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SOFIC HOMOLOGICAL INVARIANTS AND THE WEAK
PINSKER PROPERTY

By LEWIS BOWEN

Abstract. A probability-measure-preserving transformation has the Weak Pinsker Property (WPP) if
for every ε > 0 it is measurably conjugate to the direct product of a transformation with entropy < ε
and a Bernoulli shift. In a recent breakthrough, Tim Austin proved that every ergodic transforma-
tion satisfies this property. Moreover, the natural analog for amenable group actions is also true. By
contrast, this paper provides a counterexample in which the group Γ is a non-abelian free group and
the notion of entropy is sofic entropy. The counterexample is a limit of hardcore models on random
regular graphs. In order to prove that it does not have the WPP, this paper introduces new measure
conjugacy invariants based on the growth of homology of the model spaces of the action. The main
result is obtained by showing that any action with the WPP has subexponential homology growth in
dimension 0, while the counterexample has exponential homology growth in dimension 0.
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1. Introduction. This paper is concerned with the general problem of clas-
sifying measure-preserving actions of countable groups on probability spaces. To
be precise, fix a countable group Γ and let (X,μX),(Y,μY ) be standard probabil-
ity spaces. Then two actions Γ� (X,μX),Γ� (Y,μY ) are measurably conjugate
or isomorphic if there exists a measure-preserving isomorphism Φ : (X,μX) →
(Y,μY ) that intertwines the actions in the sense that Φ(gx) = gΦ(x) for every
g ∈ Γ and a.e. x ∈X.

Anti-classification theorems convincingly show it is not possible to classify
all actions up to measure-conjugacy [17, 16]. In spite of this, there are interest-
ing structural results. To explain these, it is necessary to introduce Bernoulli shifts,
which are some of the most fundamental actions. Let (K,κ) be a standard prob-
ability space and equip the product space KΓ = {x : Γ → K} with the product
measure κΓ. The group acts on this space by (gx)(f) = x(g−1f). This action is
called the Bernoulli shift over Γ with base (K,κ).

A classical example of a general structural result is Sinai’s factor Theorem. It
states that, when Γ = Z, any action with positive entropy factors onto a Bernoulli
shift. Moreover, the factor can be chosen so that the relative entropy is zero. These
statements have recently been generalized to arbitrary countable groups by Seward
[35].

Another example comes from Pinsker. In 1960, Pinsker conjectured that any
ergodic measure-preserving transformation T : X → X of a standard probability
space (X,μ) is measurably conjugate to a direct product T ≈ S×U such that S has
zero entropy andU is aK-transformation (which means that every nontrivial factor
of U has positive entropy) [31]. This was falsified by Ornstein [30, 29]. The study
of such systems led Thouvenot to introduce the Weak Pinsker Property (WPP)
for measure-preserving transformations: T has the WPP if for every ε > 0, T is
measurably conjugate to a direct product S×U such that S has entropy < ε and
U is isomorphic to a Bernoulli shift. He asked whether all ergodic transformations
have the WPP and proved important structural properties of this class [37].

In recent breakthrough work, Tim Austin has proven that indeed every ergodic
transformation has the WPP [3]. Moreover, the analogous statement for measure-
preserving actions of amenable groups is also true.
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The purpose of this paper is to give an example of an ergodic action of a non-
abelian free group without the WPP. In this context there are two main entropy
notions: sofic and Rokhlin. Sofic entropy was initiated in [9] and Rokhlin entropy
in [33] (see [10, 11] for an introduction and survey). This paper uses sofic entropy
although the results also apply with Rokhlin entropy because it upper bounds sofic
entropy.

The sofic entropy of a measure-preserving action a := Γ � (X,μ) depends
apriori on a choice of sofic approximation Σ to Γ. So it will be referred to here as
Σ-entropy and denoted by hΣ(a). The action has the Weak Pinsker Property (WPP)
with respect to Σ if for every ε > 0, a is isomorphic to a direct product b× c such
that c has Σ-entropy < ε and b is isomorphic to a Bernoulli shift. For example, if a
has nonpositive Σ-entropy, then it automatically has the WPP because b is allowed
to be the trivial action (which can be thought of as a Bernoulli shift with trivial
base space). The main result of this paper is:

THEOREM 1.1. Let Fr denote the free group of rank r. Then there is an r0

such that for all r > r0, there exists a sofic approximation Σ to Fr and an ergodic
essentially free action Fr � (X,μ) that does not have the Weak Pinsker Property
with respect to Σ.

Remark 1. An action a has the Weak Pinsker Property with respect to Rokhlin
entropy if for every ε > 0, a is isomorphic to a direct product b× c such that b
has Rokhlin entropy < ε and c is isomorphic to a Bernoulli shift. Because Rokhlin
entropy upper bounds Σ-entropy (for every Σ), this property is apriori stronger than
the WPP with respect to Σ. In particular, the action in Theorem 1.1 does not have
the WPP with respect to Rokhlin entropy.

1.1. Homological measure-conjugacy invariants. The proof of Theorem
1.1 is in two steps, the first of which is a construction of a family of new measure-
conjugacy invariants based on the asymptotic homology of model spaces. Here is
a brief sketch in the special case that μ is a shift-invariant measure on XΓ where
X is a finite alphabet. In this case, the sofic approximation Σ is a sequence Σ =

{σn}n∈N of maps σn : Γ → sym(Vn) where each Vn is a finite set and sym(Vn)

is the symmetric group of Vn. For every open neighborhood O of μ in the space
of probability measures on XΓ there is a subset Ω(O,σn) ⊂ X Vn consisting of
vertex-labelings whose “empirical measure” is in O. The sets Ω(O,σn) equipped
with the normalized Hamming metric are called model spaces. The Σ-entropy is
the exponential rate of growth of the cardinalities of these model spaces.

Given a bound κ > 0, each model space Ω(O,σn) is the vertex set of a simpli-
cial complex whose d-simplices consist of subsets S ⊂Ω(O,σn) of cardinality d+
1 such that the distance between any two elements of S is bounded by κ. Homology
is usually defined as cycles mod boundaries. That is also true here with the caveat
that the boundaries are defined using parameters κ′ ≥ κ and O′ ⊃ O in place of
κ,O. So the homology group of the n-th model space depends on four parameters
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κ,κ′,O,O′ in addition to σn. The asymptotic behavior of these homology groups
provide new invariants. This idea was inspired by Tim Austin’s paper [2] which
gave an asymptotic notion of connectedness for model spaces. That notion is equiv-
alent to the asymptotic triviality of the 0-dimensional homology groups.

One of the new invariants, denoted bΣ,0(a), is the exponential growth rate of
the 0-th betti numbers of the model spaces. Intuitively, it estimates the growth rate
of the number of “clusters” of good models. If an action a has the Weak Pinsker
Property with respect to Σ then bΣ,0(a) = 0. This is because the model spaces for
a direct product of the form b× c where b is Bernoulli contract (in a coarse sense)
to model spaces for c and bΣ,0(c) is bounded by the Σ-entropy of c.

1.2. An action with positive zero-dimensional homology growth. To fin-
ish the proof of Theorem 1.1, the next result suffices.

THEOREM 1.2. There exists r0 such that if r > r0 then there exists a sofic
approximation Σ to Fr and an invariant measure μ on the shift space {0,1}Fr such
that bΣ,0(Fr � ({0,1}Fr ,μ)) > 0. In particular, Γ � ({0,1}Γ,μ) does not have
the Weak Pinsker Property.

The example is based on the geometry of the space of independent subsets of
random regular graphs. To be precise, let G= (V,E) be a graph. A subset W ⊂ V

is independent if there does not exist an edge between any two vertices of W . The
density of W is #W/#V . The maximum density of an independent set is denoted
α(G).

Fix an even integer d ≥ 3 and consider choosing a d-regular graph Gd,n on n
vertices uniformly at random (amongst all d-regular graphs on n vertices). The first
moment method shows that α(Gd,n) is bounded above by 2log(d)/d+o(log(d)/d)
with high probability as n→ ∞ [7]. By a non-constructive argument using Azuma’s
inequality, Frieze-Łuczak obtained a matching lower bound [18]. More recently, it
was shown in [5] that the limit limn→∞E[α(Gd,n)] exists and an explicit formula
was obtained in [13] by a deep study of the structure of high density independent
sets.

There are no known polynomial-time algorithms for constructing independent
subsets of Gd,n with density larger than log(d)/d. It is argued in [12] that a reason
for this is that there are many independent subsets I with density between log(d)/d
and 2log(d)/d that are maximal in the sense that they are not properly contained
in any other independent subsets. Moreover, it is often the case that there does not
exist a subset I ′ ⊂ I with density larger than log(d)/d+ ε which is contained in an
independent subset with density larger than the density of I . So local perturbations
cannot be used to increase the density of a given independent subset. To be precise,
the paper [12] studies Erdös-Renyi style sparse graphs. However, the same ideas
can be adapted to regular graphs.

Another feature established in [12] is that the space of independent sets with
a fixed density in between log(d)/d and 2log(d)/d “shatters” into exponentially
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many clusters separated by macroscopic gulfs. A similar phenomenon is used in
[19] to show that no “local” algorithm can produce independent subsets of Gd,n

with density larger than (1+ 1√
2
) log(d)/d+ ε. This was improved to log(d)/d+ ε

in [32]. Shattering is used here to obtain an action of the free group with positive
bΣ,0.

In order to explain how to utilize these results to obtain Theorem 1.1, let Fr =
〈a1, . . . ,ar〉 be the free group of rank r ≥ 2. Given a homomorphism σ : Fr →
sym(n), letG(σ) be the multi-graph with vertex set [n] and edges {v,σ(ai)v} (over
v ∈ [n], 1 ≤ i≤ r). The permutation model is the random graphG(σn) where σn is
a uniformly random homomorphism from Fr to sym(n). By [20] the permutation
model and the configuration model used in [18, 19] to study G2r,n are contiguous.
This allows results about G2r,n to be transferred to G(σn).

A result of Bollobás [6] implies that, with high probability, G2r,n has few short
cycles. Together with the contiguity theorem, this shows the existence of a sofic
approximation Σ= {σn}∞

n=1 to Fr such that the deterministic graph G(σn) and the
random graph G(σn) have (with high probability) approximately the same number
of independent sets (of some fixed density). Moreover, the space of independent
subsets of G(σn) at a certain fixed density shatters.

An action of the free group is obtained using a non-constructive compactness
argument whose proof is related to the proof of the Variational Principle in [26].
The end result is an invariant measure μ on the shift space {0,1}Fr such that a
significant fraction of independent subsets at a certain fixed density of G(σn) are
good models for μ. From this, we conclude bΣ,0(μ)> 0.

1.3. A brief guide to the paper.
• §2 explains notational conventions.
• §3 reviews sofic entropy and fixes notation used throughout the paper.
• §4 defines the new homological invariants.
• §5–6 contain the proof that the new invariants are in fact invariant.
• §7 contains proofs that the new invariants trivialize when the group is

amenable or the action is Bernoulli. Also in this section is a proof that if a has the
WPP with respect to Σ then bΣ,0(a) = 0.

• §8 proves Theorem 1.2.
• §9 is a list of open problems related to the new invariants and the Weak

Pinsker Property.

Acknowledgments. The homological invariants introduced in this paper are in-
spired by [2]. The techniques for proving that they are measure-conjugacy invari-
ants are simplified versions of techniques introduced in [1]. Brandon Seward sug-
gested that it might be possible to use the shattering property to give a counterex-
ample to the WPP. I would like to thank Dylan Airey, Tim Austin and Brandon
Seward for many conversations related to this paper. Also thanks to IPAM, the
Institute for Pure and Applied Mathematics and the UCLA mathematics dept. A



174 L. BOWEN

significant part of this paper was written while I was visiting during the Quantita-
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2. Notation and conventions. In general, if A,B are sets then AB denotes
the set of all functions x :B→A. If x ∈AB and b ∈B then the notations x(b) and
xb express the same element of A.

All maps and subsets are measurable unless explicitly stated otherwise. As a
rule, all measure zero phenomena are ignored.

Given a topological space X, let Prob(X) denote the space of all Borel proba-
bility measures on X endowed with the weak* topology. This is the smallest topol-
ogy such that for every continuous compactly supported function f on X the map
μ 
→ ∫

f dμ is continuous (for μ ∈ Prob(X)). If X is compact then the Banach-
Alaoglu Theorem implies Prob(X) is compact. If Γ � X is a continuous action
by Γ then let ProbΓ(X) denote the subspace of Γ-invariant Borel probability mea-
sures. This is a closed subspace of Prob(X).

We write f(n) = on(1) to mean limn→∞ f(n) = 0. Similarly, f(r) =

or(log2(r)/r) means limr→∞ f(r)(log2(r)/r)−1 = 0.

3. A review of sofic entropy. We will use the symbolic approach to sofic
entropy with notational conventions similar to Tim Austin’s from [1, 2].

3.1. Sofic approximations. Suppose σ : Γ→ sym(V ) is a map where V is
a finite set and sym(V ) is the group of permutations of V . It is not required that σ
is a homomorphism. Let D � Γ be finite and δ > 0. Then σ is

• (D,δ)-multiplicative if

#
{
v ∈ V : σi(gh)v = σi(g)σi(h)v ∀g,h ∈D}

> (1− δ)|V |,

• (D,δ)-trace preserving if

#
{
v ∈ V : σi(f)v �= v ∀f ∈D \{1Γ

}}
> (1− δ)|V |,

• (D,δ)-sofic if it is both (D,δ)-multiplicative and (D,δ)-trace preserving.
A sofic approximation to Γ consists of a sequence Σ = {σi}i∈N of maps σi : Γ→
sym(Vi) such that for all finite D ⊂ Γ, δ > 0 and all but finitely many i, σi is
(D,δ)-sofic. A group is sofic it admits a sofic approximation.

3.2. Sofic entropy. Throughout, (X ,dX ) and (Y,dY ) denote compact met-
ric spaces. Given a finite set V , let dVX be the normalized �1-metric on X V defined
by

dVX (x,y) := |V |−1
∑

v∈V
dX

(
xv,yv

)
.
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For any finite set V , map σ : Γ → sym(V ), x ∈ X V and v ∈ V the pullback
name of x with respect to (σ,v) is the element Πσv (x) ∈ XΓ defined by

Πσv (x)(g) := x
(
σ(g)−1v

)
.

For example, if σ is a homomorphism then hΠσv (x) = Πσσ(h)v(x) so that the map
v 
→Πσv (x) is Γ-equivariant.

The empirical measure of x is the probability measure P σx on XΓ defined by

P σx := |V |−1
∑

v∈V
δΠσv (x).

For example, if σ is a homomorphism and σ(Γ) acts transitively on V then
{Πσv (x) : v ∈ V } is a single Γ-orbit in which case P σx is the uniform measure on a
finite Γ-orbit.

Given O ⊂ Prob(XΓ), an element x ∈ X V is a (O,σ)-microstate if P σx ∈ O.
Let Ω(O,σ) be the set of all (O,σ)-microstates. The metric space (Ω(O,σ),dVX ) is
a model space for the action Γ� (XΓ,μ) for any μ ∈ O. A major idea introduced
in [1, 2] is to derive measure-conjugacy invariants from the asymptotic geometric
features of these model spaces.

Recall that a subset Y of a metric space (X,dX ) is ε-covering if X is the
open ε-neighborhood of Y . Let covε(X,dX ) denote the minimum cardinality of an
ε-covering subset of X.

Let Σ= {σi}i∈N be a sofic approximation to Γ. The Σ-entropy of Γ� (XΓ,μ)

is defined by

hΣ(μ) := sup
ε>0

inf
O�μ

limsup
i→∞

∣
∣Vi

∣
∣−1

logcovε
(
Ω
(O,σi

)
,dViX

)
.

See [1] for a proof that this definition is equivalent to previous formulations of sofic
entropy given in [9] or [26] for example. For general discussions or when Σ is left
implicit, the Σ-entropy is called the sofic entropy.

The basic facts about sofic entropy are: it is a measure-conjugacy invariant,
it agrees with classical entropy when Γ is amenable, it can depend on the choice
of sofic approximation, it can increase under factor maps, the sofic entropy of a
Bernoulli shift is the Shannon entropy of the base. See [10] for an introduction.

Remark 2. In the special case in which X is finite, the definition above reduces
to

hΣ(μ) := inf
O�μ

limsup
i→∞

∣
∣Vi

∣
∣−1

log #Ω
(O,σi

)
.

4. Sofic homology.

4.1. Homology theory on the Hamming cube. Fix a finite set V and com-
pact metric space (X ,dX ). For an integer d ≥ 0, let Cd(X V ) be the abelian group
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generated by all symbols of the form [x0, . . . ,xd] (with x0, . . . ,xd ∈ X V ) subject to
the relations:

[
xπ(0), . . . ,xπ(d)v

]
= (−1)sign(π)[x0,x1, . . . ,xd

]

over all π ∈ sym(d+ 1). An element of the form [x0, . . . ,xd] is an oriented d-
simplex of X V and an element of Cd(X V ) is called a d-chain.

Let ∂d : Cd(X V )→ Cd−1(X V ) denote the boundary map

∂d
([
x0, . . . ,xd

])
=

d∑

i=0

(−1)i
[
x0, . . . , x̂i, . . . ,xd

]

where x̂i indicates that xi is omitted.
There is not much interesting that we can say about the homology of the Ham-

ming cube X V . Instead we will focus on special subgroups of Cd(X V ) defined in
terms of sofic approximation data as explained next.

4.2. Special subgroups defined by a sofic approximation. Let σ : Γ →
sym(V ) be a map. Given an open subset O⊂ Prob(XΓ) and κ> 0, let Cd(O,κ,σ)
be the subgroup of Cd(X V ) generated by all chains of the form [x0, . . . ,xd] such
that each xi is a (O,σ)-microstate (that is P σxi ∈O) and dVX (xi,xj)< κ for all i,j.
Let

Zd(O,κ,σ) = ker
(
∂d
)∩Cd(O,κ,σ)

Bd(O,κ,σ) = ∂d+1
(
Cd+1(O,κ,σ)

)

be the (O,κ,σ)-cycles and boundaries respectively.
The length of a d-chain z ∈ Cd(X V ) is the smallest number of oriented sim-

plices needed to represent z. So if

z =

k∑

i=1

cisi

where ci ∈ Z are coefficients and si = [xi0, . . . ,x
i
d] is an oriented simplex then the

length of z is at most k. For L> 0, let ZLd (O,κ,σ) be the subgroup of Zd(O,κ,σ)
generated by (O,κ,σ)-cycles of length ≤ L. To be precise, z ∈ ZLd (O,κ,σ) if it
is possible to write z =

∑k
i=1 cizi for some coefficients ci ∈ Z and cycles zi ∈

Zd(O,κ,σ) such that each zi has length ≤ L.
Given nested open subsets O1 ⊂ O2 ⊂ Prob(XΓ), constants 0 < κ1 ≤ κ2 and

L > 0, define the homology group

HL
d

(O1,O2,κ1,κ2,σ
)

:=
ZLd

(O1,κ1,σ
)

ZLd
(O1,κ1,σ

)∩Bd
(O2,κ2,σ

) .
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4.3. Main results. Before stating the main theorem, we mention the fol-
lowing corollary which gives the flavor of the main result without as many quanti-
fiers.

Definition 1. A group H is a QS-group of a group G if H is isomorphic to a
quotient of a subgroup ofG. Let Abel denote the class of abelian groups. A function
F : Abel → R is monotone if whenever H is an QS-group of G, F (H)≤ F (G).

The next corollary follows immediately from Theorem 4.3 which is stated be-
low.

COROLLARY 4.1. Let F = {Fi}i∈N be a sequence of monotone functions Fi :
Abel → R. Given an invariant measure μ ∈ ProbΓ(XΓ), a sofic approximation Σ

and L ∈ [1,∞], define

Fd,Σ(μ) := sup
O2�μ

sup
κ2>0

inf
μ∈O1⊂O2

inf
κ1>0

sup
0<L<∞

limsup
i→∞

Fi
(
HL
d

(O1,O2,κ1,κ2,σi
))
.

If X is totally disconnected then Fd,Σ is a measure-conjugacy invariant. In
other words, if (Y,dY ) is another totally disconnected compact metric space,
ν ∈ ProbΓ(YΓ) and the actions Γ � (XΓ,μ),Γ � (YΓ,ν) are measurably
conjugate then Fd,Σ(μ) = Fd,Σ(ν).

The next result follows by setting Fi(G) := |Vi|−1 logdimQ(G⊗Z Q) in the
previous corollary.

COROLLARY 4.2. Given μ ∈ ProbΓ(XΓ), define the d-th betti number of μ
with respect to Σ by

bd,Σ(μ) := sup
O2�μ

sup
κ2>0

inf
μ∈O1⊂O2

inf
κ1>0

sup
0<L<∞

limsup
i→∞

∣
∣Vi

∣
∣−1

× logdimQ

(
HL
d

(O1,O2,κ1,κ2,σi
)⊗ZQ

)
.

If X is totally disconnected then bd,Σ(μ) is a measure-conjugacy invariant.

The main definition is:

Definition 2. Let μ ∈ ProbΓ(XΓ), ν ∈ ProbΓ(YΓ), L,d ≥ 0. Then the d-
dimensional sofic homology of ν is less than or equal to the d-dimensional sofic
homology of μ if for every open neighborhood O2,ν � ν, every κ2,ν > 0 there
exist an open neighborhood O2,μ � μ and κ2,μ > 0 such that for every open O1,μ

with μ ∈ O1,μ ⊂ O2,μ and every κ1,μ with 0 < κ1,μ ≤ κ2,μ there exist an open
neighborhood O1,ν with ν ∈ O1,ν ⊂O2,ν and κ1,ν with 0 < κ1,ν ≤ κ2,ν such that
for every 0 < L < ∞ and all but finitely many n, HL

d (O1,ν ,O2,ν ,κ1,ν ,κ2,ν ,σn) is
a QS-group of HL

d (O1,μ,O2,μ,κ1,μ,κ2,μ,σn). The d-dimensional sofic homology
theories of μ and ν are equivalent if the d-dimensional sofic homology of μ is less
than or equal to the d-dimensional sofic homology of ν and vice versa.
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The main theorem is:

THEOREM 4.3. The homology groups defined above yield a measure-
conjugacy invariant as follows. Suppose X ,Y are totally disconnected compact
metric spaces, μ ∈ ProbΓ(XΓ), ν ∈ ProbΓ(YΓ) and Γ � (XΓ,ν) is measurably
conjugate to Γ � (YΓ,ν). Then μ and ν have equivalent d-dimensional sofic
homology theories with respect to every approximation Σ and for every dimension
d.

Remark 3. All of the definitions could be changed by setting L = ∞ through-
out. The analog of Theorem 4.3 still holds under this change with essentially the
same proof. However, we do not know how to compute this homology except in
degenerate cases.

5. Preliminaries to the proof of Theorem 4.3.

5.1. Almost Lipschitz maps.

Definition 3. Let (X,dX ) and (Y,dY ) be metric spaces, let ε > 0, and let L <
∞. A map φ :X → Y is ε-almost L-Lipschitz if

dY
(
φ(x),φ(x′)

)≤ ε+LdX(x,x
′) ∀x,x′ ∈X.

A map is ε-almost Lipschitz if it is so for some L.

LEMMA 5.1. A uniformly continuous map from a bounded metric space to
another bounded metric space is η-almost Lipschitz for every η > 0.

Proof. Let φ : X → Y be a uniformly continuous map from a bounded space
(X ,dX ) to a bounded metric space (Y,dY ) and let η > 0. Let ε > 0 be small enough
so that if dX (x,y)< ε then dY(φx,φy) < η.

Now let x,y ∈X be arbitrary. If dX (x,y)≥ ε then

dY(φx,φy) ≤ diam
(Y,dY

)≤ η+
diam(Y,dY )

ε
dX (x,y).

So φ is η-almost diam(Y ,dY )
ε -Lipschitz. �

5.2. Equivariant maps and their approximations.

Notation 1. If x∈XΓ and g ∈ Γ, then Sgx= gx ∈XΓ is defined by Sgx(f) =
x(g−1f). We will also write Sgx if x ∈ YΓ. So Sg is the shift by g.

Definition 4. A map Φ :XΓ →YΓ is equivariant if Φ(gx) = gΦ(x) for a.e. x∈
XΓ and every g ∈ Γ. Given a map ψ : XΓ →Y we define an equivariant map ψΓ :
XΓ →YΓ by ψΓ(x)(h) = ψ(Sh

−1
x). For example, if Φ : XΓ →YΓ is equivariant

and φ : XΓ →Y is defined by φ(x) = Φ(x)(1Γ) then Φ= φΓ.
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Definition 5. For a subset D ⊂ Γ, let ResD : XΓ →XD denote the restriction
map. If φ : XΓ →Y and D ⊆ Γ is finite, then φ is D-local if it is measurable with
respect to ResD. A function is local if it is D-local for some D.

Definition 6. As above, we let (X ,dX ) and (Y,dY ) be bounded Polish spaces.
Also let μ ∈ ProbΓ(XΓ), φ : XΓ →Y be a measurable function, and η > 0. An η-
uniformly continuous (or η-UC) approximation to φ rel (μ,dX ,dY) is a measurable
map φ̃ : XΓ →Y with the following properties.

(i) The map φ̃ approximates φ in the sense that
∫
dY

(
φ̃(x),φ(x)

)
dμ(x)< η.(1)

(ii) There is a finite D ⊆ Γ such that φ̃ is D-local.
(iii) Regarded as a map from XD to Y , φ̃ is uniformly continuous with respect

to dDX and dY (where dDX is the normalized �1-metric on XD as defined in the
beginning of §3.2).

LEMMA 5.2. Suppose that X ,Y,μ,φ are as in Definition 6, X is totally dis-
connected and both X ,Y are compact. Then there exist η-UC approximations to φ
for all η > 0.

Proof. After rescaling if necessary, we may assume that the diameter of Y
is bounded by 1. Because Y is compact, there exists a finite open cover O =

{O1, . . . ,On} of Y by sets of diameter < η/3.
A subset X ⊂ XΓ is D-local if its characteristic function 1X : XΓ → R is D-

local. Because X is totally disconnected, for every 1 ≤ i ≤ n, there exist a finite
subset Di ⊂ Γ and a Di-local clopen subset C̃i ⊂ XΓ such that

μ
(
C̃i � φ−1(Oi

))
<

η

3n
.

For 1 ≤ i≤ n, let

Ci := C̃i \∪nj=i+1C̃j .

Also let C0 = XΓ \ ∪ni=1Ci. Then {Ci}ni=0 is a clopen partition of XΓ. Setting
D = ∪iDi, we see that Ci is D-local for every 0 ≤ i≤ n.

Choose a point pi ∈ Oi for all 1 ≤ i ≤ n and also let p0 ∈ Y be an arbitrary
point. Define φ̃ : XΓ →Y by φ̃(x) = pi if x ∈Ci. By construction, φ̃ is D-local. It
is uniformly continuous because it is continuous and XΓ is compact. To finish the
proof, it suffices to estimate the error in the approximation to φ:

∫
dY

(
φ(x), φ̃(x)

)
dμ(x) =

n∑

i=0

∫

Ci

dY
(
φ(x), φ̃(x)

)
dμ(x).
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Since C0 = XΓ \∪ni=1C̃i,

μ
(
C0

)≤
n∑

i=1

μ
(
C̃i � φ−1(Oi

))≤ η/3.

Since the diameter of (Y,dY ) is bounded by 1,
∫
C0
dY(φ(x), φ̃(x))dμ(x)≤ η/3.

For any 1 ≤ i ≤ n, Ci ⊂ C̃i. Therefore, Ci ⊂ φ−1(Oi)∪ (C̃i � φ−1(Oi)). If
x ∈Ci∩φ−1(Oi) then dY(φx,φ̃x)< η/3 since Oi has diameter < η/3. So
∫

Ci

dY
(
φ(x), φ̃(x)

)
dμ(x) =

∫

Ci∩φ−1(Oi)
dY

(
φ(x), φ̃(x)

)
dμ(x)

+

∫

Ci\φ−1(Oi)
dY

(
φ(x), φ̃(x)

)
dμ(x)

≤ μ
(
Ci

)
η/23+μ

(
C̃i � φ−1(Oi

))≤ μ(Ci)η/3+
η

3n
.

Since
∑n

i=1μ(Ci)η/3+ η
3n ≤ 2η/3,
∫
dY

(
φ(x), φ̃(x)

)
dμ(x)≤ η.

Since η is arbitrary, this implies the lemma. �

Definition 7. Let F ⊂ Γ be finite and φ : XΓ → Y . Then φF : XΓ → YF is
defined by φF = ResF ◦φΓ. So for any f ∈ F ,

φF (x)(f) = φΓ(x)(f) = φ
(
Sf

−1
x
)
.

LEMMA 5.3. Suppose that X ,Y,μ,φ are as in Definition 6 and (Y,dY) has
diameter at most 1. If φ̃ is an η-UC approximation to φ rel (μ,dX ,dY) for some
η ∈ (0,1), then φ̃F is an η-UC approximation to φF : XΓ →YF rel (μ,dX ,dFY ) for
every finite F ⊆ Γ.

Proof. This lemma is similar to [1, Lemma 4.4] but it is easier since we work
with UC maps.

Firstly, the shift-invariance of μ and inequality (1) imply that

(2)
∫
dFY

(
φF (x), φ̃F (x)

)
dμ(x) =

1
|F |

∑

g∈F−1

∫
dY

(
φ(gx), φ̃(gx)

)
dμ(x)< η.

Let φ̃ beD-local for some finiteD⊂Γ. Then φ̃F is FD-local since for any f ∈
F , φ̃F (x)f = φ̃(Sf

−1
x) depends only on the restriction of Sf

−1
x to D. However,

for d ∈ D, Sf
−1
x(d) = x(fd). So φ̃F (x) depends only on the restriction of x to

FD.
Lastly, we claim φ̃F is uniformly continuous as a map from XFD to YF . To see

this, let ε > 0. Since φ̃ is uniformly continuous as a map from XD to Y , there is a
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δ > 0 such that if x,y ∈ XD satisfy dDX (x,y)<
√
δ|D| then dY(φ̃(x), φ̃(y))< ε/2.

By choosing δ smaller if necessary we may assume
√
δ < ε/2.

For every g ∈ FD the number of pairs (f,d) ∈ F ×D such that fd = g is at
most |D|. Therefore,

dFDX (x,y) = |FD|−1
∑

g∈FD
dX

(
xg,yg

)≥ |FD|−1|D|−1
∑

f∈F

∑

d∈D
dX

(
xfd,yfd

)

= |FD|−1
∑

f∈F
dDX

(
Sf

−1
x,Sf

−1
y
)
.

Suppose x,y ∈ XFD satisfy dFDX (x,y)< δ. By the previous inequality,

|F |−1
∑

f∈F
dDX

(
Sf

−1
x,Sf

−1
y
)≤ |FD|

|F | d
FD
X (x,y)<

|FD|
|F | δ ≤ |D|δ.

By Markov’s inequality, there exists a subset F ′ ⊂ F such that |F ′| ≥ (1−√
δ)|F | and dDX (S

g−1
x,Sg

−1
y) <

√
δ|D| for all g ∈ F ′. By choice of δ, if f ∈ F ′

then dY(φ̃(Sf
−1
x), φ̃(Sf

−1
y))≤ ε/2. Because the diameter of (Y,δY ) is at most 1,

dFY
(
φ̃Fx,φ̃F y

)
= |F |−1

∑

g∈F−1

dY
(
φ̃
(
Sgx

)
, φ̃
(
Sgy

))≤ (ε/2)|F ′|+ |F \F ′|
|F |

≤ ε/2+
√
δ ≤ ε.

This shows φ̃F is uniformly continuous as a map from (XFD,dFDX ) to (YF ,dFY ).
�

LEMMA 5.4. Suppose that X ,Y,μ,φ are as in Definition 6 and (Y,dY ) has
diameter at most 1. Let ν = φΓ∗μ ∈ ProbΓ(YΓ). Suppose (Z,dZ ) is also a bounded
Polish space with diameter 1 and ψ : YΓ →Z is measurable. Let ψ̃ be an ηψ-UC

approximation to ψ and φ̃ an ηφ-UC approximation to φ. Then ψ̃ ◦ φ̃Γ is an η-UC-
approximation to ψ ◦φΓ where η = η(φ̃, ψ̃) tends to 2

√
ηψ+ηψ as ηφ tends to zero

with ψ̃ fixed.

Proof. By definition there exists a finite subset Dψ ⊂ Γ such that ψ̃ isDψ-local
and ψ̃ regarded as a map from YDψ to Z is uniformly continuous. Moreover,

∫
dZ(ψy,ψ̃y)dν(y)< ηψ.

As mentioned in Lemma 5.1, because ψ̃ is uniformly continuous, it is ηψ-almost
Lψ-Lipschitz for some constant Lψ.

Suppose φ̃ is an ηφ-UC approximation to φ. By Lemma 5.3, φ̃Dψ is a ηφ-UC
approximation to φDψ . So there exists a finite subset Dφ ⊂ Γ such that φ̃Dψ is
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Dφ-local, φ̃Dψ regarded as a map from XDφ to YDψ is uniformly continuous and

∫
d
Dψ
Y

(
φDψx,φ̃Dψx

)
dμ(x)< ηφ.

It is immediate that ψ̃ ◦ φ̃Γ is DφDψ-local and when regarded as a map from
XDφDψ to Z , it is uniformly continuous. Let

Gψ =
{
y ∈ YΓ : dZ(ψ̃y,ψy)<

√
ηψ

}

Gφ =
{
x ∈ XΓ : d

Dψ
Y

(
φ̃Dψx,φDψx

)
<

√
ηφ

}
.

Suppose x ∈Gφ∩ (φΓ)−1(Gψ).

dZ
(
ψ̃φ̃Γx,ψφΓx

)≤ dZ
(
ψ̃φ̃Γx,ψ̃φΓx

)
+dZ

(
ψ̃φΓx,ψφΓx

)

≤ (
ηψ+Lψ

√
ηφ

)
+
√
ηψ.

The first term above occurs because ψ̃ is ηψ-almost Lψ-Lipschitz as a map from

YDψ to Z and d
Dψ
Y (φ̃Dψx,φDψx) <

√
ηφ. The second term occurs because

φΓ(x) ∈Gψ .
It follows that

∫
dZ

(
ψ̃φ̃Γx,ψφΓx

)
dμ(x)≤ (

1−μ(Gφ∩
(
φΓ

)−1(
Gψ

)))
diam(Z)

+ηψ+Lψ
√
ηφ+

√
ηψ.

By Markov’s inequality, μ(Gφ)> 1−√
ηφ and ν(Gψ)> 1−√

ηψ . Because φΓ∗μ=

ν it follows that

1−μ(Gφ∩
(
φΓ

)−1(
Gψ

))
<

√
ηφ+

√
ηψ.

Since diam(Z) = 1,

∫
dZ

(
ψ̃φ̃Γx,ψφΓx

)
dμ(x)≤ (

Lψ+1
)√
ηφ+2

√
ηψ+ηψ. �

5.3. Sofic models. Recall that the pullback name of x ∈ X V with respect
to σ : Γ→ sym(V ) and v ∈ V is

Πσv (x)(g) := x
(
σ(g)−1v

)
.

Given a map σ :Γ→ sym(V ), where V is a finite set and a map φ :XΓ →Y , define
φσ : X V →YV by

φσ(x)v = φ
(
Πσv (x)

)
.
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LEMMA 5.5. Suppose φ : XΓ → Y is D-local for some finite set D ⊂ Γ and
regarded as a map from XD → Y is η-almost L-Lipschitz. Then φσ is η-almost
L-Lipschitz regarded as map from (X V ,dVX ) to (YV ,dVY ).

Proof. Let x,y ∈ X V . Then

dVY
(
φσx,φσy

)
= |V |−1

∑

v∈V
dY

((
φσx

)
v
,
(
φσy

)
v

)

≤ |V |−1
∑

v∈V
η+LdDX

(
ResDΠσv (x),ResDΠσv (y)

)

= η+L|V |−1
∑

v∈V
|D|−1

∑

g∈D
dX

(
Πσv (x)g,Π

σ
v (y)g

)

= η+L|V |−1
∑

v∈V
|D|−1

∑

g∈D
dX

(
x
(
σ
(
g−1)v

)
,y
(
σ
(
g−1)v

))

= η+LdVX (x,y)

where the last equality holds because for each v ∈ V the number of pairs (g,w) ∈
D×V such that σ(g−1)w = v equals |D|. Because x,y are arbitrary, this implies
the lemma. �

LEMMA 5.6. Suppose φ : XΓ →Y is Dφ-local for some finite set Dφ ⊂ Γ and
ψ : YΓ →Z is Dψ-local for some finite set Dψ . Then for all x ∈ X V ,

{v ∈ V :
(
ψφΓ

)σ
(x)v �= ψσφσ(x)v

}

⊂ {
v ∈ V : ∃h ∈Dφ, g ∈Dψ, σ

(
h−1)σ

(
g−1)v �= σ

(
h−1g−1)v

}
.

In particular, if 1Γ ∈Dφ ∩Dψ and σ is a (D−1
φ D−1

ψ ,δ)-sofic approximation to Γ

then

#
{
v ∈ V :

(
ψφΓ

)σ
(x)v �= ψσφσ(x)v

}≤ δ|V |.

Proof. Fix v ∈ V . Suppose σ(h−1)σ(g−1)v = σ(h−1g−1)v for all h ∈Dφ and
g ∈Dψ. It suffices to show (ψφΓ)σ(x)v = ψσφσ(x)v . Observe that

(
ψφΓ

)σ
(x)v = ψ

(
φΓ

(
Πσvx

))

ψσφσ(x)v = ψ
(
Πσv

(
φσ(x)

))
.

Since ψ is Dψ-local, it suffices to show that for every g ∈Dψ ,

φΓ
(
Πσvx

)
g
=Πσv

(
φσ(x)

)
g
.
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Observe that

φΓ
(
Πσvx

)
g
= φ

(
Sg

−1
Πσv (x)

)

Πσv
(
φσ(x)

)
g
= φσ(x)

(
σ
(
g−1)v

)
= φ

(
Πσσ(g−1)v(x)

)
.

Since φ is Dφ-local it suffices to show that for every h ∈Dφ,

Sg
−1
Πσv (x)h =Πσσ(g−1)v(x)h.

The left-hand side simplifies as follows:

Sg
−1
Πσv (x)h =Πσv (x)gh = x

(
σ
(
(gh)−1)v

)
= x

(
σ
(
h−1g−1)v

)
.

The right-hand side simplifies to

Πσσ(g−1)v(x)h = x
(
σ
(
h−1)σ

(
g−1)v

)
.

Therefore if σ(h−1g−1)v = σ(h−1)σ(g−1)v for every h ∈ Dφ and g ∈ Dψ then
(ψφΓ)σ(x)v = ψσφσ(x)v. �

Definition 8. The total variation distance between two measures μ and ν on
the same σ-algebra F is

dTV(μ,ν) = sup
A∈F

∣
∣μ(A)−ν(A)∣∣.

Roughly speaking, the next lemma shows that closeness in total variation dis-
tance of restricted measures implies closeness in the weak* topology.

LEMMA 5.7. For any μ ∈ Prob(XΓ) and any weak* open set O ⊂ Prob(XΓ)

with μ ∈O, there exists a finite set E ⊂ Γ and δ > 0 such that

{
ν ∈ Prob(XΓ) : dTV

(
ResE∗ μ,ResE∗ ν

)
< δ

}⊂O.

Proof. By definition of the weak* topology, there are continuous functions
f1, . . . ,fk on XΓ and ε > 0 such that

{

ν ∈ Prob
(XΓ

)
:

∣
∣
∣
∣

∫
fidν−

∫
fidμ

∣
∣
∣
∣< ε ∀1 ≤ i≤ k

}

⊂O.

Because each XΓ is the inverse limit of the compact spaces XD over finite D ⊂ Γ,
there exist a finite E ⊂ Γ and E-local continuous functions f ′1, . . . ,f

′
k on XΓ such

that |fi− f ′i|< ε/3 for all i. By the triangle inequality,

{

ν ∈ Prob
(XΓ

)
:

∣
∣
∣
∣

∫
f ′i dν−

∫
f ′i dμ

∣
∣
∣
∣≤ ε/3 ∀1 ≤ i≤ k

}

⊂O.
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Now suppose ν ∈ Prob(XΓ) and dTV(ResE∗ μ,ResE∗ ν) <
ε

6M where M =

max1≤i≤k ‖f ′i‖sup. By abuse of notation, we may consider each f ′i to be a
continuous function on XE . So

∣
∣
∣
∣

∫
f ′i dν−

∫
f ′i dμ

∣
∣
∣
∣=

∣
∣
∣
∣

∫
f ′i dResE∗ ν−

∫
f ′i dResE∗ μ

∣
∣
∣
∣

≤ 2
∥
∥f ′i

∥
∥

supdTV
(

ResE∗ μ,ResE∗ ν
)≤ ε/3.

By the previous inclusion, this implies ν ∈ O and completes the lemma (with δ =
ε

6M ). �

LEMMA 5.8. Suppose φ :XΓ →Y isD-local for some finite setD⊂Γ. Also let
E ⊂ Γ be finite and δ > 0. Then there exist a finite set F ⊂ Γ and ε > 0 (depending
only on D,E,δ) such that if σ is an (F,ε)-sofic approximation to Γ, then for all
x ∈ X V ,

#
{
v ∈ V :

(
φΓ

)(
Πσv (x)

)
(g) �=Πσv

(
φσ(x)

)
(g) ∀g ∈ E}≤ δ|V |.

In particular, the total variation distance between the restricted empirical measures
ResE∗ φΓ∗P σx and ResE∗ P σφσ(x) is bounded by δ.

Proof. Let F ⊂ Γ and ε > 0 be such that if σ is (F,ε)-sofic then

#
{
v ∈ V : σ(gh)−1v = σ(h)−1σ(g)−1v ∀h ∈D, ∀g ∈ E}≥ (1− δ)#V.

Suppose σ is (F,ε)-sofic and fix v ∈ V . By Definition 4,

(
φΓ

)(
Πσv (x)

)
(g) = φ

(
Sg

−1
Πσv (x)

)
.

By the definitions of pullback and φσ,

Πσv
(
φσ(x)

)
(g) = φσ(x)

(
σ(g)−1v

)
= φ

(
Πσσ(g)−1v(x)

)
.

Because φ is D-local, if
(
Sg

−1
Πσv (x)

)
(h) = Πσσ(g)−1v(x)(h)

for all h ∈D then (φΓ)(Πσv (x))(g) = Πσv (φ
σ(x))(g).

We compute
(
Sg

−1
Πσv (x)

)
(h) = Πσv (x)(gh) = x

(
σ(gh)−1v

)

and

Πσσ(g)−1v(x)(h) = x
(
σ(h)−1σ(g)−1v

)
.

Because σ is (F,ε)-sofic, there is a (1 − δ)-fraction of vertices v such that
(Sg

−1
Πσv (x))(h) = Πσ

σ(g)−1v
(x)(h) for all g ∈E, h ∈D. Again, since φ is D-local,
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this condition implies (φΓ)(Πσv (x))(g) = Πσv (φ
σ(x))(g) for all g ∈E. This proves

the first claim.
The last claim is implied by the first. In fact, ResE∗ φΓ∗P σx is the law of

ResE(φΓ(Πσv (x))) where v ∈ V is chosen uniformly at random, while ResE∗ P σφσ(x)
is the law of ResE(Πσv (φ

σ(x))) where v ∈ V is chosen uniformly at random. Since
ResE(φΓ(Πσv (x))) = ResE(Πσv (φ

σ(x))) for all but a δ-fraction of vertices v, the
total variation distance between the restricted empirical measures ResE∗ φΓ∗P σx and
ResE∗ P σφσ(x) is bounded by δ. �

6. Proof of Theorem 4.3. We need one more lemma before the proof of the
main theorem. Let (Y,dY ) be a compact metric space. Given a map λ : YV →YV
let λ∗ :Cd(YV )→Cd(YV ) be the corresponding homomorphism of chain groups.
Note λ∗ commutes with all boundary maps ∂d : Cd(YV )→ Cd−1(YV ).

LEMMA 6.1. Let λ :YV →YV be given and suppose there is a constant κ′ > 0
such that dVY (y,λ(y))< κ′ for all y ∈ YV . If z ∈ Zd(O1,κ,σ) and λ(Ω(O1,σ)) ⊂
Ω(O2,σ) (for some O1,O2,κ,σ) then

z−λ∗z ∈Bd
(O1 ∪O2,κ+2κ′,σ

)
.

Proof. It will be convenient to work with ordered simplices rather than or-
dinary simplices. An ordered k-simplex is an ordered (k+ 1)-tuple (x0, . . . ,xk)

with xi ∈ YV . Given an ordered k-simplex (x0, . . . ,xk) define P (x0, . . . ,xk) ∈
Ck+1(YV ) by

P
(
x0, . . . ,xk

)
:=

k∑

i=0

(−1)i
[
x0, . . . ,xi,λ

(
xi
)
, . . . ,λ

(
xk

)]
.

Given an oriented simplex [x0, . . . ,xk] ∈ Ck(YV ) define P ([x0, . . . ,xk]) ∈
Ck+1(YV ) by

P
([
x0, . . . ,xk

])
:=

∣
∣ sym(k+1)

∣
∣−1 ∑

π∈sym(k+1)

sign(π)P
(
xπ(0), . . . ,xπ(k)

)
.

We extend P linearly so that it is well defined as a homomorphism from
Ck(YV ) to Ck+1(YV ) (for every k too).

Claim. ∂P = λ∗ − I+P∂ where I denotes the identity map.

Proof. It suffices to show that for any x0, . . . ,xk,

∂P
([
x0, . . . ,xk

])
=
[
λ
(
x0
)
,λ
(
x1
)
, . . . ,λ

(
xk

)]−[
x0, . . . ,xk

]−P (∂[x0, . . . ,xk
])
.

The proof is by direct inspection of the coefficients. Details are in the proof of [21,
Theorem 2.10]. �
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If z ∈ Zd(O1,κ,σ) then Pz ∈ Cd(O1 ∪O2,κ+ 2κ′,σ) since λ(Ω(O1,σ)) ⊂
Ω(O2,σ) and dVY (y,λ(y)) < κ′ for all y. The claim implies

∂P (z) = λ∗z− z−P∂z = λ∗z− z.

Therefore λ∗z− z ∈Bd(O1 ∪O2,κ+2κ′,σ). �

Proof of Theorem 4.3. Suppose Φ : (XΓ,μ)→ (YΓ,ν) is a measure-conjugacy.
We may assume without loss of generality that (X ,dX ) and (Y,dY ) have diameter
1. Let O2,ν and κ2,ν be given.

We need to choose O2,μ and κ2,μ. Before doing this, define φ : XΓ → Y by
φ(x) := Φ(x)e (where e ∈ Γ is the identity element). Note φΓ = Φ. We choose
a UC-approximation φ̃ to φ as follows. Choose 0 < ηφ < 1 small enough so that
3
√
ηφ <

κ2,ν

8 . By Lemma 5.2 there exists an ηφ-UC-approximation φ̃ to φ. Because

φ̃ is continuous, there exists an open neighborhood O2,μ of μ such that the closure
of φ̃Γ∗O2,μ is contained in O2,ν . By definition of UC-approximation, there is a finite
set Dφ ⊂ Γ such that φ̃ is Dφ-local. By Lemma 5.1, φ̃ is ηφ-almost Lφ-Lipschitz
for some Lφ (when regarded as a map from XDφ to Y). Now choose κ2,μ > 0 so
that ηφ+Lφκ2,μ <

κ2,ν

4 .
Next we let O1,μ be an arbitrary open set with μ ∈O1,μ ⊂O2,μ and let κ1,μ be

an arbitrary constant with 0 < κ1,μ ≤ κ2,μ.
We need to choose O1,ν and κ1,ν . Before doing this, define ψ : YΓ → X by

ψ(y) := Φ−1(y)e. Note ψΓ = Φ−1. We choose a UC-approximation ψ̃ to ψ as
follows. Choose 0 < ηψ < 1 so that 3

√
ηψ <

κ1,μ

2 . By Lemma 5.4 (and using
3
√
ηφ<

κ2,ν

8 ) we can choose ηψ smaller if necessary so that for any ηψ-UC approx-

imation ψ̃ to ψ, the composition φ̃ψ̃Γ is a κ2,ν

8 -UC approximation to φψΓ which

is the identity-coordinate projection. Fix such a UC-approximation ψ̃. Because ψ̃
and therefore ψ̃Γ are continuous, there is an open neighborhood O1,ν of ν such
that O1,ν ⊂O2,ν and the closure of ψ̃Γ∗ O1,ν is contained in O1,μ. By choosing O1,ν

smaller if necessary we may assume that

∫
d
(
φ̃ψ̃Γz,ze

)
dν ′(z)< κ2,ν/8

for every ν ′ ∈ O1,ν . This is because the inequality holds if ν ′ = ν (since φ̃ψ̃Γ

is a κ2,ν/8-UC approximation to the identity coordinate-projection) and the map
z 
→ d(φ̃ψΓz,ze) is continuous.

By definition of UC-approximation, there is a finite set Dψ ⊂ Γ such that ψ̃
is Dψ-local. By Lemma 5.1, ψ̃ is ηψ-almost Lψ-Lipschitz for some Lψ (when
regarded as a map from YDψ to X ). Finally, choose κ1,ν > 0 so that ηψ+Lψκ1,ν <

κ1,μ and κ1,ν <
κ2,ν

2 .
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To simplify notation, let

Z(n,ν) := ZLd
(O1,ν ,κ1,ν ,σn

)
, Z(n,μ) := ZLd

(O1,μ,κ1,μ,σn
)

B(n,ν) :=Bd
(O2,ν ,κ2,ν ,σn), B(n,μ) :=Bd

(O2,μ,κ2,μ,σn
)

H(n,ν) :=HL
d

(O1,ν ,O2,ν ,κ1,ν ,κ2,ν ,σn
)
,

H(n,μ) :=HL
d

(O1,μ,O2,μ,κ1,μ,κ2,μ,σn
)
.

Also let

qn,ν : Z(n,ν)−→H(n,ν), qn,μ : Z(n,μ)−→H(n,μ)

be the quotient maps.
Next we must verify that for all but finitely many n, H(n,ν) is a QS-group of

H(n,μ). Our strategy is as follows. First we show that ψ̃σn∗ (Z(n,ν)) ⊂ Z(n,μ).
Let S = qn,μ ◦ ψ̃σn∗ (Z(n,ν)) ≤ H(n,μ). Next we show that φ̃σn induces a map,
denoted by φ̃H , from S back to H(n,ν) that is surjective. This shows that H(n,ν)

is a quotient of the subgroup S ≤H(n,μ) and thereby completes the proof.
It is convenient to first show that ψ̃σn and φ̃σn behave well with respect to the

Hamming metrics and empirical distributions.

Claim 1. For all but finitely many n ∈ N the following holds. For any x,x′ ∈
Ω(O2,μ,σn) and y,y′ ∈ Ω(O1,ν ,σn),

(1) φ̃σn(x) ∈ Ω(O2,ν ,σn),
(2) if dVnX (x,x′)< κ2,μ then dVnY (φ̃σn(x), φ̃σn(x′))< κ2,ν

4 .

(3) ψ̃σn(y) ∈Ω(O1,μ,σn),
(4) If dVnY (y,y′)< κ1,ν then dVnX (ψ̃σn(y), ψ̃σn(y′))< κ1,μ.

Proof of Claim 1. We chose O2,μ so that the closure of φ̃Γ∗O2,μ is contained in
O2,ν . By compactness and Lemma 5.7, there exists a finite set E ⊂ Γ and δ > 0
such that for any α ∈ φ̃Γ∗O2,μ, if β ∈ Prob(YΓ) is such that the restricted measures
ResE∗ α,ResE∗ β have total variation distance < δ then β ∈ O2,ν .

Lemma 5.8 implies that if n is sufficiently large (independent of x) then the
total variation distance of the restricted measures ResE∗ P

σn
˜φσn (x)

and ResE∗ φ̃Γ∗P σnx ∈
O2,ν is bounded by δ > 0. Since P σnx ∈ O2,μ, φ̃Γ∗P σnx ∈ φ̃Γ∗O2,μ. So this implies
P σn
˜φσn(x)

∈ O2,ν . This proves (1).

Since dVnX (x,x′)< κ2,μ and φ̃ is ηφ-almost Lφ-Lipschitz, Lemma 5.5 implies

dVnY
(
φ̃σn(x), φ̃σn(x′)

)≤ Lφd
Vn
X (x,x′)+ηφ < Lφκ2,μ+ηφ <

κ2,ν

4
.

This proves (2). The other statements are proven similarly. �
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Claim 2. For all but finitely many n ∈N, for every z ∈ Z(n,ν),

φ̃σn∗ ψ̃σn∗ (z)− z ∈B(n,ν).

Proof of Claim 2. We will verify the hypotheses of Lemma 6.1 with
λ= φ̃σnψ̃σn . So let y ∈Ω(O1,ν ,σn).

By Claim 1(3), ψ̃σn(y) ∈ Ω(O1,μ,σn). Since O1,μ ⊂ O2,μ, this implies
ψ̃σn(y) ∈ Ω(O2,μ,σn). So Claim 1(1) implies φ̃σnψ̃σn(y) ∈ Ω(O2,ν ,σn).

By Lemma 5.6 for all but finitely many n,

#
{
v ∈ Vn :

(
φ̃ψ̃Γ

)σn(y)v �= φ̃σnψ̃σn(y)v
}≤ (

κ2,ν/8
)∣
∣Vn

∣
∣.

Because Y has diameter 1,

dVnY
(
φ̃σnψ̃σn(y),y

) ≤ (
κ2,ν/8

)
+dVnY

((
φ̃ψ̃Γ

)σn(y),y
)
.

Note

dVnY
((
φ̃ψ̃Γ

)σn(y),y
)
=

∫
dY

((
φ̃ψ̃Γ

)
(z),ze

)
dP σny (z).

Since P σny ∈ O1,ν , the choice of O1,ν implies

∫
dY

((
φ̃ψ̃Γ

)
(z),ze

)
dP σny (z)< κ2,ν/8.

Thus,

dVnY
(
φ̃σnψ̃σn(y),y

) ≤ κ2,ν/4

for every y ∈Ω(O1,ν ,σn). Claim 2 now follows from Lemma 6.1 with κ′ = κ2,ν/4
and κ= κ1,ν < κ2,ν/2. �

Claim 3. For all but finitely many n ∈N,

(
ψ̃σn∗

)−1(
B(n,μ)

)∩Z(n,ν)⊂B(n,ν).

Proof of Claim 3. Let z ∈ Z(n,ν) and suppose ψ̃σn∗ (z) ∈ B(n,μ). By Claim
1(1,2), φ̃σn∗ ψ̃σn∗ (z) ∈ B(n,ν). By Claim 2, z− φ̃σn∗ ψ̃σn∗ (z) ∈ B(n,ν). Therefore,
z ∈B(n,ν) as required. �

Since ψ̃σn commutes with the boundary map ∂d, Claim 1 (3,4) implies that
ψ̃σn∗ (Z(n,ν)) ⊂ Z(n,μ). Therefore S := qn,μ ◦ ψ̃σn∗ (Z(n,ν)) is a well-defined
subgroup of H(n,μ). Define φ̃H : S → H(n,ν) as follows. Given w ∈ S, let
z ∈ Z(n,ν) be such that qn,μ ◦ ψ̃σn∗ (z) = w. Then define φ̃H(w) := z+B(n,ν)∩
Z(n,ν).
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To see that φ̃H is well defined, suppose that z′ ∈ Z(n,ν) also satisfies qn,μ ◦
ψ̃σn∗ (z′) = w. Then

ψ̃σn∗ (z)− ψ̃σn∗ (z′) = ψ̃σn∗ (z− z′) ∈B(n,μ).

By Claim 3, this implies z− z′ ∈B(n,ν). This implies φ̃H is well defined.
To check that φ̃H is surjective, let z ∈ Z(n,ν). If w = qn,μψ̃

σn∗ (z) ∈ S then
φ̃H(w) = z+B(n,μ)∩Z(n,ν). This shows φ̃H is surjective. So H(n,ν) is a QS-
group of H(n,μ) as required. �

7. Homology computations.

7.1. Contractible model spaces. Let (X ,dX ) be compact totally discon-
nected metric space, μ ∈ ProbΓ(XΓ), and Σ be a sofic approximation to Γ.

Definition 9. (Contractible model spaces) We say μ has contractible model
spaces with respect to Σ if for every open neighborhood O2 of μ in Prob(XΓ),
and every δ > 0 there exists an open neighborhood O1 ⊂ Prob(XΓ) with μ ∈O1 ⊂
O2 such that for every 0 < K < ∞ and all but finitely many n, if x1, . . . ,xK ∈
Ω(O1,σn) then there exist x(j)i (for j ≥ 0) such that

(1) x(j)i ∈Ω(O2,σn) for all i,j,

(2) x(0)i = xi for all i,

(3) dVnX (x
(j+1)
i ,x

(j+1)
k )≤ dVnX (x

(j)
i ,x

(j)
k ) for all i,j,k,

(4) dVnX (x
(j)
i ,x

(j+1)
i )< δ for all i,j

(5) there exists M such that x(M)
1 = · · · = x

(M)
K . This M may depend on

x1, . . . ,xK . In particular, M may depend on n.

Definition 10. (Vanishing homology) The measure μ is said to have vanishing
reduced homology in dimension d with respect to Σ if ∀ open neighborhoods O2 �
μ, ∀κ2 > 0 there exist an open neighborhood O1 with μ ∈ O1 ⊂ O2 and κ1 > 0
such that for every L ∈ N, either d > 0 and HL

d (O1,O2,κ1,κ2,σn) = 0 for all but
finitely many n or d = 0 and HL

d (O1,O2,κ1,κ2,σn) ∼= Z for all but finitely many
n. By Theorem 4.3, this notion is a measure-conjugacy invariant. Hence it can also
be applied to measure-preserving systems of the form Γ� (X,μ) in which (X,μ)

is a standard probability space without any additional structure.

PROPOSITION 7.1. If μ has contractible model spaces with respect to Σ then
μ has vanishing reduced homology in every dimension with respect to Σ.

Remark 4. The proof of this Proposition is the only place in this paper where
the finiteness of the parameter L in the definition of the homology groups HL

d (·) is
used directly.
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Proof. Let O2 be an open neighborhood of μ and κ2 > 0. Choose 0< δ < κ2/3
and let κ1 := δ. Let O1 be as in the definition of contractibility. Let d ∈ N be a
dimension and L > 0. Let K ≥ (d+1)L. Let

zn =

k∑

i=1

cisi ∈ ZLd
(O1,κ1,σn

)

be a cycle of length k≤L. If d> 0 then it suffices to show that zn ∈Bd(O2,κ2,σn).
Let x0, . . . ,xm ∈Ω(O1,σn) be an enumeration of the vertices contained in the

oriented simplices s1, . . . ,sk. Note m ≤ (d+ 1)L ≤ K is bounded independently
of n.

Let x(j)i be as in the definition of contractible. The map ψ(j) : {x0, . . . ,xm} →
X Vn defined by ψ(j)(xi) = x

(j)
i is well defined. We can extend it to a map on all

of X Vn by setting ψ(j)(x) = x for all x /∈ {x0, . . . ,xm}. In particular, ψ(j)
∗ (si) is

well defined for every simplex si and therefore ψ(j)
∗ (zn) is also well defined as an

element of Cd(X Vn).

We claim that ψ(j)
∗ (zn) ∈ Zd(O2,κ1,σn) for all j. For j = 0 this is true since

ψ
(0)
∗ (zn) = zn. Assuming it is true for some j ≥ 0, observe that by Lemma 6.1,

ψ
(j+1)
∗

(
zn
)−ψ(j)

∗
(
zn
) ∈Bd

(O2,κ2,σn
)

(this uses κ1 <κ2/3). Moreover ψ(j+1)
∗ (si)∈Cd(O2,κ1,σn) by property (3) in the

definition of contractibility. Thus ψ(j+1)
∗ (zn) ∈ Zd(O2,κ1,σn). This completes the

induction.
Moreover, we showed that ψ(j)

∗ (zn)− zn ∈ Bd(O2,κ2,σn) for all j. If d > 0

then ψ(M)
∗ (zn) is trivial (by property (4)) and so zn ∈ Bd(O2,κ2,σn). This com-

pletes the proof in the case d > 0.
If d = 0 then every element C0(O1,κ1,σn) is a cycle (so ZL0 (O1,κ1,σn)

is the free abelian group generated by Ω(O1,σn)). We have shown for any
x1,x2 ∈ Ω(O1,σn) there is a δ-path in Ω(O2,σn) connecting them (namely

x
(0)
1 , . . . ,x

(M)
1 ,x

(M)
2 , . . . ,x

(0)
2 ). Therefore x1 −x2 ∈ B0(O2,κ1,σn) which implies

HL
d (O1,O2,κ1,κ2,σn)∼= Z for all but finitely many n. �

7.2. Edit distance. The goal of this section is to show that the homological
invariants defined above depend on the sofic approximation only up to edit-distance
zero as defined next.

For each finite set S ⊂ Γ and finite set V there is a pseudo-metric dS on the set
of all maps σ : Γ→ sym(V ) defined by

dS
(
σ1,σ2

)
:= |V |−1#

{
v ∈ V : ∃s ∈ S such that σ1(s)v �= σ2(s)v

}
.
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Sofic approximations Σ = {σn : Γ→ Vn} and Σ′ = {σ′n : Γ→ Vn} with the same
target sets {Vn}n are said be at edit-distance zero if for every finite S ⊂ Γ,

limsup
n→∞

dS
(
σn,σ

′
n

)
= 0.

PROPOSITION 7.2. Suppose Σ,Σ′ are at edit-distance zero and μ ∈
ProbΓ(XΓ). If μ has contractible model spaces with respect to Σ then μ also
has contractible model spaces with respect to Σ′.

For the proof it will be helpful to have the next definition.

Definition 11. An open subset O ⊂ Prob(XΓ) is D-local (where D ⊂ Γ is
finite) if there is an open set Õ ⊂ Prob(XD) such that O is the inverse image of Õ
under the projection map Prob(XΓ)→ Prob(XD). An open subset O ⊂ Prob(XΓ)

is local if it is D-local for some D.

The next lemma can be used to show that many sofic invariants (such as en-
tropy) depend on Σ only up to edit-distance zero. We will use it to prove Proposi-
tion 7.2.

LEMMA 7.3. Suppose Σ,Σ′ have edit-distance zero and μ∈ ProbΓ(XΓ). Then
for any open neighborhood O � μ there exists an open neighborhood O′ with μ ∈
O′ ⊂ O such that Ω(O′,σ′n)⊂ Ω(O,σn) for all but finitely many n.

Proof. Let an open set O � μ be given. Let O′ be an open set containing μ

such that the weak* closure of O′ is contained in O. By compactness and Lemma
5.7, there exists a finite set E ⊂ Γ and ε > 0 such that if ν ∈O′ and ν ′ ∈ Prob(XD)

is such that dTV(ResE∗ ν,ResE∗ ν ′)< ε then ν ′ ∈ O.
Because Σ,Σ′ have edit-distance zero, dE(σn,σ′n) < ε for all but finitely n.

This condition implies dTV(ResE∗ (P σnx ),ResE∗ (P
σ′n
x )) < ε for all x ∈ X Vn . In par-

ticular, if x ∈ Ω(O′,σ′n) then x ∈ Ω(O,σn). Thus Ω(O′,σ′n)⊂ Ω(O,σn). �

Proof of Proposition 7.2. Let an open set O′
2 � μ and δ > 0 be given.

By Lemma 7.3 there exists an open set O2 such that μ ∈ O2 ⊂ O′
2 and

Ω(O2,σn)⊂ Ω(O′
2,σ

′
n) for all but finitely many n.

Let O1 ⊂ O2 be an open neighborhood of μ satisfying the definition of con-
tractible model spaces with respect to Σ. So for every 0<K <∞ and all but finitely
many n, if xi ∈Ω(O1,σn) (1 ≤ i≤K) there exist x(j)i (for j ≥ 0) such that

(1) x(j)i ∈Ω(O2,σn) for all i,j,

(2) x(0)i = xi for all i,

(3) dVnX (x
(j+1)
i ,x

(j+1)
k )≤ dVnX (x

(j)
i ,x

(j)
k ) for all i,j,k,

(4) dVnX (x
(j)
i ,x

(j+1)
i )< δ for all i,j,

(5) there exists M such that x(M)
1 = · · ·= x

(M)
K .



SOFIC HOMOLOGICAL INVARIANTS AND THE WEAK PINSKER PROPERTY 193

By Lemma 7.3 there exists an open set O′
1 such that μ ∈ O′

1 ⊂ O1 and
Ω(O′

1,σ
′
n)⊂ Ω(O1,σn) for all but finitely many n.

Now let x1, . . . ,xK ∈ Ω(O′
1,σ

′
n). Since Ω(O′

1,σ
′
n) ⊂ Ω(O1,σn), there exist

x
(j)
i for j ≥ 0 satisfying the above conditions (if n is sufficiently large). In particu-

lar,

x
(j)
i ∈Ω

(O2,σn
)⊂Ω

(O′
2,σ

′
n

)

for n sufficiently large (independent of x1, . . . ,xK ). This proves μ has contractible
model spaces with respect to Σ′. �

7.3. Diffuse sofic approximations. One of the main goals of this section
is to prove that if Γ is amenable then every μ ∈ ProbΓ(XΓ) has contractible model
spaces. In fact, more is true, one only needs that the sofic approximation Σ is
diffuse. This condition, explained below, holds automatically if Γ is amenable.
Moreover, even if Γ is non-amenable then diffuse sofic approximations can be con-
structed out of arbitrary sofic approximations.

The disjoint union of maps σi : Γ→ sym(Vi) (for i= 1,2) is the map σ1 �σ2 :
Γ→ sym(V1 �V2) defined by σ1 �σ2(g)v = σi(g)v if v ∈ Vi.

Definition 12. A sofic approximation Σ = {σn : Γ→ sym(Vn)}n∈N is diffuse
if there exists a sofic approximation Σ′ = {σ′n : Γ→ sym(Vn)}n∈N such that

• Σ and Σ′ have edit-distance zero,
• for every n, σ′n can be expressed as a disjoint union σ′n := σ′n,1�·· ·�σ′n,mn

such that if σ′n,i : Γ→ sym(Vn,i) then

max
1≤i≤mn

∣
∣Vn,i

∣
∣= o

(∣∣Vn
∣
∣).

Example 1. Let Σ = {σn : Γ → sym(Vn)}n∈N by any sofic approximation to
any group Γ and let {Wn}n be a sequence of finite sets with |Wn| → ∞ as n→ ∞.
Define σ′n : Γ→ sym(Vn×Wn) by

σ′n(g)(v,w) =
(
σn(g)v,w

)
.

In other words, σ′n is the direct product of σn with the trivial homomorphism Γ→
sym(Wn). Then Σ′ = {σ′n} is diffuse. In fact σ′n is the disjoint union of Wn copies
of σn.

LEMMA 7.4. If Γ is amenable then every sofic approximation Σ to Γ is diffuse.

Proof. The special case in which Γ is finitely generated is a direct consequence
of [15, Proposition 2.8]. The general case follows from the finitely generated case
by a diagonalization argument. �
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7.3.1. Diffuse approximations and contractibility.

THEOREM 7.5. If Σ is diffuse and μ ∈ ProbΓ(XΓ) then μ has contractible
model spaces with respect to Σ. In particular, if Γ is amenable then μ has con-
tractible model spaces with respect to every sofic approximation.

Because Σ is diffuse, after replacing it with another sofic approximation at
edit-distance zero, we may assume that each set Vn comes equipped with a parti-
tion Vn = �iVn,i so that the image of σn : Γ→ sym(Vn) lies in the direct product∏
i sym(Vn,i). The idea behind the proof is to modify x1, . . . ,xK ∈ X Vn on each of

the Vn,i’s to form paths (x(j)i )i,j that merge together. However, we must be careful

so that each of the x(j)i ’s has empirical distribution close to μ. To accomplish this,
we coarsen the given partition so that each xi restricted to any part of the good par-
tition has empirical distribution close to μ. This explains why the next two lemmas
are needed. (No attempt has been made to optimize the constants below).

LEMMA 7.6. Let (Ω,P) be a standard probability space and f : Ω→ [0,1] be
a measurable random variable. Let δ ∈ (0,1/4), 0 < ε < δ/400 and suppose that
P({ω})< ε for every ω ∈Ω. Then there exists a finite measurable partition P of Ω
such that

(1) P(P )≤ 100ε/δ for every P ∈ P,
(2) ‖E[f |P]−E[f ]‖L∞(Ω,P) ≤ δ

where E denotes expectation with respect to P.

Proof. After passing to an image of the measure space (Ω,P) if necessary, we
may assume without loss of generality that Ω is a finite set. So let Ω= {ω1, . . . ,ωn}
be ordered so that f(ω1)≤ f(ω2)≤ ·· · ≤ f(ωn). After making a small perturbation
if necessary, we may also assume that f(ω) �= E[f ] for any ω ∈ Ω.

Define a piecewise constant function F : [0,1]→ [0,1] by

F (x) = f
(
ωh(x)

)

where h(x) is the smallest number such that x ≤ P({ω1, . . . ,ωh(x)}). Note that∫
F dx= E[f ] and F is monotone increasing. We will first solve the problem with

(Ω,P) and f replaced by Lebesgue measure on the unit interval and F .

Claim 1. There exists a natural number m such that 20ε/δ ≤ 1/m≤ 21ε/δ.

Proof. Letm∈N be such that 1
m+1 < 20ε/δ≤ 1

m . Because ε< δ/400, 20ε/δ <
1/20 and m≥ 20.

It suffices to show 1/m≤ 21ε/δ. Equivalently, it suffices to show 21mε/δ ≥ 1.
The condition 1

m+1 < 20ε/δ implies 20(m+1)ε/δ > 1. Because m≥ 20, we have
21m≥ 20(m+1). So 21mε/δ ≥ 20(m+1)ε/δ > 1. �
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Claim 2. There is a finite partition Q of [0,1] such that every Q ∈Q satisfies
(1) Q is a union of at most two disjoint intervals;
(2) 20ε/δ ≤ |Q| ≤ 21ε/δ where | · | denotes Lebesgue measure;
(3) |Q|−1

∫
QF (x)dx= E[f ].

Proof. Because f(ω) �=E[f ] for any ω ∈Ω,F (t) �= ∫ 1
0 F (x)dx for any t. Since

F is monotone increasing, there exists a unique x0 ∈ [0,1] such that for all a and b
with 0 ≤ a < x0 < b≤ 1,

F (a)<

∫ 1

0
F dx < F (b).

Because F is monotone, for every 0 ≤ a < x0, there exists a unique g(a) with
x0 < g(a) ≤ 1 such that

1
g(a)−a

∫ g(a)

a
F dx=

∫ 1

0
F dx= E[f ].

Note g is an orientation-reversing homeomorphism of [0,x0) onto (x0,1].
Using Claim 1, choose points 0 = a1 < a2 < · · ·< am < x0 such that for each

1 ≤ i < m,

20ε/δ ≤ 1/m=
(
ai+1 −ai

)
+ g

(
ai
)− g(ai+1

)≤ 21ε/δ

and

20ε/δ ≤ 1/m= g(am)−am ≤ 21ε/δ.

Let Q be the partition containing [am,g(am)] and [ai,ai+1)∪ (g(ai+1),g(ai)]

for i < m. �

Claim 2 solves the problem for F . To solve it for the original function f , we
will obtain a partition P that approximates Q.

Recall that for x ∈ [0,1], h(x) is the smallest index such that x ≤ P({ω1, . . . ,

ωh(x)}). Define hΩ : [0,1]→ Ω by hΩ(x) = ωh(x) ∈ Ω. For X ⊂ [0,1], let

X+ = h−1
Ω

(
hΩ(X)

)
,

X− =
{
x ∈X : h−1

Ω

(
hΩ(x)

) ⊂X
}
.

Let P̃ be an hΩ-measurable partition of [0,1] such that for every P ∈ P̃ there exists
Q ∈ Q such that Q− ⊂ P ⊂ Q+. Because Q is a disjoint union of at most two
intervals, hΩ(Q+)\hΩ(Q−) contains at most 4 elements of Ω. Since each element
of Ω has measure < ε and hΩ is measure-preserving, |Q � P | ≤ 4ε. So

|P | ≤ |Q|+4ε≤ 21ε/δ+4ε≤ 100ε/δ.
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Also
∣
∣
∣
∣|P |−1

∫

P
F dx−E[f ]

∣
∣
∣
∣=

∣
∣
∣
∣|P |−1

∫

P
F (x)dx−|Q|−1

∫

Q
F (x)dx

∣
∣
∣
∣ .

We may decompose the first integral as
∫
P =

∫
P∩Q+

∫
P \Q and the second one

similarly. From this, we see that the above is bounded by

∣
∣|P |−1 −|Q|−1

∣
∣
∫

P∩Q
F (x)dx+ |P |−1

∫

P \Q
F (x)dx+ |Q|−1

∫

Q\P
F (x)dx

≤ ∣
∣|P |−1 −|Q|−1

∣
∣|P ∩Q|+ |P |−1|P \Q|+ |Q|−1|Q\P |

≤ 4ε

( |Q∩P |
|P ||Q| + |P |−1 + |Q|−1

)

.

We use the bounds |P ∩Q| ≤ 21ε/δ and |Q| ≥ 20ε/δ, |P | ≥ 20ε/δ− 4ε ≥ 19ε/δ
to obtain

∣
∣
∣
∣|P |−1

∫

P
F dx−E[f ]

∣
∣
∣
∣< δ.

Since P is arbitrary, this shows ‖E[F |P̃ ]−E[F ]‖∞ ≤ δ. Since P̃ is hΩ-measurable,
it induces a partition P = hΩ(P̃) on Ω. Because hΩ is measure-preserving, the
required properties of P follow from the corresponding properties of P̃ . �

LEMMA 7.7. Let (Ω,P) be a standard probability space and f1, . . . ,fm : Ω→
[0,1] be random variables. Let 0 < δ < 1/4, 0 < ε, and suppose that P({ω}) < ε

for every ω ∈ Ω. Assume ε < (δ/400)m . Then there exists a measurable partition
P of Ω such that

(1) P(P )≤ ε(100/δ)m for every P ∈ P,
(2) ‖E[fi|P]−E[fi]‖L∞(Ω,P) ≤ δ for every 1 ≤ i≤m.

Proof. We prove this by induction on m. The previous lemma establishes the
base case m= 1.

For the inductive step, assume m≥ 2 and there is a measurable partition Q of
Ω such that

(1) P(Q)≤ ε(100/δ)m−1 for every Q ∈Q,
(2) ‖E[fi|Q]−E[fi]‖L∞(Ω,P) ≤ δ for every 1 ≤ i≤m−1.

Apply the previous lemma with (Q,P) in place of (Ω,P), E[fm|Q] in place of f
and ε(100/δ)m−1 in place of ε to obtain a partition P of Ω that coarsens Q and
satisfies

(1) P(P )≤ ε(100/δ)m for every P ∈ P,
(2) ‖E[E[fm|Q]|P]−E[fm]‖L∞(Ω,P) = ‖E[fm|P]−E[fm]‖L∞(Ω,P) ≤ δ.

Since P coarsens Q, ‖E[fi|P]−E[fi]‖L∞(Ω,P) ≤ δ holds for every 1 ≤ i ≤m− 1
too. �
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Proof of Theorem 7.5. By Proposition 7.2, we may assume without loss of
generality that for every n, σn can be expressed as a disjoint union σn := σn,1 �
·· ·�σn,mn such that if σn,i : Γ→ sym(Vn,i) then

max
1≤i≤mn

∣
∣Vn,i

∣
∣= o

(∣∣Vn
∣
∣).

Let μ ∈ ProbΓ(XΓ), O2 be an open neighborhood of μ in Prob(XΓ) and δ > 0
be given. By choosing O2 smaller if necessary, we may assume it is convex. Let
O1 ⊂O2 be an open neighborhood of μ such that the closure of O1 is contained in
O2. It follows that there exist δ2 > 0 and continuous functions f̃1, . . . , f̃m : XΓ →
[0,1] such that if ν ∈ O1 and ν ′ is such that |ν(f̃i)−ν ′(f̃i)|< δ2 for all 1 ≤ i≤m

then ν ′ ∈ O2.
Let x0, . . . ,xK ∈ Ω(O1,σn). Let Ω = {1, . . . ,mn} and P be the probability

measure on Ω given by P(k) = |Vn,k|/|Vn|.
Let fi,j : Vn → [0,1] be given by

fi,j(v) = f̃i
(
Πσnv xj

)
.

Define f̄i,j : Ω→ [0,1] by

f̄i,j(k) = |Vn,k|−1
∑

v∈Vn,k
fi,j(v).

For sufficiently large n, apply Lemma 7.7 to (Ω,P) and the functions (f̄i,j) to
obtain a partition Pn of Ω. Let Qn be the partition of Vn defined by pulling back
the partition Pn under the map Vn → Ω defined by v 
→ i if v ∈ Vn,i. Then

(1) Qn coarsens the partition Vn = �iVn,i.
(2) For each i,j, ‖E[fi,j|Qn]−E[fi,j]‖L∞(Ω,P) ≤ δ2. By the choice of fi,j and

δ2, this implies that for every Q∈Qn, the empirical measure of xj �Qwith respect
to σn �Q lies in O2 (where σn �Q is the map Γ→ sym(Q) obtained by restriction).
In symbols, P σn�Qxj�Q ∈ O2.

(3) maxQ∈Qn |Q| ≤ εn|Vn| for some constants εn > 0 with εn → 0 as n→ ∞.
For 0 ≤ j, define Ψj : X Vn → X Vn by Ψj(x)(v) = x0(v) if v ∈ Qi for some

i≤ j and Ψj(x)(v) = x(v) otherwise. Set x(j)i =Ψj(xi).

Since P σn�Qxi�Q ∈ O2 for every Q ∈ Qn and O2 is convex, x(j)i ∈ Ω(O2,σn) for
all i,j.

If n is large enough then εn diam(X ) < δ and therefore dVnX (x
(j)
i ,x

(j+1)
i ) < δ

for all i,j. The map Ψj is distance contracting, Ψ0 is the identity and Ψmn maps
all of {x0, . . . ,xK} to x0. This verifies all of the conditions in the definition of
contractible model spaces. �
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7.4. Bernoulli shifts.

THEOREM 7.8. Let Γ be a countably infinite group, Σ a sofic approximation,
(X ,dX ),(Y,dY ) totally disconnected compact metric spaces and β ∈ Prob(X )

a probability measure on X . Then the Bernoulli shift Γ � (X ,β)Γ has con-
tractible model spaces with respect to Σ. Moreover, for any ν ∈ ProbΓ(YΓ), the
0-dimensional sofic homology theories of ν and βΓ×ν are equivalent.

In [2], Tim Austin proved a similar result. The proof here follows the same
strategy.

Remark 5. Unfortunately, it is not clear whether the d-dimensional sofic ho-
mology theories of ν and βΓ × ν are equivalent for d > 0. To explain why, sup-
pose z,z′ ∈ ZLd (O1,κ1,σ) are each representable as a weighted sum of at most L
simplices and z− z′ ∈ Bd(O2,κ2,σ). Then there is a (d+ 1)-chain w such that
z− z′ = ∂dw. But the proof in the 0-dimensional case uses that there exists a se-
quence z = z1, . . . ,zk = z′ of cycles interpolating between z and z′ such that there
is a uniform bound on the �1-norm ‖zi− zi+1‖1 for each i and each zi is repre-
sentable as a weighted sum of at most L′ cycles for some L′ that does not depend
on z,z′. There does not appear to be any good reason why this property should
hold if d > 0.

We will use special neighborhoods of βΓ×ν defined as follows. For any finite
D⊂ Γ, let BXD be the smallest Borel sub-sigma-algebra on XΓ×YΓ such that the
projection XΓ×YΓ →XD×YΓ is BXD -measurable.

A subset F ⊂ C(XΓ ×YΓ) of continuous functions is hereditary if there is
some finiteD⊂Γ such that every f ∈F isD-local and the conditional expectation
EβΓ×ν [f |BXC ] ∈ F for every C ⊂ D. Moreover, we require that f is 1-Lipschitz
in the XD-variable as a function from XD×YD to R. To be precise this means
that

∣
∣f
(
x1,y

)− f(x2,y
)∣∣≤ dDX

(
x1,x2

)

for every x1,x2 ∈ XD and y ∈ YD (where we have abused notation by identifying
f with its projection to XD×YD).

A neighborhood O⊂ Prob(XΓ×YΓ) is hereditary if there is a finite hereditary
subset F ⊂ C(XΓ×YΓ) and δ > 0 such that

O =
{
μ′ ∈ Prob

(XΓ×YΓ
)

:
∣
∣μ′(f)−βΓ×ν(f)∣∣< δ ∀f ∈ F}

.

The next proposition shows that the measure βΓ×ν satisfies a property that is
a kind of relative version of having contractible model spaces.

PROPOSITION 7.9. Let O1 ⊂O2 ⊂ Prob(XΓ×YΓ) be open neighborhoods of
βΓ×ν. Suppose that the closure of O1 is contained in O2 and that O1 is hereditary.
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Then for any κ > 0 and K > 0 there exists N such that if n > N then for any
(xi,yi) ∈Ω(O1,σn) (1 ≤ i≤K) there exist x(j)i (for j ≥ 0) such that for all i,j,k,

(1) (x
(j)
i ,yi) ∈ Ω(O2,σn),

(2) x(0)i = xi,

(3) dVnX (x
(j)
i ,x

(j+1)
i )< κ,

(4) dVnX (x
(j+1)
i ,x

(j+1)
k )≤ dVnX (x

(j)
i ,x

(j)
k ) and

(5) there exists M such that x(M)
1 = · · · = x

(M)
K . In fact we may choose the

x
(j)
i ’s so that M = �diam(X )/κ�+1.

LEMMA 7.10. Let O ⊂ Prob(XΓ×YΓ) be an open neighborhood of βΓ× ν.
Then there exists an open neighborhood O′ ⊂ Prob(YΓ) of ν such that for all
but finitely many n, if y ∈ Ω(O′,σn) then there exists x ∈ X Vn such that (x,y) ∈
Ω(O,σn).

Proof. This is equivalent to saying that XΓ×YΓ →XΓ is model-surjective (in
the language of [2]). This is proven implicitly in [9, Theorem 8.1] and [2, Theo-
rem 6.8]. �

Proof of Theorem 7.8 given Proposition 7.9. The fact that Bernoulli shifts
have contractible model spaces is implied by the special case of Proposition 7.9 in
which ν is the Dirac mass on a fixed point.

Before proving the second statement, note that the projection map Prob(XΓ×
YΓ) → Prob(YΓ) is open (this is implied by [14, Theorem 2.5]). So if O ⊂
Prob(XΓ×YΓ) is open then its image, which we denote by ProjYΓ(O), is an open
subset of Prob(YΓ).

First we will show that the 0-dimensional sofic homology of ν is greater than
or equal to the 0-dimensional sofic homology of βΓ × ν. In order to define the
homology of βΓ × ν, we identify XΓ ×YΓ with (X ×Y)Γ and use the metric
dX×Y((x,y),(x′,y′)) = dX (x,x′)+dY(y,y′).

Let O2 be an arbitrary open neighborhood of βΓ×ν in Prob(XΓ×YΓ). Also
let κ2 > 0. By Lemma 7.10 there exists an open neighborhood O′

2 ⊂ ProjYΓ(O2)

of ν such that for all but finitely many n, if y ∈ Ω(O′
2,σn) then there exists x ∈

X Vn such that (x,y) ∈ Ω(O2,σn). Let κ′2 = κ2. Let O′
1 ⊂O′

2 be an arbitrary open
neighborhood of ν. Also let 0< κ′1 be arbitrary. Choose an open neighborhood O1

of βΓ × ν so that its closure is contained in O2 and ProjYΓ(O1) is contained in
O′

1. Because hereditary neighborhoods form a basis, we may also choose O1 to be
hereditary. Let κ1 = κ′1.

Let π : (X ×Y)Vn → YVn be the projection map. Let S be the subgroup of
H0(O′

1,O′
2,κ

′
1,κ

′
2,σn) generated by the set of all 0-chains of the form π∗([x,y]) =

[y] for (x,y) ∈Ω(O1,σn). We claim that the map

π∗
(
[x,y]

) 
−→ [x,y]
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from S to H0(O1,O2,κ1,κ2,σn) is well defined. It suffices to show that if (x1,y1)

and (x2,y2) are both in Ω(O1,σn) and y1 − y2 ∈ B0(O′
2,κ2,σn) then there is a

κ2-path from (x1,y1) to (x2,y2) in Ω(O2,σn).
Because y1 − y2 ∈ B0(O′

2,κ2,σn) there exists a κ2-path w1, . . . ,wm ∈
Ω(O′

2,σn) fromw1 = y1 towm= y2. By Lemma 7.10, there exist u1, . . . ,um ∈X Vn

such that (ui,wi) ∈Ω(O2,σn) for all i. We may assume u1 = x1, um = x2.
Since (x1,y1)− (x2,y2) =

∑m−1
i=1 (ui,wi)− (ui+1,wi+1), it suffices to show

that (ui,wi)− (ui+1,wi+1) ∈B0(O2,κ2,σn) for all 1 ≤ i < m.
So fix i with 1 ≤ i < m. By Proposition 7.9 (with K = 2, κ= κ1 and all large

n) for j ≥ 0 there exist elements u(j)i ,u
(j)
i+1 such that for all k ∈ {i, i+1} and j ≥ 0,

(1) (u
(j)
k ,wk) ∈ Ω(O2,σn),

(2) u(0)k = uk,

(3) dVnX (u
(j)
k ,u

(j+1)
k )< κ1,

(4) there exists Mi such that u(Mi)
i = u

(Mi)
i+1 .

It follows that

(
ui,wi

)
,
(
u
(1)
i ,wi

)
, . . . ,

(
u
(Mi)
i ,wi

)
,
(
u
(Mi)
i+1 ,wi+1

)
, . . . ,

(
u
(1)
i+1,wi+1

)
,
(
ui+1,wi+1

)

is a κ2-path from (ui,wi) to (ui+1,wi+1) in Ω(O2,σn) (with respect to the metric
dVnX×Y ). Thus (ui,wi)− (ui+1,wi+1) ∈B0(O2,κ2,σn) as required.

So the map from S to H0(O1,O2,κ1,κ2,σn) is well defined. It is also surjec-
tive by construction. So H0(O1,O2,κ1,κ2,σn) is a QS-group of H0(O′

1,O′
2,κ

′
1,

κ′2,σn) and therefore, the 0-dimensional sofic homology of βΓ× ν is bounded by
the 0-dimensional sofic homology of ν.

To finish the proof, we will show that the 0-dimensional sofic homology of
βΓ× ν is greater than or equal to the 0-dimensional sofic homology of ν. So let
O′

2 be an arbitrary open neighborhood of ν in Prob(YΓ). Also let κ′2 > 0. Let
O2 = Prob(XΓ)×O′

2 and κ2 =κ′2. Let O1 ⊂O2 be an arbitrary open neighborhood
of βΓ× ν. Let 0 < κ1 ≤ κ2. By Lemma 7.10, there exists an open neighborhood
O′

1 of ν such that O′
1 ⊂ O′

2 and for all but finitely many n, if y ∈ Ω(O′
1,σn) then

there exists x ∈ X Vn such that (x,y) ∈ Ω(O1,σn). Set κ′1 = κ1.
Let S be the subgroup of H0(O1,O2,κ1,κ2,σn) generated by all 0-cycles of

the form [x,y] with y ∈ Ω(O′
1,σn) and (x,y) ∈ Ω(O1,σn). The map [x,y] → [y]

from S to H0(O′
1,O′

2,κ
′
1,κ

′
2,σn) is well defined because if [x1,y1]− [x2,y2] ∈

B0(O2,κ2,σn) then there is a κ2-path from [x1,y1] to [x2,y2] in Ω(O2,σn). The
projection of this path to YVn is a κ′2-path from [y1] to [y2] in Ω(O′

2,σn). So [y1]

and [y2] represent the same element of H0(O′
1,O′

2,κ
′
1,κ

′
2,σn).

We claim the map [x,y] → [y] from S to H0(O′
1,O′

2,κ
′
1,κ

′
2,σn) is surjective.

Suppose [y] ∈H0(O′
1,O′

2,κ
′
1,κ

′
2,σn). Then y ∈ Ω(O′

1,σn). By choice of O1, this
implies the existence of x ∈ X Vn with (x,y) ∈ Ω(O1,σn). Thus [x,y] ∈ S. Since
[y] is arbitrary this implies the claimed surjectivity. So H0(O′

1,O′
2,κ

′
1,κ

′
2,σn) is a

QS-group of H0(O1,O2,κ1,κ2,σn) as required. �
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We will use a well-known concentration inequality on Hamming cubes to
prove Proposition 7.9. First we need some notation. Let λs denote the probabil-
ity measure on {0,1} given by λs(1) = s, λs(0) = 1− s. Let Ps = λVns ×βVn be a
probability measure on {0,1}Vn ×X Vn . Let Es denote expectation with respect to
Ps.

PROPOSITION 7.11. There exists a constant C > 0 (depending only on the
diameter of X ) such that for any ε > 0, any s ∈ [0,1] and any 1-Lipschitz function
F : {0,1}Vn ×X Vn → R,

Ps

{∣
∣F −E[F ]

∣
∣≥ ε

}≤ 2e−Cε
2|Vn|.

Here we are using the normalized Hamming metric dVn{0,1}×X given by

dVn{0,1}×X
((
χ1,x1

)
,
(
χ2,x2

))
= dVn{0,1}

(
χ1,χ2

)
+dVnX

(
x1,x2

)

= |Vn|−1#
{
v ∈ Vn : χ1(v) �= χ2(v)

}

+ |Vn|−1
∑

v∈Vn
dX

(
x1(v),x2(v)

)
.

For the proof see [27, Corollary 1.17].
Proposition 7.9 is proven by letting x

(j)
i (for j = 0,1, . . .) be the result of a

coupled random walk on X Vn . To define this coupled random walk, for x ∈ X Vn

define

ξx : {0,1}Vn ×X Vn −→X Vn

by

ξx(χ,z)v :=

{
zv if χ(v) = 1

xv if χ(v) = 0.

We will think of ξx as a random variable taking values in X Vn . More precisely,
we choose a random subset of Vn with each vertex being chosen with probability
s (independently). Then we randomize the value of x at each chosen vertex. This
produces the new random element ξx.

LEMMA 7.12. Fix notation as in Proposition 7.9. Then for any s ∈ [0,1],

lim
n→∞

inf
{
Ps

((
ξx,y

) ∈ Ω
(O2,σn

))
: (x,y) ∈ Ω

(O1,σn
)}

= 1.

Proof. Because O1 is hereditary, there is a finite hereditary subset F ⊂
C(XΓ×YΓ) and δ > 0 such that

O1 =
{
μ′ ∈ Prob

(XΓ×YΓ
)

:
∣
∣μ′(f)−βΓ×ν(f)∣∣< δ ∀f ∈ F}

.
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Because O2 contains the closure of O1 there is a δ′ > δ such that

O2 ⊃
{
μ′ ∈ Prob

(XΓ×YΓ
)

:
∣
∣μ′(f)−βΓ×ν(f)∣∣< δ′ ∀f ∈ F}

.

Fix (x,y) ∈ Ω(O1,σn) and f ∈ F . It suffices to obtain a lower bound on

Ps

(∣
∣P σn(ξx,y)(f)−βΓ×ν(f)

∣
∣< δ′

)

that tends to 1 as n→ ∞ but does not depend on (x,y).
Let D ⊂ Γ be a finite subset such that f is D-local. Let Wn ⊂ Vn be the set of

all vertices v ∈ Vn such that the map

g ∈D 
−→ σn(g)
−1v

is injective. For any v ∈Wn,

Es

[
f
(
Πσnv

(
ξx,y

))]
=

∑

S⊂D
s|S|(1− s)|D\S|

EβΓ×ν
[
f |BXD\S

](
Πσnv (x,y)

)
.

To see this, let S : {0,1}Vn → 2D be the random subset of D defined by

S(χ) =
{
g ∈D : χ

(
σn(g)

−1v
)
= 1

}
.

Then for any g ∈ D, g ∈ S with probability s and these events are jointly inde-
pendent over g ∈ D. Moreover, conditioned on S(χ) = S, the expected value of
f(Πσnv (ξx,y)) is EβΓ×ν[f |BXD\S ](Πσnv (x,y)).

Because Σ is a sofic approximation, limn→∞ |Wn|/|Vn|= 1. So

Es

[
P σn(ξx,y)(f)

]

=
∣
∣Vn

∣
∣−1 ∑

v∈Vn
Es

[
f
(
Πσnv

(
ξx,y

))]

=
∣
∣Vn

∣
∣−1 ∑

v∈Vn

∑

S⊂D
s|S|(1− s)|D\S|

EβΓ×ν
[
f |BXD\S

](
Πσnv (x,y)

)
+O

(∣
∣Vn

∣
∣−1

)

=
∑

S⊂D
s|S|(1− s)|D\S||Vn|−1

∑

v∈Vn
EβΓ×ν

[
f |BXD\S

](
Πσnv (x,y)

)
+O

(∣
∣Vn

∣
∣−1

)

=
∑

S⊂D
s|S|(1− s)|D\S|P σn(x,y)

(
EβΓ×ν

[
f |BXD\S

])
+O

(∣
∣Vn

∣
∣−1

)
.

Because F is hereditary, EβΓ×ν [f |BXD\S ] ∈ F . So
∣
∣
∣P σn(x,y)

(
EβΓ×ν [f |BXD\S ]

)−βΓ×ν(f)
∣
∣
∣< δ

for all S ⊂D. Thus
∣
∣
∣Es

[
P σn(ξx,y)(f)

]
−βΓ×ν(f)

∣
∣
∣< δ+O

(|Vn|−1) .
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Let F : {0,1}Vn ×X Vn → R be the function

F (χ,z) = P σn(ξx(χ,z),y)(f).

To finish the proof, it suffices (by Proposition 7.11 and the previous inequality) to
prove that F is C-Lipschitz for some constant C > 0 (that does not depend on n,
x or y but may depend on other parameters). In fact,

∣
∣F (χ,z)−F (χ′,z′)

∣
∣

=
∣
∣Vn

∣
∣−1

∣
∣
∣
∣
∣
∣

∑

v∈Vn
f
(
Πσnv

(
ξx(χ,z),y

))− f(Πσnv
(
ξx(χ′,z′),y

))
∣
∣
∣
∣
∣
∣

≤ |Vn|−1
∑

v∈Vn

∣
∣f
(
Πσnv

(
ξx(χ,z),y

))− f(Πσnv
(
ξx(χ′,z′),y

))∣
∣

≤ |Vn|−1
∑

v∈Vn
dDX×Y

(
Πσnv

(
ξx(χ,z),y

)
,Πσnv

(
ξx(χ′,z′),y

))
.

The last inequality above occurs because f is 1-Lipschitz as a function from XD×
YD to R.

For fixed v ∈ Vn,

dDX×Y
(
Πσnv

(
ξx(χ,z),y

)
,Πσnv

(
ξx(χ′,z′),y

))

≤|D|−1
∑

g∈D
dX

(
z
(
σn(g)

−1v
)
,z′

(
σn(g)

−1v
))
+diam(X )1χ(σn(g)−1v) �=χ′(σn(g)−1v).

Summing over all v, we obtain

∣
∣F (χ,z)−F (χ′,z′)

∣
∣≤ ∣

∣Vn
∣
∣−1 ∑

v∈Vn
dX

(
z(v),z′(v)

)
+diam(X )1χv �=χ′

v

= dVnX (z,z′)+diam(X )dVn{0,1}(χ,χ
′).

So F is max(1,diam(X ))-Lipschitz. �

Proof of Proposition 7.9. Fix notation as in the statement of Proposition 7.9.
Let Leb denote Lebesgue measure on the unit interval [0,1]. Let P = LebVn×βVn
be the product measure on [0,1]Vn ×X Vn . Let E denote expectation with respect
to P.

For x ∈ X Vn and s ∈ [0,1], define

ζ(x,s|·, ·) : [0,1]Vn ×X Vn −→X Vn
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by

ζ(x,s|τ,z)v :=

{
zv if τv ≤ s

xv if τv > s

The distribution of ζ(x,s|·, ·) (with respect to LebVn×βVn) is the same as the
distribution of ξx (with respect to Ps). So Lemma 7.12 applies.

Fix a natural number k > diam(X )/κ. Let (τ ,z) be a random variable with
distribution LebVn×βVn . Then with high probability (whp) as n→ ∞ the following
events occur:

(1) For every 0 ≤ j ≤ k,

#
{
v ∈ Vn : τv ∈ (j/k,j/k+1/k]

}
< κ|Vn|/diam(X ).

(2) ζ(xi, j/k|·, ·) ∈ Ω(O2,σn) for all 1 ≤ i≤K and 0 ≤ j ≤ k.
(3) τv �= 0 for all v ∈ Vn.

This first condition holds whp by the law of large numbers, the second by Lemma
7.12, and the last occurs with probability 1.

So there is some (τ,z) ∈ [0,1]Vn ×X Vn such that all of the above conditions

hold. Set x(j)i = ζ(xi, j/k|τ,z). This first 3 conclusions of Proposition 7.9 are im-
mediate. The fourth occurs by definition of ζ(xi, j/k|τ,z). The fifth occurs with
M = k. �

LEMMA 7.13. bd,Σ(ν)≤ (d+1)hΣ(ν) for all d,Σ,ν.

Proof. Let O1 ⊂ O2 ⊂ Prob(YΓ) be open neighborhoods of ν and 0 < κ1 ≤
κ2/3. Let Sn ⊂Ω(O1,σn) be a subset whose κ1-neighborhood contains Ω(O1,σn)

and
∣
∣Sn

∣
∣= covκ1

(
Ω
(O1,σn

)
,dVnY

)
.

So there exists a map Ψ : Ω(O1,σn) → Sn such that dVnY (Ψ(y),y) < κ1 for all
y. If y ∈ YVn \Ω(O1,σn), then define Ψ(y) = y so that now we can consider Ψ

as a map from YVn to itself. By Lemma 6.1, Ψ∗(z)− z ∈ Bd(O2,κ2,σn) for any
z ∈ ZLd (O1,κ1,σn). This uses O1 ⊂O2 and 3κ1 ≤ κ2. It follows that

dimQ

(
HL
d

(O1,O2,κ1,κ2,σn
)⊗ZQ

)≤ #Sd+1
n = covκ1

(
Ω
(O1,σn

)
,dVnY

)d+1
.

The lemma now follows from the definitions of bd,Σ(ν) and hΣ(ν). �

COROLLARY 7.14. If Γ � (X,μ) has the Weak Pinsker Property then
b0,Σ(μ) = 0.

Proof. Let ε > 0. Then Γ � (X,μ) is isomorphic to the direct product of a
Bernoulli shift and an action with entropy < ε. By Theorem 7.8, the 0-dimensional
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sofic homology of Γ� (X,μ) is equivalent to the 0-dimensional sofic homology
of an action with entropy < ε. By Lemma 7.13, this shows b0,Σ(μ)< ε. �

8. An action without the Weak Pinsker Property. This section proves
Theorem 1.2. Here is an outline:

• §8.1 shows that two models of random graphs, the configuration model and
the permutation model, are closely related, allowing the transfer of results about
one to the other. This is useful here because results in the literature are generally
proven for the configuration model, but it is the permutation model that gives ac-
tions of the free group.

• §8.2 is about first moment computations of the numbers of independent sets
and pairs of independent sets of a random regular graph.

• §8.3 explains two models of random pairs (G,I) where G is a regular graph
and I ⊂ V is an independent set. These models are called the planted and the uni-
form model. Usually it is easy to estimate probabilities with respect to the planted
model but not with respect to the uniform model. However, sofic entropy is more
closely related to the uniform model. Fortunately, there is an inequality relating the
two models.

• §8.4 has the main technical result bounding the size of clusters of indepen-
dent sets in a random regular graph.

• §8.5 provides a general result for obtaining an invariant measure μ on XΓ

whose model spaces Ω(O,σn) have large intersections with fixed subsets Wn ⊂
X Vn . This is applied later with Wn equal to the set of “good” independent subsets
to obtain the invariant measure in Theorem 1.2.

• §8.6 finishes the proof of Theorem 1.2.

8.1. The configuration model and the permutation model. The proof of
Theorem 8.11 is made simpler by borrowing results about independent sets on
the configuration model of random regular graphs and transferring them to the
permutation model. This section explains the two models and two key theorems
linking them together.

Definition 13 (The configuration model). Let d ≥ 3, n ≥ 1 be integers such
that dn is even. Let π be a uniformly random perfect matching on [n]× [d]. Let
Gconf(π) be the random multi-graph with vertex set [n] such that the number of
edges from i to j equals the number of edges between {i}× [d] and {j}× [d] in
the matching π. This is called the configuration model [7, 24]. It gives a random
d-regular multi-graph on n vertices. Let Pconf

d,n denote the law of Gconf(π) and let

E
conf
d,n be its expectation operator. So P

conf
d,n is a probability measure on Graphs(d,n),

which is the set of all d-regular multi-graphs on [n].

Definition 14 (The permutation model). Let Γ = Fr = 〈a1, . . . ,ar〉 be the
rank r free group. Let P

perm
r,n be the uniform probability measure on the set
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Hom(Fr,sym(n)) of homomorphisms from Fr to sym(n). Also let Eperm
r,n be its

expectation operator. For σ ∈ Hom(Fr,sym(n)), let G(σ) be the multi-graph with
vertex set [n] and edges {v,σ(ai)v} (over v ∈ [n], 1 ≤ i ≤ r). If σ is random
with law P

perm
r,n then G(σ) is called the permutation model. The law of G(σ) is a

probability measure on Graphs(2r,n), which by abuse of notation, we will also
denote by P

perm
r,n .

One of the main results of [20] is:

THEOREM 8.1. Let An ⊂ Graphs(d,n) be any sequence of subsets. Sup-
pose d ≥ 4 is even and let 2r = d. Then limnP

conf
d,n (An) = 1 if and only if

limnP
perm
r,n (An) = 1. Equivalently, the permutation and configuration models

model are contiguous.

COROLLARY 8.2. Let σn be a random homomorphism from Fr to sym(n) with
law P

perm
r,n . Then for every finite D ⊂ Fr and δ > 0,

lim
n→∞

P
perm
r,n

(
σn is (D,δ)-sofic

)
= 1.

Proof. It suffices to show that for any nontrivial w ∈ Fr the number of v ∈
{1, . . . ,n} such that σn(w)v = v is o(n) with high probability as n→ ∞. To phrase
this a different way, it suffices to prove that for any L > 0 the number of simple
closed cycles of length ≤L in G(σn) is o(n) with high probability as n→ ∞. This
statement is proven in [6] for the configuration model. Since the two models are
contiguous, it also holds for the permutation model. �

8.1.1. Expectations. The next result shows that the first moment method
applied to counting vertex-labelings of either the configuration or permutation
model results in the same calculation up to subexponential factors. To explain fur-
ther we need some notation.

Definition 15. (Admissible pairs) Let X be a finite set. A pair of vectors
(πvert,πedge) ∈ Prob(X )×Prob(X ×X )⊂ R

X ×R
X×X is admissible if both πvert

and πedge are probability vectors, πedge is symmetric in the sense that πedge(p,q) =

πedge(q,p) for all p,q and both marginals of πedge equal πvert. The latter condition
means for every p ∈ X ,

πvert(p) =
∑

q∈X
πedge(p,q) =

∑

q∈X
πedge(q,p).

Let A(X )⊂ R
X ×R

X×X be the compact space of all admissible pairs.

Example 2. Suppose G= (V,E) is a finite d-regular multi-graph and x : V →
X a map. Choose a vertex v and a directed edge e independently and uniformly at
random. Then the distributions of x(v) and x(e) form a pair of admissible vectors.
Let (πvert

x ,π
edge
x ) ∈A(X ) denote this pair of distributions.
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Definition 16 (Ω(πvert,πedge;G)). Given a finite graph G = (V,E) and an ad-
missible pair of vectors (πvert,πedge) ∈A(X ), let Ω(πvert,πedge;G) be the set of all
vertex-labelings x : V →X such that

πvert = πvert
x , πedge = πedge

x .

Write #Ω(πvert,πedge) for the random variable

G 
−→ #Ω
(
πvert,πedge;G

)

where G is either a random sample of the configuration or the permutation model,
depending on context.

Definition 17. For x > 0, let η(x) = −x log(x). Extend this by continuity so
that η(0) = 0. Given a vector �p= (p1, . . . ,pk) of nonnegative real numbers, let

H(�p) =H
(
p1, . . . ,pk

)
=

k∑

i=1

η
(
pi
)

be the Shannon entropy of �p. For example, it is well known that if �p is a probability
vector then the associated multinomial coefficients satisfy

lim
n→∞

n−1 log

(
n

mn,1, . . . ,mn,k

)

=H
(
p1, . . . ,pk

)

where mn,1, . . . ,mn,k are any choice of nonnegative integers satisfying mn,1 +

· · ·+mn,k = n and limn→∞mn,i/n = pi for all i.

LEMMA 8.3. Let (πvert,πedge) ∈ A(X ) be an admissible pair of vectors. If
d ≥ 2, n ≥ 1 are integers, dn is even, πvert takes values in 1

nZ and πedge takes
values in 2

dnZ then

n−1 logEconf
d,n

[
#Ω

(
πvert,πedge)]= (d/2)H

(
πedge)− (d−1)H

(
πvert)+ on(1)

and for any integer r ≥ 1,

n−1 logEperm
r,n

[
#Ω

(
πvert,πedge)]= rH

(
πedge)− (2r−1)H

(
πvert)+ on(1).

Proof. The case of the permutation model is handled in [8]. It seems likely
that the configuration model result has been known for some time because it is
essentially the “first moment method” which has been a standard tool in this area
of probabilistic combinatorics for decades. However, I have been unable to find a
suitable reference.

The proof will reduce to [4, Lemma 4.1] once we verify that Econf
d,n [#Ω(π

vert,

πedge)] is positive.
Because πvert takes values in 1

nZ, there exists a map x : [n] → X such that
πvert
x = πvert. Let x̃ : [n]× [d]→ X be the lift defined by x̃(v,i) = x(v). Because
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πedge takes values in 2
dnZ, there exists some perfect matching μ on [n]× [d] such

that the distribution on pairs of vertex-labels from x assigned to the endpoints of a
uniformly random oriented edge of μ is πedge. Here are some details to justify this
claim. First πvert ∈ ( 2

dnZ)
X because πedge takes values in 2

dnZ and πvert is the first
marginal of πedge. So there exists a partition

[n]× [d] = P �Q

such that

∣
∣P ∩ x̃−1(p)

∣
∣=

∣
∣Q∩ x̃−1(p)

∣
∣= πvert(p)nd/2

for all p ∈ X . For every p ∈ X , choose partitions

P ∩ x̃−1(p) = �q∈XPp,q, Q∩ x̃−1(p) = �q∈XQq,p

such that

#Pp,q = #Qq,p = πedge(p,q)nd/2.

Finally let μ be any perfect matching of [n]× [d] that restricts to a perfect matching
from Pp,q to Qq,p for all p,q ∈ X . This matching satisfies the claim.

By [4, Lemma 4.1], the probability that a uniformly random perfect matching
of [n]× [d] has edge distribution πedge is

e(dn/2)H(πedge)e−dnH(πvert)

(up to a multiplicative factor that is subexponential in n). To see this, replace n in
[4, Lemma 4.1] with dn, μ with πvert and ν with πedge. Since the number of ways
to choose x is exp(nH(πvert)) (up to a multiplicative factor that is subexponential
in n), this implies the result. �

THEOREM 8.4. Fix an integer d≥ 2. For n ∈ N with dn even, suppose Kn ⊂
A(X ) satisfies the following: if (πvert,πedge) ∈ Kn then πvert takes values in 1

nZ

and πedge takes values in 2
dnZ. Suppose that Kn converges to a closed subspace M

in the Hausdorff topology (on the space of all closed subsets of A(X )) as n→ ∞.
Then

lim
n→∞

n−1 logEconf
d,n

[
#
{
x ∈ X n :

(
πvert
x ,πedge

x

) ∈ Kn

}]

= max
{
(d/2)H

(
πedge)− (d−1)H

(
πvert) :

(
πvert,πedge) ∈M}

.

Moreover, if d= 2r for some integer r ≥ 1 then the quantity above also equals

lim
n→∞

n−1 logEperm
r,n

[
#
{
x ∈ X n :

(
πvert
x ,πedge

x

) ∈ Kn

}]
.
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Proof. This follows from the previous Lemma since the function
(
πvert,πedge) 
−→ (d/2)H

(
πedge)− (d−1)H

(
πvert)

is uniformly continuous and there are at most a polynomial (in n) number of ad-
missible pairs (πvert,πedge) ∈ Kn such that πedge takes values in 2

dnZ. In fact this

number is bounded by (dn+1)|X |2 . �

8.2. First moment computations. Let Γ = Fr = 〈a1, . . . ,ar〉 denote the
free group of rank r≥ 2. For s,s′, t∈ [0,1] and σ ∈Hom(Fr,sym(n)), let Is,s′,t(σ)
be the set of all of pairs (W,W ′) of independent subsets of G(σ) satisfying

#W = �sn�, #W ′ = �s′n�, #(W ∩W ′) = �tn�.(3)

In the arguments to follow, #Is,s′,t is regarded as a random variable with respect to
the permutation model. Let f(r,s,s′, t) denote the upper exponential growth rate
of the expected value of #Is,s′,t.

f(r,s,s′, t) := limsup
n→∞

n−1 logEperm
r,n

[
#Is,s′,t

]
.

THEOREM 8.5. The function f is uniformly continuous. Moreover, the limit
exists so that

f(r,s,s′, t) := lim
n→∞

n−1 logEperm
r,n

[
#Is,s′,t

]
.

Proof. Let X = {(0,0),(0,1),(1,0),(1,1)}. Let Kn be the set of all admissible
pairs (πvert,πedge) such that πvert takes values in 1

nZ, πedge takes values in 2
dnZ

(d= 2r) and these linear equations are satisfied:

πvert(1,0)+πvert(1,1) = �sn�/n
πvert(0,1)+πvert(1,1) = �s′n�/n

πvert(1,1) = �tn�/n
πedge((i1, j1

)
,
(
i2, j2

))
= 0 if either (i1 = i2 = 1) or

(
j1 = j2 = 1

)
.

A pair (W,W ′) of independent subsets of G(σ) satisfies (3) if and only if
(πvert
x ,π

edge
x ) ∈ Kn where x= (1W ,1W ′).

Let M(r,s,s′, t) be the set of all admissible pairs (πvert,πedge) satisfying these
linear equations:

πvert(1,0)+πvert(1,1) = s

πvert(0,1)+πvert(1,1) = s′

πvert(1,1) = t

πedge((i1, j1
)
,
(
i2, j2

))
= 0 if either

(
i1 = i2 = 1

)
or

(
j1 = j2 = 1

)
.
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Because Kn converges to M(r,s,s′, t) in the Hausdorff topology, Theorem 8.4
implies

f(r,s,s′, t) = max
(πvert,πedge)∈M(r,s,s′,t)

−(2r−1)H
(
πvert)+ rH

(
πedge)(4)

= lim
n→∞

n−1 logEperm
r,n

[
#Is,s′,t

]
.(5)

Continuity of f now follows from continuity of
(
πvert,πedge) 
−→ −(2r−1)H

(
πvert)+ rH

(
πedge)

and

(r,s,s′, t) 
−→M(r,s,s′, t)

where the latter is with respect to the Hausdorff topology on closed subsets of the
space of admissible vector pairs. Uniform continuity follows from continuity and
compactness. �

We are most interested in the special case in which s′ is close to s. In this case
we will use the continuity result to reduce the study of this function to the special
case s= s′. To simplify notation, let f(r,s, t) := f(r,s,s, t).

For σ ∈ Hom(Fr,sym(n)), let Is(σ) be the collection of independent sets W
of the graph G(σ) such that #W = �sn�. Also let

f(r,s) := limsup
n→∞

n−1 logEperm
r,n

[
#Is

]

be the upper exponential growth rate of the expected number of independent sets
of cardinality close to sn.

THEOREM 8.6. Fix 0 ≤ t̄ ≤ s̄ ≤ 1. If t := t(r) := t̄ log(2r)
r and s := s(r) :=

s̄ log(2r)
r then

f(r,s) = η(s)− rs2 +O
(

log(r)/r
)

f(r,s, t) = η(t)+2η(s− t)+ r[t2 −2s2]+O
(

log(r)/r
)

where the error term implicit in the big O(·) notation does not depend on s̄, t̄.

Proof. We keep notation as in the previous proof. Observe that f(r,s,s) =
f(r,s,s,s) counts pairs of identical independent sets. So f(r,s,s) = f(r,s). So
it suffices to obtain the estimate for f(r,s, t). The calculation is similar to one in
Gamarnik-Sudan [19].

By (4),

f(r,s, t) = max
(πvert,πedge)∈M(r,s,s,t)

−(2r−1)H
(
πvert)+ rH

(
πedge).
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Let π = (πvert,πedge) ∈M(r,s,s, t). We claim:

πvert(0,0) = 1−2s+ t πvert(0,1) = s− t
πvert(1,0) = s− t πvert(1,1) = t.

By definition, πvert(1,1) = t. Since πvert(1,0)+πvert(1,1) = s this determines the
value of πvert(1,0). The other two values hold by symmetry and the fact that πvert

is a probability measure. So

H
(
πvert)= η(t)+2η(s− t)+η(1−2s+ t).

Because Shannon entropy H(·) is strictly concave and M(r,s,s, t) is convex,
it follows that there is a unique π0 ∈M(r,s,s, t) such that

f(r,s, t) =−(2r−1)H
(
πvert

0

)
+ rH

(
π

edge
0

)
.

The space X ×X is invariant under these two symmetries:

(
(a,b),(c,d)

) 
−→ (
(c,d),(a,b)

)
,

(
(a,b),(c,d)

) 
−→ (
(b,a),(d,c)

)
.

These generate a group of order 4. This induces a group of symmetries on
Prob(X ×X ). Moreover, if a measure ν ∈ Prob(X ×X ) has both marginals equal
to πvert, then each of its images under this group also has marginals equal to πvert

(for any π ∈M(r,s,s, t)). Moreover, the Shannon entropy is preserved under the
action of this group. Because πedge

0 ∈ Prob(X ×X ) is unique, it is necessarily

invariant under the action of this group. So if x0 = π
edge
0 ((0,0),(0,1)) then

x0 = πedge
0

(
(0,0),(1,0)

)
= πedge

0

(
(0,1),(0,0)

)
= πedge

0

(
(1,0),(0,0)

)
.

Since both marginals of πedge equal πvert, this implies

πedge
0

(
(0,0),(0,0)

)
= 1−2s−2x0,

π
edge
0

(
(0,0),(1,1)

)
= π

edge
0

(
(1,1),(0,0)

)
= t

π
edge
0

(
(1,0),(0,1)

)
= π

edge
0

(
(0,1),(1,0)

)
= s− t−x0.

So H(π
edge
0 ) =G(x0) where

G(x) = 2η(t)+4η(x)+2η(s− t−x)+η(1−2s−2x).
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Use d
dxη(x) =−1− log(x), to obtain:

∂G(x)

∂x
=

∂

∂x

(
4η(x)+2η(s− t−x)+η(1−2s−2x)

)

= 2log

(
(s− t−x)(1−2s−2x)

x2

)

.

Since π0 is maximizing, ∂G(x)
∂x (x0) = 0. So (s− t−x0)(1−2s−2x0) = x2

0.
To simplify notation, we let x = x0 from now on. By collecting terms with a

factor of x, we obtain

H
(
πedge

0

)
= 2η(t)+4η(x)+2η(s− t−x)+η(1−2s−2x)

= 2η(t)−4x log(x)−2(s− t−x) log(s− t−x)
− (1−2s−2x) log(1−2s−2x)

= 2η(t)+2x log

(
(s− t−x)(1−2s−2x)

x2

)

−2(s− t) log(s− t−x)− (1−2s) log(1−2s−2x)

= 2η(t)−2(s− t) log(s− t−x)− (1−2s) log(1−2s−2x).

Use the above and collect terms with a factor of r to obtain

f(r,s, t) =−(2r−1)
[
η(t)+2η(s− t)+η(1−2s+ t)

]

+ r
[
2η(t)−2(s− t) log(s− t−x)− (1−2s) log(1−2s−2x)

]

= η(t)+2η(s− t)− (2r−1)η(1−2s+ t)

+ r
[−4η(s− t)−2(s− t) log(s− t−x)− (1−2s) log(1−2s−2x)

]

Next, we estimate x. Since (s− t−x)(1−2s−2x) = x2,

x2 − (1−2t)x+(s− t)(1−2s) = 0.

Let Δ= s− t. Since x≤ s− t,

2x= 1−2t−
√
(1−2t)2 −4(s− t)(1−2s)

= 1−2s+2Δ−
√
(1−2s+2Δ)2 −4Δ(1−2s)

= 1−2s+2Δ−
√
(1−2s)2 +4Δ2.

By Taylor series expansion, if C > 0 is a constant then
√
C2 + ε=C+ ε

2C +O(ε2).
Use this with C = 1−2s, ε= 4Δ2 to obtain

2x= 2Δ− 2Δ2

(1−2s)
+O

(
Δ4).(6)
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Thus

log(s− t−x) = log

(
(s− t)2

1−2s
+O

(
Δ4)

)

= 2log(s− t)+2s+O
(
(s− t)2)

= 2log(s− t)+2s+O
(
s2).

Thus

−4η(s− t)−2(s− t) log(s− t−x) = 2(s− t)(2log(s− t)− log(s− t−x))

=−4(s− t)s+O(
s3).

Plugging this back in to the equation for f gives

f(r,s, t) = η(t)+2η(s− t)− (2r−1)η(1−2s+ t)

+ r
[−4(s− t)s− (1−2s) log(1−2s−2x)

]
+O

(
rs3).

We use the Taylor series estimates

η(1−2s+ t) = 2s− t− (2s− t)2/2+O
(
s3)

log(1−2s−2x) =−(2s+2x)− (2s+2x)2/2+O
(
s3)

=−2
[
s+x+(s+x)2]+O

(
s3)

=−2(1+ s+x)(s+x)+O
(
s3)

to obtain

f(r,s, t) = η(t)+2η(s− t)− (2r−1)
[
2s− t− (2s− t)2/2

]

−4rs(s− t)+2r(1−2s)(1+ s+x)(s+x)+O
(
rs3).

If r is large enough then log2(r) > r which implies rs3 ≤ s. So we can replace
the O(rs3) with O(s). This allows us to replace the coefficient (2r− 1) on the
bracketted term with 2r. We can also simplify the last term by

2r(1−2s)(1+ s+x)(s+x) = 2r(1− s+x)(s+x)+O(s)

to obtain

f(r,s, t) = η(t)+2η(s− t)−4rs(s− t)−2r
[
2s− t− (2s− t)2/2

]

+2r(1− s+x)(s+x)+O(s).

By factoring out a 2r we obtain

f(r,s, t) = η(t)+2η(s− t)
+2r

[−2s(s− t)−2s+ t+(2s− t)2/2+(1− s+x)(s+x)]+O(s).
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After multiplying out and collecting terms, the quantity in brackets simplifies to

[− s− s2+ t+ t2/2+x+x2].

By (6), this simplifies to [−s2 + t2/2+O(s3)]. So

f(r,s, t) = η(t)+2η(s− t)+ r[t2 −2s2]+O(s).

Since s=O(log(r)/r), this implies the theorem. �

COROLLARY 8.7. Keep notation as in Theorem 8.6. In addition, assume 2/3<
s̄ < 1. Then

max
{
f(r,s, t)− f(r,s) : s/2 ≤ t≤ s

}

= f(r,s)− s̄(1− s̄) log2(r)

r
+O

(
log(r) log log(r)

r

)

.

Proof. By Theorem 8.6,

f(r,s, t)− f(r,s) = f(r,s)+η(t)+2η(s− t)−2η(s)+ rt2+O

(
log(r)
r

)

.

Since s= s̄ log(2r)
r ,

η(s) =−s log(s) = s̄
log2(r)

r
+O

(
log(r) log log(r)

r

)

.

Similar estimates hold for η(t) and η(s− t) and the constant implicit in the O(·)
notation is uniform over s̄, t̄. Therefore,

η(t)+2η(s− t)−2η(s) =−t̄ log2(r)

r
+O

(
log(r) log log(r)

r

)

.

Since rt2 = t̄2 log2(r)
r , this implies

f(r,s, t)− f(r,s) = f(r,s)− (
t̄− t̄2) log2(r)

r
+O

(
log(r) log log(r)

r

)

.

The minimum value of (t̄− t̄2) for t̄ ∈ [s̄/2, s̄] is attained when t̄ = s̄. This is
because x 
→ x− x2 is concave, so the minimum is achieved at either s̄/2 or s̄.
But since s̄ ∈ (2/3,1), (s̄− s̄2) < (s̄/2− s̄2/4). Substituting s̄ for t̄ finishes the
corollary. �
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8.3. The planted model and the uniform model. There are two re-
lated models of random independent sets on random regular graphs that we
need to consider to prove Theorem 8.11. To explain, recall that for σ ∈
Hom(Fr,sym(n)), Is(σ) is the collection of independent sets W of the graph
G(σ) such that #W = �s#V �. The uniform model is the probability measure P

unif
r,s,n

on Hom(Fr,sym(n))×2n defined by:

P
unif
r,s,n(σ,W ) =

1
#Hom(Fr,sym(n))×#Is(σ)

if W ∈ Is(σ) and P
unif
r,s,n(σ,W ) = 0 otherwise. A random sample (σ,W) with law

P
unif
r,s,n can be obtained by first choosing σ ∈Hom(Fr,sym(n)) uniformly at random

and then choosing W ∈ Is(σ) uniformly at random.
The planted model is the probability measure P

plant
r,s,n on Hom(Fr,sym(n))×2n

that is uniformly distributed on pairs (σ,W ) such that W ∈ Is(σ). Thus

P
plant
r,s,n(σ,W ) =

1

#Hom(Fr,sym(n))×E
perm
r,n [#Is(σ)]

if W ∈ Is(σ) and 0 otherwise. Let Eunif
r,s,n and E

plant
r,s,n be the corresponding expecta-

tion operators.
It is relatively easy to compute probabilities with respect to the planted model

instead of the uniform model. However, to prove Theorem 8.11 we need to work
with the uniform model. The next result forms a bridge between the two models.

THEOREM 8.8. Fix s̄ ∈ (0,1) and set s = s̄ log(2r)
r . Let R ≥ r be an integer

satisfying

liminf
n

P
perm
R,n

[
#Is > 0

]
= 1.

Let

XR,r,s,n =

{

σ ∈ Hom(Fr,sym(n)) : #Is(σ)≥ E
perm
r,n [#Is]

2Eperm
R,n [#Is]

}

.

Then

liminf
n→∞

P
perm
r,n (XR,r,s,n) = 1.

Moreover, if A⊂XR,r,s,n×2n then

P
unif
r,s,n(A)≤ P

plant
r,s,n(A)×2Eperm

R,n [#Is].

Remark 6. The proof below is modeled after an analogous result for sparse
Erdös-Renyi graphs obtained in [12].
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Proof of Theorem 8.8. Let FR = 〈a1, . . . ,aR〉 and Fr = 〈a1, . . . ,ar〉. Thus Fr

is a subgroup of FR. Let σ be a sample of P
perm
R,n (so σ is a uniformly random

homomorphism from FR to sym(n)). Let σ � Fr denote the restriction of σ to Fr.
Any independent set of G(σ) is automatically an independent set of G(σ �

Fr) since the latter is a subgraph of the former. If W ⊂ [n] is an independent set
for G(σ � Fr) then the probability that W is also an independent set for G(σ)
depends only on |W |,(R− r) and n. It is easy to derive an exact expression for
this probability, but we do not need it.

Let Yn be the set of all σ ∈ Hom(FR,sym(n)) such that the restriction σ � Fr /∈
XR,r,s,n. Since Pperm

R,n (Yn) = 1−P
perm
r,n (XR,r,s,n), it suffices to prove Pperm

R,n (Yn)→ 0
as n→ ∞. Since the probability that an independent subset W of G(σ � Fr) is an
independent subset of G(σ) does not depend on σ � Fr,

E
perm
R,n [#Is|Yn] = E

perm
R,n

[
#Is(σ � Fr)

∣
∣
∣Yn

]
E

perm
R,n [#Is]

E
perm
r,n [#Is]

.

By definition of Yn and XR,r,s,n,

E
perm
R,n

[
#Is(σ � Fr)

∣
∣
∣Yn

]
<

E
perm
r,n [#Is]

2Eperm
R,n [#Is]

.

Combine this with the equality above to obtain

E
perm
R,n [#Is|Yn]<

1
2
.(7)

By Markov’s inequality,

P
perm
R,n

(
#Is ≥ 2Eperm

R,n [#Is|Yn]
∣
∣Yn

)≤ 1
2
.

Multiply both sides of the inequality above by -1 and add 1 to obtain

1/2 ≤ P
perm
R,n

(
#Is < 2Eperm

R,n

[
#Is|Yn

]∣
∣Yn

)≤ P
perm
R,n

(
#Is < 1

∣
∣Yn

)
.

The second inequality above follows from (7). Since P
perm
R,n

(
#Is < 1

∣
∣Yn

) ≤
P

perm
R,n(#Is<1)

P
perm
R,n(Yn)

, multiply denominators in the inequality 1/2 ≤ P
perm
R,n(#Is<1)

P
perm
R,n(Yn)

to obtain

P
perm
R,n (Yn)≤ 2Pperm

R,n

(
#Is < 1

)
.

However, Pperm
R,n (#Is < 1) tends to zero as n → ∞ by assumption. This shows

P
perm
R,n (Yn)→ 0 and therefore P

perm
r,n (XR,r,s,n)→ 1 as n→ ∞.
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To verify the last statement, let (σ,W )∈XR,r,s,n×2n be such thatW ∈Is(σ).
Then

P
unif
r,s,n(σ,W ) =

1
#Is(σ)#Hom(Fr,sym(n))

≤ 2Eperm
R,n [#Is]

E
perm
r,n [#Is]#Hom(Fr,sym(n))

= P
plant
r,s,n(σ,W )×2Eperm

R,n [#Is].

These inequalities are justified in turn by the definition of Punif
r,s,n, the assumption

that σ ∈XR,r,s,n and the definition of Pplant
r,s,n. �

Define MAXIND : Hom(Fr,sym(n))→ R by

MAXIND(σ) = n−1 max
{

#W : W is an independent subset of G(σ)
}
.

PROPOSITION 8.9. For all r sufficiently large, there is a constant α(r) such
that

inf
δ>0

lim
n→∞

P
perm
r,n

(
MAXIND ∈ (

α(r)− δ,α(r)+ δ))= 1.

Moreover,

α(r) =
log(r)
r

+O
(

log log(r)/r
)
.

Remark 7. The limit was proven to exist in [5]. The asymptotic statement fol-
lows from earlier results of Frieze-Luczak [18] in the case of the configuration
model. Since the two models are contiguous [20] this implies the proposition. An
exact formula for α(r) (for sufficiently large r) was recently obtained by Ding-Sly-
Sun [13].

COROLLARY 8.10. Fix s̄ ∈ (0,1) and set s= s̄ log(2r)
r . Let σn ∼ P

perm
r,n . Then

n−1 log #Is(σn)≥ f(r,s)− on(1)−O
(

log(r) log log(r)
r

)

with probability tending to 1 as n→ ∞. To be precise, this means that there exists
δ(r) =O

( log(r) log log(r)
r

)
such that for every ε > 0,

lim
n→∞

P
perm
r,n

(
n−1 log #Is(σn)≥ f(r,s)− ε− δ(r))= 1.

Proof. Let R be the largest integer such that α(R)> s. By Proposition 8.9,

s < α(R) =
log(R)
R

+O(log log(R)/R).
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Observe that the function x 
→ log(x)
x is monotone increasing for all x ≥ e. So if

x≥ e then

0 ≤ log(x)
x

− log(x+1)
x+1

=
log(x)
x

− log(x)+ log(1+1/x)
x+1

=
log(x)
x(x+1)

− log(1+1/x)
x+1

≤ log(x)
x2 .

Since log(x)
x2 ≤ log log(x)

x , this implies

α(R)−α(R+1) =O(log log(R)/R)

and therefore we can improve the previous inequality to an equality: s = log(R)
R +

O(log log(R)/R).
By Theorem 8.6,

f(R,s) = η(s)− s2R+O(log(R)/R).

Since s= log(R)
R +O(log log(R)/R),

η(s) =
log2(R)

R
+O

(
log(R) log log(R)

R

)

s2R=
log2(R)

R
+O

(
log(R) log log(R)

R

)

.

So f(R,s) = O
( log(R) log log(R)

R

)
. Since x 
→ log(x) log log(x)

x is monotone decreasing
(for all large enough x), this implies

f(R,s) =O

(
log(r) log log(r)

r

)

.(8)

Theorem 8.8 implies that if σn ∼ P
perm
r,n then with probability tending to 1 as

n→ ∞,

n−1 log#Is(σn)≥ n−1 logEperm
r,n [#Is]−n−1 log(2Eperm

R,n [#Is])
= f(r,s)− f(R,s)− on(1)

= f(r,s)− on(1)−O
(

log(r) log log(r)
r

)

. �

8.4. Bounding clusters of independent sets. For (σ,W ) ∈ Hom(Fr,

sym(n))× 2n, let Cls,ε(σ,W ) ⊂ 2n be the collection of independent subsets W ′

of the graph G(σ) such that |#W ′/n− s| ≤ ε and |W ∩W ′| ≥ (s/2)n. Informally,
Cls,ε(σ,W ) represents the cluster containing W in

⋃
s′∈(s−ε,s+ε)Is′(σ).
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THEOREM 8.11. Let s̄ ∈ (2+
√

2
4 ,1) and s := s̄ log(2r)

r . Then there exists γ =

γ(r, s̄)> 0, ε= ε(r, s̄)> 0 and 0 < b1 < b2 < s, b2 > s/2, such that the following
holds. Let (σn,Wn) be random with law P

unif
r,s,n. Then with probability tending to 1

as n→ ∞,
(1) there does not exist an independent set W ′ of G(σn) such that #W ′/n ∈

(s− ε,s+ ε) and b1n≤ |Wn∩W ′| ≤ b2n,
(2) n−1 log#Cls,ε(σn,Wn)≤ f(r,s)−γ.

Proof. The first claim was proven by Gamarnik-Sudan [19, Theorem 2.6] with
the configuration model in place of the permutation model. This uses the hypoth-
esis s̄ > 2+

√
2

4 . Since the two models are contiguous by [20], this implies the first
claim. The proof of the second claim given below is modeled after the proof of an
analogous result for sparse Erdös-Renyi graphs in [12].

For σ ∈Hom(Fr,sym(n)), let Is;ε(σ) be the set of all pairs (W,W ′) satisfying:
(1) both W,W ′ are independent subsets of Gσ ,
(2) #W = �sn�, |#W ′/n− s| ≤ ε,
(3) |W ∩W ′| ≥ (s/2)n.

The definition of the planted model implies:

E
plant
r,s,n[#Cls,ε] =

E
perm
r,n [#Is;ε]

E
perm
r,n [#Is]

.(9)

By Theorem 8.4 and (9),

lim
n→∞

n−1 logEplant
r,s,n

[
#Cls,ε

]

= max
{
f(r,s,s′, t)− f(r,s) : s′ ∈ [s− ε,s+ ε],s/2 ≤ t≤ s

}
.

By Theorem 8.5, f is uniformly continuous. So there exists ε = ε(r, s̄) > 0 such
that

max
s′∈[s−ε,s+ε],s/2≤t≤s

f(r,s,s′, t)− max
s/2≤t≤s

f(r,s, t)≤ log(r) log log(r)
r

.

Assume from now on that |s− s′|< ε. Then

lim
n→∞

n−1 logEplant
r,s,n

[
#Cls,ε

]
= max

{
f(r,s, t)− f(r,s) : s/2 ≤ t≤ s

}

+O

(
log(r) log log(r)

r

)

.

By Corollary 8.7,

lim
n→∞

n−1 logEplant
r,s,n[#Cls,ε] = f(r,s)− s̄(1− s̄) log2(r)

r

+O

(
log(r) log log(r)

r

)

.

(10)
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Next these estimates are transferred from the planted model to the uniform
model. To simplify notation, let Xn = XR,r,s,n be as in Theorem 8.8 where R is
the largest integer such that α(R)≥ s. By Theorem 8.8,

E
unif
r,s,n[#Cls,ε |Xn] = P

perm
r,n (Xn)

−1
E

unif
r,s,n[#Cls,ε1Xn ]

≤ P
perm
r,n (Xn)

−1
E

plant
r,s,n[#Cls,ε1Xn ]×2Eperm

R,n (#Is)
≤ P

perm
r,n (Xn)

−1
E

plant
r,s,n[#Cls,ε]×2Eperm

R,n (#Is).

Recall that f(R,s)= limn→∞n
−1 logEperm

R,n (#Is). Combined with (10), the fact that
P

perm
r,n (Xn)→ 1 as n→ ∞ and equation (8), this implies

limsup
n→∞

n−1 logEunif
r,s,n[#Cls,ε |Xn]≤ f(r,s)− s̄(1− s̄) log2(r)

r

+O

(
log(r) log log(r)

r

)

.

(11)

By Markov’s inequality, this implies the theorem with any choice of γ = γ(r, s̄)

satisfying

0 < γ(r, s̄)< s̄(1− s̄) log2(r)

r
+O

(
log(r) log log(r)

r

)

. �

8.5. A variational principle. The next result will be used in the proof of
Theorem 1.2 to obtain an invariant measure that is, in some sense, a subsequential
limit of the uniform models. Its proof uses the same ideas that are behind Kerr-Li’s
proof of the Variational Principle for sofic entropy [26].

PROPOSITION 8.12. Let Σ = {σn}∞
n=1 be a sofic approximation to Γ, X a

finite set and for each n∈N, let Wn ⊂X Vn be given. Then there exists an invariant
measure μ ∈ ProbΓ(XΓ) satisfying

hΣ(μ)≥ inf
O�μ

limsup
n→∞

|Vn|−1 log #(Ω(O,σn)∩Wn) = limsup
n→∞

|Vn|−1 log#Wn.

Proof. The inequality is trivial, so it suffices to prove the equality.
The space Prob(XΓ) is compact and metrizable in the weak* topology. So fix

a metric on Prob(XΓ) with diameter ≤ 1. Choose a sequence U (j) (j = 1,2, . . .)
of finite open covers of ProbΓ(XΓ) ⊂ Prob(XΓ) by open balls of radius 2−j . For
convenience, set U (0) = {Prob(XΓ)}.

We will inductively construct a sequence {O(j)}∞
j=0 of open sets O(j) ∈ U (j)

and positive constants {m(j)}∞
j=1 satisfying: for every J ∈ N,

(1) O(j)∩O(j+1) �= /0 for all 0 ≤ j < J ,
(2) for every 0 ≤ j ≤ J , there exist infinitely many n such that

#(Wn∩Ω(O(j),σn))≥ #Wn/m
(j).
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For the base case, set O(0) = Prob(XΓ) and m(0) = 1. For induction, suppose there
is some J ≥ 1, open subsets O(1), . . . ,O(J) and constants {m(j)}Jj=1 satisfying the
criteria above.

For each n, let O(J+1)
n ∈ U (J+1) be an open set such that O(J+1)

n ∩O(J) �= /0
and

#(Wn∩Ω(O(J+1)
n ,σn))≥ #(Wn ∩Ω(O′,σn))

for all O′ ∈ U (J+1) such that O′ ∩O(J) �= /0. Let O(J+1) ∈ U (J+1) be an open
subset such that there exists infinitely many n satisfying:

O(J+1) =O(J+1)
n

#(Wn∩Ω(O(J),σn))≥ #Wn/m
(J).

Let

m(J+1) :=m(J)
∣
∣
∣U (J+1)

∣
∣
∣ .

Since the number of open sets O′ ∈ U (J+1) that intersect O(J) nontrivially is at
most

∣
∣U (J+1)

∣
∣ and

Ω
(
O(J),σn

)
⊂

⋃{
Ω(O′,σn) : O′ ∩O(J) �= /0

}
,

it follows that for infinitely many n,

#(Wn ∩Ω(O(J+1),σn))≥ |U (J+1)|−1#
(
Wn∩Ω

(
O(J),σn

))

≥ 1

m(J)|U (J+1)|#Wn.

This proves the inductive step and the claim.
Since each U (j) is a covering by balls of radius 2−j , if μj ∈ O(j) is arbitrary,

then {μj}j is a Cauchy sequence. Let μ = limj→∞μj . If O ⊂ ProbΓ(XΓ) is any
open subset containing μ then O contains O(j) for some j. Thus

limsup
n→∞

|Vn|−1 log#Wn ≥ inf
O�μ

limsup
n→∞

|Vn|−1 log#(Ω(O,σn)∩Wn)

≥ limsup
n→∞

|Vn|−1 log #(Ω(O(j),σn)∩Wn)

≥ limsup
n→∞

|Vn|−1 log
#Wn

m(j)
= limsup

n→∞
|Vn|−1 log#Wn.

This proves the equality. �
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8.6. Proof of Theorem 1.2.

Proof of Theorem 1.2. Choose constants s̄,s,r,b1, b2, ε,γ satisfying The-
orem 8.11. By choosing ε > 0 smaller if necessary it may be assumed that
ε/5 < b2 − b1 and (ε/10) log(2) +H(ε/10,1 − ε/10) < γ/6 where H(a,b) =

−a log(a)− b log(b) for any a,b > 0.
Given a homomorphism σ : Fr → sym(n), let W (σ)⊂ Is(σ) be the collection

of independent subsets W satisfying
(1) there does not exist an independent set W ′ of G(σn) such that #W ′/n ∈

(s− ε,s+ ε) and b1n≤ |W ∩W ′| ≤ b2n,
(2)

n−1 log(#Cls,ε(σn,W ))≤ f(r,s)−γ/2.(12)

An independent set W of G(σn) is identified with its indicator function 1W ∈
{0,1}n. So by abuse of notation one may consider W (σ) to be a subset of {0,1}n .

By Corollaries 8.2, 8.10 and Theorem 8.11 there exists a sofic approximation
Σ= {σn}n∈N with σn : Fr → sym(n) such that if Wn := W (σn) then

limsup
n→∞

n−1 log(#Wn)≥ f(r,s).

By Proposition 8.12, there exists an invariant measure μ ∈ {0,1}Fr such that

hΣ(μ)≥ inf
O�μ

limsup
n→∞

n−1 log #
(
Ω
(O,σn

)∩Wn

)
= limsup

n→∞
n−1 log#Wn ≥ f(r,s).

For g ∈ Fr, let πg : {0,1}Fr → {0,1} be the coordinate projection. Let O2 be
the set of measures ν ∈ Prob({0,1}Fr ) satisfying

(1) ν(πe = 1) ∈ (s− ε/2,s+ ε/2)
(2) ν(either (πe,πai) = (1,1) or (πe,πa−1

i
) = (1,1) for some i)< ε/10.

Let 0 < κ2 be a constant with b2 −κ2 − ε/5> b1.
It suffices to show that if 0<κ1 ≤ κ2 is any constant and O1 ⊂ Prob({0,1}Fr )

is any open neighborhood of μ with O1 ⊂O2 then

limsup
n

n−1 logdimQ(H0(O1,O2,κ1,κ2,σn)⊗ZQ)≥ γ/3.

In the notation above, the superscript L is omitted because all 0-cycles are fi-
nite sums of length one 0-cycles. So the parameter L is irrelevant to studying 0-
dimensional homology.

For x ∈ Ω(O1,σn)∩Wn, let C(x) be the set of all y ∈ Ω(O1,σn) such that

x−y ∈B0(O2,κ2,σn).

In other words, y ∈ C(x) if and only if there exists a path x = x0,x1, . . . ,xk = y

such that xi ∈ Ω(O2,σn) for all i and d(xi,xi+1) < κ2. Observe that Ω(O1,σn)∩
Wn is the disjoint union sets of the form C(x)∩Wn.
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We will estimate the cardinality #C(x) by showing that C(x) is con-
tained in the ε/10-neighborhood of Cls,ε(σn,W1). So suppose y ∈ C(x) and
let x0,x1, . . . ,xk = y be a path as above. Because xi ∈ Ω(O2,σn), its empirical
measure is in O2, which implies that the “bad” set

B(xi)

:=
{
v ∈ [n] : x(v) = 1 and either x

(
σ
(
ai
)
v
)
= 1 or x

(
s
(
a−1
i

)
v
)
= 1 for some i

}

has cardinality at most (ε/10)n. Let Wi = x−1
i (1) \B(xi). Then Wi is an in-

dependent subset of G(σn) with density |Wi|/n ∈ (s− ε,s+ ε). Observe that
x−1(1) =W1 since x ∈ Wn is an independent set.

Let dHamm denote the normalized Hamming metric on subsets of [n]. So

dHamm(W,W
′) = |W �W ′|/n.

Then

dHamm(Wi,Wi+1)≤ d(xi,xi+1)+ |B(xi)|/n+ |B(xi+1)|/n < κ2 + ε/5.

for all i.
Let Cl(x) be the collection of all independent sets W of G(σn) such that

|W |/n ∈ (s− ε,s+ ε) and |W ∩W1|/n≥ b2. I claim that Wk ∈ Cl(x). If not, then
there exists a smallest number j ≥ 2 such that Wj /∈ Cl(x). Since Wj−1 ∈ Cl(x),
|Wj−1 ∩W1|/n ≥ b2. Thus

|Wj ∩W1|/n≥ |Wj−1 ∩W1|/n−dHamm(Wj−1,Wj)> b2 −κ2 − ε/5> b1.

Since x ∈ Wn, the definition of Wn implies |Wj ∩W1|/n≥ b2 which implies Wj ∈
Cl(x). This contradiction proves the claim.

Since Wk ∈ Cl(x) ⊂ Cls,ε(σn,W1) and |y−1(1) �Wk| ≤ (ε/10)n, it follows
that C(x) is contained in the ε/10-neighborhood of Cls,ε(σn,W1). Thus

#C(x)≤ 2(ε/10)n
(

n

�εn/10�
)

#Cls,ε(σn,W1).

Combine the previous inequality with (12) to obtain

n−1 log#C(x)≤ (ε/10) log(2)+H(ε/10,1− ε/10)+ f(r,s)−γ/2+ on(1)

< f(r,s)−γ/3+ on(1).

Since Ω(O1,σn)∩Wn is a disjoint union of sets of the form C(x)∩Wn and

limsup
n→∞

n−1 log #
(
Ω
(O1,σn

)∩Wn

)≥ f(r,s),

it follows that the number of different subsets of the formC(x) for x∈Ω(O1,σn)∩
Wn is at least e(γ/3)n up to subexponential factors. However each subset of the form



224 L. BOWEN

C(x) contributes a dimension to the homology group H0(O1,O2,κ1,κ2,σn)⊗ZQ.
Thus

limsup
n→∞

n−1 log dimQ

(
H0

(O1,O2,κ1,κ2,σn
)⊗ZQ

)≥γ/3>0. �

9. Questions.
(1) Does there exist an action whose sofic homology does not vanish in di-

mension 1 or in some higher dimension? Does there exist such an example which
is a Markov chain over a free group?

(2) How does the d-dimensional sofic homology change under standard oper-
ations or perturbations of group actions, such as taking a direct product, passing
to a subgroup of the acting group, coinducing from an action of a subgroup, er-
godic decomposition, direct limits, inverse limits, taking a weak* limit of invariant
measures or a d-bar limit?

(3) Is bΣ,0(μ) a continuous or semi-continuous function of μ ∈ Prob(XΓ) if
X is finite? Given a positive number 0 < t < log |X | does there exist an invariant
measure μ ∈ ProbΓ(XΓ) with bΣ,0(μ) = t?

(4) It is well known that sofic entropy can increase under a factor map. To
correct for this, several authors have defined the sofic entropy of a factor relative
to the source. This notion was inspired by Kerr’s approach to sofic entropy in [25]
and has been variously called outer sofic entropy, extension entropy or entropy in
the presence [28, 22, 23, 34, 36]. It seems likely that there should be an analogous
definition of outer sofic homology. If so, this might be useful for defining relative
sofic homology.

(5) Let K be a compact abelian group and Γ a countable group. Then K is
identified with the subgroup of constants of KΓ. This subgroup is Γ-invariant and
therefore K

Γ/K is a compact abelian group on which Γ acts by automorphisms.
The action Γ�K

Γ/K is called a Popa factor. In [2] Tim Austin proved that if Γ
has property (T), is residually finite and K = R/Z then there is a sofic approxi-
mation Σ relative to which the Popa factor does not have connected model spaces.
This means that its 0-dimensional sofic homology is not trivial. In spite of this, I
conjecture that bΣ,0(Γ � K

Γ/K) = 0 for any sofic approximation Σ. In fact, my
guess is that the sofic homology groups satisfy a bound of the form:

dimQ(H0(O1,O2,κ1,κ2,σn)⊗ZQ)≤B

where B does not depend on n (but is allowed to depend on everything else).
(6) I conjecture that any strongly ergodic distal action Γ � (X,μ) has the

property that its 0-dimensional sofic homology is not trivial. These actions have
zero Σ-entropy and therefore have 0-th exponential Betti number equal to zero.
My guess is that, like the Popa factors, such actions satisfy a constant bound on the
growth of their homology.
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(7) Fix a sofic approximation Σ = {σi : Γ → sym(Vi)}. Let Fi : Abel → R

be the function Fi(G) =
logdimQ(G⊗ZQ)

log #Vi
. The invariant FΣ,d(μ) defined in Corollary

4.1 is the polynomial growth rate of the d-dimensional sofic homology. Given t > 0
and a dimension d≥ 0 does there exist an invariant measure μ with FΣ,d(μ) = t?

(8) The present paper shows that free groups of sufficiently large rank admit
actions without the Weak Pinsker Property. Does the same result hold for all non-
amenable sofic groups?

(9) If the 0-dimensional sofic homology of an ergodic action vanishes, then
does the action have the Weak Pinsker Property?

(10) Does there exist an ergodic action with positive entropy that has no non-
trivial direct Bernoulli factors? I conjecture that the frozen model introduced in
[13] has this property.
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