 0,,) equipped
with the normalized Hamming metric are called model spaces. The ¥-entropy is
the exponential rate of growth of the cardinalities of these model spaces.

Given a bound x > 0, each model space Q2(O,0,,) is the vertex set of a simpli-
cial complex whose d-simplices consist of subsets S C (O, y,) of cardinality d+
1 such that the distance between any two elements of S is bounded by . Homology
is usually defined as cycles mod boundaries. That is also true here with the caveat
that the boundaries are defined using parameters ' > x and O’ D O in place of
k,O. So the homology group of the n-th model space depends on four parameters
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k,k', 0,0 in addition to o,,. The asymptotic behavior of these homology groups
provide new invariants. This idea was inspired by Tim Austin’s paper [2] which
gave an asymptotic notion of connectedness for model spaces. That notion is equiv-
alent to the asymptotic triviality of the O-dimensional homology groups.

One of the new invariants, denoted by, o(a), is the exponential growth rate of
the O-th betti numbers of the model spaces. Intuitively, it estimates the growth rate
of the number of “clusters” of good models. If an action a has the Weak Pinsker
Property with respect to X then by; g(a) = 0. This is because the model spaces for
a direct product of the form b x ¢ where b is Bernoulli contract (in a coarse sense)
to model spaces for ¢ and by; o(c) is bounded by the X-entropy of c.

1.2. An action with positive zero-dimensional homology growth. To fin-
ish the proof of Theorem 1.1, the next result suffices.

THEOREM 1.2. There exists ro such that if v > ro then there exists a sofic
approximation Y. to F,. and an invariant measure p on the shift space {0, I}FT such
that by o(F, ~ ({0,1}7, 1)) > 0. In particular, T ~ ({0,1}"', 1) does not have
the Weak Pinsker Property.

The example is based on the geometry of the space of independent subsets of
random regular graphs. To be precise, let G = (V, E) be a graph. A subset W C V
is independent if there does not exist an edge between any two vertices of W. The
density of W is #WW /#V. The maximum density of an independent set is denoted
a(Q).

Fix an even integer d > 3 and consider choosing a d-regular graph G ,, on n
vertices uniformly at random (amongst all d-regular graphs on n vertices). The first
moment method shows that a(Gg,,) is bounded above by 2log(d)/d+o(log(d)/d)
with high probability as n — oo [7]. By a non-constructive argument using Azuma’s
inequality, Frieze-Luczak obtained a matching lower bound [18]. More recently, it
was shown in [5] that the limit lim,, ,.. E[a(Gg,y)] exists and an explicit formula
was obtained in [13] by a deep study of the structure of high density independent
sets.

There are no known polynomial-time algorithms for constructing independent
subsets of G ,, with density larger than log(d)/d. It is argued in [12] that a reason
for this is that there are many independent subsets I with density between log(d)/d
and 2log(d)/d that are maximal in the sense that they are not properly contained
in any other independent subsets. Moreover, it is often the case that there does not
exist a subset I’ C I with density larger than log(d)/d + € which is contained in an
independent subset with density larger than the density of /. So local perturbations
cannot be used to increase the density of a given independent subset. To be precise,
the paper [12] studies Erdos-Renyi style sparse graphs. However, the same ideas
can be adapted to regular graphs.

Another feature established in [12] is that the space of independent sets with
a fixed density in between log(d)/d and 2log(d)/d “shatters” into exponentially
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many clusters separated by macroscopic gulfs. A similar phenomenon is used in
[19] to show that no “local” algorithm can produce independent subsets of Gg,j,
with density larger than (1 + %) log(d)/d+ e. This was improved to log(d)/d+ €
in [32]. Shattering is used here to obtain an action of the free group with positive
1)270.

In order to explain how to utilize these results to obtain Theorem 1.1, let F,. =
(ay,...,a,) be the free group of rank r > 2. Given a homomorphism o : F, —
sym(n), let G(o) be the multi-graph with vertex set [n] and edges {v,o(a;)v} (over
v € [n], 1 <i <r). The permutation model is the random graph G(o,,) where o, is
a uniformly random homomorphism from I, to sym(n). By [20] the permutation
model and the configuration model used in [18, 19] to study Gy, ,, are contiguous.
This allows results about G, ,, to be transferred to G(o7,).

A result of Bollobds [6] implies that, with high probability, G»;,, has few short
cycles. Together with the contiguity theorem, this shows the existence of a sofic
approximation ¥ = {0, };>_, to I, such that the deterministic graph G/(¢,,) and the
random graph G(o,,) have (with high probability) approximately the same number
of independent sets (of some fixed density). Moreover, the space of independent
subsets of G(0,,) at a certain fixed density shatters.

An action of the free group is obtained using a non-constructive compactness
argument whose proof is related to the proof of the Variational Principle in [26].
The end result is an invariant measure x on the shift space {0,1}"" such that a
significant fraction of independent subsets at a certain fixed density of G(o,,) are
good models for z. From this, we conclude bs, o(xt) > 0.

1.3. A brief guide to the paper.

e §2 explains notational conventions.

e §3 reviews sofic entropy and fixes notation used throughout the paper.

e §4 defines the new homological invariants.

e §5-6 contain the proof that the new invariants are in fact invariant.

e §7 contains proofs that the new invariants trivialize when the group is
amenable or the action is Bernoulli. Also in this section is a proof that if a has the
WPP with respect to X then by, g(a) = 0.

e §8 proves Theorem 1.2.

e §9 is a list of open problems related to the new invariants and the Weak
Pinsker Property.

Acknowledgments. The homological invariants introduced in this paper are in-
spired by [2]. The techniques for proving that they are measure-conjugacy invari-
ants are simplified versions of techniques introduced in [1]. Brandon Seward sug-
gested that it might be possible to use the shattering property to give a counterex-
ample to the WPP. I would like to thank Dylan Airey, Tim Austin and Brandon
Seward for many conversations related to this paper. Also thanks to IPAM, the
Institute for Pure and Applied Mathematics and the UCLA mathematics dept. A
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2. Notation and conventions. In general, if A, B are sets then A” denotes
the set of all functions = : B — A.If z € AP and b € B then the notations z(b) and
xp express the same element of A.

All maps and subsets are measurable unless explicitly stated otherwise. As a
rule, all measure zero phenomena are ignored.

Given a topological space X, let Prob(X ) denote the space of all Borel proba-
bility measures on X endowed with the weak™* topology. This is the smallest topol-
ogy such that for every continuous compactly supported function f on X the map
p s [ fdu is continuous (for p € Prob(X)). If X is compact then the Banach-
Alaoglu Theorem implies Prob(X) is compact. If I' ~ X is a continuous action
by I then let Probp (X ) denote the subspace of I'-invariant Borel probability mea-
sures. This is a closed subspace of Prob(X).

We write f(n) = o,(1) to mean lim,, . f(n) = 0. Similarly, f(r) =
o, (log?(r) /r) means lim, ... f(r)(log*(r)/r)~' =0.

3. A review of sofic entropy. We will use the symbolic approach to sofic
entropy with notational conventions similar to Tim Austin’s from [1, 2].

3.1. Sofic approximations. Suppose o : I' — sym(V') is a map where V' is
a finite set and sym(V") is the group of permutations of V. It is not required that o
is a homomorphism. Let D € I be finite and § > 0. Then o is

e (D,d)-multiplicative if

#{veV: oi(gh)v=0i(g9)o;(h)vVg,h € D} > (1-6)|V],
e (D,6)-trace preserving if
#{lveV:o(flvAvVYfeD\{Ir}} > (1-0)V|,

e (D,0)-sofic if it is both (D, d)-multiplicative and (D, d)-trace preserving.
A sofic approximation to I consists of a sequence X = {0; };en of maps o; : I' —
sym(V;) such that for all finite D C T, § > 0 and all but finitely many 4, o; is
(D, 0)-sofic. A group is sofic it admits a sofic approximation.

3.2. Sofic entropy. Throughout, (X,dx) and (),dy) denote compact met-
ric spaces. Given a finite set V/, let d% be the normalized ¢'-metric on X'V defined
by

d‘)/(($>y) = |Vr|7l ZdX (xvayv)-

veV
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For any finite set V, map o : I' — sym(V), z € XV and v € V the pullback
name of x with respect to (o,v) is the element 117 (z) € X! defined by

117 (2)(g) == z(a(g)""v).

For example, if o is a homomorphism then AIIf(z) = 17 ) , () so that the map
v+ 119 (x) is I'-equivariant.
The empirical measure of x is the probability measure P7 on X' defined by

PZ:=V]™"> ong .
veV

For example, if o is a homomorphism and o(I") acts transitively on V' then
{II9(x): v € V'} is a single I'-orbit in which case P¢ is the uniform measure on a
finite I"-orbit.

Given O C Prob(&1), an element 2 € X'V is a (O, 0)-microstate if P7 € O.
Let (O, o) be the set of all (O,c)-microstates. The metric space (Q(O,0),d%) is
a model space for the action I' ~ (X1, ;1) for any ;1 € O. A major idea introduced
in [1, 2] is to derive measure-conjugacy invariants from the asymptotic geometric
features of these model spaces.

Recall that a subset Y of a metric space (X,dx) is e-covering if X is the
open e-neighborhood of Y. Let cov(X,dx ) denote the minimum cardinality of an
e-covering subset of X.

Let ¥ = {0; }sen be a sofic approximation to I'. The X-entropy of I' ~ (X, 1)
is defined by

hs(p) := sup inf limsup ‘Virl logcov, (Q((’),ai),d?).
>0 031 oo
See [1] for a proof that this definition is equivalent to previous formulations of sofic
entropy given in [9] or [26] for example. For general discussions or when 3 is left
implicit, the >-entropy is called the sofic entropy.

The basic facts about sofic entropy are: it is a measure-conjugacy invariant,
it agrees with classical entropy when I' is amenable, it can depend on the choice
of sofic approximation, it can increase under factor maps, the sofic entropy of a
Bernoulli shift is the Shannon entropy of the base. See [10] for an introduction.

Remark 2. In the special case in which X is finite, the definition above reduces
to

hs(p) :== (ionf lim sup |Vi‘7110g#§2((9,ai).

OB oo

4. Sofic homology.

4.1. Homology theory on the Hamming cube. Fix a finite set IV and com-
pact metric space (X, dyx). For an integer d > 0, let Cy(X"") be the abelian group
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generated by all symbols of the form [z, ..., z4| (With zg,..., 24 € X 1 subject to
the relations:

[‘TW(O)a s 7:1:7r(d)v] = (_I)Sign(w) [.’E(),.’El, oo wrd]

over all w € sym(d+ 1). An element of the form [xg,...,x4] is an oriented d-
simplex of XV and an element of Cy(X'") is called a d-chain.
Let 9g: Cy(XV) — Cyq_1(X") denote the boundary map

d

8d([xo,...,xd]) = Z(—l)i [:Eo,...,:i’i,...,xd]

1=0

where Z; indicates that z; is omitted.

There is not much interesting that we can say about the homology of the Ham-
ming cube X'V Instead we will focus on special subgroups of Cy(X'"") defined in
terms of sofic approximation data as explained next.

4.2. Special subgroups defined by a sofic approximation. Leto: I —
sym(V) be a map. Given an open subset O C Prob(X") and x > 0, let Cy4(O, x,0)
be the subgroup of Cjy(X'"") generated by all chains of the form [z, ..., z4] such
that each ; is a (O, 0)-microstate (that is PZ, € O) and d% (2;,x;) < r forall 4,j.
Let

Z4(0,k,0) =ker (84) N Cy(O, k,0)
Bd(Oa ﬁ70-) = 8d+1 (Cd+l(07 ﬁ70-))

be the (O, k,0)-cycles and boundaries respectively.
The length of a d-chain z € Cy(X"") is the smallest number of oriented sim-
plices needed to represent z. So if

k
z = E C;S;
i=1

where ¢; € Z are coefficients and s; = [z{),...,2"] is an oriented simplex then the
length of 2 is at most k. For L > 0, let Z}(O, k, o) be the subgroup of Z4(O, k,0)
generated by (O, k,0)-cycles of length < L. To be precise, z € ZX (0, k,0) if it
is possible to write z = Zle ¢;z; for some coefficients ¢; € Z and cycles z; €
Z4(0O, k,0) such that each z; has length < L.

Given nested open subsets O; C O, C Prob(X1), constants 0 < x; < x; and
L > 0, define the homology group

. ZdL(Ol,/il,O')
B ZdL(Ol,/il,O') ﬂBd(Oz,ﬂz,U) '

HdL(ObOZa/ﬂ,/@ZaU) :
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4.3. Main results. Before stating the main theorem, we mention the fol-
lowing corollary which gives the flavor of the main result without as many quanti-
fiers.

Definition 1. A group H is a QS-group of a group G if H is isomorphic to a
quotient of a subgroup of GG. Let Abel denote the class of abelian groups. A function
F : Abel — R is monotone if whenever H is an QS-group of G, F(H) < F(G).

The next corollary follows immediately from Theorem 4.3 which is stated be-
low.

COROLLARY 4.1. Let F = {F;};cn be a sequence of monotone functions F; :
Abel — R. Given an invariant measure 1 € Probr (X1, a sofic approximation
and L € [1,e0], define

Fys(p):= sup sup inf inf sup limsupF; HE (0,04, 51, k2,0)).

( ) 029MRQ>OM€01C0251>00<L<«> 1—>oo0 Z( d( Z))
If X is totally disconnected then Fyyx is a measure-conjugacy invariant. In
other words, if (),dy) is another totally disconnected compact metric space,
v € Probr(YY) and the actions T ~ (X', 1), ~ (Y',v) are measurably
conjugate then Fy (1) = Fyx(v).

The next result follows by setting F;(G) := |V;|~!logdimg (G ®7 Q) in the
previous corollary.

COROLLARY 4.2. Given ji € Probp(X"), define the d-th betti number of
with respect to X3 by

: . : ~1
bax(p) = sup sup inf inf sup hmsup‘Vi!
013k >0HEOICO1RI>00 < [ oo oo

X logdimQ (HC% (01,02,/{1,/{2,()‘@) X7 Q)
If X is totally disconnected then by s;(1) is a measure-conjugacy invariant.
The main definition is:

Definition 2. Let p € Probp(X1), v € Probr(Y"), L,d > 0. Then the d-
dimensional sofic homology of v is less than or equal to the d-dimensional sofic
homology of p if for every open neighborhood O, , > v, every ks, > 0 there
exist an open neighborhood O, ,, > v and k5, > 0 such that for every open Oy ,
with € Oy, C Oy, and every k1, with 0 < k1, < Ky, there exist an open
neighborhood O, , withv € Oy, C O, , and k1, with 0 < k1, < Ky, such that
for every 0 < L < o and all but finitely many n, HC%((’)I,,,,(’)z,l,,mﬂj,ﬁzﬂ,,an) is
a QS-group of HX (04,0 1, K1 41 k2,4,00). The d-dimensional sofic homology
theories of | and v are equivalent if the d-dimensional sofic homology of p is less
than or equal to the d-dimensional sofic homology of v and vice versa.
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The main theorem is:

THEOREM 4.3. The homology groups defined above yield a measure-
conjugacy invariant as follows. Suppose X,) are totally disconnected compact
metric spaces, p € Probp(X1), v € Probp (V") and T' ~ (X', v) is measurably
conjugate to T ~ (VV,v). Then p and v have equivalent d-dimensional sofic

homology theories with respect to every approximation Y. and for every dimension
d.

Remark 3. All of the definitions could be changed by setting L = o through-
out. The analog of Theorem 4.3 still holds under this change with essentially the
same proof. However, we do not know how to compute this homology except in
degenerate cases.

5. Preliminaries to the proof of Theorem 4.3.

5.1. Almost Lipschitz maps.

Definition 3. Let (X,dx ) and (Y,dy ) be metric spaces, let € > 0, and let L <
oo, Amap ¢ : X — Y is e-almost L-Lipschitz if

dy (¢(z),9(2")) < e+ Ldx(z,2") V2’ € X.
A map is e-almost Lipschitz if it is so for some L.

LEMMA 5.1. A uniformly continuous map from a bounded metric space to
another bounded metric space is n-almost Lipschitz for every n > 0.

Proof. Let ¢ : X — ) be a uniformly continuous map from a bounded space
(X,dx) to abounded metric space (), dy) and let n > 0. Let € > 0 be small enough
so that if dy (z,y) < e then dy(¢px,dy) < n.

Now let 2,y € X be arbitrary. If dy(x,y) > € then

di d
| diam( )

dy (¢, ¢y) < diam (Y,dy) <17 dx(z,y).

diam(V.dy) 1 inschitz. N

€

So ¢ is n-almost
5.2. Equivariant maps and their approximations.

Notation 1. If z € X" and g € T, then S92 = gz € X" is defined by S9z(f) =
z(g~'f). We will also write S9x if z € Y''. So 9 is the shift by g.

Definition 4. Amap & : X' — Y is equivariant if ®(gx) = g®(x) forae. z €
X" and every g € T'. Given a map 1 : X' — ) we define an equivariant map 9" :
X0 YU by 8 (2)(h) = ¥(S" ' z). For example, if ® : X — YT is equivariant
and ¢ : X1 — Y is defined by ¢(z) = ®(x)(Ir) then & = ¢ .
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Definition 5. For a subset D C T, let Res” : XT — X' denote the restriction
map. If ¢ : XU — Y and D C T s finite, then ¢ is D-local if it is measurable with
respect to Res”. A function is local if it is D-local for some D.

Definition 6. As above, we let (X', dy) and (), dy) be bounded Polish spaces.
Also let y1 € Probp(&1), ¢ : XU — ) be a measurable function, and 1 > 0. An 7)-
uniformly continuous (or n-UC) approximation to ¢ rel (u,dx,dy) is a measurable
map gz~5 : XU — Y with the following properties.

(i) The map <;~5 approximates ¢ in the sense that

() / dy (3(x), &(x)) du() <.

(i1) There is a finite D C I" such that <;~5 is D-local.

(iii) Regarded as a map from X" to ), ¢ is uniformly continuous with respect
to d} and dy (where d% is the normalized ¢!-metric on X'? as defined in the
beginning of §3.2).

LEMMA 5.2. Suppose that X,), u,¢ are as in Definition 6, X is totally dis-
connected and both X ,) are compact. Then there exist n-UC approximations to ¢
foralln > 0.

Proof. After rescaling if necessary, we may assume that the diameter of )
is bounded by 1. Because ) is compact, there exists a finite open cover O =
{Oy,...,0,} of Y by sets of diameter < 7/3.

A subset X C X1 is D-local if its characteristic function 1x : X1 — R is D-
local. Because & is totally disconnected, for every 1 < i < n, there exist a finite
subset D; C I and a D;-local clopen subset C; ¢ XY such that

SN Ty A
1(Cin g (OZ))<3n‘

For 1 <17 <n, let
Ci = éi\U?:i+1éj.

Also let Cy = X1\ U™ ,C;. Then {C;}" is a clopen partition of A!. Setting
D =U; D;, we see that C; is D-local for every 0 <1 <mn.

Choose a point p; € O; for all 1 <7 <n and also let py € ) be an arbitrary
point. Define 5: XU = Yby 5(95) = p,; if z € C;. By construction, gis D-local. Tt
is uniformly continuous because it is continuous and X is compact. To finish the
proof, it suffices to estimate the error in the approximation to ¢:

/ dy ($(x), 3(x)) dp() = 3 / dy (6(2),8(x)) du(x).
=07 Ci
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Since Cp = XY\ U™, G,
1(Co) < ZM(@ A ¢ H(0;)) <n/3.
i=1

Since the diameter of (), dy) is bounded by 1, [, dy(é(z), o(z))du(z) < n/3.
Forany 1 <i<n, C; C C;’Z Therefore, C; C ¢~ 1(O;)U(C; & ¢~ 1(Oy)). I
x € C;N¢~1(O;) then dy(dx, ¢px) < n/3 since O; has diameter < 1/3. So

[ dv(o@).d@) duta) = [ dy(6e).5(a)) dua)
Cs Cing~1(0y)
L, D6E5@) i

< u(Ci)n/23+1(Ci b 671 (05)) < u(Ci)n/3+ L

3n
Since > i u(Ci)n/3+ 55 < 2n/3,

/ dy (o ) du(z) < n.
Since 7 is arbitrary, this implies the lemma. O

Definition 7. Let F C I be finite and ¢ : X' — ). Then ¢ : X1 — VI is
defined by ¢ = Res’ o' So for any f € F,

6" (2)(f) = 0" (2)(f) = (57 ).

LEMMA 5.3. Suppose that X,), 11, ¢ are as in Definition 6 and (Y,dy) has
diameter at most 1. If 5 is an n-UC approximation to ¢ rel (p,dx,dy) for some
n € (0,1), then gz~5F is an n-UC approximation to ¢* : XU — V¥ rel (,u,dx,dg)for
every finite FF CT.

Proof. This lemma is similar to [1, Lemma 4.4] but it is easier since we work
with UC maps.
Firstly, the shift-invariance of p and inequality (1) imply that

@ [d5 (6" ().5 @) dute |F|Z/dy (92), B9 dn(z) <

Let 5 be D-local for some finite D C I'. Then $F is F'D-local since for any f €
F, ¢F (z) ;= ¢(S/"' ) depends only on the restriction of S/ "'z to D. However,
ford € D, S ' x(d) = z(fd). So ¢F (x) depends only on the restriction of z to
FD.

Lastly, we claim (J~5F is uniformly continuous as a map from X' to Y¥'. To see
this, let e > 0. Since <;~5 is uniformly continuous as a map from X'” to ), there is a
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§ > 0 such that if z,y € X' satisfy d{(z,y) < V/§|D| then dy(d(z),0(y)) < €/2.
By choosing & smaller if necessary we may assume /0 < ¢ /2.

For every g € F'D the number of pairs (f,d) € F' x D such that fd = g is at
most |D|. Therefore,

diP(x,y)=|FD|™" Y dw(2g,y) > [FDI DD Y da(z1ay14)
geFD ferdeD
= |FD|*IZd§(Sf71;E,Sf4y).
fer

Suppose z,y € XD satisfy diD (z,y) < 6. By the previous inequality,

|F|*1Zd§(s sf') |FD|dFD( ) < |F'D |5<\D|5

2 7] 7]

By Markov’s inequality, there exists a subset F’ C F' such that |F'| > (1 —
V/6)|F| and dg(nglx,ngly) </$|D| for all g € F'. By choice of 6, if f € F’
then dy(¢(S7 ' 2),6(S7'y)) < €/2. Because the diameter of (,8y) is at most 1,

0~ ¢/2)|F'|+|F\ F'

(@03 = 1Y dy(3(s02).3(sm)) < LI

geF-!

§6/2+\/5§6.

This shows ¢* is uniformly continuous as a map from (X*? LdEP) to (VF ,d§).
O

LEMMA 5.4. Suppose that X,Y, i, ¢ are as in Definition 6 and (),dy) has
diameter at most 1. Let v = ¢\ 11 € Probr(Y"). Suppose (Z,dz) is also a bounded
Polish space with diameter 1 and 1) : Y* — Z is measurable. Let 1/1 be an ny,-UC
approximation to ) and d) an n4-UC approxzmatlon to ¢. Then 1/1 qﬁr is an n-UC-
approximation to 1o ¢ where n = n(qzb, 1[)) tends to 2, /Ty, + 1)y as 1y tends to zero

with 1; fixed.

Proof. By definition there exists a finite subset D, C I" such that ”(Z is Dy,-local
and ) regarded as a map from YP% to Z is uniformly continuous. Moreover,

/ dz(y, by) dv(y) < ny.

As mentioned in Lemma 5.1, because J is uniformly continuous, it is 7,,-almost
L.;-Lipschitz for some constant L.

Suppose gz~5 is an 74-UC approximation to ¢. By Lemma 5.3, ¢~5D¢ is a 1y-UC
approximation to ¢™%. So there exists a finite subset Dy C I' such that QNSDIP is
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Dgy-local, $D v regarded as a map from X'P¢ to YPv is uniformly continuous and
D ~
/ dD% ($Pv, 3P0 ) dp() <170

It is immediate that J o QEF is Dy Dy-local and when regarded as a map from
XPoPv to Z, it is uniformly continuous. Let

Gy={ye V' dz(Py,vy) < /iy }
Gy={z € b dgw (ngx,(;SDwx) <\/Ts}
Suppose € Gy N (A1) (Gy).
dz (V" 2,9¢" z) < dz (Vo' z, 9" z) +dz (Vo' z,9¢" z)
< (g + Lyy/M5) + /-

The first term above occurs because 1Z is ny-almost L,,-Lipschitz as a map from
YPv to Z and dgw (517 vr,pPva) < | /M. The second term occurs because
o''(z) € Gy.

It follows that

/ dz (V8" 2, " x) dp(z) < (1= p(Go N (¢7) ' (Gy))) diam(2)
+ny+ Ld,\/%—i- V-

By Markov’s inequality, 1(G4) > 1— /5 and v(Gy) > 1 — /7. Because ¢L =
v it follows that

L n(Go (67) 7 (G0) < Vg + vl

Since diam(Z) = 1,
/dz (Y, z) dp(z) < (Ly+1) /Mg + 2+/T5 + 11 O

5.3. Sofic models. Recall that the pullback name of 2 € X'V with respect
too:T'" = sym(V)andv €V is

117 () (g) ==z (o (9)""v).

Givenamap o : I' — sym(V'), where V is a finite set and a map ¢ : XT — ), define
o7 XV = YV by

¢7(2)o = ¢ (117 (2)).
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LEMMA 5.5. Suppose ¢ : XV — Y is D-local for some finite set D C T and
regarded as a map from XP — Y is n-almost L-Lipschitz. Then ¢° is n-almost
L-Lipschitz regarded as map from (XV,d%) to (YV, d¥)

Proof. Letz,y € XV. Then

A (67,07y) = VI 'Y dy((¢7),,(¢7), )

veV

<|v|! Z77+LdQ(ResDHg(x),ResDHg(y))
veV

=0+ LIVIT' Y IDIT Y dae (T (2)g, 115 (y),)

veV geD

=0+ LIV Y DI dae(z(a (g7 )v) u(o (g "))

veV geD
=1+ Ldy(z,y)

where the last equality holds because for each v € V' the number of pairs (g, w) €
D x V such that o(g~")w = v equals |D|. Because z,y are arbitrary, this implies
the lemma. g

LEMMA 5.6. Suppose ¢: X' — Vs Dy-local for some finite set Dy C I' and
YU = Zis Dy-local for some finite set D.y,. Then for all v € X v

{veV: (V') (@)y #1797 (x), }
C {U € V:3dhe€ Dy, g€ Dy, J(hil)a(gfl)v #+ U(hilgfl)v}.

In particular, if Ir € Dy N\ Dy, and o is a (D(;quzl,é)—soﬁc approximation to T’
then

#HoeV: (o) (x)y # Y767 (x)s} <6V

Proof. Fix v € V. Suppose a(h™1)o(g7 ) v =0(h'g~")v forall h € Dy and
g € Dy. It suffices to show (¢¢)? (), = 107 ¢7 (z),. Observe that

(ve")7 (x)y = v (" (172))
U6 () = (119 (¢7 (2))).

Since v is Dy-local, it suffices to show that for every g € Dy,

o (152), =TI (67(2)),.

g
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Observe that

o' (1), = 6(S7 15 (x))

17 (¢7 (@), = ¢7 (@) (o (97")v) = ¢(IG 1, ()
Since ¢ is Dy-local it suffices to show that for every 1 € Dy,
S9TIG (@) = TG 1), (@)
The left-hand side simplifies as follows:
S9 MG (2), = TG () g = (o ((gh) " )v) =z (o (B 'g~ o).
The right-hand side simplifies to
07, 1(@n =z(o(h o (g7")v).

Therefore if o(h~'g~")v = o(h™")o(g7")v for every h € D and g € Dy, then
(%) (2)y =797 (2)o- O

Definition 8. The total variation distance between two measures 1 and v on
the same o-algebra F is

drv(p,v) = jgr;!u(fl) —v(4)].

Roughly speaking, the next lemma shows that closeness in total variation dis-
tance of restricted measures implies closeness in the weak™ topology.

LEMMA 5.7. For any i € Prob(X") and any weak* open set O C Prob(XT)
with u € O, there exists a finite set E C I and § > 0 such that

{V € Prob(x1): dTv(RGS*E/J,,RGS*EI/) < (5} CO.

Proof. By definition of the weak™ topology, there are continuous functions
fi,---, fr on X and € > 0 such that

{yEProb(XF): ‘/fidu—/fid,u‘ <eVl gigk} c 0.
Because each X' is the inverse limit of the compact spaces X' over finite D C T,

there exist a finite £ C I" and E-local continuous functions fi,..., f; on X " such
that | f; — f!| < ¢/3 for all i. By the triangle inequality,

{uEProb(Xr): '/f{du—/f{du'geﬁwgigk}CO.
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Now suppose v € Prob(XT) and dry(Res” i, Resfrv) < enf Where M =
maxi<;<g || f/||sup- By abuse of notation, we may consider each f/ to be a

continuous function on X%, So
‘/ﬂw—/ﬂw

By the previous inclusion, this implies ¥ € O and completes the lemma (with § =
€
&) O

:‘/f{dRest—/fnges*Eu‘

< 2| ]| updrv (Res? ,Res ) < e/3.

LEMMA 5.8. Suppose ¢: X*' — Y is D-local for some finite set D C T. Also let
E C T be finite and 6 > 0. Then there exist a finite set F C 1" and € > 0 (depending
only on D, E,§) such that if o is an (F,e€)-sofic approximation to T, then for all
re XV,

#o eV (67) (I5(2) (9) £ 115 (67 (2)) (9) Vg € B} <4V

In particular, the total variation distance between the restricted empirical measures
Res” ¢! P and ResP ng(x) is bounded by 0.

Proof. Let F C T" and € > 0 be such that if o is (F ¢)-sofic then
#{veV: a(gh)'v=0(h)'o(g)'wVhe D, Vg€ E} > (1-06)#V.
Suppose o is (F,¢)-sofic and fix v € V. By Definition 4,
o 7o
(0") (7 (2)) (9) = &(S7 1T (x)).
By the definitions of pullback and ¢“,
IS (67 (2)) (9) = ¢ (1) (o(9)~'0) = 6(T1% 1, (@)-
Because ¢ is D-local, if
1o o
(87T (2)) (h) =TI 1, () (R)

for all & € D then (¢")(IT7 (2))(g) = 117 (¢" (x))(9)-
We compute

(89715 (@) () = I () (gh) = x (o (gh) ")
and
17 -1, (@) (h) = z(a(h)'o(g) 'v).

Because o is (F\e)-sofic, there is a (1 — §)-fraction of vertices v such that
(nglﬂg(x))(h) = Hg(g),lv(az)(h) forall g € E, h € D. Again, since ¢ is D-local,
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this condition implies (') (I1(z))(g) = 119 (¢ (x))(g) for all g € E. This proves
the first claim.

The last claim is implied by the first. In fact, Res” L P? is the law of
Res” (4" (117 (z))) where v € V is chosen uniformly at random, while Res” P

is the law of Res” (TI7 (47 (2))) where v € V' is chosen uniformly at random. Since
Res” (¢ (119 (x))) = Res”(I19(47 (x))) for all but a d-fraction of vertices v, the
total variation distance between the restricted empirical measures Res” ¢I' P7 and
Res? ng( 2) is bounded by 4. O

6. Proof of Theorem 4.3. We need one more lemma before the proof of the
main theorem. Let (), dy) be a compact metric space. Given amap A : YV — YV
let A, : Cy(YY) — Cy3(Y") be the corresponding homomorphism of chain groups.
Note A\, commutes with all boundary maps 9, : C4(Y") — Cy_1 (V).

LEMMA 6.1. Let A: YV — YV be given and suppose there is a constant ' > 0
such that d;(y,)\(y)) <K forally € YV.If z € Zg(Oy,k,0) and \(Q(O1,0)) C
(0, 0) (for some O1,0,,k,0) then

Z— M2 € Bd(O1U02,/€+2/€/,O’).

Proof. 1t will be convenient to work with ordered simplices rather than or-
dinary simplices. An ordered k-simplex is an ordered (k+ 1)-tuple (zo,..., k)
with 2; € VY. Given an ordered k-simplex (zo,...,x;) define P(xo,...,x}) €
Crs1(Y V) by

k

P(a:o,...,ack) = Z(—l)i[xo,...,;vi,)\(:ci),...,)\(xk)].

1=0

Given an oriented simplex [zo,...,7x] € Cr(YY) define P([xo,...,7x]) €
Crs1 (YY) by

P([:po,...,xk]) = |sym(k—|— l)r1 Z sign(ﬂ)P(:rW(O),...,xﬂ(k)).
wesym(k+1)

We extend P linearly so that it is well defined as a homomorphism from
CrL(YV) to Crp1 (YY) (for every k too).

Claim. OP = )\, — I + PO where I denotes the identity map.
Proof. 1t suffices to show that for any xy,...,x,
8P([a;0,...,mk]) = [)\(mo),)\(azl),...,)\(mk)] - [:Eo,...,xk] —P(a[l’o,...,xk]).

The proof is by direct inspection of the coefficients. Details are in the proof of [21,
Theorem 2.10]. g
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If z € Z4(O1,k,0) then Pz € Cy(O1 U0y, k + 2K, 0) since A(2(Oy,0)) C
Q2(0,,0) and dx(y, A(y)) < &/ for all y. The claim implies

OP(z) =M z—2—POz= Az — 2.

Therefore N,z — z € B4(O1 U 05,k + 2K, 0). O

Proof of Theorem 4.3. Suppose ® : (X', 1) — (V' v) is a measure-conjugacy.
We may assume without loss of generality that (X',dx) and (), dy) have diameter
1. Let O, , and k, , be given.

We need to choose O, ,, and k. Before doing this, define ¢ : X LY by
¢(x) := ®(x)c (where e € I is the identity element). Note " = ®. We choose
a UC-approximation d) to ¢ as follows. Choose 0 < 74 < 1 small enough so that

31 < Ré’” . By Lemma 5.2 there exists an 7),-UC-approximation ¢ to ¢. Because
<;~5 is continuous, there exists an open neighborhood O, ,, of 11 such that the closure
of gb* 0,,,, is contained in O, ,,. By definition of UC- appr0x1mat10n there is a finite
set Dy C I" such that (;5 is Dy-local. By Lemma 5.1, (;5 is g4-almost Ly-Lipschitz
for some Ly (when regarded as a map from & Ds to V). Now choose k2, >0 so
that 9y + Lgka,, < %

Next we let O, be an arbitrary open set with o € Oy, C O, , and let ;1 , be
an arbitrary constant with 0 < k1, < K2 4.

We need to choose O, and 1 ,. Before doing this, define 9 : yF — X by
Y(y) == &7 (y)e. Note ! = &~!. We choose a UC-approximation 1/1 to v a
follows. Choose 0 < 7y, < 1 so that 3, /7y < '2“. By Lemma 5.4 (and using
31 < =, ¢~ ) we can choose 7, smaller if necessary so that for any 7,,-UC approx-

imation w to 1), the composition <;51/1F isa —~ 2 v _UC approximation to ¢! which
is the identity-coordinate projection. Fix such a UC-approximation 1,!) Because 1/1
and therefore wr are continuous, there is an open neighborhood O, of v such
that Oy, C O, , and the closure of JEOLV is contained in O ;. By choosing Oy,
smaller if necessary we may assume that

/d(gzzrz,ze) dv'(z) < k2,/8

for every v/ € O, ,. This is because the inequality holds if v/ = v (since (&ZF
is a Ky, /8-UC approximation to the identity coordinate-projection) and the map
2 d(dYT 2, z.) is continuous.

By definition of UC-approximation, there is a finite set Dy, C I' such that J
is Dy-local. By Lemma 5.1, 1; is ny-almost L,,-Lipschitz for some L, (when
regarded as a map from YPv to X). Finally, choose x1,, > 0 so that 7y, + Ly k1, <

K
K1,p and K v < 221/'
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To simplify notation, let

Z(n,v) = ZdL(Ol,,,,mJ,,Jn), Z(n,p) = ZC%(OLM,HW,U”)
B(n,v):= Bd(Oz,y,/@,y,an), B(n,p) = Bd(OQ,u,Hzﬂu,O’n)
H(n,v):= HdL(Ol,V,(9271,,/1171,,/1271,&” ,
H(n,p) = Hé: ((’)1,#,Oz7u,m1,u,ﬁ27u,an).

Also let
qn7V:Z(n7V)_>H(n7V)7 Qn,u:Z(n7u)_>H(n7u)

be the quotient maps.

Next we must verify that for all but finitely many n, H (n,v) is a QS-group of
H(n, ). Our strategy is as follows. First we show that 7" (Z(n,v)) C Z(n, p).
Let S =qn 0 Yo (Z(n,v)) < H(n,u). Next we show that ¢7» induces a map,
denoted by ¢, from S back to H (n,v) that is surjective. This shows that H (n,v)
is a quotient of the subgroup S < H(n, 1) and thereby completes the proof.

It is convenient to first show that 1;"" and (J~50" behave well with respect to the
Hamming metrics and empirical distributions.

Claim 1. For all but finitely many n € N the following holds. For any z,2’ €
Oy py,0n) and y,y' € Q(O1,,04),

(1) ¢7(x) € AO2p,0m),

(2) if di' (z,2") < Ko,y then d) (677 (x), 97" (a')) < 2.

(3) Yo (y) € Q(Ol,man)’ _ _

@) If dY7 (3,3/) < k1, then dy (77 (), 07 (y)) < K1

Proof of Claim 1. We chose O, ,, so that the closure of 55027 u 1s contained in
O,,,. By compactness and Lemma 5.7, there exists a finite set £/ C I" and 6 > 0
such that for any « € 51,: Oy, if g€ Prob(yF ) is such that the restricted measures
Res” o, Res” S have total variation distance < § then 3 € Oy,

Lemma 5.8 implies that if n is sufficiently large (independent of x) then the
(=) and Res” EEP;’” €

O, is bounded by & > 0. Since P7" € O, - P € ¢L O, ,,. So this implies

P(g:n(x) € Oy, This proves (1).

Since d% (x,2') < K, and ¢ is ny-almost Ly-Lipschitz, Lemma 5.5 implies

total variation distance of the restricted measures Res” Pg:n

~O’ ~o_ " K;27
dyy (67 (), 67 (2")) < Lody (2,2") +11 < Lokt 15 < =

This proves (2). The other statements are proven similarly. O
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Claim 2. For all but finitely many n € N, for every z € Z(n,v),
i (2) — 2 € B(n,v).

Proof of Claim 2. We will verify the hypotheses of Lemma 6.1 with
A= ¢ Solety € Q(O1,,0,).

By Claim 1(3), J"”( ) € QO u,0n). Since Oy, C Oy, this implies
Yo (y) € Q(0s,,04). So Claim 1(1) implies P71 (y) € QO2,,00).

By Lemma 5.6 for all but finitely many n,

#{v e Vot (00") 7 W)o # 677 ()o} < (K20 /8)| Vil
Because Y has diameter 1,
Ay (677 (y),y) < (ko /8) +dy ((607) 7" (), ).

Note
& (G0) " W) = [ dy (07 (2),20) P ),

Since P € O1 v, the choice of Oy, implies

/ dy (60" (2), 2e) APT" (2) < ka /8.
Thus,

dyr (6707 (), y) < k2 /4

for every y € (0O ,,0,,). Claim 2 now follows from Lemma 6.1 with k' = k, ,, /4
and k =K1, < K2, /2. O

Claim 3. For all but finitely many n € N,
(02 (B(n,w)) N Z(n,v) € B(n,v).

Proof of Claim 3. Let z € Z(n,v) and suppose zﬁ""( ) € B(n,p). By Claim
1(1,2), ¢7¢7" (z) € B(n,v). By Claim 2, z — ¢7"¢)7" (z) € B(n,v). Therefore,
z € B(n,v) as required. O

Since {/;"” commutes with the boundary map d,;, Claim 1 (3,4) implies that
Yo (Z(n,v)) C Z(n,p). Therefore S := G © 097 (Z(n,v)) is a well-defined
subgroup of H(n,u). Define qSH S — H(n,v) as follows. Given w € S, let
z € Z(n,v) be such that ¢, , 0 Y7 (z) = w. Then define ¢¥ (w) := z + B(n,v)N
Z(n,v).
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To see that $H is well defined, suppose that 2z’ € Z(n,v) also satisfies ¢, ;,
9n(2') = w. Then

)7 (2) =0 () =97 (2 = 2') € B(n, ).

By Claim 3, this implies z — 2z’ € B(n,v). This implies gz~5H is well defined.

To check that ¢ is surjective, let z € Z(n,v). If w = qm“zz;‘"(z) € S then
oM (w) = z+ B(n, )N Z(n,v). This shows ¢ is surjective. So H (n,v) is a QS-
group of H (n,u) as required. O

7. Homology computations.

7.1. Contractible model spaces. Let (X,dy) be compact totally discon-
nected metric space, 1 € Probp (X r ), and X be a sofic approximation to I'.

Definition 9. (Contractible model spaces) We say p has contractible model
spaces with respect to ¥ if for every open neighborhood O, of y in Prob(XT),
and every § > 0 there exists an open neighborhood O C Prob(X") with € O; C
O, such that for every 0 < K < e and all but finitely many n, if x,...,zx €
Q(0y,0y,) then there exist ZL'Z(-j ) (for j > 0) such that

(1) 2 € Q(0,0,) forall i, j,

2) :1:2(.0) = x; for all 7,

3) d‘)/(” (a:ijﬂ) a;(jﬂ)) < dX" (mz(-j),a:,(fj)) for all 4, j, k,

3
4) dL/(" (xgj),mz(-“l)) < dforalli,j
(5) there exists M such that xiM) = ... = m(lgﬂ. This M may depend on
x1,...,xx. In particular, M may depend on n.

Definition 10. (Vanishing homology) The measure p is said to have vanishing
reduced homology in dimension d with respect to 3. if V open neighborhoods O, >
1, Vi > 0 there exist an open neighborhood O; with € O C O, and k1 > 0
such that for every L € N, either d > 0 and HY(Oy, 04, k1, K2,04,) = 0 for all but
finitely many n or d =0 and H C%(Ol ,Oa, K1, ko, 04,) =2 7 for all but finitely many
n. By Theorem 4.3, this notion is a measure-conjugacy invariant. Hence it can also
be applied to measure-preserving systems of the form I' ~ (X, ut) in which (X, u1)
is a standard probability space without any additional structure.

PROPOSITION 7.1. If pu has contractible model spaces with respect to . then
W has vanishing reduced homology in every dimension with respect to X..

Remark 4. The proof of this Proposition is the only place in this paper where
the finiteness of the parameter L in the definition of the homology groups H dL() is
used directly.
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Proof. Let O, be an open neighborhood of y and x, > 0. Choose 0 < § < K,/3
and let k) := 6. Let O; be as in the definition of contractibility. Let d € N be a
dimension and L > 0. Let K > (d+1)L. Let

k
Zp = Zcisi € Zﬁ(@l,m,an)

i=1

be a cycle of length k£ < L. If d > 0 then it suffices to show that z,, € By(Os,k2,0,).

Let zg,...,zm € Q(O;,0,) be an enumeration of the vertices contained in the
oriented simplices sy, ..., s;. Note m < (d+ 1)L < K is bounded independently
of n.

Let a:l(.j ) be as in the definition of contractible. The map U ) {zoy...,xm} —
XVr defined by 1) (z;) = mz(-j ) is well defined. We can extend it to a map on all
of XV by setting 1)U () = x for all = ¢ {xy,..., 2z, }. In particular, zb,(ﬁj)(si) is
well defined for every simplex s; and therefore 1/153 )(zn) is also well defined as an
element of Cy(XV).

We claim that wij)(zn) € Z4(Oy,k1,0,) for all j. For j = 0 this is true since
1/Ji0) (zn) = 2. Assuming it is true for some j > 0, observe that by Lemma 6.1,

97 (zn) = 9 () € Ba( 022 0)

(this uses k1 < k2 /3). Moreover wiﬁl)(si) € Cq(0y,k1,0,) by property (3) in the
definition of contractibility. Thus w£j +) (zn) € Zq(Oa,K1,0,). This completes the
induction. '

Moreover, we showed that wfk] )(zn) — 2z € By(Oy,kp,0y,) forall j. If d >0
then 1/)£M)(zn) is trivial (by property (4)) and so z,, € By(O,,k2,0,). This com-
pletes the proof in the case d > 0.

If d =0 then every element Cy(O1,k1,0,) is a cycle (so Z()L(Ol,m,an)
is the free abelian group generated by Q(O;,0,)). We have shown for any
x1,x2 € Q(Oy,0,) there is a d-path in Q(O,,0,) connecting them (namely

:1:50), ... ,ng),ng), ... ,xgo)). Therefore x; — 25 € By(O,,k1,0,) which implies
HE(Oy,0,,k1,k2,0,) 22 Z for all but finitely many n. O

7.2. [Edit distance. The goal of this section is to show that the homological
invariants defined above depend on the sofic approximation only up to edit-distance
zero as defined next.

For each finite set S C I" and finite set V' there is a pseudo-metric dg on the set
of all maps o : I' — sym(V) defined by

ds(o1,07) = |V|’1#{v € V: 3s € S such that o1 (s)v # o (s)v}.
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Sofic approximations ¥ = {0, : I' = V,,} and ¥’ = {0/, : T' — V,,} with the same
target sets {V/, },, are said be at edit-distance zero if for every finite S C T',

limsupdg (an,aq/l) =0.
n—yoo
PROPOSITION 7.2. Suppose X,%' are at edit-distance zero and | €
Probr (X1). If p has contractible model spaces with respect to ¥ then p also
has contractible model spaces with respect to 3.

For the proof it will be helpful to have the next definition.

Definition 11. An open subset O C Prob(X") is D-local (where D C T is
finite) if there is an open set O C Prob(X'?) such that O is the inverse image of O
under the projection map Prob(X) — Prob(X'”). An open subset O C Prob(&x1)
is local if it is D-local for some D.

The next lemma can be used to show that many sofic invariants (such as en-
tropy) depend on X only up to edit-distance zero. We will use it to prove Proposi-
tion 7.2.

LEMMA 7.3. Suppose ¥, % have edit-distance zero and ji € Probp (X1). Then
for any open neighborhood O > p there exists an open neighborhood O’ with i €
O’ C O such that Q(O',0],) C Q(O,0y,) for all but finitely many n.

Proof. Let an open set O > u be given. Let O’ be an open set containing
such that the weak* closure of (' is contained in O. By compactness and Lemma
5.7, there exists a finite set £ C I and € > 0 such that if v € O’ and v/ € Prob(X'P)
is such that dry (Res” v,Res? /') < e then v/ € O.

Because ¥, have edit-distance zero, dg(o,,0),) < € for all but finitely n.
This condition implies drv(Res”(PI"),Res”(Py ;L)) < eforall z € XV, In par-
ticular, if x € Q(O',0},) then x € Q(O,0y,). Thus Q(O',07,) C Q(O,0,). O

Proof of Proposition 7.2. Let an open set O3 > p and 6 > 0 be given.
By Lemma 7.3 there exists an open set O, such that u € O, C 05 and
Q(0y,0,) C QO),0},) for all but finitely many n.

Let O; C O, be an open neighborhood of p satisfying the definition of con-
tractible model spaces with respect to X.. So for every 0 < K < eoand all but finitely
many 7, 1f :1:Z € Q(0y,0,,) (1 <i < K) there exist :1: (fOI‘] > 0) such that

(D :1: 6 Q(0O,,0,) for all i, 7,

2) a: =g, for all 7,

(3) dV"( U 20y < abe (29 29) for all 4, i ,

4) d‘)/( (x Z.') (]H)) < foralli,j,

(5) there exists M such that :L‘g b= :1:(]?4).
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By Lemma 7.3 there exists an open set O} such that p € O] C O; and
Q(04,0l) C QOy,0y,) for all but finitely many n.

1»Yn

Now let zy,...,2x € Q(O],0},). Since Q(O},0,,) C Q(Oy,0,), there exist
()
L

lar,

for j > 0 satisfying the above conditions (if n is sufficiently large). In particu-

l’gj) € 9(0270'71) - 9(0/270';1)

for n sufficiently large (independent of =y, ...,x k). This proves p has contractible
model spaces with respect to X', U

7.3. Diffuse sofic approximations. One of the main goals of this section
is to prove that if I" is amenable then every p € Probr(X'!) has contractible model
spaces. In fact, more is true, one only needs that the sofic approximation X is
diffuse. This condition, explained below, holds automatically if I' is amenable.
Moreover, even if I is non-amenable then diffuse sofic approximations can be con-
structed out of arbitrary sofic approximations.

The disjoint union of maps o; : I' — sym(V;) (for i = 1,2) is the map oy U oy :
I' = sym(V; U V3) defined by oy Uoz(g)v = oi(g)v ifv € V;.

Definition 12. A sofic approximation ¥ = {0, : I' = sym(V},) }nen is diffuse
if there exists a sofic approximation >’ = {0/, : ' — sym(V},) },en such that

e Y and Y’ have edit-distance zero,

e for every n, 07, can be expressed as a disjoint union o7, := oy, | L---Uoy, ;.
such that if o7, ; : I' — sym(V}, ;) then

(max V| = o([Val).
Example 1. Let ¥ = {0, : I' = sym(V},) }en by any sofic approximation to

any group I" and let {W,, },, be a sequence of finite sets with |IW,,| — e as n — .
Define o/, : I' — sym(V,, x W,,) by

O‘:’L(g)(?j? w) = (Un(g)v, w) .

In other words, o/, is the direct product of o, with the trivial homomorphism I" —
sym(W,,). Then X' = {07, } is diffuse. In fact o, is the disjoint union of W,, copies
of o,,.

LEMMA 7.4. If T is amenable then every sofic approximation ¥ to T is diffuse.

Proof. The special case in which I is finitely generated is a direct consequence
of [15, Proposition 2.8]. The general case follows from the finitely generated case
by a diagonalization argument. U
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7.3.1. Diffuse approximations and contractibility.

THEOREM 7.5. If ¥ is diffuse and p € Probp(XT) then p has contractible
model spaces with respect to %. In particular, if I is amenable then p has con-
tractible model spaces with respect to every sofic approximation.

Because X is diffuse, after replacing it with another sofic approximation at
edit-distance zero, we may assume that each set V,, comes equipped with a parti-
tion V;, = L;V},; so that the image of o, : I' = sym(V/,) lies in the direct product
1, sym(V}, ;). The idea behind the proof is to modify zi,...,zx € X Vn on each of
the V}, ;’s to form paths (a:(j)

. )i,j that merge together. However, we must be careful
so that each of the xij )’ has empirical distribution close to u. To accomplish this,
we coarsen the given partition so that each x; restricted to any part of the good par-
tition has empirical distribution close to . This explains why the next two lemmas

are needed. (No attempt has been made to optimize the constants below).

LEMMA 7.6. Let (2,IP) be a standard probability space and f : Q2 — [0,1] be
a measurable random variable. Let § € (0,1/4), 0 < € < 0/400 and suppose that
P({w}) < e for every w € Q. Then there exists a finite measurable partition P of
such that

(1) P(P) < 100¢/0 for every P € P,

@ E[fIP]=E[fllz~p) <9

where E denotes expectation with respect to IP.

Proof. After passing to an image of the measure space (£2,P) if necessary, we
may assume without loss of generality that €2 is a finite set. So let Q = {wy,...,w, }
be ordered so that f(w;) < f(w2) <--- < f(wy,). After making a small perturbation
if necessary, we may also assume that f(w) # E[f] for any w € Q.

Define a piecewise constant function F': [0, 1] — [0, 1] by

F(x) = f(wh)

where h(x) is the smallest number such that < P({wi,...,wp(y)}). Note that
J Fdz =E[f] and F is monotone increasing. We will first solve the problem with
(©,P) and f replaced by Lebesgue measure on the unit interval and F'.

Claim 1. There exists a natural number m such that 20¢/0 < 1/m < 21¢/0.

Proof. Letm € N be such that #ﬂ <20¢/6 < L. Because € < §/400, 20¢/5 <
1/20 and m > 20.

It suffices to show 1/m < 21¢/4. Equivalently, it suffices to show 21me/d > 1.
The condition #ﬂ < 20¢/6 implies 20(m + 1)e/d > 1. Because m > 20, we have

21m >20(m+1). So21me/d >20(m+1)e/d > 1. O
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Claim 2. There is a finite partition Q of [0, 1] such that every @ € Q satisfies
(1) @ is a union of at most two disjoint intervals;
(2) 20e/6 < |Q| < 21€¢/8 where |- | denotes Lebesgue measure;

3) QI [y F(z)dz =E[f].

Proof. Because f(w) # E[f] forany w € Q, F(t) # fol F(z)dx for any ¢. Since
F is monotone increasing, there exists a unique ¢ € [0, 1] such that for all a and b
with0<a<xyg<b<l,

F(a)</01de<F(b).

Because F' is monotone, for every 0 < a < xy, there exists a unique g(a) with
xo < g(a) <1 such that

1 g(a) 1
m/a Fda:—/OFda:—E[f].

Note ¢ is an orientation-reversing homeomorphism of [0, z() onto (zo, 1].
Using Claim 1, choose points 0 = a; < ap < -+ < a,, < Zo such that for each
1 <i<m,

20€/6 < 1/m = (a1 — a;) +g(ai) —g(ai1) <21e/8
and
20¢/6 < 1/m = g(am) — am < 21€/0.

Let Q be the partition containing [a,,,g(a,)] and [a;,a;+1) U (g(a;+1),9(a;)]
fori < m. U

Claim 2 solves the problem for F'. To solve it for the original function f, we
will obtain a partition P that approximates Q.

Recall that for x € [0,1], h(x) is the smallest index such that z < P({wy, ...,
wh(m)}). Define hq : [0,1] = Q by hq(z) = Wh(z) € 2. For X C [0, 1], let

Xt =hg' (ha(X)),

X ={zeX: h{ll(hg(:r)) c X}
Let P be an hg-measurable partition of [0, 1] such that for every P € P there exists
Q € Q such that @~ C P C Q". Because Q is a disjoint union of at most two

intervals, ho(QT) \ ho(Q ™) contains at most 4 elements of €. Since each element
of Q has measure < € and hg, is measure-preserving, |Q A P| < 4e. So

|P| <|Q|+4e <2le/d+4e < 100€/0.
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Also

\|P|1 / Fda:—Em'z '|P|1 [r@ar-iar [ Fea

We may decompose the first integral as [, = [ Pro T i} p\ and the second one
similarly. From this, we see that the above is bounded by

pPIt= -1 F(z)dz +|P|™! F(x)dx -1 F(x)dx
1P - Q| ‘/me” 1P /P\Q() Q) (z)

Q\P
<[P = QI IPNQI+[PITP\ QI+ QI IQ\ P

QN P| _1 1>
4 P .
. 6<|P|\@|+' el

We use the bounds [P N Q| < 21e/6 and |Q| > 20e/6, |P| > 20e/6 — 4e > 19¢/6
to obtain

'|P|1/PFda:—IE[f]' <.

Since P is arbitrary, this shows ||E[F|P] —E[F]||.. < . Since P is hg-measurable,
it induces a partition P = hq(P) on . Because hg, is measure-preserving, the
required properties of P follow from the corresponding properties of P. O

LEMMA 7.7. Let (Q2,P) be a standard probability space and f,..., fp, : Q2 —
[0,1] be random variables. Let 0 < § < 1/4, 0 < ¢, and suppose that P({w}) < €
for every w € Q. Assume € < (§/400)™. Then there exists a measurable partition
P of Q such that

(1) P(P) <€(100/0)™ for every P € P,

@) E[fi|P] = E[filllL=(ap) < 0 for every 1 <i <m.

Proof. We prove this by induction on m. The previous lemma establishes the
base case m = 1.

For the inductive step, assume m > 2 and there is a measurable partition O of
2 such that

(1) P(Q) < €(100/5)™ ! for every Q € Q,

(2) ||E[fZ|Q] _E[fi]HL""(QP) < ¢ for every 1 < ) <m-— 1.
Apply the previous lemma with (Q,P) in place of (Q2,P), E[f,,|Q] in place of f
and €(100/6)™~! in place of € to obtain a partition P of €2 that coarsens Q and
satisfies

(1) P(P) <¢(100/6)™ for every P € P,

@) [EELfn| QP ~ Elfmlllz-0.2) = [ELfnl P — Elfnll =) < 6.
Since P coarsens Q, ||[E[f;|P] —E[f;][| 1=(,p) < d holds for every 1 <i <m —1
too. U
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Proof of Theorem 7.5. By Proposition 7.2, we may assume without loss of
generality that for every n, 0, can be expressed as a disjoint union o, := o, 1 LI
-+ oy,m, such thatif o, ; : I' = sym(V}, ;) then

max | Voi| =o(|Va])-

1<i<mg,

Let 11 € Probr (X)), O, be an open neighborhood of j in Prob(X!) and § > 0
be given. By choosing O, smaller if necessary, we may assume it is convex. Let
O C O be an open neighborhood of p such that the closure of O is contained in
O,. It follows that there exist 6 > 0 and continuous functions fi,..., f,, : AT —
[0, 1] such that if v € Oy and ¢/’ is such that |v(f;) —v/(f;)| < 6, forall 1 <i<m
then v/ € O;.

Let zg,...,xx € Q(Oy,0,). Let @ = {1,...,m,} and P be the probability
measure on §2 given by P(k) = |V, x|/| V5, |.

Let f; ; : V, = [0,1] be given by

fij(w) = fi(Tr ;).

Define f;;: 2 — [0,1] by

Fig (k) = Vol ™" D fig(v).

UGVnyk

For sufficiently large n, apply Lemma 7.7 to (£2,P) and the functions (f; ;) to
obtain a partition P,, of ). Let Q,, be the partition of V,, defined by pulling back
the partition P,, under the map V,, — ) defined by v — ¢ if v € V, ;. Then

(1) Q,, coarsens the partition V,, = LI;V;, ;.

(2) Foreach i,j, [|E[f; j|Qn] — E[fi ]|l 1=(,p) < 2. By the choice of f; ; and
05, this implies that for every @) € Q,,, the empirical measure of x; [ () with respect
to oy, [ Q lies in O, (where oy, | Q is the map I' — sym(Q)) obtained by restriction).
In symbols, ng _”rg) €0,.

(3) maxgeo, |Q| < €,|V,| for some constants €, > 0 with €,, — 0 as n — oo.

For 0 < j, define ¥ : XV» — XV» by ¥(z)(v) = xo(v) if v € Q; for some
i <jand V;(x)(v) = x(v) otherwise. Set a:z(]) =Wj(z;).

Since Pgﬁg € O, for every @ € Q,, and O, is convex, mgj) € Q(0,,0y,) for
all i, ].

If n is large enough then €, diam(X’) < ¢ and therefore dX" (mij ),xl(.j +1)) <6
for all 4, 7. The map W is distance contracting, Wy is the identity and W¥,,  maps
all of {xg,...,xx} to xp. This verifies all of the conditions in the definition of
contractible model spaces. U
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7.4. Bernoulli shifts.

THEOREM 7.8. Let I" be a countably infinite group, 3. a sofic approximation,
(X,dx), (V,dy) totally disconnected compact metric spaces and [3 € Prob(X)
a probability measure on X. Then the Bernoulli shift T' ~ (X,5)" has con-
tractible model spaces with respect to .. Moreover, for any v € Probp ('), the
0-dimensional sofic homology theories of v and ¥ X v are equivalent.

In [2], Tim Austin proved a similar result. The proof here follows the same
strategy.

Remark 5. Unfortunately, it is not clear whether the d-dimensional sofic ho-
mology theories of v and 3" x v are equivalent for d > 0. To explain why, sup-
pose 2,2/ € Z dL (O1,k1,0) are each representable as a weighted sum of at most L
simplices and z — 2’ € By(O;,k7,0). Then there is a (d + 1)-chain w such that
z — 2z = Oqw. But the proof in the 0-dimensional case uses that there exists a se-
quence z = z1,...,2 = 2’ of cycles interpolating between z and 2’ such that there
is a uniform bound on the ¢!-norm ||z; — z;,1||; for each i and each z; is repre-
sentable as a weighted sum of at most L’ cycles for some L' that does not depend
on z,z'. There does not appear to be any good reason why this property should
hold if d > 0.

We will use special neighborhoods of 3 x v defined as follows. For any finite
D CT,let Byp be the smallest Borel sub-sigma-algebra on X x V' such that the
projection X’ Pyl 5 xPxylisB yDp-measurable.

A subset F C C(XT x YY) of continuous functions is hereditary if there is
some finite D C I" such that every f € F is D-local and the conditional expectation
Egr,,[f|Bxc] € F for every C C D. Moreover, we require that f is 1-Lipschitz
in the X'P-variable as a function from X x Y to R. To be precise this means
that

£ (z1,y) — f(22,9)| < dB(21,22)

for every 1,22 € X'P and y € Y7 (where we have abused notation by identifying
f with its projection to XP x YP).

A neighborhood O C Prob(X" x YU is hereditary if there is a finite hereditary
subset F C C(XT x Y1) and § > 0 such that

O ={p €Prob (X" x Y1) : |1/ (f) - B" xv(f)|<sVferF}

The next proposition shows that the measure ' x v satisfies a property that is
a kind of relative version of having contractible model spaces.

PROPOSITION 7.9. Let O C Q5 C Prob(XT x Y1) be open neighborhoods of
BY x v. Suppose that the closure of Oy is contained in O, and that Oy is hereditary.
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Then for any k > 0 and K > 0 there exists N such that if n > N then for any
(zi,yi) € QO1,04) (1 <i< K)there exist xij) (for j > 0) such that for all 1, j, k,

() (@,y:) € Q(0s,0,),

@ 2\ =,

3) dX" (mz(-j),xgjﬂ)) <K,

4 dX" (m§j+1),m§€j+l)) < dX" (mgj),x,ij)) and

(5) there exists M such that mgM) =... = m([y). In fact we may choose the
a;l(.j) s so that M = [diam(X) /K] + 1.

LEMMA 7.10. Let O C Prob(X" x V') be an open neighborhood of ' x v.
Then there exists an open neighborhood O’ C Prob(Y") of v such that for all
but finitely many n, if y € Q(O',0,,) then there exists x € XV such that (x,y) €
Q0O,0,).

Proof. This is equivalent to saying that X1 x YT — X is model-surjective (in
the language of [2]). This is proven implicitly in [9, Theorem 8.1] and [2, Theo-
rem 6.8]. U

Proof of Theorem 7.8 given Proposition 7.9. The fact that Bernoulli shifts
have contractible model spaces is implied by the special case of Proposition 7.9 in
which v is the Dirac mass on a fixed point.

Before proving the second statement, note that the projection map Prob(XT x
YY) — Prob(Y") is open (this is implied by [14, Theorem 2.5]). So if O C
Prob(X" x Y'') is open then its image, which we denote by Projyr (©), is an open
subset of Prob(Y1).

First we will show that the O-dimensional sofic homology of v is greater than
or equal to the O-dimensional sofic homology of 5" x v. In order to define the
homology of B! x v, we identify X1 x YU with (X x ))'' and use the metric
dxxy((z,y), (¢'y") = dx(z,2") + dy(y,y).

Let O, be an arbitrary open neighborhood of B! x v in Prob(XT" x Y1). Also
let K > 0. By Lemma 7.10 there exists an open neighborhood O C Projyr (03)
of v such that for all but finitely many n, if y € Q(05,0,,) then there exists = €
XV such that (z,y) € Q(0O2,0,). Let k5 = k. Let O] C O be an arbitrary open
neighborhood of v. Also let 0 <  be arbitrary. Choose an open neighborhood O,
of A" x v so that its closure is contained in 5 and Projyr (O1) is contained in
O} . Because hereditary neighborhoods form a basis, we may also choose O; to be
hereditary. Let k) = K.

Let 7 : (X x V)V — Y"» be the projection map. Let S be the subgroup of
Hy(04, 05, K, kb, 04,) generated by the set of all 0-chains of the form 7, ([z,y]) =
[y] for (x,y) € Q(O1,0,). We claim that the map

ﬂ*([$>y]) — [a:,y]
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from S to Hy(Oy, 07, k1, k2,0p,,) is well defined. It suffices to show that if (x1,y)
and (z2,y2) are both in Q(O),0,) and y; —y» € By(O),k2,0,) then there is a
kp-path from (x1,y;) to (z2,v2) in Q(O,,04,).

Because y; — y» € Bo(0),k2,0,) there exists a rp-path wi,...,w,, €
Q(0),0,,) from w; = y; to wy, = y». By Lemma 7.10, there exist uy,. . . , Uy, € xVn
such that (u;,w;) € Q(O,,0,,) for all i. We may assume u; = x1, Uy, = Z3.

Since (a:l,yl) — (:L‘z,yz) = Z::ll(uz,wz) — (qu,le), it suffices to show
that (u;,w;) — (i1, wit1) € Bo(Oz,k2,0p,) forall 1 <i < m.

So fix ¢ with 1 <7 < m. By Proposition 7.9 (with K =2, k = x; and all large
n) for j > 0 there exist elements ugj),uz(i)l such that forall k € {i,i+ 1} and j >0,

(D (u,ij),wk) € Q0,,0,),

@ u) =up.

3) d;”(u,ij),uéj+l)) < K1,

(4) there exists M; such that ugMi) = uiyf)
It follows that
(Uiy’wi)> (Ugl)ywi) yeees (uz(‘Mi)>wi)v (uz(i/[li)vwiJrl) LA (ugr)l’wi+l)’ (ui+l’wi+1)

is a rp-path from (u;,w;) to (uiy1,wit1) in Q(Oy,0,,) (With respect to the metric
dX”Xy). Thus (u;, w;) — (i1, wi+1) € Bo(Oy,ka,0,) as required.

So the map from S to Hy(O;,0s,k1,k2,0,) is well defined. It is also surjec-
tive by construction. So Hy(O;,0,,k1,k2,05) is a QS-group of Hy(O}, 05, k],
Kk, 0y, and therefore, the O-dimensional sofic homology of A" x v is bounded by
the O-dimensional sofic homology of v.

To finish the proof, we will show that the 0-dimensional sofic homology of
BY x v is greater than or equal to the O-dimensional sofic homology of v. So let
O) be an arbitrary open neighborhood of v in Prob(Y'). Also let kh > 0. Let
O, =Prob(&x1) x O}, and k3 = k5. Let O C O, be an arbitrary open neighborhood
of AU x v. Let 0 < K < ky. By Lemma 7.10, there exists an open neighborhood
O} of v such that O] C O} and for all but finitely many n, if y € Q(O},0,) then
there exists € X'V such that (z,y) € Q(Oy,0,). Set k| = k.

Let S be the subgroup of Hy(O1,0s,k1,k2,0,) generated by all O-cycles of
the form [z,y| with y € Q(O},0,,) and (z,y) € Q(Oy,04,). The map [z,y] — [y]
from S to Hy(O}, 05, k), k5, 04,) is well defined because if [x1,y1] — [2,y2] €
By(Oy,k2,0p,) then there is a k;-path from [xy,y;] to [z2,42] in Q(O,,0,,). The
projection of this path to Y» is a )-path from [y;] to [y] in Q(O%,0,). So [y1]
and [y] represent the same element of Hy(O}, 0%, K}, Kb, 00).

We claim the map [z,y] — [y] from S to Hy(O}, 0%, K}, K5, 0,,) is surjective.
Suppose [y] € Ho(O}, 05, K], Kk, 0,). Then y € Q(Of,0,). By choice of Oy, this
implies the existence of x € XV» with (x,y) € Q(Oy,0,). Thus [z,y] € S. Since
[y] is arbitrary this implies the claimed surjectivity. So Hy(O}, 05, k|, K5,0,) is a
QS-group of Hy(O1,0s,k1,kn,04,) as required. O
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We will use a well-known concentration inequality on Hamming cubes to
prove Proposition 7.9. First we need some notation. Let A; denote the probabil-
ity measure on {0, 1} given by A\s(1) =5, A\;(0) =1 —s. Let Py = A\V» x 3V be a
probability measure on {0, I}V” x XV». Let E, denote expectation with respect to
P..

PROPOSITION 7.11. There exists a constant C' > 0 (depending only on the
diameter of X') such that for any € > 0, any s € [0, 1| and any I-Lipschitz function
F:{0,1}V» x XV» - R,

P, {|F —E[F]| > ¢} <2e C<Val,

Here we are using the normalized Hamming metric d}/&l X given by

d}/&l}xx((thl): (x2,22)) = d}i)”’l} (x1,x2) +d¥‘ (z1,12)

= |Vn|7l#{v eVy: Xl(v) 7& XZ(U)}
+ V| Z dx (z1(v),22(v)).

veV,

For the proof see [27, Corollary 1.17].

Proposition 7.9 is proven by letting xij ) (for j =0,1,...) be the result of a
coupled random walk on X'¥». To define this coupled random walk, for z € xX'V»
define

€7 {01}V x XV — xVn

. oz dif x(v)=1
&= {xv if x(v) =0.

We will think of £” as a random variable taking values in X'V, More precisely,
we choose a random subset of V,, with each vertex being chosen with probability
s (independently). Then we randomize the value of z at each chosen vertex. This
produces the new random element &7,

LEMMA 7.12. Fix notation as in Proposition 7.9. Then for any s € [0,1],
7Pg}()inf{l?’s((Em,y) S Q(Oz,an)) D (zyy) € Q(Ol,an)} =1.

Proof. Because ) is hereditary, there is a finite hereditary subset F C
C(&XT x V) and 6 > 0 such that

O = {p € Prob (X" x Y1) |1/ (f) - B" xv(f)| < VfeF}.
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Because O, contains the closure of O there is a &’ > § such that
Oy D {p € Prob (AT x Y1) : |1/ (f) - B" xv(f)| <& VfeTF}.

Fix (z,y) € Q(Oy,0,) and f € F. It suffices to obtain a lower bound on
P, ([P, (1) =B xv(f)] <)

that tends to 1 as n — e but does not depend on (z,y).
Let D C I" be a finite subset such that f is D-local. Let W,, C V,, be the set of
all vertices v € V,, such that the map

geED—0,(9) v

is injective. For any v € W,

Eo[f(Ig (€% y))] = > 811 = )PV Ege [ £1Byois] (15" (2,1)).
ScD

To see this, let S : {0,1}"» — 27 be the random subset of D defined by

={9€D: x(onlg)"'v) =1}.

Then for any g € D, g € S with probability s and these events are jointly inde-
pendent over g € D. Moreover, conditioned on S(x) = S, the expected value of

ST (€,y)) is Egro, [fIByos] (7" (2, 9)).

Because ¥ is a sofic approximation, lim,, .. |W,,|/|V,| = 1. So
E, [P, )(f)]
= |V DB (0 (670))]

veV,
= VYD S ) P B (1B ] (0 (1) + O (Vi)
veV, SCD
= sl —s)PEINVL TS D ey, [£1Bapis] (97 (2,y)) + O (|Vn\71>
ScD veVy
= > sl (1= )PP (Bar, [f1Byis]) +O (|V N )

ScD

Because F is hereditary, Egr,, [f|Byp\s] € F. So
[Py (B L7 Brmis]) = B x ()] < &
forall S C D. Thus

E, [P ) (0] = 8" x ()| < 3+0 (Val ).
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Let F: {0,1}Y» x X'» — R be the function
On
F(x:2) = Py ()
To finish the proof, it suffices (by Proposition 7.11 and the previous inequality) to

prove that F' is C-Lipschitz for some constant C' > 0 (that does not depend on n,
x or y but may depend on other parameters). In fact,

|F(X7Z) _F(Xlaz/)‘

= V| |30 P (€700 2),w)) — F (IS (67X, 2),w) )

veVy,

< Vol ™'Y A (€7 (x2) ) — £ (67X 52))|
veVy,

< ‘V ‘ ! Z dXx;)J HUH sw(X7 )7 )71—[5” (Em(X,vZ,)ay))-
veVy,

The last inequality above occurs because f is 1-Lipschitz as a function from X' x
VP to R.
For fixed v € V,,,

A%y (T (€7 (x, 2),), 1" (£ (X, ).))
<IDI7'Y " dae(2(ou(9)"0),2 (onl9) ™)) +diam(X) Ly, (o) o)y (o (a) )
geD

Summing over all v, we obtain

[FOx2) = FOC )| < Va7 Y dae(2(v), 2/ (v)) + diam(X) 1y, 1y
veVy,

= dy(n (, Z/) + diam(X)d}/(;)l,u O X/)'

So F is max(1,diam(X’))-Lipschitz. O

Proof of Proposition 7.9. Fix notation as in the statement of Proposition 7.9.
Let Leb denote Lebesgue measure on the unit interval [0, 1]. Let P = Leb"» x 3V»
be the product measure on [0,1]V» x XV». Let E denote expectation with respect
to P.

For z € XV and s € [0, 1], define

C(@,s]) 1 [0,1]r x XV —
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zy if7m,<s

C(z,s|T,2)y = {

T, IfT1,>s

The distribution of ¢(x,s|-,-) (with respect to Leb"™ x 3V7) is the same as the
distribution of &% (with respect to P;). So Lemma 7.12 applies.

Fix a natural number k£ > diam(X’)/k. Let (7,z) be a random variable with
distribution Leb"” x 3¥». Then with high probability (whp) as n — oo the following

events occur:
(1) Forevery 0 <j <k,

#{veV,: 1, € (j/k,j/k+1/k]} < k|V,|/diam(X).

2) ¢(zi,j/k|-,-) € QUOq,0,) forall 1 <i< Kand 0 <j <k.

(3) 7y #OforallveV,.

This first condition holds whp by the law of large numbers, the second by Lemma
7.12, and the last occurs with probability 1.

So there is some (7,2) € [0,1]V» x XV» such that all of the above conditions
hold. Set mz(-j )= ¢(x;,7/k|T,2). This first 3 conclusions of Proposition 7.9 are im-
mediate. The fourth occurs by definition of (x;,j/k|7,z). The fifth occurs with
M =k. O

LEMMA 7.13. by x(v) < (d+1)hx(v) for all d, %, v.

Proof. Let O; C O, C Prob(Y") be open neighborhoods of v and 0 < k1 <
k2/3.Let S, C Q(Oy,0,) be a subset whose «-neighborhood contains Q(Oy,0y,)
and

S| = covie, (2(O1,04),d3).

So there exists a map ¥ : Q(Oy,0,) — S, such that dx"(\ll(y),y) < Ky for all
y. If y € Y\ Q(Oy,0,), then define ¥(y) =y so that now we can consider ¥
as a map from YV* to itself. By Lemma 6.1, W, (2) — 2z € By(0y,K2,0,) for any
z € Zﬁ(@l,m,an). This uses O; C O, and 3x; < ka. It follows that

dimg (H} (01,0, k1,82,0) ©2 Q) < #ST = cov,, (2(O1,0,),d3) .
The lemma now follows from the definitions of bg x;(~) and hx (). O

COROLLARY 7.14. If T' ~ (X,u) has the Weak Pinsker Property then
bo,x: (1) = 0.

Proof. Let € > 0. Then I ~ (X, ) is isomorphic to the direct product of a
Bernoulli shift and an action with entropy < €. By Theorem 7.8, the 0-dimensional
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sofic homology of I' ~ (X, u1) is equivalent to the 0-dimensional sofic homology
of an action with entropy < e. By Lemma 7.13, this shows by » (1) < e. (|

8. An action without the Weak Pinsker Property. This section proves
Theorem 1.2. Here is an outline:

e §8.1 shows that two models of random graphs, the configuration model and
the permutation model, are closely related, allowing the transfer of results about
one to the other. This is useful here because results in the literature are generally
proven for the configuration model, but it is the permutation model that gives ac-
tions of the free group.

e §8.2 is about first moment computations of the numbers of independent sets
and pairs of independent sets of a random regular graph.

e §8.3 explains two models of random pairs (G, I) where G is a regular graph
and I C V is an independent set. These models are called the planted and the uni-
form model. Usually it is easy to estimate probabilities with respect to the planted
model but not with respect to the uniform model. However, sofic entropy is more
closely related to the uniform model. Fortunately, there is an inequality relating the
two models.

e §8.4 has the main technical result bounding the size of clusters of indepen-
dent sets in a random regular graph.

e §8.5 provides a general result for obtaining an invariant measure ; on X"
whose model spaces (O, 0,,) have large intersections with fixed subsets #;, C
XV~ This is applied later with %, equal to the set of “good” independent subsets
to obtain the invariant measure in Theorem 1.2.

e §8.6 finishes the proof of Theorem 1.2.

8.1. The configuration model and the permutation model. The proof of
Theorem 8.11 is made simpler by borrowing results about independent sets on
the configuration model of random regular graphs and transferring them to the
permutation model. This section explains the two models and two key theorems
linking them together.

Definition 13 (The configuration model). Let d > 3, n > 1 be integers such
that dn is even. Let 7 be a uniformly random perfect matching on [n] x [d]. Let
Geont(7) be the random multi-graph with vertex set [n] such that the number of
edges from ¢ to j equals the number of edges between {i} x [d] and {j} x [d] in
the matching 7. This is called the configuration model |7, 24]. It gives a random
d-regular multi-graph on n vertices. Let Pﬁl‘?gf denote the law of Gone(7r) and let

conf

E;‘?gf be its expectation operator. So 577" is a probability measure on Graphs(d,n),
which is the set of all d-regular multi-graphs on [n].

Definition 14 (The permutation model). Let I' = F,. = (ay,...,a,) be the
rank r free group. Let PP5," be the uniform probability measure on the set
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Hom(F,,sym(n)) of homomorphisms from I, to sym(n). Also let EP5" be its
expectation operator. For o € Hom(F,.,sym(n)), let G(o) be the multi-graph with
vertex set [n] and edges {v,o(a;)v} (over v € [n], 1 < i < r). If o is random
with law P}5," then G(o) is called the permutation model. The law of G(a) is a
probability measure on Graphs(2r,n), which by abuse of notation, we will also

perm

denote by P75, .
One of the main results of [20] is:

THEOREM 8.1. Let A, C Graphs(d,n) be any sequence of subsets. Sup-
pose d > 4 is even and let 2r = d. Then limnIP’glf’gf(An) =1 if and only if
lim,, PP (A,) = 1. Equivalently, the permutation and configuration models
model are contiguous.

COROLLARY 8.2. Let o, be a random homomorphism from IF,. to sym(n) with

law PY5,". Then for every finite D C F,. and § > 0,
gig}cIP’E%m (o is (D,0)-sofic) = 1.

Proof. 1t suffices to show that for any nontrivial w € F, the number of v €
{1,...,n} such that o, (w)v = v is o(n) with high probability as n — . To phrase
this a different way, it suffices to prove that for any L > 0 the number of simple
closed cycles of length < L in G(o7,) is o(n) with high probability as n — eo. This
statement is proven in [6] for the configuration model. Since the two models are
contiguous, it also holds for the permutation model. g

8.1.1. [Expectations. The next result shows that the first moment method
applied to counting vertex-labelings of either the configuration or permutation
model results in the same calculation up to subexponential factors. To explain fur-
ther we need some notation.

Definition 15. (Admissible pairs) Let X be a finite set. A pair of vectors
(mvert, wedze) € Prob(X') x Prob(X x X) C RY x RY*Y is admissible if both 7"
edge gre probability vectors, mredge jg symmetric in the sense that mredge (p,q) =
wedge(q, p) for all p,q and both marginals of mredge equal 7V°™". The latter condition
means for every p € X,

T p) = 7 (p,g) = Y 7 (q,p).

qeX qeX

and 7

Let A(X) C RY x R**¥ be the compact space of all admissible pairs.

Example 2. Suppose G = (V, E) is a finite d-regular multi-graph and = : V' —
X a map. Choose a vertex v and a directed edge e independently and uniformly at
random. Then the distributions of z(v) and z(e) form a pair of admissible vectors.
Let (7o, 72%8%) € A(X) denote this pair of distributions.
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Definition 16 (Q(7¥*", r°2¢; (3')). Given a finite graph G’ = (V, E) and an ad-
missible pair of vectors (7", 7°42¢) € A(X), let Q(7¥", 7°9€°; ) be the set of all
vertex-labelings z : V' — X such that

vert __ __vert edge __ _edge
T =q, s, W =mL .

Write #Q(r¥e"t 7°2¢) for the random variable
G — #Q (ﬂven, ﬂedge;G)

where G is either a random sample of the configuration or the permutation model,
depending on context.

Definition 17. For x > 0, let n(x) = —xlog(x). Extend this by continuity so
that (0) = 0. Given a vector = (p1,...,p)) of nonnegative real numbers, let

k

H(p)=H(p1,....px) = Zﬁ(pi)

i=1

be the Shannon entropy of p. For example, it is well known that if pis a probability
vector then the associated multinomial coefficients satisfy

. —1 n
lim n log< > :H(pl,...,pk)
n—eo Mn1y--sMpk

where my, 1,...,my | are any choice of nonnegative integers satisfying m, | +
-+ myp = n and lim, . my, ;/n = p; for all 4.

LEMMA 8.3. Let (7", %) ¢ A(X) be an admissible pair of vectors. If
d> 2, n>1 are integers, dn is even, ™" takes values in %Z and 79 takes
values in %Z then

n~ og XN [#Q (7', 7°4%) | = (d/2)H (n°%¢°) — (d — 1) H (7") + 0,(1)
and for any integer v > 1,
n~'log EPS™ [#Q2 (ﬂven,ﬂedge)] =rH (ﬂedge) — (2r=1)H(7*") + 0,(1).

Proof. The case of the permutation model is handled in [8]. It seems likely
that the configuration model result has been known for some time because it is
essentially the “first moment method” which has been a standard tool in this area
of probabilistic combinatorics for decades. However, I have been unable to find a
suitable reference.

The proof will reduce to [4, Lemma 4.1] once we verify that Efi‘?gf[#ﬁ(ﬂvm,
7°92%)] is positive.

Because " takes values in 17, there exists a map z : [n] — X’ such that
et = 7Vt Let 7 @ [n] x [d] — X be the lift defined by #(v,i) = x(v). Because
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7% takes values in =7, there exists some perfect matching £ on [n] x [d] such
that the distribution on pairs of vertex-labels from z assigned to the endpoints of a
uniformly random oriented edge of j is 7%, Here are some details to justify this
claim. First 7V € (%Z)X because 79 takes values in %Z and 7" is the first
marginal of 798¢, So there exists a partition

[n] x [d] = PLQ
such that

PNz (p)| = |QNE""(p)| = 7" (p)nd/2

for all p € X. For every p € X, choose partitions

Pﬁjil(p) = I—'lePp,tp Qmjil(p) = I—lleQq,p

such that
#Ppq =#Qqp = redee (p,q)nd/2.

Finally let 1 be any perfect matching of [n] x [d] that restricts to a perfect matching
from P, ;4 to Q4 for all p,q € X. This matching satisfies the claim.

By [4, Lemma 4.1], the probability that a uniformly random perfect matching
of [n] x [d] has edge distribution 7°%° is

edgey __ vert
o(dn/D) H(x*%) —dnH (x*")

(up to a multiplicative factor that is subexponential in n). To see this, replace n in
[4, Lemma 4.1] with dn, ;o with 77" and v with 7°4¢_ Since the number of ways
to choose z is exp(nH (7¥*")) (up to a multiplicative factor that is subexponential
in n), this implies the result. O

THEOREM 8.4. Fix an integer d > 2. For n € N with dn even, suppose K,, C
A(X) satisfies the following: if (m"°",7°%) € IC,, then 7" takes values in 17
and % takes values in %Z. Suppose that IC,, converges to a closed subspace M
in the Hausdorff topology (on the space of all closed subsets of A(X')) as n — .

Then
%ig}onfl logEfif’fo [#{zexm: (ﬂgvcm,ﬂ;dge) €K}l
=max { (d/2)H (7°%€) — (d— 1) H (") : (7", 7°%) € M]}.
Moreover, if d = 2r for some integer r > 1 then the quantity above also equals

lim nillogEE?ﬁm [#{xex™: (nve“,wgdge) €Kn}].

xT
n—reo
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Proof. This follows from the previous Lemma since the function
(ﬂ_vert’ﬂ_edge) — (d/2)H(7Tedge) o (d o I)H(ﬂ,vert)
is uniformly continuous and there are at most a polynomial (in n) number of ad-

missible pairs (7", 7°%°) € K, such that 7°%° takes values in =Z. In fact this
number is bounded by (dn + 1)*F. O

8.2. First moment computations. Let I' = F, = (ay,...,a,) denote the
free group of rank > 2. For s,s',t € [0,1] and 0 € Hom(F,.,sym(n)), let Z, o (o)
be the set of all of pairs (W, TW’) of independent subsets of G(o) satisfying

(3) #W = |sn], #W'=|s'n|, #(WnW') = |tn].

In the arguments to follow, #Z o ; is regarded as a random variable with respect to
the permutation model. Let f(r,s,s’,t) denote the upper exponential growth rate
of the expected value of #Z ¢ ;.

f(r,s,s',t) :==limsupn ™' log ERS™ [#Z, ¢ ]

n—roo

THEOREM 8.5. The function f is uniformly continuous. Moreover, the limit
exists so that

f(r,s,s',t):= limn~! log ERS™ [#T o1 4]

n—rco

Proof. Let X ={(0,0),(0,1),(1,0),(1,1)}. Let kC,, be the set of all admissible
pairs (7", 7¢9€°) such that 7' takes values in %Z, 748 takes values in %Z
(d = 2r) and these linear equations are satisfied:

7_‘_vert(l 0)_|_7Tvert(1’1) — L
7_‘_vert(o 1)+7Tvert(1’1) — LS’TL
vert(l’l) — L
T ((i1.1), (i2.52) ) = 0 if either (iy =iy = 1) or (ji =j2 = 1).

A pair (W,W’) of independent subsets of G(o) satisfies (3) if and only if
(mYert 7298y ¢ [, where 2 = (1y, 1yy).
Let M(r,s, s’,t) be the set of all admissible pairs (¥, 7°42°) satisfying these

linear equations:

79 ((i1,51), (ia,72) ) = O if either (iy =iy = 1) or (ji = jo = 1).
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Because KC,, converges to M(r,s,s’,t) in the Hausdorff topology, Theorem 8.4
implies

4 r,s,s t) = max —(2r — 1) H (7"") +rH (r°€°
4) f( ) (e st (5,8 ) ( ) (ﬂ' ) (ﬂ' )
5 o g B, ]

Continuity of f now follows from continuity of
(wvert,wedge) — —(2r—1)H(7"") +rH (ﬂedge‘)
and
(r,s,8,t) — M(r,s,5t)

where the latter is with respect to the Hausdorff topology on closed subsets of the
space of admissible vector pairs. Uniform continuity follows from continuity and
compactness. U

We are most interested in the special case in which s’ is close to s. In this case
we will use the continuity result to reduce the study of this function to the special
case s = s'. To simplify notation, let f(r,s,t) := f(r,s,s,t).

For o € Hom(F,,sym(n)), let Zs(o) be the collection of independent sets W/
of the graph G/(¢) such that #/V = |sn|. Also let

f(r,s) :=limsupn ! log EPSI™ [#Z, |
n—soo
be the upper exponential growth rate of the expected number of independent sets
of cardinality close to sn.

THEOREM 8.6. Fix 0 <t <5< 1. Ift:=t(r) = t_log(TZT) and s := s(r) 1=

5 log(TZT) then

f(r.8) =n(s)—rs*+O(log(r)/r)
flrys,t) =nt)+2n(s—t)+r [tz — 232] + O(log(r)/r)

where the error term implicit in the big O(-) notation does not depend on 3,1.

Proof. We keep notation as in the previous proof. Observe that f(r,s,s) =
f(r,s,s,s) counts pairs of identical independent sets. So f(r,s,s) = f(r,s). So
it suffices to obtain the estimate for f(r,s,t). The calculation is similar to one in
Gamarnik-Sudan [19].

By (4),

flrys,t)= max —(@r—1)H(x"") +rH (ﬂ_edge)'

(arvert, redee) e M (r,s,8,t)
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Let 7 = (7", 7%%2¢) € M(r,s,5,t). We claim:

7'0,0) =1 —2s+t 7°(0,1) =s—t
7V(1,0) =s—t av(1,1) =t.

By definition, 7¥¢"(1,1) = ¢. Since 7"*"*(1,0) +7**"*(1,1) = s this determines the

value of 7¥*"*(1,0). The other two values hold by symmetry and the fact that 7V
is a probability measure. So

H(m") =n(t)+2n(s—t)+n(1 —2s+1).

Because Shannon entropy H (-) is strictly concave and M(r, s, s,t) is convex,
it follows that there is a unique 7y € M(r, s, s,t) such that

Frys,t) = —(2r — 1) H (x§) 4 7 H (7).

The space X x X is invariant under these two symmetries:

These generate a group of order 4. This induces a group of symmetries on
Prob(X x X). Moreover, if a measure v € Prob(X x X’) has both marginals equal
to V", then each of its images under this group also has marginals equal to 7"
(for any m € M(r,s,s,t)). Moreover, the Shannon entropy is preserved under the
action of this group. Because 7 € Prob(X x X) is unique, it is necessarily
invariant under the action of this group. So if 2 = 75 "%°((0,0), (0, 1)) then

zo =75 %((0,0),(1,0)) = m5*((0,1),(0,0)) = 76*((1,0),(0,0)).
Since both marginals of 7°4¢ equal 7V, this implies

7% ((0,0),(0,0)) = 1 — 25 — 2,

76 ((0,0), (1,1)) = 75%°((1,1),(0,0)) =
7 ((1,0),(0,1)) = 7((0,1), (1,0)) = s —t — .

So H(, edge) G(zo) where

G(x) =2n(t)+4n(x)+2n(s —t —x) +n(l —2s — 2x).
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Use -Ly(z) = —1 —log(z), to obtain:

8(;;:13) :8%(477(;,;)+277(s_t—x)+n(1—23—23:))

:210g<(3—t—x)(1—23—2x)>'

12

Since 7 is maximizing, 8%;:6) (z0) = 0. So (s —t —x0)(1 —2s — 220) = z3.
To simplify notation, we let z = z¢ from now on. By collecting terms with a
factor of =, we obtain

H(wgdge) =2n(t)+4n(z)+2n(s—t —x) +n(1 —2s —2x)
=2n(t) —4xlog(z) —2(s—t—x)log(s —t —x)
—(1—=2s—2x)log(1 —2s—2x)
=2n(t) +2zlog <(S —t—x)izlz— 23—23:))
—2(s—t)log(s—t—x)— (1 —2s)log(1 —2s —2x)
=2n(t)—2(s—t)log(s—t—z)— (1 —2s)log(l —2s — 2x).

Use the above and collect terms with a factor of r to obtain

f(rs,t)=—Q2r—=1)[n(t)+2n(s —t)+n(1 —2s+1)]
+7r[2n(t) —2(s —t)log(s —t — x) — (1 — 2s)log(1 — 25 — 2x)]
=n(t)+2n(s—t)— 2r—1)n(1 —2s+1)
+r[—4n(s—t)—2(s—t)log(s —t —z) — (1 —2s)log(l —2s — 2x)]

Next, we estimate x. Since (s —t — z)(1 — 25 — 2z) = 2,
22— (1=2t)z+ (s—1t)(1—2s)=0.

Let A =s—t. Since v < s —t,

2w =12t — /(1 -2 —4(s —1)(1 —25)

= 1 - 254208 — /(1 - 25+ 2A)2 —4A(1 - 25)

= 1—25+2A — /(1 —25)2 +4A2.
By Taylor series expansion, if C' > 0 is a constant then vC2 + e = C'+ 55 + O(€?).
Use this with C' = 1 —2s, e = 4A? to obtain

2A2

(6) 2x:2A—(1_28)

+0(AY).
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Thus
2
log(s —t—xz) = log <(18_;l +0(A%)
=2log(s—t)+2s+0((s—1)?)
=2log(s —t)+2s+O(s?)
Thus

—dn(s—t)—2(s—t)log(s —t —z) =2(s — t)(2log(s — t) —log(s — t — z))
=—4(s—t)s+0(s%).
Plugging this back in to the equation for f gives
flrys,t)y=n(t)+2n(s—t)— 2r—1)n(l —2s+1)
+r[—4(s—t)s—(1—2s)log(1 —2s—2z)] + O(rs3).
We use the Taylor series estimates
n(l—2s+t)=2s—t—(2s—1)*/2+0(s’)
log(l —2s—2z) = —(2s+2z) — (2s +2m)2/2+0(33)
=2[s+z+(s+2)’]+0(s)
=-2(1+s+z)(s+x)+0(s)
to obtain
flrys,t)y=n(t)+2n(s—t)—(2r—1) [28 —t—(2s— t)2/2]
—drs(s—t)+2r(1-2s)(1+s+z)(s+x) —|—O(7“83).

If r is large enough then logz(r) > r which implies 7s®> < s. So we can replace
the O(rs®) with O(s). This allows us to replace the coefficient (2 — 1) on the
bracketted term with 2. We can also simplify the last term by

2r(1=2s)(1+s+z)(s+z)=2r(1—s+z)(s+z)+O0(s)
to obtain
f(rs,t)=n(t)+2n(s—t) —4rs(s—t) —2r[2s —t — (2s — t)*/2]
+2r(1—s+x)(s+z)+0(s).
By factoring out a 2 we obtain

f(r,s,t) :77(75)+277(5—t)
+2r[—2s(s—t) —2s+t+ (25— t)*/2+ (1 —s+2)(s+2)] + O(s).
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After multiplying out and collecting terms, the quantity in brackets simplifies to
[—s—s+t+1*/2+x+27].
By (6), this simplifies to [—s> +%/2 4+ O(s?)]. So
flrs,t) =n(t)+2n(s—t)+r[t? —2s*] + O(s).
Since s = O(log(r)/r), this implies the theorem. O

COROLLARY 8.7. Keep notation as in Theorem 8.6. In addition, assume 2/3 <
5< 1. Then

max { f(r,s,t) — f(r,s): s/2<t<s}

= f(r,s)—5(1— E)ng(r) +0 (—log(r)logbg(r)> .

r r

Proof. By Theorem 8.6,

flrys,t)— f(r,s) = f(r,s)+n(t)+2n(s—t) —2n(s) +rt*+0 <10gr("r’)> )

. _log(2
Since s = 3@,

n(s) = —slog(s) = glogz(r) 40 <log(r)loglog(r)> .

r r

Similar estimates hold for 7(¢) and 7(s —¢) and the constant implicit in the O(-)
notation is uniform over 3,¢. Therefore,

n(t)+2n(s—t) —2n(s) = _filog:,(r) +0 (_log(r) l(;g log(r)> .

2
Since rt? = fzw, this implies

og?(r og(r)loglog(r
F(rs.t)— f(r.s) = f(r.s) — (I~ ) &L >+0<1 g(r) loglog( >>'

r r

The minimum value of (£ —#2) for € [5/2,3] is attained when f = 3. This is
because x — x — x” is concave, so the minimum is achieved at either 5/2 or 3.
But since 5 € (2/3,1), (5 —52) < (5/2 — 5%/4). Substituting 5 for  finishes the

corollary. O
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8.3. The planted model and the uniform model. There are two re-
lated models of random independent sets on random regular graphs that we
need to consider to prove Theorem 8.11. To explain, recall that for o €
Hom(F,,sym(n)), Zs;(o) is the collection of independent sets W of the graph
G (o) such that #WW = | s#V |. The uniform model is the probability measure ]P";“;fn
on Hom(F,,sym(n)) x 2" defined by:

‘ 1
Pumf W) =
ren( W) = T osym () < #Za(0)

if W € Zy(c) and P2 (5,W) = 0 otherwise. A random sample (o, W) with law
IP’;‘n;fn can be obtained by first choosing o € Hom(F,., sym(n)) uniformly at random
and then choosing W € Z¢(o) uniformly at random.

The planted model is the probability measure P22 on Hom(F,., sym(n)) x 2"

that is uniformly distributed on pairs (o, W) such that W € Z,(o). Thus

1
~ #Hom(F,,sym(n)) x EP5" [#Z(0)]

Pplant ( o, W)

7,8,M

if W € Z,(o) and 0 otherwise. Let IE,'i“;fn and EEIE“; be the corresponding expecta-
tion operators.

It is relatively easy to compute probabilities with respect to the planted model
instead of the uniform model. However, to prove Theorem 8.11 we need to work

with the uniform model. The next result forms a bridge between the two models.
THEOREM 8.8. Fix 5 € (0,1) and set s = EW. Let R > r be an integer
satisfying

lim inf PR;"7" [#Z,, > 0] = 1.

Let
ENS " [#Z]
X —{ o ¢ Hom(F,, H#T (o) > o sl L
R,T,S,TL {O- Om( T Sym(n)) S(U) - 2E[}):§71;11n[#18]
Then

lim inf PR (X ) = 1.

Moreover, if A C XR y.sn % 2" then

PynL (A) < PRAY(A) x 2B ).

r,8,Mn r,8,Mn

Remark 6. The proof below is modeled after an analogous result for sparse
Erdos-Renyi graphs obtained in [12].
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Proof of Theorem 8.8. Let Fr = (ay,...,ag) and F, = (ay,...,a,). Thus F,
is a subgroup of Fpr. Let o be a sample of ]P’I;;zr;n (so o is a uniformly random
homomorphism from Fp to sym(n)). Let o [ I, denote the restriction of o to F,.

Any independent set of G(o) is automatically an independent set of G(o |
IF,) since the latter is a subgraph of the former. If W C [n] is an independent set
for G(o | ;) then the probability that W is also an independent set for G(o)
depends only on |W|,(R —r) and n. It is easy to derive an exact expression for
this probability, but we do not need it.

Let Y,, be the set of all o € Hom(FFr,sym(n)) such that the restriction o [ F, ¢
XRrsn- Since IP’I;%CT;H(Y,@) =1-P3"(XRs.n), it suffices to prove IP’[}’;T(YH) —0
as n — 0. Since the probability that an independent subset W of G(o | F,.) is an
independent subset of G/(o") does not depend on o [ I,

Ef o #L]
BT,

,

B HT Vo] = By [#Z,(0 1 F,)

Yn}
By definition of Y,, and Xg ; s n,

Ero [#Z]

EP™™ |47, F, —t—
R |: (Uf ) 2E§§2n[#18]

V| <
Combine this with the equality above to obtain

perm 1
(7) BRIV, < 5.

,

By Markov’s inequality,

P (#I, > 2B T, |Y,] | Vr) <

| =

Multiply both sides of the inequality above by -1 and add 1 to obtain

1/2 <PR (T, < 2B WL Yo Vi) < PR (ML, < 1]Yn).
The second inequality above follows from (7). Since P " (#Z, < 1|Y;) <
P, (L <1) P (L <1)
P (Yn) P (V)

, multiply denominators in the inequality 1/2 < to obtain

P (V) <2PR 0 (HZ, < 1).

However, Pi>"" (#Z; < 1) tends to zero as n — o by assumption. This shows
P (Y,,) — 0 and therefore PY," (X gy sn) — 1 asn — oo,
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To verify the last statement, let (o, W) € Xp ;. 5 », X 2" be such that W € Z,(o).
Then

4 1 2R H)
Pyt (o, W) = < —perm -
hsn #Z(o)#Hom(F,,sym(n)) — EYS," [#ZsJ#Hom(F,,sym(n))
= PP (0, W) x 2B} HT,).

T,8,N

unif

These inequalities are justified in turn by the definition of ;"7 ,

that o € Xg,,..,, and the definition of PP O

the assumption

Define MAXIND : Hom(F,,sym(n)) — R by
MAXIND(c) = n~ ! max {#W : W is an independent subset of G(c)}.

PROPOSITION 8.9. For all r sufficiently large, there is a constant o.(r) such
that

o berm _ _
gg lim PP (MAXIND € (a(r) —d,a(r) +0)) = 1.

Moreover,

a(r) = logr(”r’) +O(loglog(r)/r).

Remark 7. The limit was proven to exist in [5]. The asymptotic statement fol-
lows from earlier results of Frieze-Luczak [18] in the case of the configuration
model. Since the two models are contiguous [20] this implies the proposition. An
exact formula for a(r) (for sufficiently large ) was recently obtained by Ding-Sly-
Sun [13].

COROLLARY 8.10. Fix 5 € (0,1) and set s = g_l"gf?r)‘ Let oy ~ P™. Then
1 log 1
nog#Z, (o) > f(r.5) — 0n(1) — O (M)
T

with probability tending to 1 as n — . To be precise, this means that there exists
o(r) = O(w) such that for every € > 0,

lim Pg,erl;m (nillog#l's(o'n) > f(r,s) —€— 5(T)) =L

n—reo

Proof. Let R be the largest integer such that a(R) > s. By Proposition 8.9,

_ log(R)
"R

s<a(R) + O(loglog(R)/R).
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log(x)

Observe that the function x — === is monotone increasing for all x > e. So if
x > e then
0 < log(z) log(z+1) log(z) log(z)+log(l+1/x)
Tz r+1 r+1
_ log(z)  log(l+1/z) - log(z)
Cx(z+1) x+1 = 22
Since bfﬁ# < %, this implies

a(R)—a(R+1) = O(loglog(R)/R)
: L . . log(R)
and therefore we can improve the previous inequality to an equality: s = OgR +
O(loglog(R)/R).
By Theorem 8.6,

f(R,s)=mn(s)— s*R+O(log(R)/R).

Since s = log}(zR) +O(loglog(R)/R),

n(s) = log?(R) L0 <log(R) loglog(R)>

R R
2, log*(R) log(R)loglog(R)
SR = 7 +0 I .

So f(R,s) = O(w) Since x — w is monotone decreasing
(for all large enough x), this implies

®) F(R.s) =0 <M>

r

Theorem 8.8 implies that if o, ~ PP," then with probability tending to 1 as
n — oo,

n~og#Ts(0y) > n~ ' og EXS" T, — n~ ' log (2R T, ])
= f(T’,S) - f(RaS) - On(l)
:f(r,s)—on(l)—0<w>. O

r

8.4. Bounding clusters of independent sets. For (o,1W) € Hom(F,,
sym(n)) x 2", let Clg (o, W) C 2™ be the collection of independent subsets W'
of the graph G(c) such that [#WW'/n —s| < eand |[W NW’| > (s/2)n. Informally,

Cls,e(0, W) represents the cluster containing W in Uy ¢(s_ o4 Zs (0).
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THEOREM 8.11. Let 5 € (2+T\/§7 1) and s := §@. Then there exists vy =
v(r,5) >0, e=€(r,5) >0and 0 < by < by <s, by > s/2, such that the following
holds. Let (o, W,) be random with law P"S  Then with probability tending to 1
as n — oo,

(1) there does not exist an independent set W' of G(oy,) such that #W'/n €
(s—e,s+¢€)and byn < [W,,NW'| < byn,

2) nillog#Cls,e(Un,Wn) < f(r,s)—n.

Proof. The first claim was proven by Gamarnik-Sudan [19, Theorem 2.6] with
the configuration model in place of the permutation model. This uses the hypoth-
esis 5 > %. Since the two models are contiguous by [20], this implies the first
claim. The proof of the second claim given below is modeled after the proof of an
analogous result for sparse Erdos-Renyi graphs in [12].

For 0 € Hom(F,,sym(n)), let Z,..(o) be the set of all pairs (W, W) satisfying:

(1) both W, W' are independent subsets of G,

(2) #W = |sn], [#W'/n—s| <k,

Q) (WnW'| > (s/2)n.

The definition of the planted model implies:

EPS™ ]
9 EP 4, | = —nf el

r,5,Mn

By Theorem 8.4 and (9),

lim n~ ' log P [#Cl, . |
n—oo

r,8,M
=max{f(r,s,s',t)— f(r,s): s €[s—€,s+¢],s/2<t <s}.

By Theorem 8.5, f is uniformly continuous. So there exists € = €(r,5) > 0 such
that

m 1 log1l
ax f(T’,S,,S/,t) — max f(r757t) < M
s'e[s—e,s+e€l,8/2<t<s s/2<t<s ,

Assume from now on that |s — s’| < e. Then
lim 7' log EP™ [#Cl . | = max { f(r,s,t) — f(r,s): 8/2<t<s}

oot r,5,n
L0 <log(r)loglog(r)> .
r

By Corollary 8.7,

log*(r)
L0 <log(r)loglog(r)> .

r

lim n~ ' og EPA [#Cl, ] = f(r,s) — 5(1—3)

(10)
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Next these estimates are transferred from the planted model to the uniform
model. To simplify notation, let X,, = Xg, s, be as in Theorem 8.8 where R is
the largest integer such that o(R) > s. By Theorem 8.8,

[Eunif [#Clsc | X,] = [p)perm(Xn)*lEunif #Cl, . 1x, ]

T,8,M rn r,8,Mn

<P (X,) ' BRAY HCl,  1x, | X 2B (HT,)

r,S$,n

< PP (X,) T BRA [#CL ] x 2B (#T).

r,8,M
Recall that f(R,s) =1lim,, ,..n 'log IE];;I;T(#IS). Combined with (10), the fact that

PP (X,) — 1 as n — oo and equation (8), this implies

e 1 2
limsupn ' log EM™ [#Cl, | X,] < f(r,s) —5(1 — g)M
r

(11) rites .
L0 <log(r)loglog(r)> .
r

By Markov’s inequality, this implies the theorem with any choice of v = (r, 5)
satisfying

0<~v(r,5) <3(1—3)

log*(r) . <M>, 0

8.5. A variational principle. The next result will be used in the proof of
Theorem 1.2 to obtain an invariant measure that is, in some sense, a subsequential
limit of the uniform models. Its proof uses the same ideas that are behind Kerr-Li’s
proof of the Variational Principle for sofic entropy [26].

PROPOSITION 8.12. Let ¥ = {0, }57_, be a sofic approximation to I', X a
finite set and for eachn € N, let #;, C XV be given. Then there exists an invariant
measure ji € Probr (X1 satisfying

hs (1) > inf limsup|V,| ' log#(Q(O,0,) N #;,) = limsup | V,,| ' log##;,.
O30 p—seo T—$o0

Proof. The inequality is trivial, so it suffices to prove the equality.

The space Prob(X'") is compact and metrizable in the weak* topology. So fix
a metric on Prob(X") with diameter < 1. Choose a sequence % V) (j = 1,2,...)
of finite open covers of Probr(X!) C Prob(X) by open balls of radius 27. For
convenience, set % (¥) = {Prob(x1)}.

We will inductively construct a sequence {OU )};-":0 of open sets OU) € 7/17)
and positive constants {m(j ) -1 satisfying: for every J € N,

(1) OUNOUD L@ forall 0 < j < J,

(2) forevery 0 < j < J, there exist infinitely many n such that

#( W, QO ) > ##;, /mY).
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For the base case, set O(©) = Prob(X") and m?) = 1. For induction, suppose there
is some J > 1, open subsets (’)(1), e ,O(J) and constants {m(j) 3-]:1 satisfying the
criteria above.

For each n, let O(JH) € % +1) be an open set such that O(‘]+1 NOW) £
and

#(#, QO 0,)) > #(#, N0 0y))

for all O’ € % /+1 such that O’ N OW) £ 0. Let O+ € /(7+1) be an open
subset such that there exists infinitely many n satisfying:

O(J+l) — O(J+l)

n

#(#, NQUOY) 0,)) > ##, /m)
Let

m T+ — () ‘%(J+1)"

Since the number of open sets @ € % (*1) that intersect @) nontrivially is at
most |%<J“>‘ and

QO ((’)(J),an> g {Q(o 2): O NOV) £ @}
it follows that for infinitely many n,

#0100V ) = (2O 4 (7,09 (09,0, ) )

1
> .
- m(J)|02/(J+1)|#%
This proves the inductive step and the claim.
Since each % (9 is a covering by balls of radius 277, if u; € OV is arbitrary,
then {1;}; is a Cauchy sequence. Let y = lim; e ;. If O C Probr (1) is any
open subset containing y then O contains @) for some 5. Thus

limsup |V;,| " log#%#;, > 1nf 11msup|V| Hog#(Q(0,0,) N #4,)

n—roo n—yoo
> limsup |V, |~ og#(Q(OY) 6, ) N #4,)

n—eo

##;,
> limsup |V;,| ' log ——= —hmsup|V| Nog##,.

n—yes mU)

This proves the equality. U
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8.6. Proof of Theorem 1.2.

Proof of Theorem 1.2. Choose constants 35,s,r,by,by, €,y satisfying The-
orem 8.11. By choosing € > 0 smaller if necessary it may be assumed that
€/5 < by — by and (¢/10)1og(2) + H(e/10,1 — €/10) < /6 where H(a,b) =
—alog(a) — blog(b) for any a,b > 0.

Given a homomorphism o : F,. — sym(n), let #' (o) C Zs(o) be the collection
of independent subsets IV satisfying

(1) there does not exist an independent set W' of G(o,,) such that #V'/n €
(s—e,s+€)and byn < |[WNW'| <bn,

(2)

(12) n~og(#Cly (00, W)) < f(r,8) — /2.

An independent set W of G(o,,) is identified with its indicator function 1y €
{0,1}™. So by abuse of notation one may consider # (o) to be a subset of {0, 1}".

By Corollaries 8.2, 8.10 and Theorem 8.11 there exists a sofic approximation
Y = {0 }nen with oy, : F,. — sym(n) such that if #;, := # (0,,) then

limsupn ' log(##;,) > f(r,s).

n—yo0

By Proposition 8.12, there exists an invariant measure z € {0, 1} such that

hs () > inf limsupnillog#(Q(O,an) N %) = limsupn~'log##;, > f(r,s).
O3 p—yeo n—yoo

For g € F,, let 7, : {0,1}" — {0,1} be the coordinate projection. Let O, be
the set of measures v € Prob({0, 1}¥+) satisfying

(D) v(me=1) € (s—€/2,5+€/2)

(2) v(either (m,,m,,) = (1,1) or (me, 1) = (1,1) for some i) < €/10.
Let 0 < k; be a constant with by — ky — €/5 > by.

It suffices to show that if 0 < x| < k; is any constant and O; C Prob({0, 1}")
is any open neighborhood of p with O; C O, then

limsupn ! logdimg(Ho (01,02, k1, k2,0,) ®zQ) > /3.
n
In the notation above, the superscript L is omitted because all O-cycles are fi-
nite sums of length one O-cycles. So the parameter L is irrelevant to studying O-
dimensional homology.
For x € Q(O1,0,) N #,, let C(x) be the set of all y € Q(Oy,0,,) such that

x—y € Bo(Oa,k2,00).

In other words, y € C(x) if and only if there exists a path x = xp,x1,..., 2 =y
such that z; € Q(O,,0,,) for all i and d(x;, ;1) < k. Observe that Q(Oy,0,) N
#,, is the disjoint union sets of the form C'(x) N#;,.
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We will estimate the cardinality #C'(x) by showing that C'(z) is con-
tained in the e/10-neighborhood of Clg¢(oy, W;). So suppose y € C(x) and
let xp,x1,...,2, =y be a path as above. Because x; € Q(0,,0,), its empirical
measure is in O,, which implies that the “bad” set

B(z;)
:={v € [n]: z(v) = 1 and either z(o(a;)v) =1 or x(s(afl)v) = 1 for some i }

7

has cardinality at most (¢/10)n. Let W; = z; '(1) \ B(x;). Then W; is an in-
dependent subset of G(0,,) with density |W;|/n € (s —¢€,s + €). Observe that
2~ 1(1) = W] since = € #, is an independent set.

Let dyamm denote the normalized Hamming metric on subsets of [n]. So

A (W, W) = [W 2 W] /.
Then
ditamm (Wi, Wig1) < d(xi,zi1) + | B(xi)|/n+ |B(ziv1)|/n < ko +€/5.

for all .

Let Cl(x) be the collection of all independent sets W of G(o,,) such that
|[W|/n € (s—e,s+€)and [WNW;|/n > by. I claim that W}, € Cl(z). If not, then
there exists a smallest number j > 2 such that W; ¢ Cl(z). Since W;_; € Cl(x),
|W;_1NWi|/n > by. Thus

|WjﬁW1|/7”L > |Wj,1ﬁWﬂ/’l’L—dHamm(Wj,l,Wj) > bz—/ﬁz—e/s > by.

Since = € #},, the definition of %/, implies |WW; NW;|/n > b, which implies W; €
Cl(z). This contradiction proves the claim.

Since Wy, € Cl(z) C Cls (0, W) and |y~ (1) & W] < (e/10)n, it follows
that C'(x) is contained in the €/10-neighborhood of Cl (o, W;). Thus

[en/10]

Combine the previous inequality with (12) to obtain

#C (z) <20/ 10)”( )#Cls,e(an, wh).

n~Mog#C(x) < (¢/10)1og(2) + H(e/10,1 —¢/10) + f(r,5) —v/2 4 0, (1)
< f(rys)—~/3+o0n(1).

Since (01, 0,) N#4, is a disjoint union of sets of the form C'(z) N'#;, and

limsupn ' log#(Q(Oy,00) N #4) > f(r,5),

n—reo

it follows that the number of different subsets of the form C'(x) for x € Q(Oy,0,)N
#;, is at least e(7/3) up to subexponential factors. However each subset of the form
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C'(x) contributes a dimension to the homology group Hy(O1, 07, k1,k2,0,) Rz Q.
Thus

limsupn~logdimg (Ho (01,02, k1, k2,00 ) @2 Q) >~/3>0. O

n—roo

9. Questions.

(1) Does there exist an action whose sofic homology does not vanish in di-
mension 1 or in some higher dimension? Does there exist such an example which
is a Markov chain over a free group?

(2) How does the d-dimensional sofic homology change under standard oper-
ations or perturbations of group actions, such as taking a direct product, passing
to a subgroup of the acting group, coinducing from an action of a subgroup, er-
godic decomposition, direct limits, inverse limits, taking a weak* limit of invariant
measures or a d-bar limit?

(3) Is by o(1) a continuous or semi-continuous function of y € Prob(X1) if
X is finite? Given a positive number 0 < ¢ < log|X'| does there exist an invariant
measure 1 € Probr (A1) with by o (1) = ?

(4) It is well known that sofic entropy can increase under a factor map. To
correct for this, several authors have defined the sofic entropy of a factor relative
to the source. This notion was inspired by Kerr’s approach to sofic entropy in [25]
and has been variously called outer sofic entropy, extension entropy or entropy in
the presence [28, 22, 23, 34, 36]. It seems likely that there should be an analogous
definition of outer sofic homology. If so, this might be useful for defining relative
sofic homology.

(5) Let K be a compact abelian group and I' a countable group. Then K is
identified with the subgroup of constants of K'. This subgroup is I'-invariant and
therefore K /K is a compact abelian group on which I" acts by automorphisms.
The action I' ~ K" /K is called a Popa factor. In [2] Tim Austin proved that if I’
has property (T), is residually finite and K = R/Z then there is a sofic approxi-
mation ¥ relative to which the Popa factor does not have connected model spaces.
This means that its O-dimensional sofic homology is not trivial. In spite of this, I
conjecture that by o(I' ~ KI'/K) = 0 for any sofic approximation . In fact, my
guess is that the sofic homology groups satisfy a bound of the form:

dimg(Ho (01,02, k1,k2,00,) @72Q) < B

where B does not depend on n (but is allowed to depend on everything else).

(6) 1 conjecture that any strongly ergodic distal action I' ~ (X, ) has the
property that its O-dimensional sofic homology is not trivial. These actions have
zero Y-entropy and therefore have O-th exponential Betti number equal to zero.
My guess is that, like the Popa factors, such actions satisfy a constant bound on the
growth of their homology.
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(7) Fix a sofic approximation > = {o; : I' — sym(V;)}. Let F; : Abel — R
be the function F;(G) = bgdlﬁi‘gw. The invariant Fy; 4(u) defined in Corollary
4.1 is the polynomial growth rate of the d-dimensional sofic homology. Given ¢ > 0
and a dimension d > 0 does there exist an invariant measure z with Fy, g(p) = t?

(8) The present paper shows that free groups of sufficiently large rank admit
actions without the Weak Pinsker Property. Does the same result hold for all non-
amenable sofic groups?

(9) If the O-dimensional sofic homology of an ergodic action vanishes, then
does the action have the Weak Pinsker Property?

(10) Does there exist an ergodic action with positive entropy that has no non-
trivial direct Bernoulli factors? I conjecture that the frozen model introduced in
[13] has this property.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN,
TX 78712
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