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A TOPOLOGICAL DYNAMICAL SYSTEM WITH TWO
DIFFERENT POSITIVE SOFIC ENTROPIES

DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

ABSTRACT. A sofic approximation to a countable group is a sequence of partial
actions on finite sets that asymptotically approximates the action of the group
on itself by left-translations. A group is sofic if it admits a sofic approximation.
Sofic entropy theory is a generalization of classical entropy theory in dynamics
to actions by sofic groups. However, the sofic entropy of an action may depend
on a choice of sofic approximation. All previously known examples showing
this dependence rely on degenerate behavior. This paper exhibits an explicit
example of a mixing subshift of finite type with two different positive sofic en-
tropies. The example is inspired by statistical physics literature on 2-colorings
of random hyper-graphs.
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1. INTRODUCTION

The topological entropy of a homeomorphism 7" : X — X of a compact Hausdorff
space X was introduced in [I]. It was generalized to actions of amenable groups
via Fglner sequences in the 1970s [2] and to certain non-amenable groups via sofic
approximations more recently [3]. It plays a major role in the classification and
structure theory of topological dynamical systems.
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To explain further, suppose I is a countable group with identity 1r and o : I —
Sym(V) is a map where V is a finite set and Sym(V') is the group of permutations
of V. It is not required that o is a homomorphism. Let D € I' (the symbol €
denotes a finite subset) and 6 > 0. Then o is called

e (D, d)-multiplicative if
#{veV: o(gh)v=0(g)o(h)v Vg,h € D} > (1 —0)|V],
e (D, d)-trace preserving if

#{veV: o(flv£vVfeD\{lr}} > (1 -0)|V]|,
e (D, d)-sofic if it is both (D, d§)-multiplicative and (D, d)-trace preserving.
A sofic approximation to I' consists of a sequence ¥ = {0;};en of maps o; : I' —
Sym(V;) such that for all finite D C T, § > 0 and all but finitely many 4, o; is
(D, d)-sofic. A group is sofic if it admits a sofic approximation. In this paper we
will usually assume |V;| = i.

If T' acts by homeomorphisms on a compact Hausdorff space X and a sofic
approximation ¥ to I' is given then the Y-entropy of the action is a topological
conjugacy invariant, denoted by hx(I'nX) € {—o0} U0, o0]. It is also called sofic
entropy if ¥ is understood. It was first defined in [3] where the authors obtain
a variational principle connecting it with the previously introduced notion of sofic
measure entropy [4]. It is monotone under embeddings and additive under direct
products but not monotone under factor maps. See [5] for a survey.

A curious feature of this new entropy is that it may depend on the choice of sofic
approximation. This is not always the case; for example, if I' is amenable then sofic
entropy and classical entropy always agree. However, there are examples of actions
' X by non-amenable groups I' with sofic approximations 3, 3o satisfying

hs,( TAX) = —00 < hy,(TX).

See [5l Theorem 4.1]. The case hg, (I'~X) = —oo is considered degenerate: it
implies that there are no good models for the action with respect to the given sofic
approximation. Until this paper, it was an open problem whether a mixing action
could have two different non-negative values of sofic entropy. Our main result is:

Theorem 1.1. There exists a countable group I', a mizing action I'X by home-
omorphisms on a compact metrizable space X and two sofic approximations X1, Yo
to I' such that

0 < hy, T'nX) < hg,(I'nX) < o0.

Remark 1. The range of sofic entropies for an action I'»X is the set of all non-
negative numbers of the form hs(I'vX) as 3 varies over all sofic approximations
to I'. By taking disjoint unions of copies of sofic approximations, it is possible to
show the range of sofic entropies is an interval (which may be empty or a singleton).
So for the example of Theorem [T}, the range of sofic entropies is uncountable.

Remark 2. It remains an open problem whether there is a measure-preserving action
I'v(X, 1) with two different non-negative sofic entropies. Theorem [I1] does not
settle this problem because it is entirely possible that any invariant measure p on
X with hs, T (X, p)) > hy, (X)) satisfies hx, (T(X, 1)) = —oc.

In this paper we often assume V,, = [n] := {1, 2, ..., n}.
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1.1. Random sofic approximations. We do not know of any explicit sofic ap-
proximations to I which are amenable to analysis. Instead, we study random sofic
approximations. For the purposes of this paper, these are sequences {P,}, of
probability measures P, on spaces of homomorphisms Hom(T', Sym(n)) such that,
for any finite D C I' and § > 0 there is an € > 0 such that

P,.(o is (D, §)-sofic) > 1 —n""

for all sufficiently large n. Because n™¢" decays super-exponentially, if €, C
Hom(T',Sym(n)) is any sequence with an exponential lower bound of the form
P, (£2,) > e~ (for some constant ¢ > 0) then there exists a sofic approximation
¥ ={o,} with o, € Q, for all n.

It is this non-constructive existence result that enables us to use random sofic
approximations to prove Theorem [[.1]

1.2. Proper colorings of random hyper-graphs from a statistical physics
viewpoint. The idea for our main construction comes from studies of proper col-
orings of random hyper-graphs. Although these studies have very different moti-
vations than those that inspired this paper, the examples that they provide are
roughly the same as the examples used to prove Theorem [[LT] The relevant litera-
ture and an outline is presented next.

A hyper-graph is a pair G = (V, E) where F is a collection of subsets of V.
Elements of E are called hyper-edges but we will call them edges for brevity’s
sake. G is k-uniform if every edge e € E has cardinality k.

A 2-coloring of G isamap x : V — {0,1}. An edge e € FE is monochromatic
for x if |x(e)] = 1. A coloring is proper if it has no monochromatic edges.

Let Hy(n,m) denote a hyper-graph chosen uniformly among all ((}1)) k-uniform
hyper-graphs with n vertices and m edges. We will consider the number of proper
2-colorings of Hy(n,m) when k is large but fixed, and the ratio of edges to vertices
r :=m/n is bounded above and below by constants.

This random hyper-graph model was studied in [6H8]. These works are motivated
by the satisfiability conjecture. To explain, the lower satisfiability threshold
Toat = Taat (k) is the supremum over all r such that

lim Pr[Hg(n, [rn]) is properly 2-colorable] = 1.
n—o0

+ +

sat — Tsat

The upper satisfiability threshold r
that

(k) is the infimum over all r such

lim Pr[H(n, [rn]) is properly 2-colorable] = 0.
n—o0

The satisfiability conjecture posits that 7., = ri,. It is still open.

Bounds on these thresholds were first obtained in [6] as follows. Let Z(G) be
the number of proper 2-colorings of a hyper-graph G. A first moment computation
shows that

fr(r) = lim n~'logE[Z(Hg(n, [rn]))],
n—oo
where fj,(r) := log(2) +7log(1—217%). Let rus; = rarst (k) be such that fi(rgest) =
0. If r > rgyet then fi(r) < 0. Therefore 7, < rge.
Let rsecona be the supremum over numbers r > 0 such that the second moment
E[Z(Hy(n, [rn]))?] is equal to E[Z(H(n,[rn]))]* up to sub-exponential factors.

The Paley-Zygmund inequality gives the bound rsecond < Tgqs-
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In [6], it is shown that

log(2 log(2
S ogz( ) ok _ 0g2( )+O(2—k)7
log(2 log(2) +1 _
T'second = g2( )2k - g( 2) + 0(2 k)

So there is a constant-sized gap between the two thresholds.

A more detailed view of the second moment is illuminating. But before explain-
ing, we need some terminology. Let [n] be the set of natural numbers {1,2,..,n}.
A coloring x of [n] is equitable if [x~1(0)| = |x~1(1)|]. We will assume from now
on that n is even so that equitable colorings of [n] exist. Let Z.(G) be the num-
ber of equitable proper colorings of a hyper-graph G. A computation shows that
E[Z(Hg(n, [rn]))] equals E[Z.(Hy(n, [rn]))] up to sub-exponential factors. This
enables us to work with equitable proper colorings in place of all proper colorings.
This reduces the computations because there is only one equitable coloring up to
the action of the symmetric group Sym(n).

A computation shows that the second moment factorizes as

E[Ze(Hi(n,m))?] = E[Zc(H,(n, m))E[Ze(Hi(n, m))|x is proper],

where x : [n] — {0,1} is any equitable 2-coloring. Let H;X(n,m) be the random
hyper-graph chosen by conditioning Hy(n,m) on the event that x is a proper 2-
coloring. This is called the planted model and x is the planted coloring. So
computing the second moment of Z.(Hy(n,m)) reduces to computing the first mo-
ment of Z.(H}(n,m)).

The normalized Hamming distance between colorings x, X’ : [n] — {0,1} is

dn (X, X') = n" v € [n] + x(v) # X (v)}.
Let ZX(6) be the number of equitable proper colorings x’ with d,,(x, x’) = . Then

Z(HY (n,m)) = Y 2X(0).
8

In [6], it is shown that E[ZX(d)|x is proper] is equal to exp(ni(d)) (up to sub-
exponential factors) where 1 is an explicit function.

Note that 1(0) = (1 — §) (since if X’ is a proper equitable coloring then so is
1—x" and d,(x,1 —x') =1—4dn(x,X')). A computation shows ¥(1/2) = fx(r).
If ¥ < rsecond then 1¥(d) is uniquely maximized at § = 1/2. However, if 7 > r'second
then the maximum of ¢ is attained in the interval § € [0,27%/2]. In fact, 1(8) is
negative for 6 € [27%/2,1/2 — 27%/2]. So with high probability, there are no proper
equitable colorings x’ with d,, (x, x’) € [27%/2,1/2—27%/2]. This motivates defining
the local cluster, denoted C(x), to be the set of all proper equitable 2-colorings
X with dy,(x, x') < 27%/2.

The papers [7l[8] obtain a stronger lower bound on the lower satisfiability thresh-
old using an argument they call the enhanced second moment method. To explain,
we need some terminology. We say a proper equitable coloring x is good if the size
of the local cluster |C(x)| is bounded by E[Z.(H(n,m))]. One of the main results
of [7[8] is that Pr[x is good|x is proper] tends to 1 as n — oo with m = rn 4+ O(1)
and 7 < Tsecond + %g;(z) +0k(1). An application of the Paley-Zygmund inequality
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to the number of good colorings yields the improved lower bound

1 —log(2
Tsecond T Tg() + Ok(l) < Ts;t'

The argument showing Pr[x is good|x is proper] — 1 is combinatorial. It is shown
that (with high probability) there is a set R C [n] with cardinality |R| ~ (1—-2"%)n
which is rigid in the following sense: if x’ : [n] — {0,1} is any proper equitable
2-coloring then either: the restriction of x’ to R is the same as the restriction of
X to R or d,(x',x) is at least cn/k' for some constants c¢,t > 0. This rigid set
is constructed explicitly in terms of local combinatorial data of the coloring x on
H)Y(n,m).

In summary, these papers study two random models Hy(n,m) and H}(n,m).
When r = m/n is in the interval (Tseconds T'second + %g@)), the typical number
of proper colorings of Hy(n,m) grows exponentially in n but is smaller (by an
exponential factor) than the expected number of proper colorings of H}(n,m). It
is these facts that we will generalize, by replacing Hy(n, m), HX(n,m) with random
sofic approximations to a group I so that the exponential growth rate of the number
of proper colorings roughly corresponds with sofic entropy.

Although the models that we study in this paper are similar to the models in
[6H8], they are different enough that we develop all results from scratch. More-
over, although the strategies we employ are roughly same, the proof details differ
substantially. The reader need not be familiar with these papers to read this paper.

1.3. The action. In the rest of this introduction, we introduce the action I'»X
in Theorem [[.1] and outline the first steps of its proof. So fix positive integers k, d.
Let
D= (s1,...,80: st =8k =... =5k =1)

be the free product of d copies of Z/kZ.

The Cayley hyper-tree of I', denoted G = (V, E), has vertex set V =T. The
edges are the left-cosets of the generator subgroups. That is, each edge e € E has
the form e = {gs] : 0<j <k —1} forsome g€ "and 1 <i <d.

Remark 3. It can be shown by considering each element of I as a reduced word
in the generators si, ..., sq that G is a hyper-tree in the sense that there exists
a unique “hyper-path” between any two vertices. More precisely, for any v,w €
V', there exists a unique sequence of edges ej,..,e; such that v € e;, w € e,
le;Neir1] =1, e; # e; for any i # j, and v ¢ ea, w ¢ ¢;—1. More intuitively, there
are no “hyper-loops” in G.

The group I' acts on {0,1}" by (g9z)f = z4-1y for g, f € T,z € {0,1}'. Let
X c {0,1}" be the subset of proper 2-colorings. It is a closed I'-invariant subspace.
Furthermore, I'» X is topologically mixing:

Claim 1. For any nonempty open sets A, B in X, there exists N such that for any
g € T with |g| > N, gAN B # (. Here |g| denotes the shortest word length of
representations of g by generators s, ..., Sq.

Proof. It suffices to show the claim for A,B being cylinder sets. We make a further
simplification by assuming each A, B is a cylinder set on a union of hyper-edges,
and a yet further simplification that each A, B is a cylinder set on a connected union
of hyper-edges. Informally, by shifting the “coordinates” on which A depends so
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that they are far enough separated from the coordinates on which B depends, we
can always fill in the rest of the graph to get a proper coloring.

More precisely, suppose A = {z € X : © | F4 = xa}, where F4 C E such
that for any ey, es € F4 there is a finite sequence of f1, -+, fo € Fa such that
exNfi#0, finfix1 #0,and frNes #0, Fa = Ueeg e, and x4 : Fa — {0,1}
and similarly B ={x € X : z [ Fg = xB}. x4 and xp must be bichromatic on
each edge in their respective domains since A and B are nonempty.

Let N = max{|h| : h € Fa} + max{|h| : h € Fp} + k. Then it can be shown
for any g with |g| > N that g71F4 N Fg = (. It follows from our earlier remark
that there exists a unique hyper-path connecting g='F4 to Fp (otherwise there
would be a hyperloop in GG). Thus for example one can recursively fill in a coloring
on the rest of I' by levels of hyperedges - first the hyperedges adjacent to g1 F4
and Fpg, then the next layer of adjacent hyperedges, and so on. At each step,
most hyperedges only have one vertex whose color is determined, so it is always
possible to color another vertex of an edge to make it bichromatic. Only along the
hyper-path connecting g~*F4 to Fg at some step there will be a hyperedge with
two vertices whose colors are already determined, but since k is large there is still
another vertex to color to make the edge bichromatic. O

We will show that for certain values of k,d, the action I'» X satisfies the con-
clusion of Theorem [T 11

1.4. Sofic entropy of the shift action on proper colorings. Given a homo-
morphism o : I' = Sym(V), let G, = (V, E,) be the hyper-graph with vertices V
and edges equal to the orbits of the generator subgroups. That is, a subset e C V/
is an edge if and only if e = {a(sg)v};?;é for some 1 <i<dandwveV.

Recall that a hyper-graph is k-uniform if every edge has cardinality k. We
will say that a homomorphism ¢ : I' — Sym(V) is uniform if G, is k-uniform.
Equivalently, this occurs if for all 1 < ¢ < d, o(s;) decomposes into a disjoint union
of k-cycles.

A 2-coloring x : V' — {0,1} of a hyper-graph G is e-proper if the number of
monochromatic edges is < €|V|. Using the formulation of sofic entropy in [5] (which
was inspired by [9]), we show in §2that if ¥ = {0, },>1 is a sofic approximation to
I' by uniform homomorphisms then the ¥-entropy of 'v X is:

hs(I'~X) = inf limsup |V;| ! log #{e-proper 2-colorings of G, }.
>0 oo

1.5. Random hyper-graph models.

Definition 1. Let Homyyis(I', Sym(n)) denote the set of all uniform homomor-
phisms from T' to Sym(n). Let P% be the uniform probability measure on
Homyuit (T, Sym(n)) and let E¥ be its expectation operator. The measure PY is
called the uniform model. We will always assume n € kZ so that
Homypif (', Sym(n)) is non-empty. In §3] we show that {P}},>1 is a random sofic
approximation. We will use the uniform model to obtain the sofic approximation
31 which appears in Theorem [[11

Recall that if V' is a finite set, then a 2-coloring x : V' — {0,1} is equitable
if [x71(0)] = |x"(1)]. We assume from now on that n is even so that equitable
colorings of [n] exist.
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Definition 2. Fix an equitable coloring x : [n] = {0,1}. Let Hom, (T', Sym(n)) be
the set of all uniform homomorphisms o : I' — Sym(n) such that x is proper as a
coloring on G,. Let PX be the uniform probability measure on Hom, (I, Sym(n))
and let EX be its expectation operator. The measure PX is called the planted
model and x is the planted coloring. When x is understood, we will write PP,
and EP instead of PX and EX. In §3] we show that {P?},>; is a random sofic
approximation. We will use the planted model to obtain the sofic approximation
Y5 which appears in Theorem [Tl

Remark 4. If x and ' are both equitable 2-colorings then there are natural bijec-
tions from Hom, (I", Sym(n)) to Hom,, (I", Sym(n)) as follows. Given a permutation
7 € Sym(n) and o : I' — Sym(n), define o™ : I' — Sym(n) by 0™ (g9) = mo(g)n 1.
Because x and x’ are equitable, there exists m € Sym(n) such that x = x’ o 7.
The map o — o™ defines a bijection from Hom, (I, Sym(n)) to Hom,(T', Sym(n)).
Moreover 7 defines a hyper-graph-isomorphism from G, to G,~. Therefore, any
random variable on Hom(T', Sym(n)) that depends only on the hyper-graph G, up
to hyper-graph-isomorphism has the same distribution under P} as under P%l. This
justifies calling PX the planted model.

1.6. The strategy and a key lemma. The idea behind the proof of Theorem [[T]
is to show that for some choices of (k, d), the uniform model admits an exponential
number of proper 2-colorings, but it has exponentially fewer proper 2-colorings than
the expected number of proper colorings of the planted model (with probability that
decays at most sub-exponentially in n).

To make this strategy more precise, we introduce the following notation. Let
Z(€;0) denote the number of e-proper 2-colorings of G,. A coloring is o-proper if
it is (0, o)-proper. Let Z (o) = Z(0;0) be the number of o-proper 2-colorings.

In 3] the proof of Theorem [I.1]is reduced to the Key Lemma:

Lemma 1.2 (Key Lemma). Let f(d, k) := log(2)+% log(1—2'"%). Also letr = d/k.
Then
(1) f(d, k) = lim n~'logE%[Z(0)] = inf limsupn ' log E*[Z(¢; 0)].
n— o0 >0 oo
Moreover, for any
0<no<m <(1-1log2)/2,
there exists ko (depending on no,m1) such that for all k > kg if

r=d/k= 10%;2) (28— (1+10g(2))/2 + 1
for some n € [no, m] then
(2) f(d, k) < lim_ ig(l)fn’l log E2[Z (o).
Also,
(3) 0= inf 1inn;i£fn*1 log (P4 (Jn~"log Z(0) — f(d, k)| <¥¢)).

In all cases above, the limits are over n € 2Z N kZ.

Equations () and (2) are proven in §l and §0] using first and second moment

arguments respectively. This part of the paper is similar to the arguments used in
[6].
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Given ¢ : I' — Sym(n) and x : [n] — {0,1}, let C,(x) be the set of all proper
equitable colorings X’ : [n] — {0,1} with d,,(x, x') < 27%/2. In section §5.2 second
moment arguments are used to reduce equation (@) to the following:
Proposition 5.9 Let 0 < 19 < (1 —log2)/2. Then for all sufficiently large k
(depending on 1o ), if

ri=d/k = 1°g2(2)

28— (1+10g(2))/2+ 7
for some n with ng < n < (1 — log2)/2 then with high probability in the planted
model, |Cy(x)| < E¥(Z.). In symbols,

. X u J—
Jim P (e, (0] < B(Z0) = 1.

In §61 Proposition is reduced as follows. First, certain subsets of vertices
are defined through local combinatorial constraints. There are two main lemmas
concerning these subsets; one of which bounds their density and the other proves
they are ‘rigid’. Proposition [5.9]is proven in ] assuming these lemmas.

The density lemma is proven in {7l using a natural Markov model on the space
of proper colorings that is the local-on-average limit of the planted model. Rigidity
is proven in §8 using an expansivity argument similar to the way random regular
graphs are proven to be good expanders. This completes the last step of the proof
of Theorem [T}

2. TOPOLOGICAL SOFIC ENTROPY

This section defines topological sofic entropy for subshifts using the formulation
from [9]. The main result is:

Lemma 2.1. For any sofic approzimation ¥.={oy,} with o, € Homyui(T', Sym(n)),

hs(P'~X) = inf limsupn ™' log Z(e; 0,).
>0 pooo

Let T' denote a countable group, A a finite set (called the alphabet). Let
T = (T9)4er be the shift action on A" defined by T9z(f) = (g1 f) for z € AL.
Let X C A' be a closed I'-invariant subspace. We denote the restriction of the
action to X by ' X. Alsolet ¥ = {o; : I' = Sym(V;) };en be a sofic approximation
to I

Given o : ' = Sym(V), v € V and = : V — A the pullback name of z at v is
defined by

Hg(.’ﬂ) € ‘AF’ Hg(l‘)(g) = Zo(g—1)v vf] er.
For the sake of building some intuition, note that when o is a homomorphism,
the map v — II9(x) is T-equivariant (in the sense that Hg(g)v(x) = ¢gII9(z)). In
particular 11 (z) € Al is periodic. In general, we think of 117 (x) as an approximate
periodic point.

Given an open set O C A" containing X and an € > 0, amap z : V — A is
called an (O, €, 0)-microstate if

#oeV: II(z) € 0O} > (1 —¢)|V].

Let Q(0,¢e,0) C AV denote the set of all (O,¢,o)-microstates. Finally, the ¥-
entropy of the action is defined by

hs(T~X) = inf inf limsup |V;| 7 log #92(0, €, 0;),
O 0 ;o
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where the infimum is over all open neighborhoods of X in A". This number depends
on the action T'~»X only up to topological conjugacy. It is an exercise in [5] to
show that this definition agrees with the definition in [I0]. We include a proof in
Appendix [A] for completeness.

Proof of Lemma 211 Let € > 0 be given. Let S(¢;0,) C 2 be the set of (e,0,)-
proper 2-colorings. Let Oy C 2U be the set of all 2-colorings x : I' — {0, 1} such
that for each generator hyper-edge e C T, x(e) = {0,1}. A generator hyper-edge
is a subgroup of the form {sz : 0 < j <k} for some i. Note Qg is an open superset
of X.

We claim that Q(Og, ke/d, 0,) C S(e;0,). To see this, let x € Q(Og, ke/d, 0y,).
Then IIZ" (x) € Op if and only if all hyper-edges of G, containing v are bi-chromatic
(with respect to x). So if II9» ¢ O, then v is contained in up to d monochromatic
hyperedges. On the other hand, each monochromatic hyperedge contains exactly
k vertices whose pullback name is not in Og. It follows that x € S(e;0,). This
implies hx(P'~X) < infesglimsup,,_, . n~*log Z(€; 0,).

Given a finite subset F of hyper-edges of the Cayley hyper-tree, let O be the set
of all x € 2! with the property that x(e) = {0,1} for all e € F. If O’ is any open
neighborhood of X in 2" then O’ contains O for some F. To see this, suppose that
there exist elements yg € O5\ O’ for every finite F. Let x be a cluster point of {x}
as F increases to the set F of all hyper-edges. Then x € X \ O’, a contradiction. It
follows that

hs(P~X) = inf inf limsup |V;|~* log #Q(O, €, 0;).
F >0 ;500

Next, fix a finite subset F of hyper-edges of the Cayley hyper-tree. We claim that
S (ﬁ;an) C QOg,¢,0,). To see this, let x € S (ﬁ;an) and B(x,on) C Vi
be the set of vertices contained in a monochromatic edge of x. Now for v € V,,,
I~ (x) ¢ O if and only if II7 () is monochromatic on some edge in F. This occurs
if and only if there is an element f € I' in the union of F such that o,(f )v €
B(x,0n). There are at most k|F||B(x, on)| such vertices. But |B(x, 0,)| < (ﬁ)n,

so there are at most ken such vertices. It follows that x € Q(Og,¢€,0,). Therefore,

inf limsupn ! log Z(e; 0,,) < inf inf limsup |V;| ! log #Q(O0g, €, 0;) = hx (T~ X).
0 p oo F >0 500
O

3. REDUCTION TO THE KEY LEMMA

The purpose of this section is to show how Lemma[[.2]implies Theorem [I.Il This
requires replacing the (random) uniform and planted models with (deterministic)
sofic approximations. The next lemma facilitates this replacement.

Lemma 3.1. Let D C T be finite and § > 0. Then there are constants ¢, Ny > 0
such that for all n > Ny with n € 2Z N kZ,
Pr{o: o is not (D,d)-sofic} <n~ ",
PP{o: o is not (D,d)-sofic} < n~".
Proof. The proof given here is for the uniform model. The planted model is similar.
The proof begins with a series of four reductions. By taking a union bound, it

suffices to prove the special case in which D = {w} for w € T" nontrivial. (This is
the first reduction).
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Let w = s;'---s;! be the reduced form of w. This means that i; € {1,..., d},
ij # 441 for all j with indices mod [ and 1 < r; < k for all j. Let |w| =r1+---+n
be the length of w.

For any g € T, the fixed point sets of o(gwg™!) and o(w) have the same size.
So after conjugating if necessary, we may assume that either [ = 1 or iy # ;.

For 1 < j <, the j-th beginning subword of w is the element w; = s;] et

Given a vertex v € V;, and 0 € Homyyi¢ (T, Sym(n)), let p(v,0) = (eq, ..., €;) be the
path defined by: for each j, e; is the unique hyper-edge of G, labeled 7; containing
o(wj)v. A vertex v € V,, represents a (o, w)-simple cycle if o(w)v = v and for
every 1 <a < b <, either

e c,Ney=0,
e b=a+1and |e,Nep| =1,
e or (a,b) = (1,1) and |e, Nep| = 1.
We say that v represents a (o, w)-simple degenerate cycle if o(w)v = v and
l=2and |e; Nes| > 2.
If o(w)v = v then either
e v represents a (o, w)-simple cycle,
e there exists nontrivial w’ € T' with |w’| < |w| + k such that some vertex
v € Uje; represents a (o, w’)-simple cycle,
e or there exists nontrivial w’ € I' with |w’| < |w| + k such that some vertex
vy € Uje; represents a (o, w’)-simple degenerate cycle.
So it suffices to prove there are constants €, Ny > 0 such that for all n > Ny,

€N

Pu{o: #{v € [n]: v represents a (o, w)-simple cycle} > dn} <n~

and
Pi{o: #{v € [n]: v represents a (o, w)-simple degenerate cycle} > dn} < n~".
(This is the second reduction).

Two vertices v,v" € V,, represent vertex-disjoint (o, w)-cycles if p(v,0) =
(e1, -y e),p(v),0) = (e}, ..., €;) and e; N e = for all 4, 5.

Let G,,(6,w) be the set of all 0 € Homyy;s(T', Sym(n)) such that there exists a
subset S C [n] satisfying

(1) |S[ = on,
(2) every v € S represents a (o, w)-simple cycle,
(3) the cycles p(v,0) for v € S are pairwise vertex-disjoint.

If v represents a simple (o, w)-cycle then there are at most (kl)? vertices v’ such
that v’ also represents a simple (o, w)-cycle but the two cycles are not vertex-
disjoint. Since this bound does not depend on n, it suffices to prove there exist
€ > 0 and Ny such that

P (Gr(d,w)) <n~"

for all n > Ny. (This is the third reduction. The argument is similar for simple
degenerate cycles).

Let m = [dn] and vy, ..., v, be distinct vertices in [n] = V,,. For 1 <i < m,
let F; be the set of all o € Homyyuie(I', Sym(n)) such that for all 1 < j <4

(1) v; represents a (o, w)-simple cycle,
(2) the cycles p(v1,0), ..., p(v;, o) are pairwise vertex-disjoint.
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By summing over all subsets of size m, we obtain
(G (6 0) < (1 )PE(E),

Since (:1) ~ e (51-0)n orows at most exponentially, it suffices to show there exist
e > 0 and Ny such that Pi(F,,) < n~" for all n > Ny. (This is the fourth
reduction. The argument is similar for simple degenerate cycles).
Set Fy = Homypi¢(T', Sym(n)). By the chain rule
m—1
Pi(Fn) = [] PL(F|F).

i=0
In order to estimate PY%(F;1|F;), F; can be expressed a disjoint union over the
cycles involved in its definition. To be precise, define an equivalence relation R; on
F; by: 0,0’ are R;-equivalent if for every 1 < j <i,1<g<landr >0

U(sngq)vj = U/(Szrqwq)vj'

In other words, 0,0’ are R;-equivalent if they define the same paths according to
all vertices up to v; (so p(vj,0) = p(vj,0’)) and their restrictions to every edge in
these paths agree. Of course, F; is the disjoint union of the R;-classes. Note that
Ro is trivial (everything is equivalent).

In general, if A, By, ..., B, are measurable sets and the B;’s are pairwise
disjoint then P(A| U; B;) is a convex combination of P(A|B;) (for any probability
measure P). Therefore, P¥(F;1|F;) is a convex combination of probabilities of the
form P¥(F;+1|B;) where B; is an R;-class.

Now fix an R;-class B; (for some ¢ with 0 < i < m). Let K be the set of all
vertices covered by the cycles defining B;. To be precise, this means K is the set of
all u € [n] = V,, such that there exists an edge e with u € e such that e is contained
in a path p(v;,o) with 1 < j < i and o € B;. Since each path covers at most &l
vertices, | K| < ikl.

If I > 1 (the case | = 1 is similar), fix subsets ey, ..., e—1 C [n] of size k.
Conditioned on B; and the event that the first (I —1) edges of p(v;41,0) are eq, .. .,
e;—1, the P¥-probability that v;11 represents a simple (o, w)-cycle vertex-disjoint
from K is bounded by the probability that a uniformly random & — 1-element subset
of

[n] \ U e; UK
2<j<l-1

contains v;41. Since

U e UK| < (i+ 1)kl < mkl = ki[on],
2<j<l-1

this probability is bounded by C/n where C = C(w,d, k,d) is a constant not
depending on n or the choice of B;. It follows that P (Fiy1|F;) < C/n for all
0 <i<m —1 and therefore

P;i(Fin) < (C/n)™ < (C/n)"™.

This implies the lemma (the argument is similar for simple degenerate cycles). O
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Proof of Theorem [Tl from Lemma [L2l Choose d, k,1n9,n1,n according to the hy-
potheses of Lemma so that n € [no,m], ¥ > ko and all of the conclusions
to Lemma hold. Construct ' X according to L3l We will always take
n € 2Z N kZ. We will first show the existence of a sofic approximation 31 = {o,}
to I' such that

inf limsupn~'log Z(e;0,) = f(d, k).

0 nooo
Then by Lemma 2.1] we will have hy, (I'nX) = f(d, k) > 0.

Observe that Lemma [[2|[) implies the following: for every 8 > 0 there exists
e(B) > 0 (with e decreasing as 8 decreases), N, and &(8,¢e, N) > 0 such that for
n > N, P(n"tlog(Z(e0,)) — f(d,k) > B) < e %", In other words, the num-
ber of e-proper colorings can only exponentially exceed f(d, k) with exponentially
small probability. This is because the negation of the above would imply that
infesolimsup,,_, . n tlogE4[Z(e;0)] > f(d, k), contradicting (). Let F, 5. be
the event that n='log[Z(e;0,,)] — f(d, k) > 5.

Let H, s be the event that [n=!log Z(0,,) — f(d, k)| < 8. Lemma [[L2@) implies
P (H,, g) decays at most subexponentially in n. Precisely, for any ¢ > 0 there exists
N = N(c, ) such that n > N implies P (H, g) > e °".

Let I, 5. be the event that |[n~1log Z(e;0,) — f(d, k)| < B. Notice that since
Z(e;0p) > Z(oy) for any €, Fyg 5 N Hpp CLype.

Consider a decreasing sequence (3,, — 0, and €,, and &,, depending on 3,
as discussed above. Since Pp(H, g) is decaying only subexponentially, we can
choose an increasing sequence K, satisfying K,, > maxi<;j<m IVj, and for each
m, P4(H, g, ) >2> i e %" for all n > K,,. Now it follows that n > K,, implies
PR(NTLyFy 5,0, M Hnp,) = Pr(Hap,,) — Y e &n > e~S1m By the observation
in the preceding paragraph, Py (N7 1y 5, ;) > e &im,

Given § > 0 and D C T  finite, let Jp s, be the event that o, is (D, 6)-sofic. Let
dm — 0 be a decreasing sequence and D,,, C I be an increasing sequence of finite
subsets of I'.

Lemma [B1] implies that P} (Jp 5,,) decays super-exponentially in n for any
D and §, so there exists an increasing sequence N,, such that for n > N,
Po (N Ingie; N I, 60m) = 0.5¢=¢1". Tt follows that we can choose a deter-

my

ministic sofic approximation sequence 31 = {0, } such that

inf limsupn~'log Z(e;0,) = f(d, k).

>0 nooo
We next show the existence of X5. Equation (2)) of Lemma [[2limplies the existence
of a number f, with
fld, k) < fp < linnigf n~tlogEL[Z(0)].
Since Z(o) < 2™ for every o, there exist constants ¢, Ny > 0 such that
(4) Pi{o: Z(o) 2 exp(nfp)} = exp(—cn)

for all n > Nj.
Now let § > 0 and D C I' be finite. Then there exists Ny such that if n > Ny
and o, is chosen at random with law P?, then with positive probability,
(1) o, is (D, d)-sofic,
(2) n~tlog Z(oy,) > fp.
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This is implied by Lemma 3] and equation (). So there exists a sofic approxima-
tion Yo = {0/} to I such that

limsupn~'log Z(al,) > fp.

n—oo

Since Z(0},) <Z(B;0},), Lemma 21l implies hy, (T'~X)> f,> f(d, k) =hs, (TnX).
O

4. THE FIRST MOMENT

To simplify notation, we assume throughout the paper that n € 2ZNkZ without
further mention. This section proves ([IJ) of Lemma The proof is in two parts.
Part 1, in Section Bl establishes:

Theorem 4.1.
liin limsup(1/n)logEr[Z(e; )] = limsup(1/n)logEn[Z(0)].

n—oo n—oo

Part 2 has to do with equitable colorings, where a 2-coloring x : [n] — {0,1} is
equitable if

XHO) = Ix M) = n/2.
Let Z.(o) be the number of proper equitable colorings of G,,. Section L2 establishes

Theorem 4.2.

lim llog]EZ[Z(o)] = lim llogIFL”,‘l[Ze(o)].

n—oo n n—0o0 1,

Moreover,
0 BY[Z.(0)] = F(d, ) + O(n ™" log(n),
where f(d, k) = log(2) + ¢ log(1 — 2'7F).
Combined, Theorems [£.1] and imply () of Lemma

Remark 5. If 7 := (d/k) then the formula for lim, . +log E%[Z ()] above is the
same as the formula found in [6H8] for the exponential growth rate of the number
of proper 2-colorings of Hy(n,m).

Remark 6. When we write an error term, such as O(n~'log(n)), we always assume
that n > 2 and the implicit constant is allowed to depend on k or d.

4.1. Almost proper 2-colorings. For 0 < z < 1, let n(x) = —xlog(z). Also let
n(0) = 0. If T = (T});¢r is a collection of numbers with 0 < T; < 1, then let

H(T) = 3 (1))
icl
be the Shannon entropy of T.

Definition 3. A k-partition of [n] is an unordered partition of [n] into sets of size
k. Of course, such a partition exists if and only if n/k € N in which case there are

n!
(5) kin/k(n/k)!
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such partitions. By Stirling’s formula,
1
(6) - log(#{k-partitions})

— (1 1/k)(log(n) — 1) — (1/k) log(k — 1)! + O(n" " log(n)).

Definition 4. The orbit-partition of a permutation p € Sym(n) is the partition
of [n] into orbits of p. Fix a k-partition 7. Then the number of permutations p

whose orbit partition is 7 equals (k — 1)!"/.
Given o € Homyyit (T, Sym(n)), define the d-tuple (n{, ..., 77) of k-partitions
by: w¢ is the orbit-partition of o(s;). Fix a d-tuple of k-partitions (1, ..., 7).

Then the number of uniform homomorphisms o such that 7 = m; for all i is [(k —
1)!I"/k]¢, Combined with (B)), this shows the number of uniform homomorphisms
into Sym(n) is

nl(k — 1)1+
kn/k(n/k)! |

By Stirling’s formula,

1
(7) = log #Homp;¢ (T, Sym(n)) = d(1 — 1/k)(logn — 1) + O(n" ' log(n)).

n
Definition 5. Let 7 be a k-partition, y : [n] — {0, 1} a 2-coloring and f = (tj)é?zo €
[0, 1]**! a vector with Zj t; = 1/k. The pair (7, x) has type ¢ if for all j,

#{een: lenx (1) =4} =nt;.

Lemma 4.3. Let t = (to, t1, ..., tx) € [0,1]**! be such that >ti = 1/k and
ntj € Z. Letp =, jt;. Let x : [n] — {0,1} be a map such that Ix (1) = pn.
Let f(t) be the number of k-partitions 7 of [n] such that (m,x) has type t. Then

(1/n)log f() = (1= 1/k)(log(n) — 1) — H(p,1 — p) + H(#)
k
= " tlog(j!(k — 5)!) + O(n " log(n)).
j=0

Proof. The following algorithm constructs all such partitions with no duplications:
Step 1. Choose an unordered partition of the set x~'(1) into ¢;n sets of size j

(j=0,..., k).
Step 2. Choose an unordered partition of the set x~1(0) into ¢;n sets of size k — j
(j=0,...,k).

Step 3. Choose a bijection between the collection of subsets of size j constructed
in part 1 with the collection of subsets of size k — j constructed in part 2.

Step 4. The partition consists of all sets of the form a U 8 where o C x~%(1) is a
set of size j constructed in Step Ml and 8 C x~1(0) is a set of size (k — )
constructed in Step [ that it is paired with under Step

o : (pn)!
The number of choices in Step [l is NGIEROT
. —p)n)! . . . —
2l is H?;SES_;;?HL(%”)!, The number of choices in Step Bl is H?le(tjn)!. So
() £ = () (A —p)n)t
[Tj=o 1" (k = tn(t;m)!

The lemma follows from this and Stirling’s formula. O

The number of choices in Step
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Let .# be the set of all matrices T' = (T3j)1<i<d,0<j<k such that
(1) T;; > 0 for all 4, 7,
(2) Y5 Tij = 1/k for all i,
(3) there exists a number, denoted p(T), such that p(T) = Z?:o jT;; for all 4.

Let .4, be the set of all T € .# such that nT is integer-valued.

Lemma 4.4. Let A be an integer-valued g X p matriz (for some p,q € N), b € R?
and & C RP the set of all x € RP such that Ax = b and x; > 0 for all i. For
n € N, let #, be the set of all x € H such that nx is integer-valued.

Assume K is compact and there exists x € A with x; > 0 for all i. Then there
is a constant C' > 0 such that if J;, is non-empty then it is C'/n-dense in & in the
following sense. For any x € K there exists ' € K, such that ||z — 2’| < C/n.
Moreover, the constant C' can be chosen to depend continuously on the vector b € RY.

Proof. To begin, we will define several constants which will enable us to choose
C > 0. Because A is integer-valued, its kernel, denoted ker(A) C RP, is such that
ker(A) N Z* has rank equal to the dimension of ker(A). Therefore, ker(A) N ZP is
cocompact in ker(A). So there is a constant C; > 0 such that for any z € ker(A)
there is an element 2z’ € ker(A) NZP with ||z — 2/ ||cc < Ch.

By hypothesis, there is a constant C; > 0 and an element y € J# such that
y; > Cy for all i. Because J# is compact there is another constant C3 > 0 such
that ||z — yllc < C3 for all z € . Let C = %4—6’1. Now let x € Z be
arbitrary and suppose .#;, is non-empty. We will show there exists 2/ € %, such
that ||z — 2" || < C/n.

Let

Then @, > (C1/Con)y; > Cy/n for all i. Also ||z — 2/||ee = (C1/Can)||x — y|loe <
Ci1Cs
Can *

“Because Jy, is non-empty, there exists z,, € J#,. By linearity, J# is the in-

tersection of the hyperplane x,, + ker(A) with the positive orthant. Thus we can

write ' = x, + (1/n)z’ 4+ 2" where 2z’ € ker(A) N ZP and z” € ker(A) satisfies
Iz |lco < C1i/n. Let 2" =z, + (1/n)z". Note ||z — 2'||co = [|7"]|c0 < C1/n. Since

x} > C1/n this implies x > 0 for all i. It is now straightforward to check that
" € K#,. By the triangle inequality

C1C5
Con

N”oo <z - x/Hoo + Hxl - x””oo <

|l — +Cy/n=C/n.
Because z and n are arbitrary, this implies the Lemma with C' = C(lj—fs + C.
Moreover C; does not depend on the vector b; while Cs, C'3 can be chosen to depend

continuously on b. O

Lemma 4.5. Given a matriz T € .4 define

F(T) := H(T) + (1 — d)H (p,1 — p) — (d/k) logk‘—l—zz 10g<)

=1 j=0
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where p = p(T ) Then for any € > 0,
(1/n)log Ey[Z(€; 0)]
d
=sup F(T): T € 4, and Z Z T;; < e p +O(n tlog(n)),
i=1j=0,k
where the constant implicit in the error term does not depend on €.

Proof. Given o € Homyyi¢(T', Sym(n)) and 1 < i < d, let 77 be the orbit-partition of
o(s;). For T as above, let Z,(T') be the number of e-proper colorings x : [n] — {0,1}
such that (77, x) has type T; = (T, ..., T; ). It suffices to show that

(1/n) log B} [Z,(T)] = F(T) + O(n™" log(n))

for all n > 2 such that T € .#,. This is because the size of .#, is a polynomial
(depending on k, d) in n so the supremum above determines the exponential growth
rate of E¥[Z(e; 0)].

To prove this, fix a T as above and let n be such that nT is integer-valued. Fix
a coloring x : [n] — {0, 1} such that [y ~!(1)| = pn. By symmetry,

E412:()] = (1 )17 ) has type 7 i
pn

The events {(77, x) has type T;}%_, are jointly independent. So
0 szl = () 1 HP" 7.) hias type 7.

By symmetry, P“[(x7, x) has type T;] is the number of k-partitions 7 such that
(,x) has type T} divided by the number of k-partitions. By Lemma and (@),

1 .
—log P [(77, x) has type T;]

Z ilog(jl(k — ) + (1/k) log(k — 1)! + O(n~ ' log(n)).

Combine this with (@) to obtain

(1/n) log E%[Z,(T))]
=(1-d)H(p,1—p)+ H(T)
d k
=33 Tyilog(j!(k — §)!) + (d/k)log(k — 1)! + O(n~ " log(n)).

i=1 j=0

This simplifies to the formula for F(T') using the assumption that E?:o Ty =1/k
for all s. O
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Proof of Theorem 1l By Lemma L4 applied to .#, continuity of F' and compact-
ness of .,

lim sup{ F(T): T e 4, andZZT”<e

n—00
i=1 j=0,k

d
=sup{ F(T): fe%andZZﬂjge

i=1j=0,k

Theorem 1] now follows from Lemma by continuity of F and compactness of
M. O

4.2. Equitable colorings.

Proof of Theorem 2. Let .#, be the set of all T € ./ such that T;; = 0 whenever
j € {0,k}. By Lemma [£5] it suffices to show that F admits a unique global
maximum on .7, and moreover if T' € .#, is the global maximum then p(T) = 1/2
and F(T) = f(d, k).

The function F is symmetric in the index ¢. To exploit this, let .#" be the set
of all vectors t = (tj);?;ll such that ¢t; > 0 for all j and Z;:ll t; = 1/k. Let

k—1
(i = 3t

J= k—1 k
F(f) = dH(D) + (1 — d)H(p,1 — p) — (d/k)logk +d Y t;log (J)

j=1

Note that F(f) = F( ) if T is defined by T” = t; for all 4,j. Moreover, since
Shannon entropy is Strlctly concave, for any T € My, if T is defined to be the
average: t; = d ! ZZ 1 T” then F f) > F(T) with equality if and only if t; = TZJ
for all 4,j. So it suffices to show that F admits a unique global maximum on .#’
and moreover if £ € .#' is the global maximum then p(t) = 1/2 and F() = f(d, k).

OH (p,1— .
Because 8tF) = —[log(t;) + 1, 2 8t =j, and H(gf:p) =jlog

ZTP; dlog(t;) + 1] + (1 d)310g<1p )*dlgG)

Since this is positive infinity whenever ¢; = 0, it follows that every maximum of F'
occurs in the interior of .#’. The method of Lagrange multipliers implies that, at
a critical point, there exists A € R such that

VE=AV [T=) t; | =0
J
So at a critical point,

gf —dflog(t;) +1] + (1 d)g1og<1pp)+dlog(’;) A
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Solve for ¢; to obtain

ty=esp(-3/d -5 <1;P)j“d)/d.

p
Note
k—1
1=Fk> t
=1
k—1
L=1/pY jt;
j=1
implies
k—1 k—1 1 1—p j(1—d)/d
0=> (k—j/p)t; =) (vk —j)( ) (—) :
— — J p
J J
So define . Yy
1 i(1—d)/d
[k 1—2Y\’
S22
=1 J/NE

It follows from the above that g(p(f)) = 0 whenever # is a critical point.
We claim that g(x) = 0 if and only if # = 1/2 (for € (0,1)). The change of
k(1—d)/d
variables j — k—j in the formula for g shows that g(1—z) = — (ﬁ)
So it is enough to prove that g(z) < 0 for x € (0,1/2).

g(z).

To obtain a simpler formula for g, set y(x) = . The binomial formula

implies
k—1

g(x) =Y (kz — ) (f) y’

1
a[(L+y)" —1—y* = ky[(1 +y)F 1 —y* ]
=kl(z(14+y) -y A+ )" —z+ (—z+ 1)y"].
(z(1+y)—y) =2z —y(l—x) <0. So
g(z)/k < (1 - x)yk —xz <0,

where the last inequality holds because

. " k(d—l)/d< "
vy = 1—2z 1—x

assuming k(d — 1)/d > 1. This proves the claim.
So if 'is a critical point then p(f) = 1/2. Put this into the equation above for ¢;

to obtain
L - c(’f)
J ] )

where C' = exp(—A/d — 1). Because
k—1 k—1

k=3 t;=C3" (f) =02 -2),

j=1 j=1

Because 0 < =z < 1/2, y > (%) which implies that the middle coefficient
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it must be that

The formula F (&) = f(d, k) now follows from a straightforward computation. [

5. THE SECOND MOMENT

This section gives an estimate on the expected number of proper colorings at a
given Hamming distance from the planted coloring. This computation yields (@) of
Lemma as a corollary. It also reduces the proof of ([B]) to obtaining an estimate
on the typical number of proper colorings near the planted coloring.

Before stating the main result, it seems worthwhile to review notation. Fix n > 0
with n € 2ZNkZ. Fix an equitable 2-coloring x : [n] — {0,1}. This is the planted
coloring. The planted model P? is the uniform probability measure on the set
Hom, (T", Sym(n)) of all uniform homomorphisms o such that x is o-proper. Also
let Z. : Hom, (', Sym(n)) — N be the number of equitable proper 2-colorings. For
0 € [0,1], let Z,(6;-) : Hom, (', Sym(n)) — N be the number of equitable proper
2-colorings X such that |d,,(x, X) — | < 1/2n where d,, is the normalized Hamming
distance defined by

dn(x; X) = 0" #{v € [n] + x(v) # X(v)}.

We will also write Z,(0;0) = Z,(6) = Z(d) when x and/or o are understood.
The main result of this section is:

Theorem 5.1. With notation as above, for any 0 < 6 < 1 such that on/2 is an
integer,

"o ERIZ(5)] = %0(8) + Os(n ™) + O™ log(n)

(for n > 2) where

d 1—dk —(1—60)"
¥o(0) = (1= d)H (3,1 = 6) + dHo(0,1~5) + 1 log (1— Sk_l(_l s )

b0 1s defined to be the unique solution to

1—227k 4 (59/2)F 1 _s

01 357 +2(80/2)% +2((1 — 80)/2)F —

and
H(0,1—9):=—dlogd— (1 —0)log(l—9),
Hy(6,1—6) :=—dlogdp — (1 —9)log(1 — dp).
Moreover, the constant implicit in the error term O(n~1log(n)) may depend on k

but not on §. The constant implicit in the Os(n=1') term depends continuously on

0 for d € (0,1/2].

Remark 7. If §p = & then § = 1/2. In the general case, 6y = J + O(27%). Theorem
510 parallels similar results in [6L[7] for the random hyper-graph Hy(n, m). This is
explained in more detail in the next subsection.



54 DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

The strategy behind the proof of Theorem [5.]is as follows. We need to estimate
the expected number of equitable colorings at distance § from the planted coloring.
By symmetry, it suffices to fix another coloring Y that is at distance § from the
planted coloring and count the number of uniform homomorphisms ¢ such that
both x and X are proper with respect to G,. This can be handled one generator
at a time. Moreover, only the orbit-partition induced by a generator is used in this
computation. So, for fixed x, X, we need to estimate the number of k-partitions of
[n] that are bi-chromatic under both x and X. To make this strategy precise, we
need the next definitions.

Definition 6. Let X be an equitable 2-coloring of [n]. An edge P C [n] is (x, X)-
bichromatic if x(P) = X(P) = {0,1}. Recall that a k-partition is a partition
m = {P1, ..., Py} of [n] such that every part P € 7 has cardinality k. A
k-partition 7 is (x, X)-bichromatic if every part P € 7 is (), X)-bichromatic.

Given a (x, X)-bichromatic edge P C [n] of size k, there is a 2 x 2 matrix €(X, P)
defined by

& P) = Px @) nx ()l

Let € denote the set of all such matrices (over all P, ). This is a finite set. To be
precise, € is the set of all 2 x 2 matrices € = (e;;); j=0,1 such that
e €{0,1, ..., k} for all i, j
0<epp+ter <k
0<ep+e1 <k
Zi,j €ij = k.
If 7 is a (, x)-bichromatic k-partition then it induces a function tg . : € — [0, 1]
by

tya(@)=n"'#{Pen: e=¢X,P)}.
Let T be the set of all functions ¢ : € — [0, 1] satisfying
o ZEEE t(é) = 1/ka
(] dee(elo + ell)t(a = 1/2,
o > sceleor +en)i(e) = 1/2.
Also let T;, be the set of t € T such that nt(€) is integer-valued for each € € €. A
k-partition 7 has type (x, X,t) if t = t .

Lemma 5.2. Given an equitable 2-coloring X : [n] — {0, 1}, let pX = (pf‘j) be the
2 X 2 matriz ~

py = 1/n)Ix @) N X))
Then

In particular, pX is determined by the Hamming distance dp,(x,X).

Proof. Let p = pX. The lemma follows from this system of linear equations:
1/2 = po1 + pn
1/2 = p1o +pn

dn (X, X) = Po1 + P10
1 = poo + po1 + p1o + p11-
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The first two occur because both x and X are equitable. The third follows from the
definition of normalized Hamming distance and the last holds because {x~!(i) N

i_l(j)}i,je{og} partitions [n]. 0
For t € 7, define the 2 x 2 matrix p* = (p};) by
pij = eit(@)
eece
If 7 is a k-partition that has type (x,X,t) (for some equitable Y) then pX = pt.

This motivates the definition.
The main combinatorial estimate we will need is:

Lemma 5.3. Lett € T,, and X : [n] — {0,1} be equitable. Suppose p* = pX. Let
g(X,t) be the number of k-partitions of type (x,X,t). Also let

G(t) = (1 — 1/k)(log(n) — 1) — H(p") — (1/k) log(k!) + H(t +Z é')log()

. . . !
where (Ii) is the multinomial ——~——. Then
€ €00:€01:€10:€11-+

(1/n)log g(X.t) = G(t) + O(n™ " log(n))
(for n > 2) where the constant implicit in the error term depends on k but not on
X ort.
Proof. The following algorithm constructs all such partitions with no duplications:
Step 1. Choose a partition {QZg :d,7€4{0,1},&€ &} of x1(i) N X~1(4) such that

Q5| = esst(@)n.

Step 2. For 4,5 € {0,1} and € € &, choose an unordered partition wfj of Qf; into
t(e)n sets of size e;;.

Step 3. For i,j € {0,1} with (¢,5) # (0,0) and € € &, choose a bijection a LTy —
T

Step 4. The k‘—partitiorj consists of all sets of the form PUUJ; ;¢ 0.1y, (1.)(0,0) afj (P)
over all P € 7§, and € € €.

The number of choices in Step [l is
I[I xOnx 'O I(est@n)

i,j€{0,1} eecé

The combined number of choices in Steps [l and [2is

I[I h@Oax O] et @@m)

i,jE{O,l} eect
—4
—(H(t(é)n)!> [T I *Onx G et
eee i,j€{0,1} eee

The number of choices in Step Blis [T.c¢ (£(€)n)!®. So

-1
st = II K@Onxo) (H(t(e%)!) II Ilest@r

1,7€{0,1} eee i,7€{0,1} e€&
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An application of Stirling’s formula gives
(1/n)logg(X, 1)
— (1= 1/K)(log(n) — 1) — Hp") + H() — 3 (@) log(es;!) + O(n~"log(n)
2i.j
(for n > 2) where the constant implicit in the error term depends on k& but not on
X or t.

Since Y t(€) = 1/k,
> t(é)log (]f) = (1/k)log(k!) — > t(€) log(e;;!).

€

€,1,]

é
Substitute this into the formula above to finish the lemma. O

Next we use Lagrange multipliers to maximize G(t). To be precise, for ¢ € [0, 1],
let T(5) be the set of all ¢ € T such that p§;, = 6/2. Define T,,(d) = T(§) N T,,. To
motivate this definition, observe that if X is an equitable 2-coloring and 6 = d,(x, X)
then p§1 =§/2. So if 7 is a k-partition with type (x, X, t) then pl, = 6/2.

Lemma 5.4. Let 6 € [0,1]. Then there exists a unique ss € T(0) such that
max G(t) = G(ss).

teT(5)
Moreover, if 69, C > 0 and ts € T(0) are defined by
5 b 1—227F 4 (5p/2)F1
2 21— 22k +2(50/2)F + 2((1 — 60)/2)F
- 1

K[1 — 22k 1 2(30/2)F + 2((1 — 60)/2)*]
e (50

Proof. Define F' : T — R by

Ft) = H(t) + zg:t(é') log (’;ﬂ)

then ss = ts.

For all t € T(d), G(t) — F(t) is constant in ¢. Therefore, it suffices to prove the
lemma with F' in place of G.

The function F' is concave over ¢ € T(§). This implies the existence of a unique
s5 € T(0) such that

max F(t) = F(ss).

t€T(5)
By definition, T(d) is the set of all functions ¢ : € — [0, 1] satisfying
k=Y t(#)

eee

pij = Y eit(@),

eece
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where p = (p;;) is the matrix

C[1/2-6/2 62
P= 5/2  1/2-6/2 } '

For any € € €,

(11) 3(3% = —logt(€) — 1+ log (Z,)

Since this is positive infinity when ¢(€) = 0, ss must lie in the interior of J(4). By
the method of Lagrange multipliers there exists A € R and a 2 x 2 matrix ji such

that
OF oL

Evaluate (1)) at ss, use (I2) and solve for ss(€) to obtain
k €00 ,.€01 ,.€10 €11
s5(€) = Co &) Foo Tor T10 P11

for some constants Cy,z;;. In fact, since F' is concave, s5 is the unique critical
point and so it is the only element of T(4) of this form. So it suffices to check that
the purported ¢5 given in the statement of the lemma has this form and that it
is in T(9) as claimed. The former is immediate while the latter is a tedious but
straightforward computation. For example, to check that ) .t5(€) = 1/k, observe
that, by the multinomial formula for any (zi;); je{o0,1}

k
€00 ,.€01 ,.€10 .€11
E (5 Loo o1 T10 L11
gee
_ k k k k
= |(@oo + o1 + 10 + x11)" — (Too + z01)" — (oo + 10)" — (11 + Z01)
k k k k k
— (z11 +210)" + 200 + 20, + T + xn]

Substitute xgg = x11 = 1_250 and zg; = x19 = d0/2 to obtain

> (@ =0 [1—4(1/2>k+2(1‘25°)k+2 (g)] _—

The rest of the verification that ¢5 € T(9) is left to the reader. O

Proof of Theorem Bl Let &(8) be the set of all equitable 2-colorings X : [n] —
{0,1} such that d,(X,x) = d. Also let Fy; C Homyy¢(I', Sym(n)) be the set of
all o such that X is a proper 2-coloring of the hyper-graph G,. By linearity of
expectation,
EP[Z (@) = Y Pu(FxlFy).
Xe&(9)

2
The cardinality of &(9) is (52//22) . By Stirling’s formula

2
(13) n~'log <£l//22> = H(3,1—8) + O(n "log(n)).
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We have Py (Fy|Fy) is the same for all ¥ € &(5). This follows by noting that the
distribution of hyper-graphs in the planted model is invariant under any permu-
tation which fixes x. If n,n' are two configurations with d,,(n, x) = dn(1',x) = §
then there is a permutation 7 € Sym(n) which fixes x and such that no 7w = 7'
To see this note that we simply need to find a 7 € Sym(n) which maps the sets
X 1@ Np7L(H) to x1(i) Ny'~L(4) for each 4,5 € {0,1}. Such a map exists since
for each 7, j the two sets have the same size. It follows that

(14)  n~'logER[Z,(0)] = H(8,1 — 8) + n™" log Py} (Fx|Fy) + O(n™ ' log(n))

for any fixed Y € £(9).

For 1 <i < d, let F,; be the set of uniform homomorphisms ¢ such that the
orbit-partition of o(s;) is x-bichromatic in the sense that x(P) = {0, 1} for every
P in the orbit-partition of o(s;). Then the events {F, ; N Fx;}¢ ; are i.i.d. and

d
Fy N Fy = () Fyin Fx.
i=1
Therefore,
PY(Fy1 N Fyq)?
(15) pi(Fy ) = La D)

P (F)

Note P (Fy,1 N F 1) is, up to sub-exponential factors, equal to the maximum of
g(x,t) over t € T,(9) divided by the number of k-partitions of [n]. So equation (@)
implies

1
EIOgPZ(Fﬁl ﬂFxﬁl)
1 ~
= Mhax log g(X,t) — (1 — 1/k)(log(n) — 1)
+ (1/k) log((k — 1)) + O(n"*logn).

So Lemma [B.3] implies

" logPl(Fy1 N Fya)
= max G(t) — (1 —1/k)(log(n) — 1) + (1/k) log((k — 1)) + O(n"*logn).

We apply Lemma 4] to T(d) to obtain the existence of s((;") € T,(9) with ||sg") -
t5]loo < Os(n~1) where the constant implicit in the Os(n~!) term depends contin-
uously on ¢ for § € (0,1/2]. Since G is differentiable in a neighborhood of ts5, we
have

_ —1
temrii%) G(t) = G(ts) + Os(n™ ).

So Lemma [5.4] implies
1
~logP;i(Fy1 N Fy1) == H(p) + H(ts) - > ts(@)log(ei!) + (1/k) log(k — 1)!

,5,€

+Os(n~ 1) + O(n~tlog(n)).
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Since § = (6/2,5/2, (1 — 6)/2,(1 - 6)/2), H(F) = H(5,1 — 6) +log(2). So

1
- log P (Fy1 N Fy1) = — H(5,1—6) —log(2) + H(ts) — Z t5(€) log(es;!)
©,,€

(16) + (1/k)log(k — 1)! + Os(n™") + O(n~ ' log(n)).
On the other hand, Theorem implies

Liog(r) =~ log ((;L) 1114:1[2@(0)1)
= (d/k)log(1 — 27%) + O(n~"'log(n)).
Combine this result with (I4), (5 and [8) to obtain
n~ " log EL[Z,(5)]
= (1—d)H(5,1—6) — dlog(2) + dH(ts) — d > t5(¢)log(e;;!)

1,5,
+ (d/k) log(k — 1)! — (d/k) log(1 — 2'=%) + O5(n~1) + O(n~" log(n)).
Since ) ;t5(€) = 1/k,
k

Zt(;(é') log (€> = (1/k)logk! — Ztg(a log(e;;!).

& 1,4,€
Substitute this into the previous equation to obtain

n~ g ER[Z,(6)] = 1o(6) + Os(n™") + O(n™ ' log(n)),
where
o(0) =(1 —d)H (6,1 — 0) — dlog(2) + dH (ts) + dZtlg(é‘) log (I;i)
ecé
— (d/k)logk — (d/k)log(1 — 217F).

Observe that in every estimate above, the constant implicit in the error term does

not depend on §. To finish the lemma, we need only simplify the expression for 1.
By Lemma [54]

H(ts) = =Y ts5(€)logts(€)

- Ztg(é) (log C+(eoo+e11) log (1 —250>+(601 +e10) log (550) +log <Z>>

€

= —(1/k)(log C) — (1 — 8) log(1 — do) — dlog(do) + log2 — Ztg(é') log (l;)

= —(1/k)(log C) + Ho(6,1 — 6) +log2 — Y _ t5(&)log <l;>

Combined with the previous formula for g, this implies

o (8)=(1—d)H (8, 1—8)—(d/k) log C+dHo(5,1—8)—(d/k) log k—(d/k) log(1—2" ).
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To simplify further, use the formula for C' in Lemma [5.4] to obtain
— (d/k) (log C + log k + log(1 — 2' %))
1—227% 4 2(60/2)F +2((1 — 2)F

1— 21k
1— 0k — (1—dp)*
= (d/k)log <1 — T .
Thus o(8) = (1 — d)H (5,1 — 8) + dHo(8,1 — 6) + Llog(1 — =0 -(1=0)%)

5.1. Analysis of ¥y and the proof of Lemma [I.2] inequality (2)). Theorem 5.1l
reduces inequality (@) to analyzing the function ¢y. A related function ¢, defined
by

o d 1—2F —(1—a)*
() ._H(x,l—:z:)+%10g<1— S ),

has been analyzed in [6L[7]. Tt is shown there 1(x) is the exponential rate of growth
of the number of proper colorings at normalized distance x from the planted coloring
in the model H(n,m). Moreover, if r = d/k is close to % -2k — (14 log(2))/2
then the global maximum of ¢ () is attained at some z € (0,27%/2). Moreover, v
has a local maximum at = 1/2 and is symmetric around « = 1/2. It is negative in
the region (27%/2,1/2 — 27%/2). We will not need these facts directly, and mention
them only for context, especially because we will obtain similar results for 1.
The relevance of 1 to v lies in the fact that
(17)
Yo(0) = 1p(00) — (H (60,1 — do) — Ho(6,1—6)) + (d—1) [Ho(,1 = &) — H(6,1—0)].

As an aside, note that Hy(d,1 —9) — H(J,1 —6) is the Kullback-Leibler divergence
of the distribution (8,1 — §) with respect to (g, 1 — dp).

To prove inequality (), we first estimate the difference ¢ (d) — ¥ () and then
estimate 1 (dp). Because the estimates we obtain are useful in the next subsection,
we prove more than what is required for just inequality ().

Lemma 5.5. Suppose 0 < §y < 1/2. Define e >0 by 6 = 6o(1 —¢€). Then

H(60,1 —60) —H0(5,1 —6) = 50810g (155()) > 0,
0

Hy(6,1 —6) — H(5,1 —6) = O(6pe?),
e=0(27"),
(1—=108)o=1-do.
The last equation implies 1¥o(1 — &) = ().
Proof. The first equality follows from:
H(b6p,1—00) — Ho(6,1—19)
= —Jplogdy — (1 — dg) log(1l — &g) + dlog do + (1 — &) log(1 — do)
= (do — 6) log(1/do) + (do — 0) log(1 — do)

= dpe log (1550> .
0
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The second estimate follows from:
Hy(6,1—06) — H(0,1—0) =0 (logd —logdg) + (1 — 6) (log(1 — &) — log(1 — dp))

—610g(1—5)+(1—5)10g(11 _;>
— 0p
506 2
1—(5()> +0(50€ )

= —6e + Joe + O(6pe?) = O(6p?).

——55+(1—5)10g<1+

The third estimate follows from:

)

e=1- %

1—227F 4 (§/2)F 1
1= 227k 4250 /2)F + 2((1 — 60)/2)F
2(00/2)" = (80/2)" 1 +2((1 = b0)/2)"
1—227F 4 2(80/2)F +2((1 — 69)/2)k

(00/2)F (60 — 1) 4+ 2((1 — 60) /2)*

1—22-F 4+ 2(60/2)F + 2((1 — 69)/2)F

(1—=dp)F 1 —56~"
C1—22F £ 2(60/2)F + 2((1 — 60)/2)F

=1

(18) =217F (1= 6p)

The denominator is 1+ O(27%) and the numerator is O(27%). The result follows.
The last equation follows from:

- 1—227F 4 (§/2)F1

1021~ (g aR L5
1227 2(60/2)% + 2 (1 - 60)/2)% — o (1 — 227F + (60/2) 1)
N 1— 227k 4+ 2(60/2)F + 2((1 — 60)/2)*

(1 =d0) (1 =2*7F 4+ ((1 — d0)/2)
T 1227k 1 2(60/2)F + 2((1 — d)

krfl)
/2%

The last expression shows that (1 —d)g =1 — do. O

Lemma 5.6. Let 0 <n be Or(1). If

r=dfk="52 5 (14 1og()/2 4

then

F(d,k) = 9(1/2) = 4o(1/2) = (1 = 29)27" + O(27%)
Y(27F) =27F 4 O(k*272F).

In particular, if k is sufficiently large then 1(27%) > f(d, k).
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Proof. By direct inspection f(d, k) = ¥(1/2) = ¢o(1/2). By Taylor series expan-
sion, log(1 — 217%) = —21=F — 21=2k 4 ((273F). So

f(d, k) =log(2) + rlog(1 —2'7%)

= log(2) + <—1°g2(2) 28 — (1+10g(2))/2 + n) (—2'7F =272 1 Oo(r27%")

=(1-2n)27"+0(27%).
Next we estimate 1)(27%). For convenience, let z = 27%. Then
1—zF— (1 -2k =k-27% 4 O(k*272h).
Since log(1 — x) = —x — 22/2 + O(z?),

_ .k _ k
log (1 ik G ) = —2k-272% 4 O(K22 %),

k1 _ ]
So
1—azk—(1—-a)k _ _
rlog <1 - ST ] ) = —klog(2) - 27" + O(k*272F).
Also,

H(z,1—x) = (klog(2) +1)-27% + 0(27%).
Add these together to obtain
Y(27F) = 27F - O(k?272F). 0

Corollary 5.7. Inequality @) of Lemma is true. To be precise, let 0 < 1y be
constant with respect to k. Then for all sufficiently large k (depending on 1), if

log(2)
2

for some n > ng with n = Ok(1) then
fld, k) < lirginf n~tlogEE[Z(0)].

r=d/k= 28 — (1 +1og(2))/2+n

Proof. By definition,

“LlogEP[Z > m “LlogEP[Z(6)].
n~logE}[Z(o)] = 56[0511};2]” og BT [Z(4)]
By Theorem [B.1]

n~'log EL[Z(0)] > max o(6) + Os(n™") + O(n~"log(n)),

where C), is the set of § € [0,1/2] such that dn/2 is an integer. Because g :
[0,1/2] = R is continuous, lim, . maxsec, ¥o(d) = maxsejo,1/2] Yo(d). The con-
stant implicit in the Os(n~1) depends continuously on ¢ for § € (0,1/2], while the
constant implicit in the O(n~11og(n)) error term does not depend on §. So

liggioréf n~tlogEL[Z(o)] > 56%?1352] Yo (6)

for any 0 < v < 1/2. Because g is continuous,

(19) timinfn~ log E£[2(0)] > | max 10(0).
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Because Hy(0,1 —¢) — H(5,1 — ) > 0 (since it is a Kullback-Liebler divergence),
the first equality of Lemma implies
Yo(6) = (o) — (H(do, 1 — do) — Ho(6,1 = 6))+(d —1) [Ho(6,1 = 6) — H(5,1—0)]

> 1)(do) — doe log (1 gotso) :

By Lemmal5.6l v(27%) = f(d, k) +2n27% +O(k?272%). By Lemmal5.5 ¢ = O(27F).
As 9 varies over [0,1/2], §p also varies over [0,1/2], so there exists ¢ such that
8o = 2~%. For this value of 6,

o(8) > (27F) — 27 %clog <1

Combined with ([9) this implies the Corollary. O

_9—k

) > f(d, k) + 202" + O(k*272F).

In the next subsection, we will need the following result.

Proposition 5.8. Let
0<mo < (1-1log2)/2.
Then there exists ko (depending on no) such that for all k > ko if

r=d/k= @-Qk—(l—i—log@))ﬂ—l—n

for some n € [no, (1 —1log2)/2) then in the interval [27F/2,1—27F/2] +pq attains its
unique maximum at 1/2. That is,
max{1g(8) : 272 <5 <1-27F2} = yy(1/2) = f(d, k) = log(2) +rlog(1—2'F)
and if § € [27%/2,1 — 27F/2) and § # 1/2 then 1o(5) < 1bo(1/2).
Proof. By Lemma [5.5] it suffices to restrict § to the interval [27%/2 1/2] (because
10(8) = 1o(1 — 6)). So we will assume § € [27%/2,1/2] without further mention.
Define v by
1= ok — (1= 9)"
2k1 ] '

d
11)1((50) = E IOg (1 —
Observe

_ Sk _ _ k
1/)1((50) — <_1 5§k_1(1_ : 50) + O(4k)>

= —log(2)[1 — (1 — 6o)*] + O(27F).
By ([[@) and the first inequality of Lemma [5.5]
Yo(0) < 1p(0o) + (d = 1)[Ho(6,1 = 6) — H(5,1 - 9)]
(20) = H (89,1 —80) +1(80) + (d — 1)[Ho(6,1 — §) — H(5,1 — 0)].

Moreover, (d—1) = O(k2*) and, by LemmalB55, Ho (8, 1—6)—H (5, 1—6) = O(6047F).
Therefore,

Yo (6) < H(dp, 1 — o) + 1 (o) + O(éokrk)
(21) < H (80,1 —6o) —log(2)[1 — (1 — 60)*] + O((dok + 1)27%).

Observe that §g > 6. We divide the rest of the proof into five cases depending
on where &y lies in the interval [27%/2,1/2].
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Case 1. Suppose 27%/2 < §; < L. We claim that ¢o(5) < 0. Note —log(dy) <

(k/2)1og(2) and —(1 — &g) log(1 — dg) = &o + O(53). So
H (00,1 —d9) = —dologdo — (1 — do) log(1 — do)
< 0o(k/2)log(2) + do + O(83).

By Taylor series expansion,
K kY <o
1—(1—14d0)" > kédo — <2>5O > 3kog /4.

So by (1)
Y0(8) < do(k/2)log(2) + do — 3kdo log(2) /4 + O(67)
= Jg[1 — klog(2)/4] + O(83).
Thus ©o(0) < 0 if k is sufficiently large.

Case 2. Let 0 < & < 1/2 be a constant such that H (&, 1— &) < log(2)(1—e~1/2).
Suppose 57 < 8y < &. We claim that 1o (8) < 0 if k is sufficiently large.
By monotonicity, H(dp,1 — dp) < H (&, 1 —&p). Since 1 —x < e * (for z > 0),

[1—(1—=080)F]>1—eH0 >1_e71/2
By &I,
Yo(6) < H(&,1 - &) —log(2)(1—e™/?) + O(k27").
This implies the claim.

Case 3. Let & be a constant such that max(&p,1/3) < & < 1/2. Suppose & <
0o < &1. We claim that tg(d) < 0 for all sufficiently large k (depending on &7).

By (1)),
Po(6) < H(&,1— &) —log(2)[1 — (1—80)"] +O(k27")
< H(6,1—&) —1og(2) + O((1 - &)").

This proves the claim.

Case 4. We claim that if &, < dp < 0.5—27% then 1o(8) < f(d, k) for all sufficiently
large k (independent of the choice of &;).
Recall that we define € by § = dp(1 — ¢). By ([IJ),

(1=d)t—o5""
— 227}C + 2(50/2)k + 2((1 — 50)/2)k
<2Fa-&)f+0(4F)<2.37F

az2l_k-(1—50)-1

since & > 1/3, assuming k is sufficiently large.
The assumption on 7 implies d = O (k2k). So the second equality of Lemma [5.5]
implies

(d—1)[Ho(5,1—6) — H(5,1—4)] = O (k4.57%).
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Through elementary but messy calculus computations one may show using the fact
that » = O(2F) that

¥'(1/2) =0
Y"(1/2) = —4 + O(k*27F)
1 1 3 b
@[}///(.I) e P — m + O(k (2/3) ) for any xr € [1/3,2/3]
By Taylor’s theorem,
(22)
1/1 1
¥(00) = 1(1/2) = 2+ 0ok(1)) (60 = 1/2)* + = | — = 7753 T or(1) ) (80 — 1/2)°
6 \v (1-w)
for some dp < v < 1/2. Since §p > 1/3, we have 1/2 — §p < 1/6. Furthermore,
since © — & — ﬁ is monotone decreasing on (0,1/2], we have 23 — ﬁ <
1 127
a7y ~ o < 4 Thus

%(#——(13u>2)(1/2_50)3< L2 1
2(1/2 — 00)? S12°4°6

and for sufficiently large k we have % (U—12 - ﬁ —|—ok(1)) (1/2 = 80)® < (2 +
0r(1))(1/2 = 8p)2. Since 1(1/2) = f(d, k), 0) implies
Yo(8) <f(d k) — (2 + 0y (1))(1/2 — dp)?

+ % (% - ﬁ + Ok(l)) (1/2 - 60)3 + 0 (k4'5_k)

is strictly less than f(d, k) if k is sufficiently large.
Case 5. Suppose 0.5 — 27% < §; < 0.5. Let v = 0.5 — §y. By ([J),
e=0([(1/2+n)" ' —(1/2—y)F 1 27h).

Define L(z) = (1/2 4+ z)*~! — (1/2 — 2)*~1. We claim that L(y) < . Since
L(0) = 0, it suffices to show that L'(z) <1 for all « with |z| < 0.01. An elementary
calculation shows

L(z)=(k—1)[(1/242) 2+ (1/2 - 2)"?].

So L'(z) < 1if || < 0.01 and k is sufficiently large. Altogether this proves
e=0 (72”“). So the second equality of Lemma implies

(d—1)[Ho(6,1—6) — H(5,1 - 8)] = O (k27 %4?).
By (22) and (20),
Yo(0) < f(d, k) — (24 0x(1))7 + O (k27F4?) .

This is strictly less than f(d, k) if k is sufficiently large. O
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5.2. Reducing Lemma inequality (@) to estimating the local cluster.
As in the previous section, fix an equitable coloring x : V,, — {0,1}. Given a
uniform homomorphism ¢ € Homyy(I', Sym(n)), the cluster around y is the set

€, () = {¥ € Z(0) : du(x. %) <272}

We also call this the local cluster if x is understood.
In §6l we prove:

Proposition 5.9. Let 0 < ng <1 < (1 —log2)/2. Then for all sufficiently large
k (depending on no,m ), if

log(2
ri=d/k = Og; )9k (14 10g(2))/2 4+ 1
for some n with ny < n < ny then with high probability in the planted model,
ICo ()| S E%(Z.). In symbols,
1 X < EY =
Jim PY(1Co(x)| < Ep(Ze)) = 1.

The rest of this section proves Lemma inequality (@) from Proposition (.9
and the second moment estimates from earlier in this section. So we assume the
hypotheses of Proposition 5.9 without further mention.

We say that a coloring x is o-good if it is equitable and |C,(x)| < E%(Z.(0)).
Let Sy(o) be the set of all o-good proper colorings and let Z,(o) = |Sg(0)| be the
number of og-good proper colorings.

We will say a positive function G(n) is sub-exponential in n if

lim n~'log G(n) = 0.

n—oo
Also we say functions G and H are asymptotic, denoted by G(n) ~ H(n), if
lim,, oo G(n)/H(n) = 1. Similarly, G(n) < H(n) if limsup,,_,., G(n)/H(n) < 1.
Lemma 5.10. E(Z,) ~ E¥(Z.) = F(n)EL(Z) where F(n) is sub-exponential in

n.

Proof. For brevity, let H = Homyyis (T, Sym(n)). Let PX be the probability operator
in the planted model of x. By definition,

En(Z) = M"Y Zo) =13 Y Y LK)

oeJ oceH x:V—{0,1}

=D Pi(x € S(0))

= > Pu(lCs(x)| < EX(Z.)|x proper) Pi(y proper)

X equitable

= Y BX(Ie ()] < Ej(Ze))Py(x proper)
X equitable

~ Y Pi(xproper) = E}(Z),
X equitable

where the asymptotic equality ~ follows from Proposition 5291 The equality E¥(Z.)
= F(n)E%(Z) holds by Theorem O

Lemma 5.11. E%(Z2) < C(n)E%(Z,)?, where C(n) = C(n, k,r) is sub-ezponential
mn.
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Proof.

Ex(Z2) =|H]™ > (Z 1sg<o>(x)>

oeH X

=HT YD s, 0 ()1, () (X)
ceH x,X
:ZPZ(XE Sg and X € Sg)
XX
=) Pi(x € Sp)PL(X € Sylx € Sy)
XX

(23) = Z]Pg(X € Sg)En(Zy|x € Sy).

For a fixed x € Sy(0) we analyze E(Z,|x € Sq4) by breaking the colorings into
those that are close (i.e. in the local cluster) and those that are far. So let Z4(9) :
Hom, (I", Sym(n)) — N be the number of good proper colorings such that d,,(x, X) =
0. (We will also use Z.(§) = Z,(6) for the analogous number of equitable proper
colorings). Then

(24)

En(Zglx€5,) < 2E; Z Zg(‘s)‘XESg +2E, Z Zg((s)‘XESg
0<6<2—k/2 2-k/2<5<1/2

The coefficient 2 above accounts for the following symmetry: if ¥ is a good coloring

with d,,(x,X) = 0 then 1 — X is a good coloring with d,(x,1 — %) = 1 — 4. Note

that

(25  Ei| Y ZO)|xes, | <Ei#C(IxES,) < EiZ),
0<§<2-k/2

where the last inequality holds by definition of S,.
For colorings not in the local cluster,

Ex| Y ZO)xes,

2-k/246<1/2

<Ei[ > ZO)lxes,

2-k/2<5<1/2

P} (x proper)

<E, Z Ze(é)‘x proper Pu(yeS,)
n g

2-k/2<5<1/2

where the sum is over all § € Z[1/n] in the given range. By definition and Propo-
sition [0.9]
P¥(x proper) 1 1

— = —1
Pu(x € S5)  Pu(x € Sylx proper)  PX(|€,(x)| < E%(Z.))
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as n — oo. Since E¥(-|x proper) = EX(-), the above inequality now implies

En, > Zg(é)’xesq D D A ) e T

2-k/2<5<1/2 2-k/2<5<1/2 2-k/2<5<1/2
(26) < Cne™ ) < 0yEY(Z,),

where the second inequality holds by Theorem[G.lfor some function Cy; = Cy(n, k, )
which is sub-exponential in n. The second-to-last inequality holds because the
number of summands is bounded by n since ¢ is constrained to lie in Z[1/n] and
by Proposition B8, ¢(d) < f(d, k). The last inequality holds for some function
Co = Cy(n, k,r) that is sub-exponential in n since by Theorem B2, n~!log E%(Z,)
converges to f(d, k).

Combine (24]), (25) and (26]) to obtain
En(Zglx € Sg) < 2(1 + C2)ER(Ze).
Plug this into (23] to obtain
En(Zg) < 2(1+ Co)Ep(Ze)* ~ 2(1+ C2)Eq(Z,)?,

where the asymptotic ~ holds by Lemma [5. 10l This proves the lemma. O

Corollary 5.12. Lemma inequality @) is true. That is:

0 = inf liminf n~"log (P (|n""log Z (o) — f(d. k)| <€)).

e>0 n—oo

Proof. By Theorem [£.2]
n~ogER(Z(0)) = f(d. k)

as n — oo. In particular, for every € > 0, for large enough n, P% (n_l log Z (o) >
fld, k) + 6) < exp (—%n) So it suffices to prove

0= inf liminf n~" log (P, (n”~ ' log Z(0) > f(d. k) —€)) .
Since Z(o) > Z4(0), it suffices to prove the same statement with Z,(o) in place of
Z(0). By LemmaB.I0and Theorem£2], n~! log (E¥[Z,(0)]) converges to f(d, k) as
n — 00. So we may replace f(d, k) in the statement above with n~!log (E%[Z,(c)]).
Then we may multiply by n both sides and exponentiate inside the probability. So
it suffices to prove

(27) 0 = inf liminf n~" log (P% (Z,(0) > E¥[Z,(0)]e™ ™)) .

e>0 n—oo

By the Paley-Zygmund inequality and Lemma B.1T]

BY (Z,(0) > EX[Z,(0)]e") > (1 — o) enlZa(0)]

" E[Zy(0)3] =

1
C)

where C' = C'(n) is sub-exponential in n. This implies (21). O
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6. THE LOCAL CLUSTER

To prove Proposition (.9, we show that with high probability in the planted
model, there is a ‘rigid’ set of vertices with density approximately 1 —27%. Rigidity
here means that any proper coloring either mostly agrees with the planted coloring
on the rigid set or it must disagree on a large density subset. Before making these
notions precise, we introduce the various subsets, state precise lemmas about them
and prove Proposition from these lemmas which are proven in the next two
sections.

So suppose G = (V, E) is a k-uniform d-regular hyper-graph and x : V' — {0,1}
is a proper coloring. An edge e € E is y-critical if there is a vertex v € e such that
x(v) ¢ x(e\ {v}). If this is the case, then we say v supports e with respect to
x- If x is understood then we will omit mention of it. We will apply these notions
both to the case when G is the Cayley hyper-tree of I' and when G = G, is a finite
hyper-graph.

For I € {0, 1, 2, ...}, define the depth [-core of x to be the subset Cj(x) C V
satisfying

Co(x) =V,
Ci41(x) = {v € V: v supports at least 3 edges e such that e\ {v} C Ci(x)}.

By induction, Cj41(x) C Ci(x) for all I > 0. Also let C (x) = MiCi(x).

The set C;() is defined to consist of vertices v so that if v is re-colored (in some
proper coloring) then this re-coloring forces a sequence of re-colorings in the shape
of an immersed hyper-tree of degree at least 3 and depth [. Re-coloring a vertex of
Coo(x) would force re-coloring an infinite immersed tree of degree at least 3.

Also define the attached vertices A;(x) C V by: v € Ai(y) if v ¢ Ci(x)
but there exists an edge e, supported by v such that e \ {v} C C;—_1(x). Thus if
v € Aj(x) is re-colored then it forces a re-coloring of some vertex in C;_1(x). In
this definition, we allow [ = oo (letting co — 1 = o0).

In order to avoid over-counting, we also need to define the subset Aj(x) of vertices
v € Ai(x) such that there exists a vertex w € A;(x), with w # v, and edges e,, e,
supported by v, w respectively such that

(1) ex \ {v}, ew \{w} € Croa(x),

(2) ey Ney 0
In this definition, we allow [ = co.

We will need the following constants:
1

=i T
The significance of Ag is: if e is an edge and v € e a vertex then \g is the probability
v supports e in a uniformly random proper coloring of e. So A = d)¢ is the expected
number of edges that v supports. For the values of d and k used in the Key Lemma
L2 A = log(2)k + O(k27F).

For the next two lemmas, we assume the hypotheses of Proposition 5.9l

/\0 A= d)\o =

Lemma 6.1. For any § > 0 there exists ko such that k > ko implies
< 1Ci(x) U Ai(x) \ 410

lim lim inf P}

l—o00 n—oo

i —A —
- >1—e (1—|—5)> 1.

Lemma [6.1] is proven in {7
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Definition 7. Fix a proper 2-coloring x : V' — {0,1}. Let p > 0. A subset
R C V is p-rigid (with respect to x) if for every proper coloring x’' : V' — {0, 1},
{v € R: x(v) # x'(v)}] is either less than p|V| or greater than 2-%/2|V|.

Lemma 6.2. For any p > 0,
lim liminf PX (Cy(x) U A1(x) \ Aj(x) is p-rigid) = 1.

l—o00 n—oo

Lemma is proven in §8l We can now prove Proposition

Proposition Let 0 < mg < m < (1 —1log2)/2. Then for all sufficiently large

k (depending on no,m ), if

log(2)
2

for some 1 with g < n < m then with high probability in the planted model,
1Co(X)| < EX(Ze). In symbols,

. X u J—
Jim P (e, (0] < B(Z0)) = 1.

ri=d/k= 28 — (14 1o0g(2))/2+ 1

Proof. Let 0 < p, 0 be small constants satisfying
(28) log(2)8 + H(p,1 — p) +log(2)p < (1 — 21 — log(2))27*.
Let I be a natural number. Also let o : I' = Sym(n) be a uniform homomorphism
and y : [n] = {0,1} a proper coloring. To simplify notation, let
R = Ci(x) U400\ A(x)-
By Lemmas[6.Jland 6.2]it suffices to show that if |R|/n > 1—e~*—§ and R is p-rigid
then |C, (x)| < E¥(Z.) (for all sufficiently large n). So assume |R|/n >1—e"* —§
and R is p-rigid.
Let X' € C,(x). By definition, this means d,,(x’, x) < 27%/2. Since R is p-rigid,
this implies
{o € R: x(v) £ X'} < pn.
Since this holds for all x’ € C,(x), it follows that
R
‘GJ(X)| < (| |>2pn2n—R.
pn
By Stirling’s formula

n~!log ('R) <n 'log (n) < H(p,1—p)+O(n *log(n)).
on on

Since |R|/n>1—e*=§=1-2"%—§+ O(k272k),
n~log(2" 1Bl <log(2)[27% + 6] + O(k272).
Thus,
n"1log |Cy(x)| < log(2)2~F +1og(2)d+H (p, 1—p)+log(2) p+O (k22 +n " log(n)).
On the other hand,
n"togEY(Z,) = f(d, k) +O(n tlog(n)) = (1—2n)27% + O(27%) 4+ O(n ' log(n))

by Lemma and Theorem

Therefore, the choice of p,d in [28) implies |C,(x)| < E¥(Z.) for all sufficiently
large n. This also depends on k being sufficiently large, but the lower bound on k
is uniform in n. |
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7. A MARKOV PROCESS ON THE CAYLEY HYPER-TREE

Here we study a I'-invariant measure p on X which is, in a sense, the limit of
the planted model. We will define it by specifying its values on cylinder sets.

Let D C T be a connected finite union of hyper-edges. Let & € {0,1}7 be a
proper coloring. We define C(£) C X to be the set of proper colorings ¢’ € X with
&' I D = ¢ (where [ means “restricted to”). We set pu(C(€)) equal to the reciprocal
of the number of proper colorings of D. In particular, if & € {0,1}” is another
proper coloring of D, then u(C(&)) = p(C(&)).

Because X is totally disconnected, any Borel probability measure on X is de-
termined by its values on clopen subsets (since these generate the topology). Since
every clopen subset is a finite union of cylinder sets of the form above, Kolmogorov’s
Extension Theorem implies the existence of a unique Borel probability p on X sat-
isfying the aforementioned equalities.

Note this measure has the following Markov property. Let z = (z4)4eq be a
random element of X with law p. Let v € I" and let e C I' be a hyperedge containing
v. Let Past(e, v) be the set of all g € T such that every path in the Cayley hyper-tree
from g to an element of e passes through v. In particular, eNPast(e,v) = {v}. Then
the distribution of (x4)4ee\ (v} conditioned on {z, : g € Past(e,v)} is uniformly
distributed on the set of all colorings y : (e \ {v}) — {0,1} such that there exists
some h € e\ {v} with y(h) # z(v).

7.1. Local convergence. We will prove the following lemma.

Lemma 7.1. Let x : V — {0,1} be an equitable coloring with |V| =n. If BC X
is clopen, then for every ¢ >0
> 6) =0.

To prove this lemma we will first show that if f,, : Hom, (I, Sym(n)) — R is the
function

lim PX (‘% > 1p(Ig (x)) — u(B)

n—oo
veV

fulon) = 37 1515 (1),

veV

then f,, concentrates about its expectation using Theorem [BI] and then we will
show that this expectation is given by u(B).

Proposition 7.2. We have
lim PX (| fn — Ex[fn]l > €) = 0.
n—oo

Proof. For g € T, let pry, : X — {0,1} be the projection map pr,(z) = z,4. For
D C T, let Fp be the smallest Borel sigma-algebra such that pr, is ¥p-measurable
for every g € D.

Since every clopen subset B of X is a finite union of cylinder sets, the function
15 is Fp-measurable for some finite set D C I'.

We will use the normalized Hamming metrics dgym () and dpom on Sym(n) and
Hom, (I", Sym(n)) respectively. These are defined in the beginning of Appendix
Bl We claim f, is L-Lipschitz for some L < oco. Let 0,0’ € Hom, (T, Sym(n)).
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Because 1 g is Fp-measurable,
[fu(0) = falo)] < n7 v € [n] - x(a (771 (v) # x (o' (v 1)(v)) for some v € D}
<n '#{ven] oy W) #£ o' (v (v) for some vy € D}

< Z dSym(n) (0—(’7_1% 0/(7_1))'

~€D
Now dgym(n) is both left and right invariant. So
dSym(n) (gha g/h/) < dSym(n) (gha gh/) + dSym(n) (ghlv g/h/)
= dSym(n) (ha h/) + dSym(n) (97 g/)
for any g,¢’,h,h' € Sym(n). Furthermore we immediately have for any 1 < < d
that dSym(n) (0(si),0'(s1)) < drom(o, 0—/)‘ Together these imply dSym(n) (c(7), 0—/(7))
< |y|daom(c, ') for any v € I where |y| is the distance from ~ to the identity in the
word metric on I'. Thus if we take L = > 1, |v] < oo we see that | f,(0) = fn(0”)] <

Ldyom(o,0') as desired.
The Proposition now follows from Theorem [B.1l O

To finish the proof of Lemma [.1], it now suffices to show the expectation of f,
with respect to the planted model converges to u(B) as n — oco. We will prove
this by an inductive argument, the inductive step of which is covered in the next
lemma.

Lemma 7.3. Let D C T' be either a singleton or a connected finite union of
hyperedges containing the identity. Let ¢ € {0,1} be a proper coloring. Let
Fp¢o C Hom,(I',Sym(n)) be the event that IIJ*(x) | D = & | D. Let Q(D)
be the number of proper colorings of D. Then
2
(29) lim  sup  |PX(Fpey) — = | =0.
e ieary | S QD)

Remark 8. The factor of 2 in Q(QD) is there to account for the fact that we are
requiring v € x~1(&(1r)).

Proof. The statement is immediate if D = {Ir} is a singleton. For induction we
assume that the statement is true for some finite D C I". Let D’ D D be a connected
union of hyper-edges such that there exists a unique hyper-edge e with D’ = DUe.
By induction, it suffices to prove the statement for D’.

Note by symmetry that PX(Fp¢,) is the same for all v € xy~1(£(1r)). Let us
denote this common value by c¢p¢. Define Ape = {(v,0) : v € Vo0 € Fpeo}
If g € D then (v,0) — (o(g~")v,0) is a bijection from Ap¢ to Ag-1p 41, This
implies

n
5¢p.¢ [Homy (T, Sym(n))| = [Ap ¢|

2
= |Ag-1pg-1¢]
n
= 5C1Dg 1 |[Hom, (T, Sym(n))| .

Thus ¢y-1p g-1¢ = cpe. After replacing D’ with y~'D’ where v € e D is the
unique element in e N D, we may therefore assume without loss of generality that
eN D = {1r}. By symmetry we may also assume &(1p) = 1 and e = {s¢ : i =0,
-+, k — 1} is the hyper-edge generated by s;.
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For any subset W C T, let Eyw,, be the event that o,,(¢7!)(v) # 0, (¢~ 1) (v) for
any g,g' € W with g # ¢’. Since the planted model is a random sofic approximation,
by Lemma [B.1] we have PX(Epue,v) = 1 — 0,,(1) uniformly in v. We will show that

(30) lim  sup

o pex=1(1)

PX (FE@U

FD,&,va EDUe,v) - m’

Next we show how to finish the lemma assuming (30). We claim that Q(DUe) =
Q(D)(2F~1 —1). To see this, observe that if ¢ is a proper coloring of D and ¢” is
any coloring of e\ {1r} then the concatenation £’ LI is a proper coloring of DUe
unless £”(g) = &'(1r) for all g € e\ {1r}. Since |e \ {Ir}| = k — 1, this implies
that every proper coloring of D admits 2~ — 1 proper extensions to D Ue. So
Q(DUe) = Q(D)(2F! — 1) as claimed.

Since FDUe,E,v = Fe,g,v N FD,E,vu

P% (FDUB,E,U) = P% (FB,E,U

FD@v) PX (Fp.g.w)

= P% (Fe,f,v FD,f,m EDUe,U) P% (FD,E,U) + On(l)

The lemma now follows from the inductive hypothesis, [B30) and Q(D Ue) =
Q(D)(2* ! —1).

It now suffices to prove ([B0). Let D; denote the union of all subsets {gs? 11 =0,
-+, k—1} over all g € D such that {gsé— :9=0,---,k—1} C D. That is, D, is the
union of all hyperedges generated by s; which lie completely within D. Because
e={s{:i=0,---, k—1}, en Dy = 0. Multiplication by s; on the right preserves
D;.

FixveV ={1, ..., n} and consider an injective function h : D — V such that
h(1lr) = v and x (h(¢/)) = {0,1} for all hyper-edges ¢’ € D. Let N(x,h) be the set
of o € Hom, (', Sym(n)) such that o(g~')v = h(g) for all g € D. By definition,

PY (c(g™")(v) = h(g) Vg € D) = |Hom|ﬁﬁx’s}yﬁ<n>>|'

For each j € {1, ..., d}, let N;(x, h) be the set of permutations 7; € Sym(n) such
that

(1) the orbit-partition of 7, is a k-partition which is properly colored by ¥,
(2) higs;) = w]flh(g) forall ge DN Dsj*l.
We claim that the map

N(th’) HNl(th) Xoere X Nd(Xah)

that sends o to (o(s1), ..., 0(sq)) is a bijection.

The fact that it is injective is immediate since I' is generated by si, ..., sq. In
order to prove that it is surjective, fix elements w; € N;(x, h) for all j. Define o €
Hom, (', Sym(n)) by o(s;) = m;. It suffices to check that o(g7*)(v) = h(g) Vg € D.
By induction on the number of edges in D, it suffices to assume that the equation
(g~ 1) (v) = h(g) holds for some g € DN Ds;1 and prove o((gs;) ") (v) = h(gs;).
This follows from:

a((g5;) ™) (v) = o(s;)alg™")(v) = ;" h(g) = h(gs;).
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This proves the claim. Therefore,

T N (G )

(31) P onO7 O D =h) = o Symm))

Let Hp = {h: D — V : h is injective, x(h(g)) = £(g) Vg € D, and h(1r) = v}.
We have

PX(Fp¢w, Epn) = Y PX(oa()"'(v) | D =h).
heHp

Similarly

PX(Fpue v Epues) = PX(on() "' (v) [ DUe=h).
W EHpu.

Each h € Hp is the restriction to D of

(32)  (m- 1)!(”/2 —#TN D) (k- m)!("/2 —#E71(0) N D)

m—1 k—m
distinet b’ € Hpye where m = [£€71(1) Ne|. We can express

PX(Fpue,ev; EDUew)
PX(Fp.¢.v, EDUe,w)
_ PX(Fbue,¢v, EDUe,v)

- PX(Fpew,Epo)
B Zh’eHDUQ PX(0,(:)"t(v) | DUe=1)

= Sn BXen () [D=hy o

_ Zwenp o N6l "
- d n ]
ey 11y IN; (x )|

PX(Fee0

FD,ﬁ,in EDUe,'U) =

+ on(1)

where the o,(1) term follows from the inductive hypothesis and the fact that
PX(Ep,v) > PX(Epuew) =1 —o0n(1).

If hi,he € Hp then x(hi(g)) = &(g9) = x(h2(g)) for all ¢ € D. Observe
that |N;(x, h1)] = |N;(x, he)|. This follows by conjugating by a permutation in
Sym(n, k) which preserves the color classes of x and which maps hq(g) to ha(g) for
each g € D. Similarly, if b}, hy € Hpye then |N;(x, h})| = |N;(x, h)|. Therefore,

|Hpuel TS, IN;(x, /)]
\Hp| 15—y IN;(x. h)|

P%(FE,&U'FD,&vv EDUeﬂ)) -

+0,(1)

for any h € Hp and h' € Hp,.
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Next we choose b/ € Hpy. and h € Hp so that h’ extends h. Note |[N;(x,h')| =
|N;(x, h)| for all j # 1 because D; = (D Ue),. Therefore,

]P)z( 61§7U|FD,§,U5EDU5,'U)
_ [Hpue| N1 (x, /)|

= DoelllMVO )T 4 b (1
HolNaoem
_ ORIl (/2= #67H(1) N D n/2 —#£1(0) N
= Mo ! o (k — m)! - +oa(1)
(33)
~ _|N1(X7 hl)' (n/2)k71
IN1(x, h)
where the second equality uses ([B2]). Here we are using the notation f(n) ~ g(n)
to mean lim,, % =1

To compute |Ni(x,h)l, let

)7 Ly _ (1) \ (D) _
TD’n—{te [07 1]k+ .to_tk_O,;t, Z’Ltl W,(n—#Dl)tlez}

be the set of possible types of orbit—part1t1ons of permutations of V' \ h(D;) that
contribute to the count |Nj(x,h)|. To be precise, if £ € Tp, then there is a
k-partition of V' \ h(D;) such that the number of parts P of the partition with
|IPNx~1(1)| =iis t;(n — #Dy).

If we fix t € Tp,, then the number of permutations whose orbit partition has
type t is

Y (n=# D) /K (n/2 —#&1(1) N D1)!(n/2 — #£71(0) N Dy)!
' H;?:sztj(n—#D1>(k_J)m(n #D1)(t;(n — #Dy))!

where we have used (§]). It follows that
Py D/s(02 = #¢~1(1) N Dy)!(n/2 — #£71(0) N Dy)!

(k—1

A !
x > Spal®
i€Tp n
where
(34) Spa(t) = ((n — #D1)/k)!

[Ty it #D0) (ks — i)L—#D0) (t;(n — #Dy))!
So
[N (x 1) (n/k)  ierpo., Spuen(d)
INOGD] ™ (B=D10/2F Sy, Spall)
We plug this into ([B3)) to obtain

2 £ SD en t

(35) lim PY (Fe U|FD vs EDUe v) = lim — ZtGTDU" ~ Y H)
im P (Feeo|Fpg, , Jim

e e ZtETD n SD n E)

Define t* € [0,1]*! by t& = t; = 0 and t} = m( ) for 0 < i < k. We

establish asymptotic estimates of the sum of Sp ,( (t) in Lemma [7.4] and show that
it suffices to sum over a small ball around t*.
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Recall m = [£71(1) Nel. Let TD,n = {fe Tpn:tm > 0}. We define f, : TD,n —

TDUe,n by
fal®); = {_(n"——##[’ﬁf?k S ifj=m
n\l)j; = 4D P
nﬁ##gliktj ifj#m

Because eN Dy =0, if t € TDﬁn then f, () € Touen-

We claim that for any ¢ > 0 there exists an IV := N(§) and ¢’ > 0 such that for
n > N, Tpuen N By (t*) C fn(Tp.n N Bs(t*)). This follows from observing that f,

is invertible and that d(f, (t),7) < #;ﬁk. By Lemma [74] we have

(36) lim ZFGTDUe,n SDUem({) ~ im ZFGTDmnBJ(t*)SDUe,n(fn(gj)

e ZfeTD,n SD»H(Q nmee E{eTD,nttg(ﬁ) SDm(ﬂ
Furthermore, since 1 <m < k —1 and ¢}, > 0, for 6 > 0 sufficiently small we have

j’D,nﬂBg(t*) =Tp ,NB;(t*). Because #(DUe)1 = #D; +k, the ratio &D‘Q*D"i%({))

simplifies to

k k(R
%D, ml(k —m)lt,(n—#Dq) =

In particular, at t* we obtain

SDUe,n(fn(t*)) k!

Spa(ts) 2k —2

Suppose t € Bs(t*). Then |t,, — t¥,| < §. So

SDUe,n(fn(a) _ k' ‘ _ ‘SDUe,n(fn(g)) _ k'
SDm(E) 2k -2 SDm(Ej 2k —2

|
R e < s

()

Since § is arbitrary, this and (38) imply

lim ZFETDUe,n SDUe,n(B B k!
e ZFGTD‘W, SD»”(F) 2k =2

We plug this into (35 to obtain

lim PX(F, ¢.0|Fpgw, EDUew)

n—oo - Zk_l — 1

Lemma 7.4. For any § > 0 we have
. Z{‘ETD,nﬁB(; (t*) SD7" (Ej
lim =1
nreo ZFGTD,W SD’”(Q
Proof. We use the following general consequence of Stirling’s formula: let [ € N|
t€[0,1)" with 3°, ¢; = 1. Let £ be any sequence in [0, 1] such that n#l") € N! and
) — tas n — oco. If £ = (¢, ;)!_; then lim, o n ™! log ( " ) = H(®).

Nlp,1,5.,Mtn 1
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By 4)
k—1 ti(n—#D1)
Spn(f) = (tn 1(n— #D(T)_ %D:L)k/ 1(n —#D1) ) (H <I:> ) ki EOOE,

=1
By setting N = (n — #D1)/k, we obtain

. (n—#D1)/k >
nlgrolon log (tnl(n—#Dﬁ tnk—1(n —#D1)

N
=k~ lim N1
e Og(nlkN ke 1kN>

=k H(kt) = — Ztlog (kt;) = H(t) — k™' log (k).

1=0
‘We thus have:

limsup sup
n—00 FETD,"

L og Sp () - w(ﬂ’ =0,

where ¢ is given by

k
0 1=~ log(K(K)) + H(H) + 3" t:log (k) .
i=0

Note that 1 does not depend on n or D. Furthermore %) is continuous and strictly
concave. By the method of Lagrange multipliers (see §4.2)) its maximum on M :=
{z € [0,1)** : 2y = 2, = 0,),2; = £} occurs at ¢*. In particular given § > 0
there is some 0 < 77 < § such that
inf Y(x)— sup  Y(z) > 0.
xeMNB,(t*) zEM\Bj (t*)

We claim that B, (t*) N Tp,, € B,(t*) N M is non-empty for sufficiently large n.
Since #Tp,, < n* this claim and standard arguments involving the exponential
growth of Sp ,(t) imply the lemma.

To prove the claim, we exhibit a member of B, (t*)NTp,, in a series of three steps.

First, let t(!) € R*¥*! be defined by tgl) % for each 0 < i < k. This
satisfies the integrality condition that is (n — #Dl)tl(.l)
[ — O] < S fr — 6] < AL

Second, define t(z) € RF*1 by
1 k=1 ,(1)\ s
t(2):{tg)+(k Z] 1t§)> le:1

i tgl)

€ Z for all i. Furthermore

otherwise

Since ”77#& € Z and (n — #Dl)tgl) € Z for each i we maintain the integrality
condition, and )", tl@) = % Furthermore

Z — D) Zk: t(l‘ k—1
_ﬂ—#Dl

=0

‘t<2> t(l)‘ <
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Finally let A = 2 WMD) 53k 1343 Define 13 € R by

tP _Adfi=1
1 =D LA =2

t§2) otherwise

We claim t©®) € B, (t*) N Tp,, for n sufficiently large. First t(g) t(2) t(()l) =
ty = 0, with the same equalities holding for t,(C ). We have tl( (n —#D1) € Z since
tgz)(n—#Dl) € Z for each i and A(n—#D;) € Z. We also have ), tES) =3, tgz) =

+. Furthermore ), it§3) => zt(2 +2A - A= # Finally by repeated
application of the triangle inequality
kE—1 kE—1
[t* —t®)] < + +2|Al.

n— #Dl n— #Dl
We show that |A| is small for n sufficiently large. This will not only imply that
t®) € B,(t*), but also that tgg) € [0,1] for each i. Note that

n/2 —#D, < #x (1) \ h(Dy) < n/2 (”—#Dl)/2+#D1/2

n - n — #D1 “n—#Dy n— #Dq
This implies ‘w ‘ < max{ #n , %}. Thus
k
#x ')\ h(Dy) 1 1 (2)
Al < - = = — t,
< [PCEAZE S
k
#D1 #D, } . (1) (1) (2)
< max , (I it i, — it
- { n ' 2(n—#D;) Z Z ; ;

Smax{#Dl, #D1 }+2(k_1) .

n ' 2(n—#D,) n—#D;
As k and #D; are fixed, we have [t* —t®3)| < 5 for large enough n. Since t¥ € (0,1)
for each 1 <i <k — 1 we have |t§3) —t¢] < |t®) —t*|. Thus for sufficiently large n
we will also have tl(»?’) € (0,1) for each 1 <4 < k — 1. Therefore t® € [0,1]**! and
we have t3) € B, (t*) N Tp, for n sufficiently large. O

Proof of Lemma [[ Il Let uX be the Borel probability measure on X defined by

pin(B) = ( Lp (15" ( )))

#V UGZV
for any Borel set B C X. By Proposition[7.2] it suffices to show that pX(B) — p(B)
as n — oo for any clopen set B C X. Because clopen sets are finite unions of
cylinder sets, it suffices to show that if D C T is a finite subset and ¢ € {0,1}”
then lim,, o0 X ([¢]) = p([€]) where [€] is the cylinder set {z € X : z [ D =¢}. We
can further assume D to be a connected finite union of hyperedges with 1p € D.
The proof now follows from Lemma [T.3] since

pX(E) =n""Y PX(Fpen)=n"" > PX(Fpeo)=(1/2)PX(Fpew,),
veV vex 1 (&(1r))
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where, in the last equality, vg is any vertex in x~'(£(1r)). These equations are
justified as follows. By symmetry, if vo,v1 € x~1(&(1r)), then PX (Fpg ) =
PX (Fp.v,)- On the other hand, if v ¢ x~*(£(1r)), then PX (Fp¢,) = 0. Lastly,
Ix~H(E(r))| = n/2. =
7.2. The density of the rigid set. This subsection proves Lemma So we
assume the hypotheses of Proposition An element z € X is a 2-coloring of the
Cayley hyper-tree of I'. Interpreted as such, Cj(x), A;(z), Aj(x) are well-defined
subsets of T' (see §0l to recall the definitions).
For | € NU {oo}, let

él = {,T eX: 1re Cl(x)}7
Aj={zeX: 1r € A(z)},
Aj={zeX: 1r € Aj(z)}.

Recall that Ay = ﬁ and A = d)\g. Since we assume the hypothesis of

Proposition (9 A is asymptotic to log(2)k as k — oo.

Proposition 7.5.
#(Co) > 1= A2 + O(K522H),
(O UAL) > 1 — e + O(k*272F),

Proof. For brevity, let e; C I' be the subgroup generated by s;. So e; is a hyper-edge
of the Cayley hyper-tree. Let Ff' C X be the set of all # such that

(1) 1r supports the edge e; with respect to x and

(2) €; \ {11“} C Cl(.’lf)
Since Cpy1(x) C Ci(z), it follows that F},; C F/. The events F} fori=1,...,d

are i.i.d. Let p; = p(F}) be their common probability.
We write Pr(Bin(n,p) = m) = (™)p™(1 — p)"~™ for the probability that a

m
binomial random variable with n trials and success probability p equals m. Since
the events Fll_l, ey Fld_1 are i.i.d., A; is the event that either 1 or 2 of these events

occur and (] is the event that at least 3 of these events occur, it follows that
w(Ay) = Pr(Bin(d, p;—1) € {1,2}).
w(Ch) = Pr(Bin(d, p_1) > 3).
Thus ~ ~
n(CrU Ay) = Pr(Bin(d, pi—1) > 0).
Claim 2. pg = Ao and for | > 0, p;+1 = f(p1) where
f(t) = Xo Pr(Bin(d — 1,t) > 3)*1.

Proof. To reduce notational clutter, let F; = F}'. Note that po = pu(Fp) = Ao is the
probability that the edge e; is critical. So

prv1 = p(Fo)p(Fry | Fo) = op(Fiqa | Fo).
Conditioned on Fy, Fy4; is the event that e; \ {1r} € Cj41(x). By symmetry and
the Markov property u(Fj+1 | Fp) is the (k — 1)-st power of the probability that
s1 € Cy1(x) given that 1p supports e;. By translation invariance, that probability
is the same as the probability that 1pr € Cjy1(x) given that 1p does not support
the edge e;. By definition of Cjq(z) and the Markov property, this is the same
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as the probability that a binomial random variable with (d — 1) trials and success

probability p; is at least 3. This implies the claim. (Il
The next step is to bound Pr(Bin(d — 1,¢) > 3) from below:

Pr(Bin(d —1,¢) >3) =1— (1 — )4 — (d = 1)t(1 — )42 (d; 1>t2(1 — )43
(d—1)t (d—1)t  (d—1)22
(37) >1—e @D <1+ 7+ 2(1_t>2).

The last inequality follows from the fact that (1 —¢)?~! < e~(@=D* This motivates
the next claim:

Claim 3. Suppose t is a number satisfying Ag (1 - )\2617)‘)k71 <t < Ag. Then for
all sufficiently large k,

0<A—(d-1t<1
(d—1t (d— 1)‘%2
1—1¢ 2(1-1¢)2 —
Proof. The first inequality follows from:
A—(d=1t>A—(d—1) o =X >0.
The second inequality follows from:
A= (d—1)t< A= (d—1)Ag (1= A2t M)
= do — (d— 1)Ao (1= A2e2 1)1
< dho — (d—1D)Xo(1 = (k= 1)A\%e!™)
< Ao+ (d— DAk — DA% ™ < Ao+ kX3 =4, 0.
The third line follows from the general inequality (1 —z)*~! > 1 — (k — 1)z valid
for all x € [0, 1]. To see the limit, observe that under the hypotheses of Proposition
B9 d ~ (log(2)/2)k2%. So A ~ log(2)k. In particular, kA3e!=* — 0 and \g — 0 as
k — oo. The implies the limit. Thus if & is large enough then the second inequality
holds.

To see the last inequality, observe that since t < A\g, t — 0 as k — co. On the
other hand, (d — 1)t ~ A ~ log(2)k. Thus 71)t and (d — 1)t are asymptotic to

t
. log(2)2k?2
log(2)k. Since 1+ log(2)k + 25—

1+

< (d-1)%

< log(2)%k? for all sufficiently large k, this
proves the last inequality assuming & is sufficiently large. O

Now suppose that ¢ is as in Claim [Bl Then

f(t) = Xo (1_e—<d—1)t <1+(dl—_1t)t 1_t ))’C 1

> g (1= e Md = 1)22)" 7 > g (1= 2212

The first inequality is implied by &1). The second and third 1nequalities follow
from Claim Bl For example, since A — (d — 1)t < 1, e~ (=Dt < 1A,

Therefore, if p; satisfies the bounds g (1 — AQel_)‘)k_l < p; < Ao then f(p) =
piy1 satisfies the same bounds. Since po, = lim;_, o, f(Ag), it follows that

(38) Ao > Poe > Ao (1= A2 7 = Ag 4 O(k3220),
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Because (1 — L)™ < e~ for any t,n > 0,
(Coo UAL) = llim w(CrUA)) = llim Pr(Bin(d, p;—1) > 0) = Pr(Bin(d, ps) > 0)
— 00 — 00
=1—(1—poo)?>1—exp(—pocd) =1 — e+ O(k*272%).

The first equality occurs because C’l U/L decreases to C‘oo Ufloo. By (37) and Claim
Bl (with d in place of d — 1),

1(Cos) = Pr(Bin(d, pso) > 3) > Pr(Bin(d, Ao + O(k*272%)) > 3)

dXo dz)\% 6e— 2k
>1— —
> 1 —exp(—Aod) (1 + T + 31— )2 + O(k°27=%)

>1— A%+ O(k5272).
0

Lemma 7.6. (AL ) = o(e™*) where the implied limit is as k — oo and 1 is
bounded.

Proof. As in the previous proof, let e; C I' be the subgroup generated by s;. So e;
is a hyper-edge of the Cayley hyper-tree.

Let x € X. We say that an edge e is attaching (for x) if it is supported by a
vertex v € Ao (x) and e \ {v} C Coo(z). Let F(z) =0 if 1p ¢ Coo(x). Otherwise,
let F(z) be the number of attaching edges containing 1p. Then by translation
invariance,

d
(39) p(AL) <> mu(F(z) = m).

Let G C X be the set of all x such that

(1) ey is a critical edge supported by some vertex v # 1,

(2) e1 \ {v,1r} C Coo(®),
(3) v e Ax(x).

By the Markov property and symmetry,

(10) u(r) =m) < (

Let

e (G; C X be the set of all = such that e; is supported by s,
o (G2 C X be the set of all x such that e; \ {s1,1r} C Coo(x),
e (G3 C X be the set of all z such that s; € A(z).

By symmetry
w(G) = (k = 1)u(GslGe N G1)p(G2|G1)p(Gh).

Conditioned on G NGa, if G3 occurs then there are no more than 1 attaching edge
e supported by s; with e # e;. By the Markov property and symmetry,

w(G3|Ge N G1) < Pr(Bin(d — 1,ps) < 1) = O(Ae™?),

where we have used (B8). Also p(G1) = Ao. Thus pu(G) < O(k%*e=2?*). So (B9) and
(@D) along with straightforward estimates imply u(A%) = o(e™™). O

Lemma 7.7. limsup,_,.. u(4]) < u(A%).
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Proof. Given a coloring x : I' — {0, 1} of the Cayley hyper-tree and [ € N, define
Al (X) = Um>1A7,(x). Also define Al ={zeX: Irc Al (z)}. Since Al S A
and the sets A}’ are decreasing in [, it suffices to prove that N;>0A; C AL_.

Suppose x € ﬂlzofi;/. Then there exists an infinite set S C N such that = € A
(Vi € S). So 1r € Aj(z) (VI € S). So for each | € S, there exist g; € A;(x) \ {Ir}
and hyper-edges ¢, f; C I' such that

(1) 1r supports e; (with respect to z),

(2) ¢ supports f; (with respect to x),

3) eV fi\{lr,a} C Ci-1(2),

(4) een fi #0.
Because ¢; N f; # 0, g; is necessarily contained in the finite set {s!* sfj :1<4,5 <
d,0 < p; < k}. So after passing to an infinite subset of S if necessary, we may
assume there is a fixed element g € T" such that g = g; (VI € S). Similarly, we may
assume there are edges e, f C I' such that ¢, = e and f; = f (VI € S).

Observe that 1 ¢ Coo(x) because 1p € A;(x) implies 1pr ¢ Ci(z) (VI € 9).
Similarly, g ¢ Coo(x). Because e;U fi \ {1r,g:} C Ci(z) (VI € S) and the sets Cy(x)
are decreasing in [, it follows that eU f \ {1r, g9} C C(z). Therefore {1r,g} C
Aso(z). This verifies all of the conditions showing that 1r € A’ (z) and therefore
x € A’ as required. O

We can now prove Lemma

Proof of Lemma Bl Observe that the sets Cj, Aj, A] are clopen for finite I. By
Lemma [T.1],
< 5) 1

(41) lim lim inf P
N0 n—oo

for any finite . Since A UC is the decreasing limit of 4; UC), Lemma [ implies

lilm inf ;(CyU A\ A)) > pu(Coo U Ao \ A).

—00

( [C100) U Ai(x) \ A1)

n

—u(éluﬁl\/ﬁ)

By Proposition and Lemma [7.6]
(Co UAL\AL) > 1 —e > +o(e™).
Together with (@IJ), this implies the lemma. a

8. RIGID VERTICES

This section proves Lemma[6.2l So we assume the hypotheses of Proposition

As in the previous section, fix an equitable coloring x : V' — {0,1}. We assume
|[V| =n and let o : T' = Sym(V) be a uniformly random uniform homomorphism
conditioned on the event that x is proper with respect to o.

Lemma 8.1 (Expansivity Lemma). There is a constant kg > 0 such that the
following holds. If k > ko then with high probability (with respect to the planted
model), as n — oo, for any T C V with |T| < 27%/2n the following is true. For a
vertex v let E, denote the set of hyperedges supported by v. Let Er be the set of all
edges e € Uper B, such that |eNT| > 2. Then

#Er < 2#T.
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Proof.

Claim 4. There exists kg € N such that k& > kg implies
o k/2<\<k,
o 1/2—k2'7F2 > oo,
e and for any 0 <t < 27%/2 and k/2 < N <k
H(t,1—t)+XNH(2t/N,1—2t/\) + 2tlog(4k) + 4t log(t) < 0.9¢log(t).
Proof. Recall that A\ = log(2)k+ O(k27%). So the first two requirements are imme-

diate for kg large enough.

‘We est(imat)e each of the first three terms on the left as follows. Because 1 =
H(t,1—t

lims o “tlog(D) ’ there exists kg € N such that k > kg implies Iﬁﬁolg_(f)) < 1.01.
Note,
NH2t/N,1—2t/N) = —2tlog(2t/\) — (N — 2t)log(1 — 2t/\)
= —2tlog(2t/\) + O(t) < —2tlog(t) + 2tlog(\') + O(t)
< —2tlog(t) + 2tlog(k) + O(t).
So by making kg larger if necessary, we may assume
NH2t/N,1—=2t/N)
—tlog(t)

< 2.01.

Since 2t log(4k) < 2log(4k)
“tlog(t) = (b/2)log(2)

< 0.01. Combining these inequalities, we obtain

2t log(4k)
—tlog(t)

H(t, 1 —t)+NHQ2t/N,1—2t/\) + 2tlog(4k) + 4t log(t)
< (1.01 4 2.01 + 0.01 — 4)(—tlog(t)) < 0.9¢log(t).

we may also assume

O

From now on, we assume k > kg with kg as above. To simplify notation, let
¢ =27%/2. Given a 2d-tuple ¢ = (1,0, €11, - -+, Cd,0, Cq,1) Of natural numbers, let
E. be the event that there are exactly ¢; o critical edges of the form {o(s;)7(v) :
0 < j <k — 1} and supported by a vertex of color 0, and ¢; ; critical edges of the
form {o(s;)7(v) : 0 < j < k — 1} and supported by a vertex of color 1. We denote
el = > 1<i<apefoy Cip- Let PY, be the planted model conditioned on E..

This measure can be constructed as follows. Let I. be the set of triples (,b, 7)
with 1 <4 < d, b € {0,1} and 1 < j < ¢;5. First choose edges {€;p;}ip,j)er.
uniformly at random subject to the conditions:

(1) each e;; C [n] has cardinality k and e;; ; Ne; ;v = O whenever b # V' or
i#3
(2) each e;p; is critical and is supported by a vertex of color b with respect to
X-
Next choose a uniformly random uniform homomorphism o subject to:

(1) x is a proper coloring with respect to o,
(2) each e; ; is of the form {o(s;)?(v) : 0 < j < k — 1} with respect to o,
(3) the edges {eip,j}(ip,j)er. are precisely the critical edges of x with respect

to o.
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Then o is distributed according to Py, .

For 1 <1 < m, let T; be the collection of all subsets T C V = [n] such that
|T'| =1 and |E7| > 2|T|. Note that T; is empty.

To prove the lemma, we claim it suffices to show the following:

Claim 5. 1f n is sufficiently large and kn/2 < [c| < kn then } o ., EX, [#7]
tends to zero in n.

We briefly return to the model PX not conditioned on E.. Let E be the set of
all critical edges. By Lemma [[7T] with high probability in PX, |E| is asymptotic to
An as n — oo. Let E), be the event that (k/2)n < |E| < kn. So PX(E!) — 1 as
n — oo.

By a first moment argument and the above paragraph, to prove the lemma it
suffices to show that 3, ., EX(#Ti|E},) tends to 0 in n. Now EX(#7|E},) is a
convex combination of EX, (#7;) over those ¢ such that kn/2 < |c| < kn, so the
lemma follows from Claim [l

Before proving the above claim we need to prove another claim, which needs the
following setup. For s € I, and T' C V, let Fr, be the event that e, is supported
by a vertex in T and |es N T| > 2. For S C I, let Fr s = NsesFr . Note that for
any T C [n], the event {T" € T;} is contained in UgFr s where the union is over all
S C I, with |S| =2l. So

(42) EX, [#T] <> PX.(Frs),
S, T

where the sum is over all T C [n] and S C I. with |T| =1 and |S| = 2.
Before proving the claim above, we need to prove:

Claim 6. For 1 <1 < (n, any T C V with cardinality |T'| = [, any S C I. with
|S] <20 —1, and any sg € I.\ S, one has PX,, (Fr s, |Fr.s) < 27’:—52

Proof of Claim 8. For s € I, let es; be a random edge in [n] with cardinality k as
in the sampling algorithm above. Without loss of generality, we imagine that e for
s € S has been chosen before ey,. Let sg = (40, bo, jo). We say that an edge e is of
type i if e is of the form {o(s;)7(v) : 0 < j <k —1}. Let Sy C S be those edges of
type io, and let Vj = Ueeg, €,

e 1n; be the number of vertices v € [n] \ Vj such that x(v) =4, and

e [; be the number of vertices v € T'\ V; such that x(v) = 1.

Let eg = es,. The probability that ey is supported by a vertex v in T is lp, /n,
(this is conditioned on the edges e; for s € ).

Suppose first that eq is supported by a vertex v in T with x(v) = 0 (so by = 0).
Then the probability that |eg NT| =1 is

It follows that for by = 0

l
P, (Fr.s|Frs) = n_(z) (1 T ) :
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In order to bound this expression, consider
(o) (m —l1> (nl —h —k+2)
() 1 ny—k+2

S n—lh—k+2 kilz 1 l kot
- ng—k+2 ng—k+2

>1— (=Dl >1-— %
ny—k+2 ny
Thus,
klol
PX, (Fr.o|Pr.s) < —.
nonq

A similar argument shows that the same bound above holds for the case by = 1.
Because lg + 11 < |T| =1, (lo +11)* — (lp — 11)? < [?, so that lgl; < [?/4. Note

no > n/2 — 2kl > n(1/2 — k2'7%2) > n/V3,

where we have used the assumption | < ¢(n = 27%/2n and Claim @l Similarly,

ny >n/ /8. Substitute these inequalities above to obtain

2k1?

PX,, (FrslFrs) < - O

We now prove Claim Bl Apply the chain rule and Claim [6] to obtain: if S C I,
has |S| = 2l and T C [n] with |T'| = then

212\
P?,n(FTwS) < ( n2 ) :
By 21
n\ (le]\ [ 2ki?
X < E : X <
Bl 1] < STPC’n(FT’S) B (l> (21> ( n? ) ’

where the sum is over all T C [n] and S C I. with |T| =1, |S| = 2I. Define ¢, \" by
tn =1 and |c¢| = Mn. By hypothesis k/2 < A’ < k. Consider the following cases:

Case 1. 2 <1< n%!. Then we make the following estimates:

()<
(|201> < (kn)*.

l
It follows that EX, [#7] < ( #) , which is bounded by n~!! for large enough
n.

Case 2. | > n"1. We make the following estimates:
(7) = exp(nH(t,1 —t) + 0.5log(n) + O(1)),

(|2Cz|) < exp(NnH (2t/X', 1= 2t/N) + 0.5 log(kn) + O(1))

so that
EX,[#T)] < Cknexp(n(H(t,1—t)+ N H(2t/X,1—2t/\') + 2t log(2k) + 4t log(t)))
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for some constant C. For n sufficiently large and ¢ < 27%/2_ this is bounded above
by Cknexp(0.9ntlog(t)) < Ckn2~0-45%n"" 1y Claim @ and the choice of ko and 1.
It follows that in this range of I, EY,, [#7;] decays super-polynomially.

This proves Claim [ and finishes the lemma. O

Lemma 8.2. Let p > 0. Then there exists L such that | > L implies Ci(x) C [n]
is p-rigid (with high probability in the planted model as n — 00).

Proof. Without loss of generality, we may assume that 0 < p < pu(Cx).
Observe that the sets C; are clopen for finite I. By Lemma [7.1]

lim lim inf PX (‘M — i (C’l> < 17) =1.
n

n\0 n—oo n
Since the sets C;(x) are decreasing with [, this implies the existence of L such that
I > L implies

n— oo

lim inf PX [&109] _ 1C141(X)]

< p/3> =1.
Choose [ > L. Let ¢ : V — {0,1} be a o-proper coloring. Let

Ty ={veC(x): x(v) # ()}
Define Tj4; similarly. Since |Ci(x) \ Ci+1(x)| < pn/3 (with high probability) and
TiI\Ti+1 C C1(x)\Ci+1(x), it follows that |T;\T;4+1] < pn/3 (with high probability).
For every v € Tj11, let F, C E, be the subset of x-critical edges e such that
e C CI(X)-
We claim that if v € T;14 then F,, C Eq, where

Er, ={ec€Uper,By: lenTy| > 2}.

Since v € Tj41, ¥(v) # x(v). If e € F, then v supports e with respect to .
Therefore because v : [n] — {0,1} is a proper coloring, there must exist a vertex
w € e\ {v} such that (w) # ¢(v). This, combined with x(w) # x(v), implies
P(w) # x(w) since there are only two possible colors. Since {v,w} C e C Ci(x),
this means that |e N T;| > 2 and therefore e € E7r,, which proves the claim.

For every v € Tj11, |Fy| > 3 by the definition of the sets Cj(x). Since edges can
only be supported by one vertex, the sets F, are pairwise disjoint. So

Bn| > | |J Fo| 2 3(Ti] = 3|T3] — pn.

vET 41
If |T;] > pn then |Er,| > 3|Ty| — pn > 2|T;|. So it follows from Lemma [R] that
(with high probability), |Tj| > 27%/2n. Thus C is p-rigid. O

We can now prove Lemma

Proof of Lemma 62l Let p > 0. By Lemma [R2] there exists L such that [ > L

implies Cy(x) is (p/3)-rigid with high probability in the planted model as n — occ.

So without loss of generality we condition on the event that C;(x) is (p/3)-rigid.
Now let I —1> L. Let ¢ : V. — {0, 1} be a o-proper coloring. Let

Tii={veC_1(x): x(v) #Y()}
Ti={vel(x): x(v)#y()}
T'={ve A\ Ai(x) : x(v) #¥(v)}
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We claim that |T;—1| > |T']. To see this, let v € T'. Then there exists an edge e
supported by v (with respect to x) with e \ {v} C C;_1(x). Since ¢ is proper and
¥(v) # x(v), there must exist a vertex w € e\ {v} with ¥(w) # x(w). Necessarily,
w € Tj—1. So there exists a function f : 77 — T;_; such that f(v) is contained in
an edge e supported by v with e\ {v} C Cj_1(x). Because v ¢ Aj(x), f is injective.
This proves the claim.

Now suppose that [T;UT’| > pn. Since T; and T” are disjoint, either |T;| > (p/3)n
or [T'] > (2p/3)n. If |T;] > (p/3)n, we are done because by assumption that Cj(x)
is (p/3)-rigid, |Tj| > 27%/?n and so

T, UT'| > 27",

If |T'| > (2p/3)n the claim implies |T;_1| > (2p/3)n. Now in the proof of Lemma
we have shown that |T;_1 \ 17| < (p/3)n, so |T;| > (p/3)n and we are again
done. This proves the lemma. O

APPENDIX A. TOPOLOGICAL SOFIC ENTROPY NOTIONS

In this appendix, we recall the notion of topological sofic entropy from [I0] and
prove that it coincides with the definition given in §2
Let T be an action of I' on a compact metrizable space X. So for g € T,
9 : X — X is a homeomorphism and 79" = T9T". We will also denote this
action by ' X. Let o : I' = Sym(n) be a map, p be a pseudo-metricon X, F €T
be finite and § > 0. For x,y € X", let

1/2
Poo(x,y) = max p(zs,v;), p2(r,y) ( Epmz,yz>
1

be pseudo-metrics on X™. Also let
Map(T, p, F,6,0) = {w € X" : Vf € F, po(T' 2,30 0(f)) < 6}.

Informally, elements of Map(T), p, F, 6, o) are “good models” that approximate par-
tial periodic orbits with respect to the chosen sofic approximation.

For a pseudo-metric space (Y, p), a subset S C Y is (p, €)-separated if for all
s1# Ss2 €8, p(s1,82) > €. Let N(Y,p) = max{|S|: S CY,S is (p,e)-separated }
be the maximum cardinality over all (p, €)-separated subsets of Y.

Given a sofic approximation ¥ to I', we define

hs(TAX, p) = sup inf mf limsup |V;| ™ log(N.(Map(T, p, F, §,04), poc))
>0 FEl6>0 500
where the symbol F' € I' means that F varies over all finite subsets of T'.

We say that a pseudo-metric p on X is generating if for every z # y there
exists g € I such that p(gz, gy) > 0. By [10, Proposition 2.4], if p is continuous and
generating, hs, (T, p) is invariant under topological conjugacy and does not depend
on the choice of p. So we define hx(T) = hx(T,p) where p is any continuous
generating pseudo-metric. The authors of [I0] define the topological sofic entropy
of ’~X to be hx(T). The main result of this appendix is:

Proposition A.1. Let A be a finite set and X C AY a closed shift-invariant
subspace. Let T be the shift action of ' on X. Then hs(I'\vX) = hx(T) where
hs(T~X) is as defined in §21
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Proof. To begin, we choose a pseudo-metric on A! as follows. For z,y € AT,
let p(z,y) = luy 2y, Then p is continuous and generating. So hs(TAX) =
EE (Fva P)

Let € > 0, O C A! be an open set. We first analyze Q(0, ¢,0) from the definition
of hs(P'~X). Note that the topology for A' is generated by the base Z = {[a] : a €
AP F €T} where if a € AF then [a] = {z € A" : z|r = a}. In other words, open
sets of A are those that specify a configuration on a finite subset of coordinates.
For F €l let O(F) ={y € A" : 3z € X,y|p = z|p} = U ,cur [a] be the open

a]NX#£0
set containing all elements containing some configuration th[a}t apglé)ears in X in the
finite window F.

Claim 7. Every open superset O D X contains some open set of the form O(F).

Because Q(0, €, 0) decreases as O decreases, it suffices to only consider open sets
of the form O(F') in the definition of hx(I'X).

Proof. O is a union of elements in & and X is compact, so that there exists X C
O’ C O with O’ containing only finitely many base elements. Let F' be the union
of all coordinates specified by base elements in O’. It follows that O’ contains
O(F). |

Without loss of generality and for convenience we can assume that F' is symmet-
ric, i.e. F = F~!, and contains the identity. This is because we can replace any F
with the larger set F U F~1 U {1r}, and both Map(T, p, F, 6, 0;) and Q(O(F), ¢, o;)
are monotone decreasing in F'.

Let n = |V;|. We assume lim;_ o |V;| = co. Now for each z € Q(O(F),¢,0;)
we obtain an element £ € X™ and then show that these partial orbits form a good
estimate for hy. Let G(z) = {v € V; : 119 (z) € O(F)}. For every v € G(x), choose
some Z, € X that agrees with I19¢(z) on F. For v ¢ G(z) choose an arbitrary
element Z, € X. Thus 2 € X" .

Now for v € G(z),f € F, T'%,(1r) = Z,(f™') = Zy,(y)o- On the other
hand we also want Z,,(f),(1r) = g, (f)0, Which is true if v € o;(f) " 'G(x) and
oi(1r)oi(f)v = ai(f)v. Tt follows that po(T/%, % 0 05(f)) < V2e.

Now consider separation of {Z : x € Q(O(F), €, 0;)}. We will show that a slightly
smaller subset is (po, 1)-separated. By the pigeonhole principle there exists a sub-
set V; of size at least (1 — €)n such that Q(O(F),¢,04,V;) := {x € Q(O(F),¢,0) :
G(x) = V;} has cardinality at least e~ (1= )+eMLO(O(F), ¢,0;). Further-
more, if z,y € Q(O(F),¢,0:,V;) then poo(Z,9) = 1 if x(v) # y(v) for some
v € V; N Fix(1r), where Fix(lp) = {v € Vi : o;(Ir)v = v}. Since there are
at most |A|(cte()n configurations in A" with some fixed configuration on V; N
Fix(1r), there exists a (pso, 1)-separated subset of Q(O(F), €, 0y, V;) of size at least
|A|~ (et LO(O(F)), €, 04, V;). Tt follows that

Ni(Map(T, p, F,V/2¢€,04), pso) > |A|~(eFoIne—nlH(e1=+oW) (O (F), €, o).

On the other hand, suppose we have some & € Map(T, p, F, 6, 0;). This means that
for every f € F, there exists a set V;(f) of size > (1 —62)n such that for v € V;(f),
oy (po(lr) = T7 &, (1r) = Zu(f 7). Let V; = NperVi(f). Then |V;| > (1 —|F[6*)n
and for v € V;, for every f € F, To,(fpo(lr) = TTZ,(1r) = 2, (f71).
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Define z € A%+ by z, = #,(1p). Then for any fixed v € V;, for every f € F,
UG () () = Toi(p-1y0 = Fouis-1y(lr) = TF Fy(1r) = F,(f). Since &, € X, it
follows that = € Q(O(F), §%|F|, 0;).

Also note that Z,§ € Map(T, p, F, §, 0;) are (p, €)-separated for any € < 1 if and
only if Z,(1r) # §,(1r) for some v € V;, so that = # y. It follows that

Né(Map(Tv p, I, 9, Ui)a Poo) < #Q(O(F)v 62|F|a Ui)'
Note that in the definitions of hy and 712, F is fixed with respect to 9. O

APPENDIX B. CONCENTRATION FOR THE PLANTED MODEL

Definition 8 (Hamming metrics). Define the normalized Hamming metric
dSym(n) on Sym(n) by

dSym(n) (Ula 0—2) = nil#{i € [’ﬂ] - 01 (Z) 7é 02(1)}

Define the normalized Hamming metric dion on Hom(T', Sym(n)) by

d
dHom (Jla 0—2) = Z dSym(n) (01 (81)7 02 (31))
=1

The purpose of this section is to prove:

Theorem B.1. There exist constants ¢, \ > 0 (depending only on k,d) such that
for every § > 0 there exists N5 such that for all n > Ns, for every 1-Lipschitz
f :Hom, (T, Sym(n)) — R,

PX (If = EX[f]| > 6) < cexp(=Ad%n).

B.1. General considerations. To begin the proof we first introduce some general-
purpose tools.

Definition 9. A metric measure space is a triple (X, dx, u) where (X,dx) is a
metric space and p is a Borel probability measure on X. We will say (X, dx, p) is
(¢, A)-concentrated if for any 1-Lipschitz function f: X — R,

u(f—/fdu‘>e) < e,
If (X,dx,p) is (¢, A)-concentrated and f : X — R is L-Lipschitz, then since f/L is
1-Lipschitz,

(43) n Of - /f dﬂ‘ > 6> =p (’f/b— /f/L du’ > e/L) < cexp(=Ae?/L?).

Lemma B.2. Let (X,dx, n) be (¢, \)-concentrated. If ¢ : X — Y is an L-Lipschitz
map onto a measure metric space (Y,dy,v) and v = ¢, is the push-forward mea-
sure, then (Y,dy,v) is (¢, \/L?)-concentrated.

Proof. This follows from the observation that if f: Y — R is 1-Lipschitz, then the
pullback fo¢: X — R is L-Lipschitz. So equation (@3] implies

(- frof)

fogb—/fod)d,u} >e) < cexp(—Ae?/L?).
O
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The next lemma is concerned with the following situation. Suppose X = U;e; X;
is a finite disjoint union of spaces X;. Even if we have good concentration bounds
on the spaces X;, this does not imply concentration on X because it is possible
that a 1-Lipschitz function f will have different means when restricted to the X;’s.
However, if most of the mass of X is concentrated on a sub-union Uje;X; (for
some J C I) and the sets X; are all very close to each other, then there is a weak
concentration inequality on X.

Lemma B.3. Let (X,dx,p) be a measure metric space with diameter < 1. Suppose
X = UierX; is a finite disjoint union of spaces X;, each with positive measure
(u(X;) > 0). Let p; be the induced probability measure on X;. Suppose there exist
J C I and constants 1,6, A, c > 0 satisfying:

(1) wUjesX;) >1-n=>1/2.
(2) For every j,k € J, there exists a measure pij on X; x Xy with marginals
g, i Tespectively such that

pe({ (g, ze) © dx (), z) < 0}) = 1.
(3) For each j € J, (X;,dx, ;) is (¢, \)-concentrated.
Then for every 1-Lipschitz function f: X — R and every e > § + 2n,

u(‘f—/f du‘ >e> §n+cexp(—/\(e—5—2n)2)~

Proof. Let f : X — R be a 1-Lipschitz function. After adding a constant to f
if necessary, we may assume [ f du = 0. Note that the mean of f is a convex
combination of its restrictions to the X;’s:

0= / f(2) du(z) = ;mxn / F(a1) dps(ar)
= 3 u(xy) / Fas) dpse) + 37 (X)) / £y ().
ieI\J jeJ

Since f is 1-Lipschitz with zero mean, |f| < diam(X) < 1. So

M(UjeJXj)_IZM(Xj)/f(%) dp;(z;)

jed

— |0y X) T Y uXs) [ i) ds()

i€INJ

1-n

where the last inequality uses that p(U;c;X;) > 1—nand n <1/2.
For any j,k € J, the u; and pp-means of f are d-close:

‘/f(l‘j) dpj () —/f(l‘k) dpk(zk)

= ‘/f(xj) — [(wr) dpjp(zy, 1)
< / F(@5) — Fan)] dpg g, ) < 6.
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So for any jg € J,

[ ) dusy (i) = Uies X Y0 [ $a3) dis ()| <0

JjeJ

Combined with the previous estimate, this gives

‘ / f@jo) dpjo (xj,)

Now we estimate the p-probability that f is > € (assuming € > § + 27):

- fred )
= u(lf] > )
<n+ Y u(lf] > €p(X;)

jeJ

<+ w (‘f_/f(xj) ey

jeJ

<n+> (‘f_/f(xj) dpj ()

JjeJ

<+ 2n.

>e€— ’/f(xj) dpj ()

) u(X;)

> 6—5—277> 1(X;)

<n+cexp (—)\(6—6—277)2).
O

The next lemma is essentially the same as [I1, Proposition 1.11]. We include a
proof for convenience.

Lemma B.4 ([11]). Suppose (X,dx,p) is (c1,A1)-concentrated and (Y,dy,v) is
(c2, A2)-concentrated. Define a metric on X XY by dxxy((z1,11), (x2,y2)) =
dx(z1,72) + dy (y1,y2). Then (X X Y,dxxy,pu X v) is (c1 + c2,min(Ay, A2)/4)-
concentrated.

Proof. Let ' : X xY — R be 1-Lipschitz. For y € Y, define F¥ : X — R by
FY(x) = F(x,y). Define G: Y — Rby G(y) = [ F¥(z) du(z). Then FY and G are
1-Lipschitz.

If |F(z,y) — [ F du x v| > € then either |[F¥(z) — [ FY du| > €/2 or |G(y) —

[ G dv| > €/2. Thus
,uxu({(x,y): ‘F(m,y)—/F dp x v >e}>

< ({wn: ]F%z) - [ n})
—l—V({y: ‘G(y)—/G dv >e/2}>

< e ME/A e he /A < (c1 4 c2) exp(—min(Ay, Ap)e?/4).
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Lemma B.5. Let (X,dx,pn) and (Y,dy,v) be metric-measure spaces. Suppose

(1) X,Y are finite sets, u and v are uniform probability measures,

(2) there is a surjective map ® : X — Y and a constant C' > 0 such that
|@~1(y)|=C forally €Y,

(3) (Y,dy,v) is (¢1, \1)-concentrated,

(4) for eachy € Y, the fiber ®~1(y) is (ca, A2)-concentrated (with respect to the
uniform measure on ®~1(y) and the restricted metric),

(5) for each y1,y2 € Y there is a probability measure fi,, ,, on ®7(yi) x
&~ 1(yy) with marginals equal to the uniform measures on ®~1(y;) and
&~ 1(yy) such that

fy s ({(@1,22) + dx (21, 22) < dy (y1,92)}) = 1.
Then (X, dx, ) is (c1 + c2, min(A1, A2)/4)-concentrated.

Proof. Let f : X — R be 1-Lipschitz. Let E[f|Y] : Y — R be its conditional
expectation defined by

E[f[Y](y) = LY f@
z€®~1(y)

Also let E[f] = |X|1 > oy f() be its expectation.
We claim that E[f|Y] is 1-Lipschitz. So let y1,y2 € Y. By hypothesis (5)

E[fIY](y1) — E[fIY](y2) = /f(xl) — f(x2) dpry, s (1, 72)

S/dX(=T17$2) dﬂyl,y2($17x2)

<dy(y1,y2)-

The first inequality holds because f is 1-Lipschitz and the second by hypothesis
(5). This proves E[f|Y] is 1-Lipschitz.

Let € > 0. Because ® is C-to-1, it pushes forward the measure pu to v. Because
(Y,dy,v) is (c1, A\ )-concentrated,

ity u(felrmion - [ 1

> /2) = v (BIUIY] = B > 2) < e

Because each fiber ®~1(y) is (2, A2)-concentrated, for any y € Y,

& ()| {r € @7 (v) + |f(x) ~ELFY]()] > ¢/2} < cpe

Average this over y € Y to obtain

p{ze X |f(z) —E[fIY](®(x))] > €/2) < cpe M,
Combine this with (@) to obtain

" ( ISE ) < u(If ~ BLfIY)(@(@))] > ¢/2)

( Blfy)@@) - [ 1 du‘ > e/2>

2
S 026—)\26 /4+cle—)\1€ /4

which implies the lemma. (|
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B.2. Specific considerations. Given an equitable coloring x : [n] — {0,1}, let
H, be the stabilizer of x:

H, ={g € Sym(n) : x(gv) = x(v) Vv € [n]}.

Lemma B.6. The group H, is (4,n/16)-concentrated (when equipped with the
uniform probability measure and the restriction of the normalized Hamming metric

dSym(n))~

Proof. The group H, is isomorphic to the direct product Sym(x '(0)) x
Sym(x~1(1)) which is isomorphic to Sym(n/2)2. By [L1, Corollary 4.3], Sym(n/2)
is (2,n/16)-concentrated. So the result follows from Lemmas [B.4] and This
uses that the inclusion map from Sym(n/2)? to itself is (1/2)-Lipschitz when the
source is equipped with the sum of the dgyp,(,,/2)-metrics and the target equipped
with the dgym(n) metric. O

We need to show that certain subsets of the group Sym(n) are concentrated. To
define these subsets, we need the following terminology.

Recall that a k-partition of [n] is an unordered partition 7 = {Py, ..., P,/ } of
[n] such that each P; has cardinality k. Let Part(n, k) be the set of all k-partitions
of [n]. The group Sym(n) acts on Part(n, k) by g7 = {gPy, ..., 9P/}

Let o0 € Sym(n). The orbit-partition of ¢ is the partition Orb(c) of [n] into
orbits of o. For example, for any v € [n] the element of Orb(o) containing v is
{o'v : i € Z} C [n]. Let Sym(n,k) C Sym(n) be the set of all permutations
o € Sym(n) such that the orbit-partition of o is a k-partition.

Recall from §41] that a k-partition = has type t = (tj);?zo € 0,1+ with
respect to a coloring Y if the number of partition elements P of = with |P N
x1(1)] = j is t;n. We will also say that a permutation o € Sym(n, k) has type
t=(t;)*_y €[0,1]**! with respect to a coloring y if its orbit-partition Orb(c)
has type  with respect to .

Let Sym(n, k; x,t) be the set of all permutations o € Sym(n, k) such that ¢ has
type ¢ with respect to x.

Lemma B.7. The subset Sym(n,k;x,t) is either empty or (6, \n)-concentrated
(when equipped with the normalized Hamming metric dgymn) and the uniform prob-
ability measure) where X\ > 0 is a constant depending only on k.

Proof. Let Part(n, k; x, 1) be the set of all (unordered) k-partitions of [n] with type
t (with respect to x). We will consider this set as a metric space in which the
distance between partitions 7,7’ € Part(n,k;x,t) is d(w, ') = Mg—ff,l where A
denotes symmetric difference.

Let Orb : Sym(n, k;x,t) — Part(n, k;x,t) be the map which sends a permu-
tation to its orbit-partition. We will verify the conditions of Lemma with
X = Sym(n, k; x, 1), Y = Part(n, k; x, ) and ® = Orb. Condition (1) is immediate.

Observe that Orb is surjective and constant-to-1. In fact for any partition 7 €
Part(n, k; x, 1), | Orb™ ()| = (k—1)!"/* since an element o € Orb™*(r) is obtained
by choosing a k-cycle for every part of 7. To be precise, if 7 = {Pi, ..., P, i} then
Orb™!(x) is the set of all permutations ¢ of the form ¢ = H?:/lf o; where o; is a
k-cycle with support in P;. This verifies condition (2) of Lemma [B.5l

Observe that H, acts transitively on Part(n, k;X,ﬂ. Fix 7 € Part(n,k;x,f)

and define a map ¢ : H, — Part(n,k;x,) by ¢(h) = hr. We claim that ¢ is
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k?/2-Lipschitz. Indeed, if hq,hs € H, then

d(h’lﬂ—, hQﬂ') = klhl,r;—flhm
< kK*#{p € [n] : h1(p) # ha(p)}
- 2n
k2

= 7dSym(n) (hh h2)

Because H, is (4,n/16)-concentrated by Lemma [B.6] Lemma implies
Part(n, k; x, 1) is (4,n/4k*)-concentrated. This verifies condition (3) of Lemma

We claim that Orb™!(x) is (2,n/2k)-concentrated. To see this, let 7 = {Py,
.., Ppy} and let Symy (P;) C Sym(n) be the set of all k-cycles with support in
P;. Then Orb™!(7) is isometric to Symy(P;) x --- x Symy, (P, /x). The diameter
of Sym,(P;), viewed as a subset of Sym(n) with the normalized Hamming metric
on Sym(n), is k/n. So the claim follows from [II, Corollary 1.17]. This verifies
condition (4) of Lemma

For 71,9 € Part(n, k; x, 1), let Xy, x, be the set of all pairs (01, 02) € Orb™*(7;)
X Orb_1(7r2) such that if P € m N my then the restriction of o to P equals the
restriction of o2 to P. Observe that X, , is non-empty and the projection maps
X,y — Orb™(m;) (i = 1,2) are constant-to-1. In fact, for any oy € Orb™*(7}),
the set of oo with (01,02) € X, x, is bijective with the set of assignments of
k-cycles to parts in my \ 7.

Let pir, x, be the uniform probability measure on X, »,. Since the projection
maps are constant-to-1, the marginals of i, », are uniform. Moreover, if (01, 02) €
Xy ,mp then

{i € [n} : Ul(i) 7£ 02(i)} C UPE‘/T1\7r2P'
Thus

dgym(n)(01,02) < n Uper\m P| = n"Yk|my A mo|/2 = d(T, 7).

This verifies condition (5) of Lemma [B.5
We have now verified all of the conditions of Lemmal[B.5l The lemma follows. O

Let Sym(n, k; x) be the set of all ¢ € Sym(n, k) such that if £ = (tj)é?zo is the
type of o with respect to x then tg =t = 0. In other words, o € Sym(n, k; x) if
and only if the orbit-partition 7 of ¢ is proper with respect to x (where we think
of 7 as a collection of hyper-edges).

Let§:(sj)with50:sk:0andsj:m(’;) for 0 < j < k. For § > 0 let
Symg(n, k; x) be the set of all o € Sym(n, k; ) such that if # = (¢;)5_, is the type
of o (with respect to x) then

k
Z |Sl — ti|2 < 52.
=0

Lemma B.8. With notation as above, for sufficiently large n
[Symy (r, k5 X))
[Sym(n, k; X)|
where A1 > 0 is a constant depending only on k.

2
Z 1_67)\15 n

)
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Proof. Let

Part(n, k; x,t) = {7 € Part(n, k) : 7 has type  with respect to x},
Part(n, k; x) = {7 € Part(n, k) : x is proper with respect to 7},

Parts(n, k; x) = {ﬂ' € Part(n, k; x) : if £ is the type of w

k
with respect to x then Z t; — s < 52} .
i=0
The orbit-partition map from Sym(n,k) — Part(n, k) is constant-to-1 and maps
Sym(n, k; x) onto Part(n, k; x) and Symg(n, k; x) onto Parts(n, k; x). Therefore, it
suffices to prove
| Parts(n, ks x)| > 1M
| Part(n, k; x)|
where A > 0 is a constant depending only on k.
Let .# be the set of all vectors = (t;)_, € [0,1]**" such that ¢, = t; = 0,
Ziti = l/k and ijt]’ = 1/2
Recall from Lemma 3] that if £ € .# and ni is Z-valued then

(1/n) log | Part(n, ks x, £)] = (1 — 1/k)(log(n) — 1) — log(2) + J () + O(n~"log(n)).

where J(1) = H(t) — Z?:o t;log(j!(k — 7)!). By the proof of Theorem (specifi-
cally equation (I0)), J is uniquely maximized in M by the vector 3.

In order to get a lower bound on | Part(n, k; x)|, observe that there exists ¥ € .#
such that ni is Z-valued and |s; — ;| < k/n for all ¢. Thus J(¥) — J(5) = O(1/n).
It follows that

%log | Part(n, k; x)| > %log | Part(n, k; x, 7)|
(1 —1/k)(log(n) — 1) —log(2) + J(5) + O(n"*log(n)).

We claim that the Hessian of J is negative definite. To see this, one can consider
J to be a function of [0,1]¥*1. The linear terms in J do not contribute to its
Hessian. Since the second derivative of z — —zlogz is —1/x,

0%J _ 0 1#]
otot; | —1/ti i=j.
Thus the Hessian is diagonal and every eigenvalue is negative; so it is negative

definite. .
Thus if £ € .# is such that >, [t; — s;|> > 62 then

(1/n) log | Part(n, ks x. )
< (1= 1/k)(log(n) — 1) — log(2) + J(5) — 6°X; + O(n" " log(n)),

where \| = %min;e rmini<icg—11 /ti is half the smallest absolute value of an
eigenvalue of the Hessian of J on M.
If £ is the type of a k-partition 7 of n then t; € {0, 1/n, 2/n, ..., 1}. Thus the

number of different types of k-partitions of [n] is bounded by a polynomial in n



96 DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

(namely (n + 1)**1). Thus

| Parts (n, k; )|

| Part(n, k; x)|

rr1exp(n[(1 — 1/k)(log(n) — 1) —log(2) + J(5) — 8*A1 + O(n” " log(n))])
exp(n[(1 —1/k)(log(n) — 1) —log(2) + J(5) + O(n~"log(n))])

=1—n exp(—6°Xin),

>1—(n+1)

where ¢ = Ok(1). This implies the lemma. O

Recall that a k-cycle is a permutation 7 € Sym(n) of the form © = (vy, ...,
vg) for some vy, ..., vx € [n]. In other words, m has n — k fixed points and one
orbit of size k. The support of 7 € Sym(n) is the complement of the set of m-fixed
points. It is denoted by supp(w). Two permutations are disjoint if their supports
are disjoint. A permutation 7 € Sym(n) is a disjoint product of k-cycles if there
exist pairwise disjoint k-cycles 71, ..., mp, such that m# = w1 - - - m,,. In this case we
say that each m; is contained in 7.

Lemma B.9. Let i € [0,1]*+1. Suppose

k
Z |ti — ’U,Z| < 4.
i=0

Suppose Sym(n, k; x,t) and Sym(n, k; x, @) are non-empty (for some integer n and
equitable coloring x ).

For 0,0’ € Sym(n, k), let |o A ¢'| be the number of k-cycles T that are either in
o or in o’ but not in both. Let

Z = {(0,0") € Sym(n, k; x,t) x Sym(n, k; x, @) : |0 A o'| < én}.
Then Z 1is non-empty and there exists a probability measure p on Z with marginals

equal to the uniform probability measures on Sym(n, k; x, f) and Sym(n, k; x, @) re-
spectively.

Proof. Let p € Sym(n) be a disjoint product of k-cycles. The type of p with
respect to y is the vector ¥ = (r;)%_, defined by: r; is 1/n times the number of
k-cycles p' contained in p such that | supp(p’) Nx~1(1)] = 1.

Let o € Sym(n, k; x,t). Then there exist disjoint k-cycles ¢}, ..., ¢/, in o such
that if p = of -+ 0l and ¥ = (;)F_, is the type of p then r; = min(¢;,u;). Note
m > n(1/k — §/2) by assumption on ¢ and . Moreover, there exist k-cycles o7, , 1,

o 0;/16 such that the collection o7, ..., a;/k is pairwise disjoint and the type of
o' =0y--0,, isd Then |o A o'| =2(n/k —m) < on. So (0,0') € Z which
proves Z is non-empty.

We claim that there is a constant Cy > 0 such that for every o € Sym(n, k; x, t)
the number of o’ € Sym(n, k; x, @) with (0,0’") € Z is Cy. Indeed the following
algorithm constructs all such ¢’ with no duplications:

Step 1. Let 0 = 01 -+ 0y, be a representation of o as a disjoint product of k-cycles.
Choose a vector 7= (1;)¥_, such that
(1) there exists a subset S C [n/k] with cardinality |S| > n(1/k — 6/2) such
that if p = [],.g 0: then 77 is the type of p;
(2) r; < wy for all i.

Step 2. Choose a subset S C [n/k] satisfying the condition in Step [Il
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Step 3. Choose pairwise disjoint k-cycles o7, ..., O';L/k_‘s‘ such that

(1) supp(ci) Nsupp(cj) = 0 (Vi € S) (Vj);
(2) o is not contained in o (Vj);
(3) if o' = [[;es 04 [, 0} then ¢’ has type 4.

The range of possible vectors 7 in Step [l depends only on k,n,t,@. The number
of choices in Steps2land Bl depends only on the choice of 7 in StepMand on k, n, £, .
This proves the claim.

Similarly, there is a constant Cy > 0 such that for every o’ € Sym(n, k; x, @) the
number of ¢ € Sym(n, k; x,t) with (0,0’) € Z is Co. Tt follows that the uniform
probability measure on Z has marginals equal to the uniform probability measures
on Sym(n, k; x, ) and Sym(n, k; x, @) respectively. a

Corollary B.10. Let Usym(n,k;y) denote the uniform probability measure on
Sym(n, k; x) and let Esym(n,k;x) be the associated expectation operator. There are
constants ¢, A > 0 (depending only on k) such that for every § > 0, there exists Ns
such that for all n > Ns, for every 1-Lipschitz f : Sym(n, k; x) — R,

Usym(ni) ([F = Esymn ki [f]] > 0) < cexp(=26%n).
Moreover § — Ns is monotone decreasing.

Proof. The set Sym(n, k; x) is the disjoint union of Sym(n, k; x, ) over ¢ € [0, 1]F+1,
Let 6 > 0. Lemmas [B7] and imply that for all sufficiently large n, this
decomposition of Sym(n, k; x) satisfies the criterion in Lemma where we set
c=3,1n=-exp(—A16%n) and A = \gn where \g, A\; > 0 depend only on k. So for
every 1-Lipschitz function f : Sym(n, k; x) — R, every e > 0+ 27 and all sufficiently
large n,

UsSym(n,kix) (’f — Esym(n,kx) [f” > e) < exp(—)\1(52n)—|—cexp (—)\on (e —0— 277)2) .

In particular, there exist Ns such that if n > Njs the inequality above holds and
2n < . By choosing N larger if necessary, we require that § — Nj is monotone
decreasing.

Set € = 35. Because e —§ —2n >0

USym(n,k;x) (’f - IESym(n,k;x) [f” > 36) < eXp(_)\162n) + cexp (—)\()TL62)
< (1 + ¢) exp(—X6%n),

where A = min(Ag, A1). The corollary is now finished by changing variables. O

Proof of Theorem [BIl. The space of homomorphisms Hom, (I, Sym(n)) is the d-
fold direct power of the spaces Sym(n, k; x). So the Theorem follows from Corollary
[B.10 and the proof of Lemma [B.4l O
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