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A TOPOLOGICAL DYNAMICAL SYSTEM WITH TWO

DIFFERENT POSITIVE SOFIC ENTROPIES

DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

Abstract. A sofic approximation to a countable group is a sequence of partial
actions on finite sets that asymptotically approximates the action of the group
on itself by left-translations. A group is sofic if it admits a sofic approximation.
Sofic entropy theory is a generalization of classical entropy theory in dynamics
to actions by sofic groups. However, the sofic entropy of an action may depend
on a choice of sofic approximation. All previously known examples showing
this dependence rely on degenerate behavior. This paper exhibits an explicit
example of a mixing subshift of finite type with two different positive sofic en-
tropies. The example is inspired by statistical physics literature on 2-colorings
of random hyper-graphs.
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1. Introduction

The topological entropy of a homeomorphism T : X → X of a compact Hausdorff
space X was introduced in [1]. It was generalized to actions of amenable groups
via Følner sequences in the 1970s [2] and to certain non-amenable groups via sofic
approximations more recently [3]. It plays a major role in the classification and
structure theory of topological dynamical systems.
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To explain further, suppose Γ is a countable group with identity 1Γ and σ : Γ →
Sym(V ) is a map where V is a finite set and Sym(V ) is the group of permutations
of V . It is not required that σ is a homomorphism. Let D � Γ (the symbol �
denotes a finite subset) and δ > 0. Then σ is called

• (D, δ)-multiplicative if

#{v ∈ V : σ(gh)v = σ(g)σ(h)v ∀g, h ∈ D} > (1− δ)|V |,
• (D, δ)-trace preserving if

#{v ∈ V : σ(f)v �= v ∀f ∈ D \ {1Γ}} > (1− δ)|V |,
• (D, δ)-sofic if it is both (D, δ)-multiplicative and (D, δ)-trace preserving.

A sofic approximation to Γ consists of a sequence Σ = {σi}i∈N of maps σi : Γ →
Sym(Vi) such that for all finite D ⊂ Γ, δ > 0 and all but finitely many i, σi is
(D, δ)-sofic. A group is sofic if it admits a sofic approximation. In this paper we
will usually assume |Vi| = i.

If Γ acts by homeomorphisms on a compact Hausdorff space X and a sofic
approximation Σ to Γ is given then the Σ-entropy of the action is a topological
conjugacy invariant, denoted by hΣ(Γ�X) ∈ {−∞}∪ [0,∞]. It is also called sofic
entropy if Σ is understood. It was first defined in [3] where the authors obtain
a variational principle connecting it with the previously introduced notion of sofic
measure entropy [4]. It is monotone under embeddings and additive under direct
products but not monotone under factor maps. See [5] for a survey.

A curious feature of this new entropy is that it may depend on the choice of sofic
approximation. This is not always the case; for example, if Γ is amenable then sofic
entropy and classical entropy always agree. However, there are examples of actions
Γ�X by non-amenable groups Γ with sofic approximations Σ1,Σ2 satisfying

hΣ1
(Γ�X) = −∞ < hΣ2

(Γ�X).

See [5, Theorem 4.1]. The case hΣ1
(Γ�X) = −∞ is considered degenerate: it

implies that there are no good models for the action with respect to the given sofic
approximation. Until this paper, it was an open problem whether a mixing action
could have two different non-negative values of sofic entropy. Our main result is:

Theorem 1.1. There exists a countable group Γ, a mixing action Γ�X by home-
omorphisms on a compact metrizable space X and two sofic approximations Σ1,Σ2

to Γ such that

0 < hΣ1
(Γ�X) < hΣ2

(Γ�X) < ∞.

Remark 1. The range of sofic entropies for an action Γ�X is the set of all non-
negative numbers of the form hΣ(Γ�X) as Σ varies over all sofic approximations
to Γ. By taking disjoint unions of copies of sofic approximations, it is possible to
show the range of sofic entropies is an interval (which may be empty or a singleton).
So for the example of Theorem 1.1, the range of sofic entropies is uncountable.

Remark 2. It remains an open problem whether there is a measure-preserving action
Γ�(X,μ) with two different non-negative sofic entropies. Theorem 1.1 does not
settle this problem because it is entirely possible that any invariant measure μ on
X with hΣ2

(Γ�(X,μ)) > hΣ1
(Γ�X) satisfies hΣ1

(Γ�(X,μ)) = −∞.

In this paper we often assume Vn = [n] := {1, 2, . . . , n}.
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1.1. Random sofic approximations. We do not know of any explicit sofic ap-
proximations to Γ which are amenable to analysis. Instead, we study random sofic
approximations. For the purposes of this paper, these are sequences {Pn}n of
probability measures Pn on spaces of homomorphisms Hom(Γ, Sym(n)) such that,
for any finite D ⊂ Γ and δ > 0 there is an ε > 0 such that

Pn(σ is (D, δ)-sofic) > 1− n−εn

for all sufficiently large n. Because n−εn decays super-exponentially, if Ωn ⊂
Hom(Γ, Sym(n)) is any sequence with an exponential lower bound of the form
Pn(Ωn) > e−cn (for some constant c > 0) then there exists a sofic approximation
Σ = {σn} with σn ∈ Ωn for all n.

It is this non-constructive existence result that enables us to use random sofic
approximations to prove Theorem 1.1.

1.2. Proper colorings of random hyper-graphs from a statistical physics
viewpoint. The idea for our main construction comes from studies of proper col-
orings of random hyper-graphs. Although these studies have very different moti-
vations than those that inspired this paper, the examples that they provide are
roughly the same as the examples used to prove Theorem 1.1. The relevant litera-
ture and an outline is presented next.

A hyper-graph is a pair G = (V,E) where E is a collection of subsets of V .
Elements of E are called hyper-edges but we will call them edges for brevity’s
sake. G is k-uniform if every edge e ∈ E has cardinality k.

A 2-coloring of G is a map χ : V → {0, 1}. An edge e ∈ E is monochromatic
for χ if |χ(e)| = 1. A coloring is proper if it has no monochromatic edges.

Let Hk(n,m) denote a hyper-graph chosen uniformly among all
((nk)

m

)
k-uniform

hyper-graphs with n vertices and m edges. We will consider the number of proper
2-colorings of Hk(n,m) when k is large but fixed, and the ratio of edges to vertices
r := m/n is bounded above and below by constants.

This random hyper-graph model was studied in [6–8]. These works are motivated
by the satisfiability conjecture. To explain, the lower satisfiability threshold
r−sat = r−sat(k) is the supremum over all r such that

lim
n→∞

Pr[Hk(n, 	rn
) is properly 2-colorable] = 1.

The upper satisfiability threshold r+sat = r+sat(k) is the infimum over all r such
that

lim
n→∞

Pr[Hk(n, 	rn
) is properly 2-colorable] = 0.

The satisfiability conjecture posits that r−sat = r+sat. It is still open.
Bounds on these thresholds were first obtained in [6] as follows. Let Z(G) be

the number of proper 2-colorings of a hyper-graph G. A first moment computation
shows that

fk(r) = lim
n→∞

n−1 logE[Z(Hk(n, 	rn
))],

where fk(r) := log(2)+r log(1−21−k). Let rfirst = rfirst(k) be such that fk(rfirst) =
0. If r > rfirst then fk(r) < 0. Therefore r+sat ≤ rfirst.

Let rsecond be the supremum over numbers r ≥ 0 such that the second moment
E[Z(Hk(n, 	rn
))2] is equal to E[Z(Hk(n, 	rn
))]2 up to sub-exponential factors.
The Paley-Zygmund inequality gives the bound rsecond ≤ r−sat.
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In [6], it is shown that

rfirst =
log(2)

2
2k − log(2)

2
+O(2−k),

rsecond =
log(2)

2
2k − log(2) + 1

2
+O(2−k).

So there is a constant-sized gap between the two thresholds.
A more detailed view of the second moment is illuminating. But before explain-

ing, we need some terminology. Let [n] be the set of natural numbers {1, 2, .., n}.
A coloring χ of [n] is equitable if |χ−1(0)| = |χ−1(1)|. We will assume from now
on that n is even so that equitable colorings of [n] exist. Let Ze(G) be the num-
ber of equitable proper colorings of a hyper-graph G. A computation shows that
E[Z(Hk(n, 	rn
))] equals E[Ze(Hk(n, 	rn
))] up to sub-exponential factors. This
enables us to work with equitable proper colorings in place of all proper colorings.
This reduces the computations because there is only one equitable coloring up to
the action of the symmetric group Sym(n).

A computation shows that the second moment factorizes as

E[Ze(Hk(n,m))2] = E[Ze(Hk(n,m))]E[Ze(Hk(n,m))|χ is proper],

where χ : [n] → {0, 1} is any equitable 2-coloring. Let Hχ
k (n,m) be the random

hyper-graph chosen by conditioning Hk(n,m) on the event that χ is a proper 2-
coloring. This is called the planted model and χ is the planted coloring. So
computing the second moment of Ze(Hk(n,m)) reduces to computing the first mo-
ment of Ze(H

χ
k (n,m)).

The normalized Hamming distance between colorings χ, χ′ : [n] → {0, 1} is

dn(χ, χ
′) = n−1#{v ∈ [n] : χ(v) �= χ′(v)}.

Let Zχ(δ) be the number of equitable proper colorings χ′ with dn(χ, χ
′) = δ. Then

Ze(H
χ
k (n,m)) =

∑
δ

Zχ(δ).

In [6], it is shown that E[Zχ(δ)|χ is proper] is equal to exp(nψ(δ)) (up to sub-
exponential factors) where ψ is an explicit function.

Note that ψ(δ) = ψ(1 − δ) (since if χ′ is a proper equitable coloring then so is
1 − χ′ and dn(χ, 1 − χ′) = 1 − dn(χ, χ

′)). A computation shows ψ(1/2) = fk(r).
If r < rsecond then ψ(δ) is uniquely maximized at δ = 1/2. However, if r > rsecond
then the maximum of ψ is attained in the interval δ ∈ [0, 2−k/2]. In fact, ψ(δ) is
negative for δ ∈ [2−k/2, 1/2− 2−k/2]. So with high probability, there are no proper
equitable colorings χ′ with dn(χ, χ

′) ∈ [2−k/2, 1/2−2−k/2]. This motivates defining
the local cluster, denoted C(χ), to be the set of all proper equitable 2-colorings
χ′ with dn(χ, χ

′) ≤ 2−k/2.
The papers [7,8] obtain a stronger lower bound on the lower satisfiability thresh-

old using an argument they call the enhanced second moment method. To explain,
we need some terminology. We say a proper equitable coloring χ is good if the size
of the local cluster |C(χ)| is bounded by E[Ze(Hk(n,m))]. One of the main results
of [7,8] is that Pr[χ is good|χ is proper] tends to 1 as n → ∞ with m = rn+O(1)

and r < rsecond+
1−log(2)

2 + ok(1). An application of the Paley-Zygmund inequality
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to the number of good colorings yields the improved lower bound

rsecond +
1− log(2)

2
+ ok(1) ≤ r−sat.

The argument showing Pr[χ is good|χ is proper] → 1 is combinatorial. It is shown
that (with high probability) there is a set R ⊂ [n] with cardinality |R| ≈ (1−2−k)n
which is rigid in the following sense: if χ′ : [n] → {0, 1} is any proper equitable
2-coloring then either: the restriction of χ′ to R is the same as the restriction of
χ to R or dn(χ

′, χ) is at least cn/kt for some constants c, t > 0. This rigid set
is constructed explicitly in terms of local combinatorial data of the coloring χ on
Hχ

k (n,m).
In summary, these papers study two random models Hk(n,m) and Hχ

k (n,m).

When r = m/n is in the interval (rsecond, rsecond + 1−log(2)
2 ), the typical number

of proper colorings of Hk(n,m) grows exponentially in n but is smaller (by an
exponential factor) than the expected number of proper colorings of Hχ

k (n,m). It
is these facts that we will generalize, by replacing Hk(n,m), Hχ(n,m) with random
sofic approximations to a group Γ so that the exponential growth rate of the number
of proper colorings roughly corresponds with sofic entropy.

Although the models that we study in this paper are similar to the models in
[6–8], they are different enough that we develop all results from scratch. More-
over, although the strategies we employ are roughly same, the proof details differ
substantially. The reader need not be familiar with these papers to read this paper.

1.3. The action. In the rest of this introduction, we introduce the action Γ�X
in Theorem 1.1 and outline the first steps of its proof. So fix positive integers k, d.
Let

Γ = 〈s1, . . . , sd : sk1 = sk2 = · · · = skd = 1〉
be the free product of d copies of Z/kZ.

The Cayley hyper-tree of Γ, denoted G = (V,E), has vertex set V = Γ. The
edges are the left-cosets of the generator subgroups. That is, each edge e ∈ E has
the form e = {gsji : 0 ≤ j ≤ k − 1} for some g ∈ Γ and 1 ≤ i ≤ d.

Remark 3. It can be shown by considering each element of Γ as a reduced word
in the generators s1, . . . , sd that G is a hyper-tree in the sense that there exists
a unique “hyper-path” between any two vertices. More precisely, for any v, w ∈
V , there exists a unique sequence of edges e1, .., el such that v ∈ e1, w ∈ el,
|ei ∩ ei+1| = 1, ei �= ej for any i �= j, and v /∈ e2, w /∈ el−1. More intuitively, there
are no “hyper-loops” in G.

The group Γ acts on {0, 1}Γ by (gx)f = xg−1f for g, f ∈ Γ, x ∈ {0, 1}Γ. Let

X ⊂ {0, 1}Γ be the subset of proper 2-colorings. It is a closed Γ-invariant subspace.
Furthermore, Γ�X is topologically mixing:

Claim 1. For any nonempty open sets A, B in X, there exists N such that for any
g ∈ Γ with |g| > N , gA ∩ B �= ∅. Here |g| denotes the shortest word length of
representations of g by generators s1, . . . , sd.

Proof. It suffices to show the claim for A,B being cylinder sets. We make a further
simplification by assuming each A, B is a cylinder set on a union of hyper-edges,
and a yet further simplification that each A, B is a cylinder set on a connected union
of hyper-edges. Informally, by shifting the “coordinates” on which A depends so
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that they are far enough separated from the coordinates on which B depends, we
can always fill in the rest of the graph to get a proper coloring.

More precisely, suppose A = {x ∈ X : x � FA = χA}, where FA ⊂ E such
that for any e1, e2 ∈ FA there is a finite sequence of f1, · · · , f� ∈ FA such that
e1 ∩ f1 �= ∅, fi ∩ fi+1 �= ∅, and f� ∩ e2 �= ∅, FA = ∪e∈FA

e, and χA : FA → {0, 1}
and similarly B = {x ∈ X : x � FB = χB}. χA and χB must be bichromatic on
each edge in their respective domains since A and B are nonempty.

Let N = max{|h| : h ∈ FA} + max{|h| : h ∈ FB} + k. Then it can be shown
for any g with |g| > N that g−1FA ∩ FB = ∅. It follows from our earlier remark
that there exists a unique hyper-path connecting g−1FA to FB (otherwise there
would be a hyperloop in G). Thus for example one can recursively fill in a coloring
on the rest of Γ by levels of hyperedges - first the hyperedges adjacent to g−1FA

and FB, then the next layer of adjacent hyperedges, and so on. At each step,
most hyperedges only have one vertex whose color is determined, so it is always
possible to color another vertex of an edge to make it bichromatic. Only along the
hyper-path connecting g−1FA to FB at some step there will be a hyperedge with
two vertices whose colors are already determined, but since k is large there is still
another vertex to color to make the edge bichromatic. �

We will show that for certain values of k, d, the action Γ�X satisfies the con-
clusion of Theorem 1.1.

1.4. Sofic entropy of the shift action on proper colorings. Given a homo-
morphism σ : Γ → Sym(V ), let Gσ = (V,Eσ) be the hyper-graph with vertices V
and edges equal to the orbits of the generator subgroups. That is, a subset e ⊂ V
is an edge if and only if e = {σ(sji )v}k−1

j=0 for some 1 ≤ i ≤ d and v ∈ V .
Recall that a hyper-graph is k-uniform if every edge has cardinality k. We

will say that a homomorphism σ : Γ → Sym(V ) is uniform if Gσ is k-uniform.
Equivalently, this occurs if for all 1 ≤ i ≤ d, σ(si) decomposes into a disjoint union
of k-cycles.

A 2-coloring χ : V → {0, 1} of a hyper-graph G is ε-proper if the number of
monochromatic edges is ≤ ε|V |. Using the formulation of sofic entropy in [5] (which
was inspired by [9]), we show in §2 that if Σ = {σn}n≥1 is a sofic approximation to
Γ by uniform homomorphisms then the Σ-entropy of Γ�X is:

hΣ(Γ�X) := inf
ε>0

lim sup
i→∞

|Vi|−1 log#{ε-proper 2-colorings of Gσi
}.

1.5. Random hyper-graph models.

Definition 1. Let Homunif(Γ, Sym(n)) denote the set of all uniform homomor-
phisms from Γ to Sym(n). Let P

u
n be the uniform probability measure on

Homunif(Γ, Sym(n)) and let E
u
n be its expectation operator. The measure P

u
n is

called the uniform model. We will always assume n ∈ kZ so that
Homunif(Γ, Sym(n)) is non-empty. In §3 we show that {Pu

n}n≥1 is a random sofic
approximation. We will use the uniform model to obtain the sofic approximation
Σ1 which appears in Theorem 1.1.

Recall that if V is a finite set, then a 2-coloring χ : V → {0, 1} is equitable
if |χ−1(0)| = |χ−1(1)|. We assume from now on that n is even so that equitable
colorings of [n] exist.
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Definition 2. Fix an equitable coloring χ : [n] → {0, 1}. Let Homχ(Γ, Sym(n)) be
the set of all uniform homomorphisms σ : Γ → Sym(n) such that χ is proper as a
coloring on Gσ. Let P

χ
n be the uniform probability measure on Homχ(Γ, Sym(n))

and let E
χ
n be its expectation operator. The measure P

χ
n is called the planted

model and χ is the planted coloring. When χ is understood, we will write P
p
n

and E
p
n instead of P

χ
n and E

χ
n. In §3 we show that {Pp

n}n≥1 is a random sofic
approximation. We will use the planted model to obtain the sofic approximation
Σ2 which appears in Theorem 1.1.

Remark 4. If χ and χ′ are both equitable 2-colorings then there are natural bijec-
tions from Homχ(Γ, Sym(n)) to Homχ′(Γ, Sym(n)) as follows. Given a permutation
π ∈ Sym(n) and σ : Γ → Sym(n), define σπ : Γ → Sym(n) by σπ(g) = πσ(g)π−1.
Because χ and χ′ are equitable, there exists π ∈ Sym(n) such that χ = χ′ ◦ π.
The map σ �→ σπ defines a bijection from Homχ(Γ, Sym(n)) to Homχ′(Γ, Sym(n)).
Moreover π defines a hyper-graph-isomorphism from Gσ to Gσπ . Therefore, any
random variable on Hom(Γ, Sym(n)) that depends only on the hyper-graph Gσ up

to hyper-graph-isomorphism has the same distribution under Pχ
n as under Pχ′

n . This
justifies calling P

χ
n the planted model.

1.6. The strategy and a key lemma. The idea behind the proof of Theorem 1.1
is to show that for some choices of (k, d), the uniform model admits an exponential
number of proper 2-colorings, but it has exponentially fewer proper 2-colorings than
the expected number of proper colorings of the planted model (with probability that
decays at most sub-exponentially in n).

To make this strategy more precise, we introduce the following notation. Let
Z(ε;σ) denote the number of ε-proper 2-colorings of Gσ. A coloring is σ-proper if
it is (0, σ)-proper. Let Z(σ) = Z(0;σ) be the number of σ-proper 2-colorings.

In §3, the proof of Theorem 1.1 is reduced to the Key Lemma:

Lemma 1.2 (Key Lemma). Let f(d, k) := log(2)+ d
k log(1−21−k). Also let r = d/k.

Then

(1) f(d, k) = lim
n→∞

n−1 logEu
n[Z(σ)] = inf

ε>0
lim sup
n→∞

n−1 logEu
n[Z(ε;σ)].

Moreover, for any

0 < η0 < η1 < (1− log 2)/2,

there exists k0 (depending on η0, η1) such that for all k ≥ k0 if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η ∈ [η0, η1] then

(2) f(d, k) < lim inf
n→∞

n−1 logEp
n[Z(σ)].

Also,

(3) 0 = inf
ε>0

lim inf
n→∞

n−1 log
(
P
u
n

(∣∣n−1 logZ(σ)− f(d, k)
∣∣ < ε

))
.

In all cases above, the limits are over n ∈ 2Z ∩ kZ.

Equations (1) and (2) are proven in §4 and §5 using first and second moment
arguments respectively. This part of the paper is similar to the arguments used in
[6].
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Given σ : Γ → Sym(n) and χ : [n] → {0, 1}, let Cσ(χ) be the set of all proper
equitable colorings χ′ : [n] → {0, 1} with dn(χ, χ

′) ≤ 2−k/2. In section §5.2, second
moment arguments are used to reduce equation (3) to the following:

Proposition 5.9. Let 0 < η0 < (1 − log 2)/2. Then for all sufficiently large k
(depending on η0), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η < (1 − log 2)/2 then with high probability in the planted
model, |Cσ(χ)| ≤ E

u
n(Ze). In symbols,

lim
n→∞

P
χ
n

(
|Cσ(χ)| ≤ E

u
n(Ze)

)
= 1.

In §6, Proposition 5.9 is reduced as follows. First, certain subsets of vertices
are defined through local combinatorial constraints. There are two main lemmas
concerning these subsets; one of which bounds their density and the other proves
they are ‘rigid’. Proposition 5.9 is proven in §6 assuming these lemmas.

The density lemma is proven in §7 using a natural Markov model on the space
of proper colorings that is the local-on-average limit of the planted model. Rigidity
is proven in §8 using an expansivity argument similar to the way random regular
graphs are proven to be good expanders. This completes the last step of the proof
of Theorem 1.1.

2. Topological sofic entropy

This section defines topological sofic entropy for subshifts using the formulation
from [9]. The main result is:

Lemma 2.1. For any sofic approximation Σ={σn} with σn∈Homunif(Γ, Sym(n)),

hΣ(Γ�X) = inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn).

Let Γ denote a countable group, A a finite set (called the alphabet). Let
T = (T g)g∈Γ be the shift action on AΓ defined by T gx(f) = x(g−1f) for x ∈ AΓ.
Let X ⊂ AΓ be a closed Γ-invariant subspace. We denote the restriction of the
action toX by Γ�X. Also let Σ = {σi : Γ → Sym(Vi)}i∈N be a sofic approximation
to Γ.

Given σ : Γ → Sym(V ), v ∈ V and x : V → A the pullback name of x at v is
defined by

Πσ
v (x) ∈ AΓ, Πσ

v (x)(g) = xσ(g−1)v ∀g ∈ Γ.

For the sake of building some intuition, note that when σ is a homomorphism,
the map v �→ Πσ

v (x) is Γ-equivariant (in the sense that Πσ
σ(g)v(x) = gΠσ

v (x)). In

particular Πσ
v (x) ∈ AΓ is periodic. In general, we think of Πσ

v (x) as an approximate
periodic point.

Given an open set O ⊂ AΓ containing X and an ε > 0, a map x : V → A is
called an (O, ε, σ)-microstate if

#{v ∈ V : Πσ
v (x) ∈ O} ≥ (1− ε)|V |.

Let Ω(O, ε, σ) ⊂ AV denote the set of all (O, ε, σ)-microstates. Finally, the Σ-
entropy of the action is defined by

hΣ(Γ�X) := inf
O

inf
ε>0

lim sup
i→∞

|Vi|−1 log#Ω(O, ε, σi),
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where the infimum is over all open neighborhoods ofX in AΓ. This number depends
on the action Γ�X only up to topological conjugacy. It is an exercise in [5] to
show that this definition agrees with the definition in [10]. We include a proof in
Appendix A for completeness.

Proof of Lemma 2.1. Let ε > 0 be given. Let S(ε;σn) ⊂ 2Vn be the set of (ε, σn)-
proper 2-colorings. Let O0 ⊂ 2Γ be the set of all 2-colorings χ : Γ → {0, 1} such
that for each generator hyper-edge e ⊂ Γ, χ(e) = {0, 1}. A generator hyper-edge

is a subgroup of the form {sji : 0 ≤ j < k} for some i. Note O0 is an open superset
of X.

We claim that Ω(O0, kε/d, σn) ⊂ S(ε;σn). To see this, let χ ∈ Ω(O0, kε/d, σn).
Then Πσn

v (χ) ∈ O0 if and only if all hyper-edges of Gσ containing v are bi-chromatic
(with respect to χ). So if Πσn

v /∈ O0, then v is contained in up to d monochromatic
hyperedges. On the other hand, each monochromatic hyperedge contains exactly
k vertices whose pullback name is not in O0. It follows that χ ∈ S(ε;σn). This
implies hΣ(Γ�X) ≤ infε>0 lim supn→∞ n−1 logZ(ε;σn).

Given a finite subset F of hyper-edges of the Cayley hyper-tree, let OF be the set
of all χ ∈ 2Γ with the property that χ(e) = {0, 1} for all e ∈ F. If O′ is any open
neighborhood of X in 2Γ then O′ contains OF for some F. To see this, suppose that
there exist elements χF ∈ OF\O′ for every finite F. Let χ be a cluster point of {χF}
as F increases to the set E of all hyper-edges. Then χ ∈ X \O′, a contradiction. It
follows that

hΣ(Γ�X) = inf
F

inf
ε>0

lim sup
i→∞

|Vi|−1 log#Ω(OF, ε, σi).

Next, fix a finite subset F of hyper-edges of the Cayley hyper-tree. We claim that

S
(

ε
k|F| ;σn

)
⊂ Ω(OF, ε, σn). To see this, let χ ∈ S

(
ε

k|F| ;σn

)
and B(χ, σn) ⊂ Vn

be the set of vertices contained in a monochromatic edge of χ. Now for v ∈ Vn,
Πσn

v (χ) /∈ OF if and only if Πσn
v (χ) is monochromatic on some edge in F. This occurs

if and only if there is an element f ∈ Γ in the union of F such that σn(f
−1)v ∈

B(χ, σn). There are at most k|F||B(χ, σn)| such vertices. But |B(χ, σn)| ≤ ( ε
|F| )n,

so there are at most kεn such vertices. It follows that χ ∈ Ω(OF, ε, σn). Therefore,

inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn) ≤ inf
F

inf
ε>0

lim sup
i→∞

|Vi|−1 log#Ω(OF, ε, σi) = hΣ(Γ�X).

�

3. Reduction to the key lemma

The purpose of this section is to show how Lemma 1.2 implies Theorem 1.1. This
requires replacing the (random) uniform and planted models with (deterministic)
sofic approximations. The next lemma facilitates this replacement.

Lemma 3.1. Let D ⊂ Γ be finite and δ > 0. Then there are constants ε,N0 > 0
such that for all n > N0 with n ∈ 2Z ∩ kZ,

P
u
n{σ : σ is not (D, δ)-sofic} ≤ n−εn,

P
p
n{σ : σ is not (D, δ)-sofic} ≤ n−εn.

Proof. The proof given here is for the uniform model. The planted model is similar.
The proof begins with a series of four reductions. By taking a union bound, it

suffices to prove the special case in which D = {w} for w ∈ Γ nontrivial. (This is
the first reduction).
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Let w = srlil · · · s
r1
i1

be the reduced form of w. This means that ij ∈ {1,. . . , d},
ij �= ij+1 for all j with indices mod l and 1 ≤ rj < k for all j. Let |w| = r1+ · · ·+rl
be the length of w.

For any g ∈ Γ, the fixed point sets of σ(gwg−1) and σ(w) have the same size.
So after conjugating if necessary, we may assume that either l = 1 or i1 �= il.

For 1 ≤ j ≤ l, the j-th beginning subword of w is the element wj = s
rj
ij
· · · sr1i1 .

Given a vertex v ∈ Vn and σ ∈ Homunif(Γ, Sym(n)), let p(v, σ) = (e1, . . . , el) be the
path defined by: for each j, ej is the unique hyper-edge of Gσ labeled ij containing
σ(wj)v. A vertex v ∈ Vn represents a (σ,w)-simple cycle if σ(w)v = v and for
every 1 ≤ a < b ≤ l, either

• ea ∩ eb = ∅,
• b = a+ 1 and |ea ∩ eb| = 1,
• or (a, b) = (1, l) and |ea ∩ eb| = 1.

We say that v represents a (σ,w)-simple degenerate cycle if σ(w)v = v and
l = 2 and |e1 ∩ e2| ≥ 2.

If σ(w)v = v then either

• v represents a (σ,w)-simple cycle,
• there exists nontrivial w′ ∈ Γ with |w′| ≤ |w| + k such that some vertex
v0 ∈ ∪jej represents a (σ,w′)-simple cycle,

• or there exists nontrivial w′ ∈ Γ with |w′| ≤ |w|+ k such that some vertex
v0 ∈ ∪jej represents a (σ,w′)-simple degenerate cycle.

So it suffices to prove there are constants ε,N0 > 0 such that for all n > N0,

P
u
n

{
σ : #{v ∈ [n] : v represents a (σ,w)-simple cycle} ≥ δn

}
≤ n−εn

and

P
u
n

{
σ : #{v ∈ [n] : v represents a (σ,w)-simple degenerate cycle} ≥ δn

}
≤ n−εn.

(This is the second reduction).
Two vertices v, v′ ∈ Vn represent vertex-disjoint (σ,w)-cycles if p(v, σ) =

(e1, . . . , el), p(v
′, σ) = (e′1, . . . , e

′
l) and ei ∩ e′j = ∅ for all i, j.

Let Gn(δ, w) be the set of all σ ∈ Homunif(Γ, Sym(n)) such that there exists a
subset S ⊂ [n] satisfying

(1) |S| ≥ δn,
(2) every v ∈ S represents a (σ,w)-simple cycle,
(3) the cycles p(v, σ) for v ∈ S are pairwise vertex-disjoint.

If v represents a simple (σ,w)-cycle then there are at most (kl)2 vertices v′ such
that v′ also represents a simple (σ,w)-cycle but the two cycles are not vertex-
disjoint. Since this bound does not depend on n, it suffices to prove there exist
ε > 0 and N0 such that

P
u
n(Gn(δ, w)) ≤ n−εn

for all n ≥ N0. (This is the third reduction. The argument is similar for simple
degenerate cycles).

Let m = 	δn
 and v1, . . . , vm be distinct vertices in [n] = Vn. For 1 ≤ i ≤ m,
let Fi be the set of all σ ∈ Homunif(Γ, Sym(n)) such that for all 1 ≤ j ≤ i

(1) vj represents a (σ,w)-simple cycle,
(2) the cycles p(v1, σ), . . . , p(vi, σ) are pairwise vertex-disjoint.
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By summing over all subsets of size m, we obtain

P
u
n(Gn(δ, w)) ≤

(
n

m

)
P
u
n(Fm).

Since
(
n
m

)
≈ eH(δ,1−δ)n grows at most exponentially, it suffices to show there exist

ε > 0 and N0 such that P
u
n(Fm) ≤ n−εn for all n ≥ N0. (This is the fourth

reduction. The argument is similar for simple degenerate cycles).
Set F0 = Homunif(Γ, Sym(n)). By the chain rule

P
u
n(Fm) =

m−1∏
i=0

P
u
n(Fi+1|Fi).

In order to estimate P
u
n(Fi+1|Fi), Fi can be expressed a disjoint union over the

cycles involved in its definition. To be precise, define an equivalence relation Ri on
Fi by: σ, σ

′ are Ri-equivalent if for every 1 ≤ j ≤ i, 1 ≤ q ≤ l and r > 0

σ(sriqwq)vj = σ′(sriqwq)vj .

In other words, σ, σ′ are Ri-equivalent if they define the same paths according to
all vertices up to vi (so p(vj , σ) = p(vj , σ

′)) and their restrictions to every edge in
these paths agree. Of course, Fi is the disjoint union of the Ri-classes. Note that
R0 is trivial (everything is equivalent).

In general, if A, B1, . . . , Bm are measurable sets and the Bi’s are pairwise
disjoint then P(A| ∪i Bi) is a convex combination of P(A|Bi) (for any probability
measure P). Therefore, Pu

n(Fi+1|Fi) is a convex combination of probabilities of the
form P

u
n(Fi+1|Bi) where Bi is an Ri-class.

Now fix an Ri-class Bi (for some i with 0 ≤ i < m). Let K be the set of all
vertices covered by the cycles defining Bi. To be precise, this means K is the set of
all u ∈ [n] = Vn such that there exists an edge e with u ∈ e such that e is contained
in a path p(vj , σ) with 1 ≤ j ≤ i and σ ∈ Bi. Since each path covers at most kl
vertices, |K| ≤ ikl.

If l > 1 (the case l = 1 is similar), fix subsets e1, . . . , el−1 ⊂ [n] of size k.
Conditioned on Bi and the event that the first (l−1) edges of p(vi+1, σ) are e1, . . . ,
el−1, the P

u
n-probability that vi+1 represents a simple (σ,w)-cycle vertex-disjoint

from K is bounded by the probability that a uniformly random k−1-element subset
of

[n] \

⎛⎝ ⋃
2≤j≤l−1

ej ∪K

⎞⎠
contains vi+1. Since∣∣∣∣∣∣

⋃
2≤j≤l−1

ej ∪K

∣∣∣∣∣∣ ≤ (i+ 1)kl ≤ mkl = kl	δn
,

this probability is bounded by C/n where C = C(w, d, k, δ) is a constant not
depending on n or the choice of Bi. It follows that P

u
n(Fi+1|Fi) ≤ C/n for all

0 ≤ i ≤ m− 1 and therefore

P
u
n(Fm) ≤ (C/n)m ≤ (C/n)δn.

This implies the lemma (the argument is similar for simple degenerate cycles). �



46 DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

Proof of Theorem 1.1 from Lemma 1.2. Choose d, k, η0, η1, η according to the hy-
potheses of Lemma 1.2 so that η ∈ [η0, η1], k ≥ k0 and all of the conclusions
to Lemma 1.2 hold. Construct Γ�X according to §1.3. We will always take
n ∈ 2Z ∩ kZ. We will first show the existence of a sofic approximation Σ1 = {σn}
to Γ such that

inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn) = f(d, k).

Then by Lemma 2.1, we will have hΣ1
(Γ�X) = f(d, k) > 0.

Observe that Lemma 1.2(1) implies the following: for every β > 0 there exists
ε(β) > 0 (with ε decreasing as β decreases), N , and ξ(β, ε,N) > 0 such that for
n > N , Pu

n(n
−1 log(Z(ε;σn)) − f(d, k) ≥ β) < e−ξn. In other words, the num-

ber of ε-proper colorings can only exponentially exceed f(d, k) with exponentially
small probability. This is because the negation of the above would imply that
infε>0 lim supn→∞ n−1 logEu

n[Z(ε;σ)] > f(d, k), contradicting (1). Let Fn,β,ε be
the event that n−1 log[Z(ε;σn)]− f(d, k) ≥ β.

Let Hn,β be the event that |n−1 logZ(σn)− f(d, k)| < β. Lemma 1.2(3) implies
P
u
n(Hn,β) decays at most subexponentially in n. Precisely, for any c > 0 there exists

N = N(c, β) such that n > N implies Pu
n(Hn,β) > e−cn.

Let In,β,ε be the event that |n−1 logZ(ε;σn) − f(d, k)| < β. Notice that since
Z(ε;σn) ≥ Z(σn) for any ε, F c

n,β,ε ∩Hn,β ⊂ In,β,ε.
Consider a decreasing sequence βm → 0, and εm and ξm depending on βm

as discussed above. Since P
u
n(Hn,β) is decaying only subexponentially, we can

choose an increasing sequence Km satisfying Km ≥ max1≤j≤m Nj , and for each
m, Pu

n(Hn,βm
) > 2

∑m
i=1 e

−ξin for all n > Km. Now it follows that n > Km implies

P
u
n(∩m

j=1F
c
n,βj ,εj

∩Hn,βj
) ≥ P

u
n(Hn,βm

) −
∑m

i=1 e
−ξin ≥ e−ξ1n. By the observation

in the preceding paragraph, Pu
n(∩m

j=1In,βj ,εj ) ≥ e−ξ1n.
Given δ > 0 and D ⊂ Γ finite, let JD,δ,n be the event that σn is (D, δ)-sofic. Let

δm → 0 be a decreasing sequence and Dm ⊂ Γ be an increasing sequence of finite
subsets of Γ.

Lemma 3.1 implies that P
u
n(J

c
D,δ,n) decays super-exponentially in n for any

D and δ, so there exists an increasing sequence Nm such that for n > Nm,
P
u
n(∩m

j=1In,βj ,εj ∩ JDm,δm,n) ≥ 0.5e−ξ1n. It follows that we can choose a deter-
ministic sofic approximation sequence Σ1 = {σn} such that

inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn) = f(d, k).

We next show the existence of Σ2. Equation (2) of Lemma 1.2 implies the existence
of a number fp with

f(d, k) < fp < lim inf
n→∞

n−1 logEp
n[Z(σ)].

Since Z(σ) ≤ 2n for every σ, there exist constants c,N0 > 0 such that

(4) P
p
n{σ : Z(σ) ≥ exp(nfp)} ≥ exp(−cn)

for all n ≥ N0.
Now let δ > 0 and D ⊂ Γ be finite. Then there exists N2 such that if n > N2

and σn is chosen at random with law P
p
n, then with positive probability,

(1) σn is (D, δ)-sofic,
(2) n−1 logZ(σn) ≥ fp.
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This is implied by Lemma 3.1 and equation (4). So there exists a sofic approxima-
tion Σ2 = {σ′

n} to Γ such that

lim sup
n→∞

n−1 logZ(σ′
n) ≥ fp.

Since Z(σ′
n)≤Z(β;σ′

n), Lemma 2.1 implies hΣ2
(Γ�X)≥fp>f(d, k)=hΣ1

(Γ�X).
�

4. The first moment

To simplify notation, we assume throughout the paper that n ∈ 2Z∩kZ without
further mention. This section proves (1) of Lemma 1.2. The proof is in two parts.
Part 1, in Section 4.1, establishes:

Theorem 4.1.

lim
ε↘0

lim sup
n→∞

(1/n) logEu
n[Z(ε;σ)] = lim sup

n→∞
(1/n) logEu

n[Z(σ)].

Part 2 has to do with equitable colorings, where a 2-coloring χ : [n] → {0, 1} is
equitable if

|χ−1(0)| = |χ−1(1)| = n/2.

Let Ze(σ) be the number of proper equitable colorings of Gσ. Section 4.2 establishes

Theorem 4.2.

lim
n→∞

1

n
logEu

n[Z(σ)] = lim
n→∞

1

n
logEu

n[Ze(σ)].

Moreover,
1

n
logEu

n[Ze(σ)] = f(d, k) +O(n−1 log(n)),

where f(d, k) = log(2) + d
k log(1− 21−k).

Combined, Theorems 4.1 and 4.2 imply (1) of Lemma 1.2.

Remark 5. If r := (d/k) then the formula for limn→∞
1
n logEu

n[Z(σ)] above is the
same as the formula found in [6–8] for the exponential growth rate of the number
of proper 2-colorings of Hk(n,m).

Remark 6. When we write an error term, such as O(n−1 log(n)), we always assume
that n ≥ 2 and the implicit constant is allowed to depend on k or d.

4.1. Almost proper 2-colorings. For 0 < x ≤ 1, let η(x) = −x log(x). Also let

η(0) = 0. If �T = (Ti)i∈I is a collection of numbers with 0 ≤ Ti ≤ 1, then let

H(�T ) :=
∑
i∈I

η(Ti)

be the Shannon entropy of �T .

Definition 3. A k-partition of [n] is an unordered partition of [n] into sets of size
k. Of course, such a partition exists if and only if n/k ∈ N in which case there are

(5)
n!

k!n/k(n/k)!
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such partitions. By Stirling’s formula,

1

n
log(#{k-partitions})(6)

= (1− 1/k)(log(n)− 1)− (1/k) log(k − 1)! +O(n−1 log(n)).

Definition 4. The orbit-partition of a permutation ρ ∈ Sym(n) is the partition
of [n] into orbits of ρ. Fix a k-partition π. Then the number of permutations ρ
whose orbit partition is π equals (k − 1)!n/k.

Given σ ∈ Homunif(Γ, Sym(n)), define the d-tuple (πσ
1 , . . . , π

σ
d ) of k-partitions

by: πσ
i is the orbit-partition of σ(si). Fix a d-tuple of k-partitions (π1, . . . , πd).

Then the number of uniform homomorphisms σ such that πσ
i = πi for all i is [(k−

1)!n/k]d. Combined with (5), this shows the number of uniform homomorphisms
into Sym(n) is [

n!(k − 1)!n/k

k!n/k(n/k)!

]d
.

By Stirling’s formula,

(7)
1

n
log#Homunif(Γ, Sym(n)) = d(1− 1/k)(log n− 1) +O(n−1 log(n)).

Definition 5. Let π be a k-partition, χ : [n] → {0, 1} a 2-coloring and �t = (tj)
k
j=0 ∈

[0, 1]k+1 a vector with
∑

j tj = 1/k. The pair (π, χ) has type �t if for all j,

#
{
e ∈ π : |e ∩ χ−1(1)| = j

}
= ntj .

Lemma 4.3. Let �t = (t0, t1, . . . , tk) ∈ [0, 1]k+1 be such that
∑

j tj = 1/k and

ntj ∈ Z. Let p =
∑

j jtj. Let χ : [n] → {0, 1} be a map such that |χ−1(1)| = pn.

Let f(�t) be the number of k-partitions π of [n] such that (π, χ) has type �t. Then

(1/n) log f(�t) = (1− 1/k)(log(n)− 1)−H(p, 1− p) +H(�t)

−
k∑

j=0

tj log(j!(k − j)!) +O(n−1 log(n)).

Proof. The following algorithm constructs all such partitions with no duplications:

Step 1. Choose an unordered partition of the set χ−1(1) into tjn sets of size j
(j = 0, . . . , k).

Step 2. Choose an unordered partition of the set χ−1(0) into tjn sets of size k − j
(j = 0, . . . , k).

Step 3. Choose a bijection between the collection of subsets of size j constructed
in part 1 with the collection of subsets of size k − j constructed in part 2.

Step 4. The partition consists of all sets of the form α ∪ β where α ⊂ χ−1(1) is a
set of size j constructed in Step 1 and β ⊂ χ−1(0) is a set of size (k − j)
constructed in Step 2 that it is paired with under Step 3.

The number of choices in Step 1 is (pn)!∏k
j=1(j)!

tjn(tjn)!
. The number of choices in Step

2 is ((1−p)n)!∏k−1
j=0 (k−j)!tjn(tjn)!

. The number of choices in Step 3 is
∏k−1

j=1 (tjn)!. So

(8) f(�t) =
(pn)!((1− p)n)!∏k

j=0 j!
tjn(k − j)!tjn(tjn)!

.

The lemma follows from this and Stirling’s formula. �
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Let M be the set of all matrices �T = (Tij)1≤i≤d,0≤j≤k such that

(1) Tij ≥ 0 for all i, j,

(2)
∑k

j=0 Tij = 1/k for all i,

(3) there exists a number, denoted p(�T ), such that p(�T ) =
∑k

j=0 jTij for all i.

Let Mn be the set of all �T ∈ M such that n�T is integer-valued.

Lemma 4.4. Let A be an integer-valued q × p matrix (for some p, q ∈ N), b ∈ R
q

and K ⊂ R
p the set of all x ∈ R

p such that Ax = b and xi ≥ 0 for all i. For
n ∈ N, let Kn be the set of all x ∈ K such that nx is integer-valued.

Assume K is compact and there exists x ∈ K with xi > 0 for all i. Then there
is a constant C > 0 such that if Kn is non-empty then it is C/n-dense in K in the
following sense. For any x ∈ K there exists x′ ∈ Kn such that ‖x− x′‖∞ < C/n.
Moreover, the constant C can be chosen to depend continuously on the vector b ∈ R

q.

Proof. To begin, we will define several constants which will enable us to choose
C > 0. Because A is integer-valued, its kernel, denoted ker(A) ⊂ R

p, is such that
ker(A) ∩ Z

p has rank equal to the dimension of ker(A). Therefore, ker(A) ∩ Z
p is

cocompact in ker(A). So there is a constant C1 > 0 such that for any z ∈ ker(A)
there is an element z′ ∈ ker(A) ∩ Z

p with ‖z − z′‖∞ < C1.
By hypothesis, there is a constant C2 > 0 and an element y ∈ K such that

yi > C2 for all i. Because K is compact there is another constant C3 > 0 such
that ‖x − y‖∞ < C3 for all x ∈ K . Let C = C1C3

C2
+ C1. Now let x ∈ K be

arbitrary and suppose Kn is non-empty. We will show there exists x′′ ∈ Kn such
that ‖x− x′′‖∞ ≤ C/n.

Let

x′ =

(
1− C1

C2n

)
x+

C1

C2n
y.

Then x′
i ≥ (C1/C2n)yi > C1/n for all i. Also ‖x − x′‖∞ = (C1/C2n)‖x − y‖∞ <

C1C3

C2n
.

Because Kn is non-empty, there exists xn ∈ Kn. By linearity, K is the in-
tersection of the hyperplane xn + ker(A) with the positive orthant. Thus we can
write x′ = xn + (1/n)z′ + z′′ where z′ ∈ ker(A) ∩ Z

p and z′′ ∈ ker(A) satisfies
‖z′′‖∞ < C1/n. Let x

′′ = xn + (1/n)z′. Note ‖x′′ − x′‖∞ = ‖z′′‖∞ < C1/n. Since
x′
i > C1/n this implies x′′

i > 0 for all i. It is now straightforward to check that
x′′ ∈ Kn. By the triangle inequality

‖x− x′′‖∞ ≤ ‖x− x′‖∞ + ‖x′ − x′′‖∞ <
C1C3

C2n
+ C1/n = C/n.

Because x and n are arbitrary, this implies the Lemma with C = C1C3

C2
+ C1.

Moreover C1 does not depend on the vector b; while C2, C3 can be chosen to depend
continuously on b. �

Lemma 4.5. Given a matrix �T ∈ M define

F (�T ) := H(�T ) + (1− d)H(p, 1− p)− (d/k) log k +
d∑

i=1

k∑
j=0

Tij log

(
k

j

)
,
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where p = p(�T ). Then for any ε ≥ 0,

(1/n) logEu
n[Z(ε;σ)]

= sup

⎧⎨⎩F (�T ) : �T ∈ Mn and

d∑
i=1

∑
j=0,k

Tij ≤ ε

⎫⎬⎭+O(n−1 log(n)),

where the constant implicit in the error term does not depend on ε.

Proof. Given σ ∈ Homunif(Γ, Sym(n)) and 1 ≤ i ≤ d, let πσ
i be the orbit-partition of

σ(si). For �T as above, let Zσ(�T ) be the number of ε-proper colorings χ : [n] → {0, 1}
such that (πσ

i , χ) has type
�Ti = (Ti,0, . . . , Ti,k). It suffices to show that

(1/n) logEu
n[Zσ(�T )] = F (�T ) +O(n−1 log(n))

for all n ≥ 2 such that �T ∈ Mn. This is because the size of Mn is a polynomial
(depending on k, d) in n so the supremum above determines the exponential growth
rate of Eu

n[Z(ε;σ)].

To prove this, fix a �T as above and let n be such that n�T is integer-valued. Fix
a coloring χ : [n] → {0, 1} such that |χ−1(1)| = pn. By symmetry,

E
u
n[Zσ(�T )] =

(
n

pn

)
P
u
n[(π

σ
i , χ) has type �Ti ∀i].

The events {(πσ
i , χ) has type

�Ti}di=1 are jointly independent. So

(9) E
u
n[Zσ(�T )] =

(
n

pn

) d∏
i=1

P
u
n[(π

σ
i , χ) has type �Ti].

By symmetry, P
u
n[(π

σ
i , χ) has type

�Ti] is the number of k-partitions π such that

(π, χ) has type �Ti divided by the number of k-partitions. By Lemma 4.3 and (6),

1

n
logPu

n[(π
σ
i , χ) has type �Ti]

= −H(p, 1− p) +H(�Ti)

−
k∑

j=0

Tij log(j!(k − j)!) + (1/k) log(k − 1)! +O(n−1 log(n)).

Combine this with (9) to obtain

(1/n) logEu
n[Zσ(�T )]

= (1− d)H(p, 1− p) +H(�T )

−
d∑

i=1

k∑
j=0

Tij log(j!(k − j)!) + (d/k) log(k − 1)! +O(n−1 log(n)).

This simplifies to the formula for F (�T ) using the assumption that
∑k

j=0 Tij = 1/k
for all i. �
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Proof of Theorem 4.1. By Lemma 4.4 applied to M , continuity of F and compact-
ness of M ,

lim
n→∞

sup

⎧⎨⎩F (�T ) : �T ∈ Mn and
d∑

i=1

∑
j=0,k

Tij ≤ ε

⎫⎬⎭
= sup

⎧⎨⎩F (�T ) : �T ∈ M and

d∑
i=1

∑
j=0,k

Tij ≤ ε

⎫⎬⎭ .

Theorem 4.1 now follows from Lemma 4.5 by continuity of F and compactness of
M . �

4.2. Equitable colorings.

Proof of Theorem 4.2. Let M0 be the set of all �T ∈ M such that Tij = 0 whenever
j ∈ {0, k}. By Lemma 4.5, it suffices to show that F admits a unique global

maximum on M0 and moreover if �T ∈ M0 is the global maximum then p(�T ) = 1/2

and F (�T ) = f(d, k).
The function F is symmetric in the index i. To exploit this, let M ′ be the set

of all vectors �t = (tj)
k−1
j=1 such that tj ≥ 0 for all j and

∑k−1
j=1 tj = 1/k. Let

p(�t) =

k−1∑
j=1

jtj

F (�t) = dH(�t) + (1− d)H(p, 1− p)− (d/k) log k + d
k−1∑
j=1

tj log

(
k

j

)
.

Note that F (�t) = F (�T ) if �T is defined by �Tij = �tj for all i, j. Moreover, since

Shannon entropy is strictly concave, for any �T ∈ M0, if �t is defined to be the

average: �tj = d−1
∑d

i=1
�Tij then F (�t) ≥ F (�T ) with equality if and only if �tj = �Tij

for all i, j. So it suffices to show that F admits a unique global maximum on M ′

and moreover if �t ∈ M ′ is the global maximum then p(�t) = 1/2 and F (�t) = f(d, k).

Because ∂H(�t)
∂tj

= −[log(tj) + 1], ∂p
∂tj

= j, and ∂H(p,1−p)
∂tj

= j log
(

1−p
p

)
,

∂F

∂tj
= −d[log(tj) + 1] + (1− d)j log

(
1− p

p

)
+ d log

(
k

j

)
.

Since this is positive infinity whenever tj = 0, it follows that every maximum of F
occurs in the interior of M ′. The method of Lagrange multipliers implies that, at
a critical point, there exists λ ∈ R such that

∇F = λ∇

⎛⎝�t �→
∑
j

tj

⎞⎠ = (λ, λ, . . . , λ).

So at a critical point,

∂F

∂tj
= −d[log(tj) + 1] + (1− d)j log

(
1− p

p

)
+ d log

(
k

j

)
= λ.
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Solve for tj to obtain

tj = exp(−λ/d− 1)

(
k

j

)(
1− p

p

)j(1−d)/d

.

Note

1 = k
k−1∑
j=1

tj

1 = 1/p
k−1∑
j=1

jtj

implies

0 =

k−1∑
j=1

(k − j/p)tj =

k−1∑
j=1

(pk − j)

(
k

j

)(
1− p

p

)j(1−d)/d

.

So define

g(x) :=
k−1∑
j=1

(kx− j)

(
k

j

)(
1− x

x

)j(1−d)/d

.

It follows from the above that g(p(�t)) = 0 whenever �t is a critical point.
We claim that g(x) = 0 if and only if x = 1/2 (for x ∈ (0, 1)). The change of

variables j �→ k−j in the formula for g shows that g(1−x) = −
(

x
1−x

)k(1−d)/d

g(x).

So it is enough to prove that g(x) < 0 for x ∈ (0, 1/2).

To obtain a simpler formula for g, set y(x) =
(
1−x
x

)(1−d)/d
. The binomial formula

implies

g(x) =
k−1∑
j=1

(kx− j)

(
k

j

)
yj

= kx[(1 + y)k − 1− yk]− ky[(1 + y)k−1 − yk−1]

= k[(x(1 + y)− y)(1 + y)k−1 − x+ (−x+ 1)yk].

Because 0 < x < 1/2, y >
(

x
1−x

)
which implies that the middle coefficient

(x(1 + y)− y) = x− y(1− x) < 0. So

g(x)/k < (1− x)yk − x < 0,

where the last inequality holds because

yk =

(
x

1− x

)k(d−1)/d

<
x

1− x

assuming k(d− 1)/d > 1. This proves the claim.
So if �t is a critical point then p(�t) = 1/2. Put this into the equation above for tj

to obtain

tj = C

(
k

j

)
,

where C = exp(−λ/d− 1). Because

1/k =
k−1∑
j=1

tj = C
k−1∑
j=1

(
k

j

)
= C(2k − 2),
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it must be that

(10) tj =
1

k(2k − 2)

(
k

j

)
.

The formula F (�t) = f(d, k) now follows from a straightforward computation. �

5. The second moment

This section gives an estimate on the expected number of proper colorings at a
given Hamming distance from the planted coloring. This computation yields (2) of
Lemma 1.2 as a corollary. It also reduces the proof of (3) to obtaining an estimate
on the typical number of proper colorings near the planted coloring.

Before stating the main result, it seems worthwhile to review notation. Fix n > 0
with n ∈ 2Z∩kZ. Fix an equitable 2-coloring χ : [n] → {0, 1}. This is the planted
coloring. The planted model Pp

n is the uniform probability measure on the set
Homχ(Γ, Sym(n)) of all uniform homomorphisms σ such that χ is σ-proper. Also
let Ze : Homχ(Γ, Sym(n)) → N be the number of equitable proper 2-colorings. For
δ ∈ [0, 1], let Zχ(δ; ·) : Homχ(Γ, Sym(n)) → N be the number of equitable proper
2-colorings χ̃ such that |dn(χ, χ̃)− δ| < 1/2n where dn is the normalized Hamming
distance defined by

dn(χ, χ̃) = n−1#{v ∈ [n] : χ(v) �= χ̃(v)}.

We will also write Zχ(δ;σ) = Zχ(δ) = Z(δ) when χ and/or σ are understood.
The main result of this section is:

Theorem 5.1. With notation as above, for any 0 ≤ δ ≤ 1 such that δn/2 is an
integer,

1

n
logEp

n[Z(δ)] = ψ0(δ) +Oδ(n
−1) +O(n−1 log(n))

(for n ≥ 2) where

ψ0(δ) = (1− d)H(δ, 1− δ) + dH0(δ, 1− δ) +
d

k
log

(
1− 1− δk0 − (1− δ0)

k

2k−1 − 1

)
,

δ0 is defined to be the unique solution to

δ0
1− 22−k + (δ0/2)

k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
= δ

and

H(δ, 1− δ) := −δ log δ − (1− δ) log(1− δ),

H0(δ, 1− δ) := −δ log δ0 − (1− δ) log(1− δ0).

Moreover, the constant implicit in the error term O(n−1 log(n)) may depend on k
but not on δ. The constant implicit in the Oδ(n

−1) term depends continuously on
δ for δ ∈ (0, 1/2].

Remark 7. If δ0 = δ then δ = 1/2. In the general case, δ0 = δ +O(2−k). Theorem
5.1 parallels similar results in [6, 7] for the random hyper-graph Hk(n,m). This is
explained in more detail in the next subsection.
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The strategy behind the proof of Theorem 5.1 is as follows. We need to estimate
the expected number of equitable colorings at distance δ from the planted coloring.
By symmetry, it suffices to fix another coloring χ̃ that is at distance δ from the
planted coloring and count the number of uniform homomorphisms σ such that
both χ and χ̃ are proper with respect to Gσ. This can be handled one generator
at a time. Moreover, only the orbit-partition induced by a generator is used in this
computation. So, for fixed χ, χ̃, we need to estimate the number of k-partitions of
[n] that are bi-chromatic under both χ and χ̃. To make this strategy precise, we
need the next definitions.

Definition 6. Let χ̃ be an equitable 2-coloring of [n]. An edge P ⊂ [n] is (χ, χ̃)-
bichromatic if χ(P ) = χ̃(P ) = {0, 1}. Recall that a k-partition is a partition
π = {P1, . . . , Pn/k} of [n] such that every part P ∈ π has cardinality k. A
k-partition π is (χ, χ̃)-bichromatic if every part P ∈ π is (χ, χ̃)-bichromatic.

Given a (χ, χ̃)-bichromatic edge P ⊂ [n] of size k, there is a 2× 2 matrix �e(χ̃, P )
defined by

�ei,j(χ̃, P ) = |P ∩ χ−1(i) ∩ χ̃−1(j)|.
Let E denote the set of all such matrices (over all P, χ̃). This is a finite set. To be
precise, E is the set of all 2× 2 matrices �e = (eij)i,j=0,1 such that

• eij ∈ {0, 1, . . ., k} for all i, j
• 0 < e10 + e11 < k
• 0 < e01 + e11 < k
•

∑
i,j eij = k.

If π is a (χ, χ̃)-bichromatic k-partition then it induces a function tχ̃,π : E → [0, 1]
by

tχ̃,π(�e) = n−1# {P ∈ π : �e = �e(χ̃, P )} .
Let T be the set of all functions t : E → [0, 1] satisfying

•
∑

�e∈E t(�e) = 1/k,
•

∑
�e∈E(e10 + e11)t(�e) = 1/2,

•
∑

�e∈E(e01 + e11)t(�e) = 1/2.

Also let Tn be the set of t ∈ T such that nt(�e) is integer-valued for each �e ∈ E. A
k-partition π has type (χ, χ̃, t) if t = tχ̃,π.

Lemma 5.2. Given an equitable 2-coloring χ̃ : [n] → {0, 1}, let pχ̃ = (pχ̃ij) be the
2× 2 matrix

pχ̃ij = (1/n)|χ−1(i) ∩ χ̃−1(j)|.
Then

pχ̃ =

[
1/2− dn(χ, χ̃)/2 dn(χ, χ̃)/2

dn(χ, χ̃)/2 1/2− dn(χ, χ̃)/2

]
.

In particular, pχ̃ is determined by the Hamming distance dn(χ, χ̃).

Proof. Let p = pχ̃. The lemma follows from this system of linear equations:

1/2 = p01 + p11

1/2 = p10 + p11

dn(χ, χ̃) = p01 + p10

1 = p00 + p01 + p10 + p11.
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The first two occur because both χ and χ̃ are equitable. The third follows from the
definition of normalized Hamming distance and the last holds because {χ−1(i) ∩
χ̃−1(j)}i,j∈{0,1} partitions [n]. �

For t ∈ T, define the 2× 2 matrix pt = (ptij) by

ptij :=
∑
�e∈E

eijt(�e).

If π is a k-partition that has type (χ, χ̃, t) (for some equitable χ̃) then pχ̃ = pt.
This motivates the definition.

The main combinatorial estimate we will need is:

Lemma 5.3. Let t ∈ Tn and χ̃ : [n] → {0, 1} be equitable. Suppose pt = pχ̃. Let
g(χ̃, t) be the number of k-partitions of type (χ, χ̃, t). Also let

G(t) := (1− 1/k)(log(n)− 1)−H(pt)− (1/k) log(k!) +H(t) +
∑
�e

t(�e) log

(
k

�e

)
,

where
(
k
�e

)
is the multinomial k!

e00!e01!e10!e11!
. Then

(1/n) log g(χ̃, t) = G(t) +O(n−1 log(n))

(for n ≥ 2) where the constant implicit in the error term depends on k but not on
χ̃ or t.

Proof. The following algorithm constructs all such partitions with no duplications:

Step 1. Choose a partition {Q�e
ij : i, j ∈ {0, 1}, �e ∈ E} of χ−1(i) ∩ χ̃−1(j) such that

|Q�e
ij | = eijt(�e)n.

Step 2. For i, j ∈ {0, 1} and �e ∈ E, choose an unordered partition π�e
ij of Q�e

ij into
t(�e)n sets of size eij .

Step 3. For i, j ∈ {0, 1} with (i, j) �= (0, 0) and �e ∈ E, choose a bijection α�e
ij : π

�e
00 →

π�e
ij .

Step 4. The k-partition consists of all sets of the form P∪
⋃

i,j∈{0,1},(i,j) 	=(0,0) α
�e
ij(P )

over all P ∈ π�e
00 and �e ∈ E.

The number of choices in Step 1 is∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!
∏
�e∈E

(eijt(�e)n)!
−1.

The combined number of choices in Steps 1 and 2 is∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!
∏
�e∈E

eij !
−t(�e)n(t(�e)n)!−1

=

(∏
�e∈E

(t(�e)n)!

)−4 ∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!
∏
�e∈E

eij !
−t(�e)n.

The number of choices in Step 3 is
∏

�e∈E(t(�e)n)!
3. So

g(χ̃, t) =

⎛⎝ ∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!

⎞⎠(∏
�e∈E

(t(�e)n)!

)−1
⎛⎝ ∏

i,j∈{0,1}

∏
�e∈E

eij !
−t(�e)n

⎞⎠ .
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An application of Stirling’s formula gives

(1/n) log g(χ̃, t)

= (1− 1/k)(log(n)− 1)−H(pt) +H(t)−
∑
�e,i,j

t(�e) log(eij !) +O(n−1 log(n))

(for n ≥ 2) where the constant implicit in the error term depends on k but not on
χ̃ or t.

Since
∑

�e t(�e) = 1/k,∑
�e

t(�e) log

(
k

�e

)
= (1/k) log(k!)−

∑
�e,i,j

t(�e) log(eij !).

Substitute this into the formula above to finish the lemma. �

Next we use Lagrange multipliers to maximize G(t). To be precise, for δ ∈ [0, 1],
let T(δ) be the set of all t ∈ T such that pt01 = δ/2. Define Tn(δ) = T(δ) ∩ Tn. To
motivate this definition, observe that if χ̃ is an equitable 2-coloring and δ = dn(χ, χ̃)

then pχ̃01 = δ/2. So if π is a k-partition with type (χ, χ̃, t) then pt01 = δ/2.

Lemma 5.4. Let δ ∈ [0, 1]. Then there exists a unique sδ ∈ T(δ) such that

max
t∈T(δ)

G(t) = G(sδ).

Moreover, if δ0, C > 0 and tδ ∈ T(δ) are defined by

δ

2
=

δ0
2

1− 22−k + (δ0/2)
k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

C =
1

k[1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k]

tδ(�e) = C

(
1− δ0

2

)e00+e11 (δ0
2

)e01+e10 (k
�e

)
then sδ = tδ.

Proof. Define F : T → R by

F (t) = H(t) +
∑
�e

t(�e) log

(
k

�e

)
.

For all t ∈ T(δ), G(t) − F (t) is constant in t. Therefore, it suffices to prove the
lemma with F in place of G.

The function F is concave over t ∈ T(δ). This implies the existence of a unique
sδ ∈ T(δ) such that

max
t∈T(δ)

F (t) = F (sδ).

By definition, T(δ) is the set of all functions t : E → [0, 1] satisfying

1/k =
∑
�e∈E

t(�e)

pij =
∑
�e∈E

eijt(�e),
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where p = (pij) is the matrix

p =

[
1/2− δ/2 δ/2

δ/2 1/2− δ/2

]
.

For any �e ∈ E,

(11)
∂F

∂t(�e)
= − log t(�e)− 1 + log

(
k

�e

)
.

Since this is positive infinity when t(�e) = 0, sδ must lie in the interior of T(δ). By
the method of Lagrange multipliers there exists λ ∈ R and a 2 × 2 matrix �μ such
that

(12)
∂F

∂t(�e)
(sδ) = λ+ �μ · �e.

Evaluate (11) at sδ, use (12) and solve for sδ(�e) to obtain

sδ(�e) = C0

(
k

�e

)
xe00
00 xe01

01 xe10
10 xe11

11

for some constants C0, xij . In fact, since F is concave, sδ is the unique critical
point and so it is the only element of T(δ) of this form. So it suffices to check that
the purported tδ given in the statement of the lemma has this form and that it
is in T(δ) as claimed. The former is immediate while the latter is a tedious but
straightforward computation. For example, to check that

∑
�e tδ(�e) = 1/k, observe

that, by the multinomial formula for any (xij)i,j∈{0,1},∑
�e∈E

(
k

�e

)
xe00
00 xe01

01 xe10
10 xe11

11

=
[
(x00 + x01 + x10 + x11)

k − (x00 + x01)
k − (x00 + x10)

k − (x11 + x01)
k

− (x11 + x10)
k + xk

00 + xk
01 + xk

10 + xk
11

]
.

Substitute x00 = x11 = 1−δ0
2 and x01 = x10 = δ0/2 to obtain

∑
�e∈E

tδ(�e) = C

[
1− 4(1/2)k + 2

(
1− δ0

2

)k

+ 2

(
δ0
2

)k
]
= 1/k.

The rest of the verification that tδ ∈ T(δ) is left to the reader. �

Proof of Theorem 5.1. Let E (δ) be the set of all equitable 2-colorings χ̃ : [n] →
{0, 1} such that dn(χ̃, χ) = δ. Also let Fχ̃ ⊂ Homunif(Γ, Sym(n)) be the set of
all σ such that χ̃ is a proper 2-coloring of the hyper-graph Gσ. By linearity of
expectation,

E
p
n[Zχ(δ)] =

∑
χ̃∈E (δ)

P
u
n(Fχ̃|Fχ).

The cardinality of E (δ) is
( n/2
δn/2

)2
. By Stirling’s formula

(13) n−1 log

(
n/2

δn/2

)2

= H(δ, 1− δ) +O(n−1 log(n)).
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We have P
u
n(Fχ̃|Fχ) is the same for all χ̃ ∈ E (δ). This follows by noting that the

distribution of hyper-graphs in the planted model is invariant under any permu-
tation which fixes χ. If η, η′ are two configurations with dn(η, χ) = dn(η

′, χ) = δ
then there is a permutation π ∈ Sym(n) which fixes χ and such that η ◦ π = η′.
To see this note that we simply need to find a π ∈ Sym(n) which maps the sets
χ−1(i) ∩ η−1(j) to χ−1(i) ∩ η′−1(j) for each i, j ∈ {0, 1}. Such a map exists since
for each i, j the two sets have the same size. It follows that

(14) n−1 logEp
n[Zχ(δ)] = H(δ, 1− δ) + n−1 logPu

n(Fχ̃|Fχ) +O(n−1 log(n))

for any fixed χ̃ ∈ E (δ).
For 1 ≤ i ≤ d, let Fχ,i be the set of uniform homomorphisms σ such that the

orbit-partition of σ(si) is χ-bichromatic in the sense that χ(P ) = {0, 1} for every
P in the orbit-partition of σ(si). Then the events {Fχ,i ∩ Fχ̃,i}di=1 are i.i.d. and

Fχ ∩ Fχ̃ =

d⋂
i=1

Fχ,i ∩ Fχ̃,i.

Therefore,

(15) P
u
n(Fχ̃|Fχ) =

P
u
n(Fχ̃,1 ∩ Fχ,1)

d

Pu
n(Fχ)

.

Note Pu
n(Fχ,1 ∩Fχ̃,1) is, up to sub-exponential factors, equal to the maximum of

g(χ̃, t) over t ∈ Tn(δ) divided by the number of k-partitions of [n]. So equation (6)
implies

1

n
log Pu

n(Fχ̃,1 ∩ Fχ,1)

= max
t∈Tn(δ)

1

n
log g(χ̃, t)− (1− 1/k)(log(n)− 1)

+ (1/k) log((k − 1)!) +O(n−1 log n).

So Lemma 5.3 implies

1

n
logPu

n(Fχ̃,1 ∩ Fχ,1)

= max
t∈Tn(δ)

G(t)− (1− 1/k)(log(n)− 1) + (1/k) log((k − 1)!) +O(n−1 log n).

We apply Lemma 4.4 to T(δ) to obtain the existence of s
(n)
δ ∈ Tn(δ) with ‖s(n)δ −

tδ‖∞ < Oδ(n
−1) where the constant implicit in the Oδ(n

−1) term depends contin-
uously on δ for δ ∈ (0, 1/2]. Since G is differentiable in a neighborhood of tδ, we
have

max
t∈Tn(δ)

G(t) = G(tδ) +Oδ(n
−1).

So Lemma 5.4 implies

1

n
logPu

n(Fχ̃,1 ∩ Fχ,1) =−H(�p) +H(tδ)−
∑
i,j,�e

tδ(�e) log(eij !) + (1/k) log(k − 1)!

+Oδ(n
−1) +O(n−1 log(n)).
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Since �p = (δ/2, δ/2, (1− δ)/2, (1− δ)/2), H(�p) = H(δ, 1− δ) + log(2). So

1

n
logPu

n(Fχ̃,1 ∩ Fχ,1) =−H(δ, 1− δ)− log(2) +H(tδ)−
∑
i,j,�e

tδ(�e) log(eij !)

+ (1/k) log(k − 1)! +Oδ(n
−1) +O(n−1 log(n)).(16)

On the other hand, Theorem 4.2 implies

1

n
log Pu

n(Fχ) =
1

n
log

((
n

n/2

)−1

E
u
n[Ze(σ)]

)
= (d/k) log(1− 21−k) +O(n−1 log(n)).

Combine this result with (14), (15) and (16) to obtain

n−1 logEp
n[Zχ(δ)]

= (1− d)H(δ, 1− δ)− d log(2) + dH(tδ)− d
∑
i,j,�e

tδ(�e) log(eij !)

+ (d/k) log(k − 1)!− (d/k) log(1− 21−k) +Oδ(n
−1) +O(n−1 log(n)).

Since
∑

�e tδ(�e) = 1/k,∑
�e

tδ(�e) log

(
k

�e

)
= (1/k) log k!−

∑
i,j,�e

tδ(�e) log(eij !).

Substitute this into the previous equation to obtain

n−1 logEp
n[Zχ(δ)] = ψ0(δ) +Oδ(n

−1) +O(n−1 log(n)),

where

ψ0(δ) =(1− d)H(δ, 1− δ)− d log(2) + dH(tδ) + d
∑
�e∈E

tδ(�e) log

(
k

�e

)
− (d/k) log k − (d/k) log(1− 21−k).

Observe that in every estimate above, the constant implicit in the error term does
not depend on δ. To finish the lemma, we need only simplify the expression for ψ0.

By Lemma 5.4,

H(tδ) = −
∑
�e

tδ(�e) log tδ(�e)

= −
∑
�e

tδ(�e)

(
logC+(e00+e11) log

(
1− δ0

2

)
+(e01+e10) log

(
δ0
2

)
+log

(
k

�e

))

= −(1/k)(logC)− (1− δ) log(1− δ0)− δ log(δ0) + log 2−
∑
�e

tδ(�e) log

(
k

�e

)

= −(1/k)(logC) +H0(δ, 1− δ) + log 2−
∑
�e

tδ(�e) log

(
k

�e

)
.

Combined with the previous formula for ψ0, this implies

ψ0(δ)=(1−d)H(δ, 1−δ)−(d/k) logC+dH0(δ, 1−δ)−(d/k) log k−(d/k) log(1−21−k).
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To simplify further, use the formula for C in Lemma 5.4 to obtain

− (d/k)
(
logC + log k + log(1− 21−k)

)
= (d/k) log

1− 22−k + 2(δ0/2)
k + 2((1− δ0)/2)

k

1− 21−k

= (d/k) log

(
1− 1− δk0 − (1− δ0)

k

2k−1 − 1

)
.

Thus ψ0(δ) = (1− d)H(δ, 1− δ) + dH0(δ, 1− δ) + d
k log(1− 1−δk0−(1−δ0)

k

2k−1−1
). �

5.1. Analysis of ψ0 and the proof of Lemma 1.2 inequality (2). Theorem 5.1
reduces inequality (2) to analyzing the function ψ0. A related function ψ, defined
by

ψ(x) := H(x, 1− x) +
d

k
log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
,

has been analyzed in [6,7]. It is shown there ψ(x) is the exponential rate of growth
of the number of proper colorings at normalized distance x from the planted coloring

in the model Hk(n,m). Moreover, if r = d/k is close to log(2)
2 · 2k − (1 + log(2))/2

then the global maximum of ψ(x) is attained at some x ∈ (0, 2−k/2). Moreover, ψ
has a local maximum at x = 1/2 and is symmetric around x = 1/2. It is negative in
the region (2−k/2, 1/2− 2−k/2). We will not need these facts directly, and mention
them only for context, especially because we will obtain similar results for ψ0.

The relevance of ψ to ψ0 lies in the fact that
(17)
ψ0(δ) = ψ(δ0)− (H(δ0, 1− δ0)−H0(δ, 1− δ))+ (d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)] .

As an aside, note that H0(δ, 1− δ)−H(δ, 1− δ) is the Kullback-Leibler divergence
of the distribution (δ, 1− δ) with respect to (δ0, 1− δ0).

To prove inequality (2), we first estimate the difference ψ0(δ)− ψ(δ0) and then
estimate ψ(δ0). Because the estimates we obtain are useful in the next subsection,
we prove more than what is required for just inequality (2).

Lemma 5.5. Suppose 0 ≤ δ0 ≤ 1/2. Define ε ≥ 0 by δ = δ0(1− ε). Then

H(δ0, 1− δ0)−H0(δ, 1− δ) = δ0ε log

(
1− δ0
δ0

)
≥ 0,

H0(δ, 1− δ)−H(δ, 1− δ) = O(δ0ε
2),

ε = O(2−k),

(1− δ)0 = 1− δ0.

The last equation implies ψ0(1− δ) = ψ0(δ).

Proof. The first equality follows from:

H(δ0, 1− δ0)−H0(δ, 1− δ)

= −δ0 log δ0 − (1− δ0) log(1− δ0) + δ log δ0 + (1− δ) log(1− δ0)

= (δ0 − δ) log(1/δ0) + (δ0 − δ) log(1− δ0)

= δ0ε log

(
1− δ0
δ0

)
.
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The second estimate follows from:

H0(δ, 1− δ)−H(δ, 1− δ) = δ (log δ − log δ0) + (1− δ) (log(1− δ)− log(1− δ0))

= δ log(1− ε) + (1− δ) log

(
1− δ

1− δ0

)
= −δε+ (1− δ) log

(
1 +

δ0ε

1− δ0

)
+O(δ0ε

2)

= −δε+ δ0ε+O(δ0ε
2) = O(δ0ε

2).

The third estimate follows from:

ε = 1− δ

δ0

= 1− 1− 22−k + (δ0/2)
k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

=
2(δ0/2)

k − (δ0/2)
k−1 + 2((1− δ0)/2)

k

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

=
(δ0/2)

k−1(δ0 − 1) + 2((1− δ0)/2)
k

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

= 21−k · (1− δ0) ·
(1− δ0)

k−1 − δk−1
0

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
.(18)

The denominator is 1 +O(2−k) and the numerator is O(2−k). The result follows.
The last equation follows from:

1− δ = 1− δ0

(
1− 22−k + (δ0/2)

k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

)
=

1− 22−k + 2(δ0/2)
k + 2

(
(1− δ0)/2)

k − δ0(1− 22−k + (δ0/2)
k−1

)
1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

=
(1− δ0)

(
1− 22−k + ((1− δ0)/2)

k−1
)

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
.

The last expression shows that (1− δ)0 = 1− δ0. �

Lemma 5.6. Let 0 ≤ η be Ok(1). If

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η,

then

f(d, k) = ψ(1/2) = ψ0(1/2) = (1− 2η)2−k +O(2−2k)

ψ(2−k) = 2−k +O(k22−2k).

In particular, if k is sufficiently large then ψ(2−k) > f(d, k).
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Proof. By direct inspection f(d, k) = ψ(1/2) = ψ0(1/2). By Taylor series expan-
sion, log(1− 21−k) = −21−k − 21−2k +O(2−3k). So

f(d, k) = log(2) + r log(1− 21−k)

= log(2) +

(
log(2)

2
· 2k − (1 + log(2))/2 + η

)(
−21−k − 21−2k

)
+O(r2−3k)

= (1− 2η)2−k +O(2−2k).

Next we estimate ψ(2−k). For convenience, let x = 2−k. Then

1− xk − (1− x)k = k · 2−k +O(k22−2k).

Since log(1− x) = −x− x2/2 +O(x3),

log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
= −2k · 2−2k +O(k22−3k).

So

r log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
= −k log(2) · 2−k +O(k22−2k).

Also,

H(x, 1− x) = (k log(2) + 1) · 2−k +O(2−2k).

Add these together to obtain

ψ(2−k) = 2−k +O(k22−2k). �

Corollary 5.7. Inequality (2) of Lemma 1.2 is true. To be precise, let 0 < η0 be
constant with respect to k. Then for all sufficiently large k (depending on η0), if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η ≥ η0 with η = Ok(1) then

f(d, k) < lim inf
n→∞

n−1 logEp
n[Z(σ)].

Proof. By definition,

n−1 logEp
n[Z(σ)] ≥ max

δ∈[0,1/2]
n−1 logEp

n[Z(δ)].

By Theorem 5.1,

n−1 logEp
n[Z(σ)] ≥ max

δ∈Cn

ψ0(δ) +Oδ(n
−1) +O(n−1 log(n)),

where Cn is the set of δ ∈ [0, 1/2] such that δn/2 is an integer. Because ψ0 :
[0, 1/2] → R is continuous, limn→∞ maxδ∈Cn

ψ0(δ) = maxδ∈[0,1/2] ψ0(δ). The con-

stant implicit in the Oδ(n
−1) depends continuously on δ for δ ∈ (0, 1/2], while the

constant implicit in the O(n−1 log(n)) error term does not depend on δ. So

lim inf
n→∞

n−1 logEp
n[Z(σ)] ≥ max

δ∈[υ,1/2]
ψ0(δ)

for any 0 < υ < 1/2. Because ψ0 is continuous,

(19) lim inf
n→∞

n−1 logEp
n[Z(σ)] ≥ max

δ∈[0,1/2]
ψ0(δ).
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Because H0(δ, 1 − δ) −H(δ, 1 − δ) ≥ 0 (since it is a Kullback-Liebler divergence),
the first equality of Lemma 5.5 implies

ψ0(δ) = ψ(δ0)− (H(δ0, 1− δ0)−H0(δ, 1− δ))+(d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)]

≥ ψ(δ0)− δ0ε log

(
1− δ0
δ0

)
.

By Lemma 5.6, ψ(2−k) = f(d, k)+2η2−k+O(k22−2k). By Lemma 5.5, ε = O(2−k).
As δ varies over [0, 1/2], δ0 also varies over [0, 1/2], so there exists δ such that
δ0 = 2−k. For this value of δ,

ψ0(δ) ≥ ψ(2−k)− 2−kε log

(
1− 2−k

2−k

)
≥ f(d, k) + 2η2−k +O(k22−2k).

Combined with (19) this implies the Corollary. �

In the next subsection, we will need the following result.

Proposition 5.8. Let

0 < η0 < (1− log 2)/2.

Then there exists k0 (depending on η0) such that for all k ≥ k0 if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η ∈ [η0, (1− log 2)/2) then in the interval [2−k/2, 1− 2−k/2], ψ0 attains its
unique maximum at 1/2. That is,

max{ψ0(δ) : 2−k/2 ≤ δ ≤ 1−2−k/2} = ψ0(1/2) = f(d, k) = log(2)+r log(1−21−k)

and if δ ∈ [2−k/2, 1− 2−k/2] and δ �= 1/2 then ψ0(δ) < ψ0(1/2).

Proof. By Lemma 5.5, it suffices to restrict δ to the interval [2−k/2, 1/2] (because
ψ0(δ) = ψ0(1− δ)). So we will assume δ ∈ [2−k/2, 1/2] without further mention.

Define ψ1 by

ψ1(δ0) =
d

k
log

(
1− 1− δk0 − (1− δ0)

k

2k−1 − 1

)
.

Observe

ψ1(δ0) = r

(
−1− δk0 − (1− δ0)

k

2k−1 − 1
+O(4−k)

)
= − log(2)[1− (1− δ0)

k] +O(2−k).

By (17) and the first inequality of Lemma 5.5,

ψ0(δ) ≤ ψ(δ0) + (d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)]

= H(δ0, 1− δ0) + ψ1(δ0) + (d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)].(20)

Moreover, (d−1) = O(k2k) and, by Lemma 5.5,H0(δ, 1−δ)−H(δ, 1−δ) = O(δ04
−k).

Therefore,

ψ0(δ) ≤ H(δ0, 1− δ0) + ψ1(δ0) +O(δ0k2
−k)

≤ H(δ0, 1− δ0)− log(2)[1− (1− δ0)
k] +O((δ0k + 1)2−k).(21)

Observe that δ0 ≥ δ. We divide the rest of the proof into five cases depending
on where δ0 lies in the interval [2−k/2, 1/2].
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Case 1. Suppose 2−k/2 ≤ δ0 ≤ 1
2k . We claim that ψ0(δ) < 0. Note − log(δ0) ≤

(k/2) log(2) and −(1− δ0) log(1− δ0) = δ0 +O(δ20). So

H(δ0, 1− δ0) = −δ0 log δ0 − (1− δ0) log(1− δ0)

≤ δ0(k/2) log(2) + δ0 +O(δ20).

By Taylor series expansion,

1− (1− δ0)
k ≥ kδ0 −

(
k

2

)
δ20 ≥ 3kδ0/4.

So by (21)

ψ0(δ) ≤ δ0(k/2) log(2) + δ0 − 3kδ0 log(2)/4 +O(δ20)

= δ0[1− k log(2)/4] +O(δ20).

Thus ψ0(δ) < 0 if k is sufficiently large.

Case 2. Let 0 < ξ0 < 1/2 be a constant such that H(ξ0, 1−ξ0) < log(2)(1−e−1/2).
Suppose 1

2k ≤ δ0 ≤ ξ0. We claim that ψ0(δ) < 0 if k is sufficiently large.
By monotonicity, H(δ0, 1− δ0) ≤ H(ξ0, 1− ξ0). Since 1− x ≤ e−x (for x > 0),

[1− (1− δ0)
k] ≥ 1− e−kδ0 ≥ 1− e−1/2.

By (21),

ψ0(δ) ≤ H(ξ0, 1− ξ0)− log(2)(1− e−1/2) +O(k2−k).

This implies the claim.

Case 3. Let ξ1 be a constant such that max(ξ0, 1/3) < ξ1 < 1/2. Suppose ξ0 ≤
δ0 ≤ ξ1. We claim that ψ0(δ) < 0 for all sufficiently large k (depending on ξ1).

By (21),

ψ0(δ) ≤ H(ξ1, 1− ξ1)− log(2)[1− (1− δ0)
k] +O(k2−k)

≤ H(ξ1, 1− ξ1)− log(2) +O((1− ξ0)
k).

This proves the claim.

Case 4. We claim that if ξ1 ≤ δ0 ≤ 0.5−2−k then ψ0(δ) < f(d, k) for all sufficiently
large k (independent of the choice of ξ1).

Recall that we define ε by δ = δ0(1− ε). By (18),

ε = 21−k · (1− δ0) ·
(1− δ0)

k−1 − δk−1
0

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

≤ 21−k(1− ξ1)
k +O

(
4−k

)
≤ 2 · 3−k

since ξ1 > 1/3, assuming k is sufficiently large.
The assumption on r implies d = O

(
k2k

)
. So the second equality of Lemma 5.5

implies

(d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)] = O
(
k4.5−k

)
.
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Through elementary but messy calculus computations one may show using the fact
that r = O(2k) that

ψ′(1/2) = 0

ψ′′(1/2) = −4 +O(k22−k)

ψ′′′(x) =
1

x2
− 1

(1− x)2
+ O(k3(2/3)k) for any x ∈ [1/3, 2/3].

By Taylor’s theorem,
(22)

ψ(δ0) = ψ(1/2)− (2 + ok(1))(δ0 − 1/2)2 +
1

6

(
1

υ2
− 1

(1− υ)2
+ ok(1)

)
(δ0 − 1/2)3

for some δ0 ≤ υ ≤ 1/2. Since δ0 ≥ 1/3, we have 1/2 − δ0 ≤ 1/6. Furthermore,
since x �→ 1

x2 − 1
(1−x)2 is monotone decreasing on (0, 1/2], we have 1

υ2 − 1
(1−υ)2 ≤

1
(1/3)2 − 1

(2/3)2 = 27
4 . Thus

1
6

(
1
υ2 − 1

(1−υ)2

)
(1/2− δ0)

3

2(1/2− δ0)2
≤ 1

12
· 27
4

· 1
6
< 1

and for sufficiently large k we have 1
6

(
1
υ2 − 1

(1−υ)2 + ok(1)
)
(1/2 − δ0)

3 < (2 +

ok(1))(1/2− δ0)
2. Since ψ(1/2) = f(d, k), (20) implies

ψ0(δ) ≤f(d, k)− (2 + ok(1))(1/2− δ0)
2

+
1

6

(
1

υ2
− 1

(1− υ)2
+ ok(1)

)
(1/2− δ0)

3 +O
(
k4.5−k

)
is strictly less than f(d, k) if k is sufficiently large.

Case 5. Suppose 0.5− 2−k ≤ δ0 < 0.5. Let γ = 0.5− δ0. By (18),

ε = O
([
(1/2 + γ)k−1 − (1/2− γ)k−1

]
2−k

)
.

Define L(x) := (1/2 + x)k−1 − (1/2 − x)k−1. We claim that L(γ) ≤ γ. Since
L(0) = 0, it suffices to show that L′(x) ≤ 1 for all x with |x| ≤ 0.01. An elementary
calculation shows

L′(x) = (k − 1)
[
(1/2 + x)k−2 + (1/2− x)k−2

]
.

So L′(x) ≤ 1 if |x| ≤ 0.01 and k is sufficiently large. Altogether this proves
ε = O

(
γ2−k

)
. So the second equality of Lemma 5.5 implies

(d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)] = O
(
k2−kγ2

)
.

By (22) and (20),

ψ0(δ) ≤ f(d, k)− (2 + ok(1))γ
2 +O

(
k2−kγ2

)
.

This is strictly less than f(d, k) if k is sufficiently large. �
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5.2. Reducing Lemma 1.2 inequality (3) to estimating the local cluster.
As in the previous section, fix an equitable coloring χ : Vn → {0, 1}. Given a
uniform homomorphism σ ∈ Homunif(Γ, Sym(n)), the cluster around χ is the set

Cσ(χ) :=
{
χ̃ ∈ Ze(σ) : dn(χ, χ̃) ≤ 2−k/2

}
.

We also call this the local cluster if χ is understood.
In §6 we prove:

Proposition 5.9. Let 0 < η0 < η1 < (1 − log 2)/2. Then for all sufficiently large
k (depending on η0, η1), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η ≤ η1 then with high probability in the planted model,
|Cσ(χ)| ≤ E

u
n(Ze). In symbols,

lim
n→∞

P
χ
n

(
|Cσ(χ)| ≤ E

u
n(Ze)

)
= 1.

The rest of this section proves Lemma 1.2 inequality (3) from Proposition 5.9
and the second moment estimates from earlier in this section. So we assume the
hypotheses of Proposition 5.9 without further mention.

We say that a coloring χ is σ-good if it is equitable and |Cσ(χ)| ≤ E
u
n(Ze(σ)).

Let Sg(σ) be the set of all σ-good proper colorings and let Zg(σ) = |Sg(σ)| be the
number of σ-good proper colorings.

We will say a positive function G(n) is sub-exponential in n if

lim
n→∞

n−1 logG(n) = 0.

Also we say functions G and H are asymptotic, denoted by G(n) ∼ H(n), if
limn→∞ G(n)/H(n) = 1. Similarly, G(n) � H(n) if lim supn→∞ G(n)/H(n) ≤ 1.

Lemma 5.10. E
u
n(Zg) ∼ E

u
n(Ze) = F (n)Eu

n(Z) where F (n) is sub-exponential in
n.

Proof. For brevity, letH = Homunif(Γ, Sym(n)). Let Pχ
n be the probability operator

in the planted model of χ. By definition,

E
u
n(Zg) = |H|−1

∑
σ∈H

Zg(σ) = |H|−1
∑
σ∈H

∑
χ:V→{0,1}

1Sg(σ)(χ)

=
∑
χ

P
u
n(χ ∈ Sg(σ))

=
∑

χ equitable

P
u
n (|Cσ(χ)| ≤ E

u
n(Ze)|χ proper)Pu

n(χ proper)

=
∑

χ equitable

P
χ
n (|Cσ(χ)| ≤ E

u
n(Ze))P

u
n(χ proper)

∼
∑

χ equitable

P
u
n (χ proper) = E

u
n(Ze),

where the asymptotic equality ∼ follows from Proposition 5.9. The equality E
u
n(Ze)

= F (n)Eu
n(Z) holds by Theorem 4.2. �

Lemma 5.11. E
u
n(Z

2
g ) ≤ C(n)Eu

n(Zg)
2, where C(n) = C(n, k, r) is sub-exponential

in n.
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Proof.

E
u
n(Z

2
g ) = |H|−1

∑
σ∈H

(∑
χ

1Sg(σ)(χ)

)2

= |H|−1
∑
σ∈H

∑
χ,χ̃

1Sg(σ)(χ)1Sg(σ)(χ̃)

=
∑
χ,χ̃

P
u
n (χ ∈ Sg and χ̃ ∈ Sg)

=
∑
χ,χ̃

P
u
n(χ ∈ Sg)P

u
n(χ̃ ∈ Sg|χ ∈ Sg)

=
∑
χ

P
u
n(χ ∈ Sg)E

u
n(Zg|χ ∈ Sg).(23)

For a fixed χ ∈ Sg(σ) we analyze E
u
n(Zg|χ ∈ Sg) by breaking the colorings into

those that are close (i.e. in the local cluster) and those that are far. So let Zg(δ) :
Homχ(Γ, Sym(n)) → N be the number of good proper colorings such that dn(χ, χ̃) =
δ. (We will also use Ze(δ) = Zχ(δ) for the analogous number of equitable proper
colorings). Then
(24)

E
u
n(Zg|χ∈Sg) ≤ 2Eu

n

⎛⎝ ∑
0≤δ≤2−k/2

Zg(δ)
∣∣∣χ∈Sg

⎞⎠+ 2Eu
n

⎛⎝ ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ∈Sg

⎞⎠ .

The coefficient 2 above accounts for the following symmetry: if χ̃ is a good coloring
with dn(χ, χ̃) = δ then 1 − χ̃ is a good coloring with dn(χ, 1 − χ̃) = 1 − δ. Note
that

(25) E
u
n

⎛⎝ ∑
0≤δ≤2−k/2

Zg(δ)
∣∣∣χ ∈ Sg

⎞⎠ ≤ E
u
n

(
#Cσ(χ)|χ ∈ Sg

)
≤ E

u
n(Ze),

where the last inequality holds by definition of Sg.
For colorings not in the local cluster,

E
u
n

⎛⎝ ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ ∈ Sg

⎞⎠
≤ E

u
n

⎛⎝ ∑
2−k/2<δ≤1/2

Ze(δ)
∣∣∣χ ∈ Sg

⎞⎠
≤ E

u
n

⎛⎝ ∑
2−k/2<δ≤1/2

Ze(δ)
∣∣∣χ proper

⎞⎠ P
u
n(χ proper)

Pu
n(χ ∈ Sg)

,

where the sum is over all δ ∈ Z[1/n] in the given range. By definition and Propo-
sition 5.9,

P
u
n(χ proper)

Pu
n(χ ∈ Sg)

=
1

Pu
n(χ ∈ Sg|χ proper)

=
1

P
χ
n

(
|Cσ(χ)| ≤ Eu

n(Ze)
) → 1
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as n → ∞. Since E
u
n(·|χ proper) = E

χ
n(·), the above inequality now implies

E
u
n

⎛⎝ ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ ∈ Sg

⎞⎠ �
∑

2−k/2<δ≤1/2

E
χ
n(Ze(δ)) ≤ C1

∑
2−k/2<δ≤1/2

enψ0(δ)

≤ C1ne
nf(d,k) ≤ C2E

u
n(Ze),(26)

where the second inequality holds by Theorem 5.1 for some function C1 = C1(n, k, r)
which is sub-exponential in n. The second-to-last inequality holds because the
number of summands is bounded by n since δ is constrained to lie in Z[1/n] and
by Proposition 5.8, ψ0(δ) ≤ f(d, k). The last inequality holds for some function
C2 = C2(n, k, r) that is sub-exponential in n since by Theorem 4.2, n−1 logEu

n(Ze)
converges to f(d, k).

Combine (24), (25) and (26) to obtain

E
u
n(Zg|χ ∈ Sg) ≤ 2(1 + C2)E

u
n(Ze).

Plug this into (23) to obtain

E
u
n(Z

2
g ) ≤ 2(1 + C2)E

u
n(Ze)

2 ∼ 2(1 + C2)E
u
n(Zg)

2,

where the asymptotic ∼ holds by Lemma 5.10. This proves the lemma. �

Corollary 5.12. Lemma 1.2 inequality (3) is true. That is:

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
P
u
n

(∣∣n−1 logZ(σ)− f(d, k)
∣∣ < ε

))
.

Proof. By Theorem 4.2,

n−1 logEu
n(Z(σ)) → f(d, k)

as n → ∞. In particular, for every ε > 0, for large enough n, Pu
n

(
n−1 logZ(σ) >

f(d, k) + ε
)
< exp

(
− ε

2n
)
. So it suffices to prove

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
P
u
n

(
n−1 logZ(σ) ≥ f(d, k)− ε

))
.

Since Z(σ) ≥ Zg(σ), it suffices to prove the same statement with Zg(σ) in place of
Z(σ). By Lemma 5.10 and Theorem 4.2, n−1 log (Eu

n[Zg(σ)]) converges to f(d, k) as
n → ∞. So we may replace f(d, k) in the statement above with n−1 log (Eu

n[Zg(σ)]).
Then we may multiply by n both sides and exponentiate inside the probability. So
it suffices to prove

(27) 0 = inf
ε>0

lim inf
n→∞

n−1 log
(
P
u
n

(
Zg(σ) ≥ E

u
n[Zg(σ)]e

−nε
))

.

By the Paley-Zygmund inequality and Lemma 5.11

P
u
n

(
Zg(σ) > E

u
n[Zg(σ)]e

−nε
)
≥ (1− e−nε)2

E
u
n[Zg(σ)]

2

Eu
n[Zg(σ)2]

≥ 1

C
,

where C = C(n) is sub-exponential in n. This implies (27). �
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6. The local cluster

To prove Proposition 5.9, we show that with high probability in the planted
model, there is a ‘rigid’ set of vertices with density approximately 1−2−k. Rigidity
here means that any proper coloring either mostly agrees with the planted coloring
on the rigid set or it must disagree on a large density subset. Before making these
notions precise, we introduce the various subsets, state precise lemmas about them
and prove Proposition 5.9 from these lemmas which are proven in the next two
sections.

So suppose G = (V,E) is a k-uniform d-regular hyper-graph and χ : V → {0, 1}
is a proper coloring. An edge e ∈ E is χ-critical if there is a vertex v ∈ e such that
χ(v) /∈ χ(e \ {v}). If this is the case, then we say v supports e with respect to
χ. If χ is understood then we will omit mention of it. We will apply these notions
both to the case when G is the Cayley hyper-tree of Γ and when G = Gσ is a finite
hyper-graph.

For l ∈ {0, 1, 2, . . .}, define the depth l-core of χ to be the subset Cl(χ) ⊂ V
satisfying

C0(χ) = V,

Cl+1(χ) = {v ∈ V : v supports at least 3 edges e such that e \ {v} ⊂ Cl(χ)}.
By induction, Cl+1(χ) ⊂ Cl(χ) for all l ≥ 0. Also let C∞(χ) = ∩lCl(χ).

The set Cl(χ) is defined to consist of vertices v so that if v is re-colored (in some
proper coloring) then this re-coloring forces a sequence of re-colorings in the shape
of an immersed hyper-tree of degree at least 3 and depth l. Re-coloring a vertex of
C∞(χ) would force re-coloring an infinite immersed tree of degree at least 3.

Also define the attached vertices Al(χ) ⊂ V by: v ∈ Al(χ) if v /∈ Cl(χ)
but there exists an edge e, supported by v such that e \ {v} ⊂ Cl−1(χ). Thus if
v ∈ Al(χ) is re-colored then it forces a re-coloring of some vertex in Cl−1(χ). In
this definition, we allow l = ∞ (letting ∞− 1 = ∞).

In order to avoid over-counting, we also need to define the subset A′
l(χ) of vertices

v ∈ Al(χ) such that there exists a vertex w ∈ Al(χ), with w �= v, and edges ev, ew
supported by v, w respectively such that

(1) ev \ {v}, ew \ {w} ⊂ Cl−1(χ),
(2) ev ∩ ew �= ∅.

In this definition, we allow l = ∞.
We will need the following constants:

λ0 =
1

2k−1 − 1
, λ := dλ0 =

d

2k−1 − 1
.

The significance of λ0 is: if e is an edge and v ∈ e a vertex then λ0 is the probability
v supports e in a uniformly random proper coloring of e. So λ = dλ0 is the expected
number of edges that v supports. For the values of d and k used in the Key Lemma
1.2, λ = log(2)k +O(k2−k).

For the next two lemmas, we assume the hypotheses of Proposition 5.9.

Lemma 6.1. For any δ > 0 there exists k0 such that k ≥ k0 implies

lim
l→∞

lim inf
n→∞

P
χ
n

(
|Cl(χ) ∪Al(χ) \A′

l(χ)|
n

> 1− e−λ(1 + δ)

)
= 1.

Lemma 6.1 is proven in §7.
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Definition 7. Fix a proper 2-coloring χ : V → {0, 1}. Let ρ > 0. A subset
R ⊂ V is ρ-rigid (with respect to χ) if for every proper coloring χ′ : V → {0, 1},
|{v ∈ R : χ(v) �= χ′(v)}| is either less than ρ|V | or greater than 2−k/2|V |.
Lemma 6.2. For any ρ > 0,

lim
l→∞

lim inf
n→∞

P
χ
n (Cl(χ) ∪Al(χ) \A′

l(χ) is ρ-rigid) = 1.

Lemma 6.2 is proven in §8. We can now prove Proposition 5.9:

Proposition 5.9. Let 0 < η0 < η1 < (1 − log 2)/2. Then for all sufficiently large
k (depending on η0, η1), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η ≤ η1 then with high probability in the planted model,
|Cσ(χ)| ≤ E

u
n(Ze). In symbols,

lim
n→∞

P
χ
n

(
|Cσ(χ)| ≤ E

u
n(Ze)

)
= 1.

Proof. Let 0 < ρ, δ be small constants satisfying

(28) log(2)δ +H(ρ, 1− ρ) + log(2)ρ < (1− 2η − log(2))2−k.

Let l be a natural number. Also let σ : Γ → Sym(n) be a uniform homomorphism
and χ : [n] → {0, 1} a proper coloring. To simplify notation, let

R = Cl(χ) ∪Al(χ) \A′
l(χ).

By Lemmas 6.1 and 6.2 it suffices to show that if |R|/n > 1−e−λ−δ and R is ρ-rigid
then |Cσ(χ)| ≤ E

u
n(Ze) (for all sufficiently large n). So assume |R|/n > 1− e−λ − δ

and R is ρ-rigid.
Let χ′ ∈ Cσ(χ). By definition, this means dn(χ

′, χ) ≤ 2−k/2. Since R is ρ-rigid,
this implies

|{v ∈ R : χ(v) �= χ′(v)}| ≤ ρn.

Since this holds for all χ′ ∈ Cσ(χ), it follows that

|Cσ(χ)| ≤
(
|R|
ρn

)
2ρn2n−|R|.

By Stirling’s formula

n−1 log

(
|R|
ρn

)
≤ n−1 log

(
n

ρn

)
≤ H(ρ, 1− ρ) +O(n−1 log(n)).

Since |R|/n > 1− e−λ − δ = 1− 2−k − δ +O(k2−2k),

n−1 log(2n−|R|) ≤ log(2)[2−k + δ] +O(k2−2k).

Thus,

n−1 log |Cσ(χ)| ≤ log(2)2−k+log(2)δ+H(ρ, 1−ρ)+log(2)ρ+O(k2−2k+n−1 log(n)).

On the other hand,

n−1 logEu
n(Ze) = f(d, k)+O(n−1 log(n)) = (1− 2η)2−k +O(2−2k)+O(n−1 log(n))

by Lemma 5.6 and Theorem 4.2.
Therefore, the choice of ρ, δ in (28) implies |Cσ(χ)| ≤ E

u
n(Ze) for all sufficiently

large n. This also depends on k being sufficiently large, but the lower bound on k
is uniform in n. �
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7. A Markov process on the Cayley hyper-tree

Here we study a Γ-invariant measure μ on X which is, in a sense, the limit of
the planted model. We will define it by specifying its values on cylinder sets.

Let D ⊂ Γ be a connected finite union of hyper-edges. Let ξ ∈ {0, 1}D be a
proper coloring. We define C(ξ) ⊂ X to be the set of proper colorings ξ′ ∈ X with
ξ′ � D = ξ (where � means “restricted to”). We set μ(C(ξ)) equal to the reciprocal
of the number of proper colorings of D. In particular, if ξ′ ∈ {0, 1}D is another
proper coloring of D, then μ(C(ξ)) = μ(C(ξ′)).

Because X is totally disconnected, any Borel probability measure on X is de-
termined by its values on clopen subsets (since these generate the topology). Since
every clopen subset is a finite union of cylinder sets of the form above, Kolmogorov’s
Extension Theorem implies the existence of a unique Borel probability μ on X sat-
isfying the aforementioned equalities.

Note this measure has the following Markov property. Let x = (xg)g∈G be a
random element ofX with law μ. Let v ∈ Γ and let e ⊂ Γ be a hyperedge containing
v. Let Past(e, v) be the set of all g ∈ Γ such that every path in the Cayley hyper-tree
from g to an element of e passes through v. In particular, e∩Past(e, v) = {v}. Then
the distribution of (xg)g∈e\{v} conditioned on {xg : g ∈ Past(e, v)} is uniformly
distributed on the set of all colorings y : (e \ {v}) → {0, 1} such that there exists
some h ∈ e \ {v} with y(h) �= x(v).

7.1. Local convergence. We will prove the following lemma.

Lemma 7.1. Let χ : V → {0, 1} be an equitable coloring with |V | = n. If B ⊆ X
is clopen, then for every ε > 0

lim
n→∞

P
χ
n

(∣∣∣∣∣ 1n ∑
v∈V

�B(Π
σn
v (χ))− μ(B)

∣∣∣∣∣ > ε

)
= 0.

To prove this lemma we will first show that if fn : Homχ(Γ, Sym(n)) → R is the
function

fn(σn) :=
1

n

∑
v∈V

�B(Π
σn
v (χ)),

then fn concentrates about its expectation using Theorem B.1, and then we will
show that this expectation is given by μ(B).

Proposition 7.2. We have

lim
n→∞

P
χ
n (|fn − E

χ
n[fn]| > ε) = 0.

Proof. For g ∈ Γ, let prg : X → {0, 1} be the projection map prg(x) = xg. For
D ⊂ Γ, let FD be the smallest Borel sigma-algebra such that prg is FD-measurable
for every g ∈ D.

Since every clopen subset B of X is a finite union of cylinder sets, the function
�B is FD-measurable for some finite set D ⊂ Γ.

We will use the normalized Hamming metrics dSym(n) and dHom on Sym(n) and
Homχ(Γ, Sym(n)) respectively. These are defined in the beginning of Appendix
B. We claim fn is L-Lipschitz for some L < ∞. Let σ, σ′ ∈ Homχ(Γ, Sym(n)).
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Because �B is FD-measurable,

|fn(σ)− fn(σ
′)| ≤ n−1#{v ∈ [n] : χ(σ(γ−1)(v)) �= χ(σ′(γ−1)(v)) for some γ ∈ D}

≤ n−1#{v ∈ [n] : σ(γ−1)(v) �= σ′(γ−1)(v) for some γ ∈ D}

≤
∑
γ∈D

dSym(n)(σ(γ
−1), σ′(γ−1)).

Now dSym(n) is both left and right invariant. So

dSym(n)(gh, g
′h′) ≤ dSym(n)(gh, gh

′) + dSym(n)(gh
′, g′h′)

= dSym(n)(h, h
′) + dSym(n)(g, g

′)

for any g, g′, h, h′ ∈ Sym(n). Furthermore we immediately have for any 1 ≤ i ≤ d
that dSym(n)(σ(si), σ

′(si)) ≤ dHom(σ, σ
′). Together these imply dSym(n)(σ(γ), σ

′(γ))
≤ |γ|dHom(σ, σ

′) for any γ ∈ Γ where |γ| is the distance from γ to the identity in the
word metric on Γ. Thus if we take L =

∑
γ∈D |γ| < ∞ we see that |fn(σ)−fn(σ

′)| ≤
LdHom(σ, σ

′) as desired.
The Proposition now follows from Theorem B.1. �
To finish the proof of Lemma 7.1, it now suffices to show the expectation of fn

with respect to the planted model converges to μ(B) as n → ∞. We will prove
this by an inductive argument, the inductive step of which is covered in the next
lemma.

Lemma 7.3. Let D ⊂ Γ be either a singleton or a connected finite union of
hyperedges containing the identity. Let ξ ∈ {0, 1}D be a proper coloring. Let
FD,ξ,v ⊂ Homχ(Γ, Sym(n)) be the event that Πσn

v (χ) � D = ξ � D. Let Q(D)
be the number of proper colorings of D. Then

lim
n→∞

sup
v∈χ−1(ξ(1Γ))

∣∣∣∣Pχ
n (FD,ξ,v)−

2

Q(D)

∣∣∣∣ = 0.(29)

Remark 8. The factor of 2 in 2
Q(D) is there to account for the fact that we are

requiring v ∈ χ−1(ξ(1Γ)).

Proof. The statement is immediate if D = {1Γ} is a singleton. For induction we
assume that the statement is true for some finite D ⊂ Γ. LetD′ ⊃ D be a connected
union of hyper-edges such that there exists a unique hyper-edge e with D′ = D∪ e.
By induction, it suffices to prove the statement for D′.

Note by symmetry that P
χ
n(FD,ξ,v) is the same for all v ∈ χ−1(ξ(1Γ)). Let us

denote this common value by cD,ξ. Define AD,ξ = {(v, σ) : v ∈ V, σ ∈ FD,ξ,v}.
If g ∈ D then (v, σ) �→ (σ(g−1)v, σ) is a bijection from AD,ξ to Ag−1D,g−1ξ. This
implies

n

2
cD,ξ |Homχ(Γ, Sym(n))| = |AD,ξ|

=
∣∣Ag−1D,g−1ξ

∣∣
=

n

2
cg−1D,g−1ξ |Homχ(Γ, Sym(n))| .

Thus cg−1D,g−1ξ = cD,ξ. After replacing D′ with γ−1D′ where γ ∈ e ∩ D is the
unique element in e ∩D, we may therefore assume without loss of generality that
e ∩D = {1Γ}. By symmetry we may also assume ξ(1Γ) = 1 and e = {si1 : i = 0,
· · · , k − 1} is the hyper-edge generated by s1.
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For any subset W ⊂ Γ, let EW,v be the event that σn(g
−1)(v) �= σn(g

′−1)(v) for
any g, g′ ∈ W with g �= g′. Since the planted model is a random sofic approximation,
by Lemma 3.1 we have P

χ
n(ED∪e,v) = 1− on(1) uniformly in v. We will show that

lim
n→∞

sup
v∈χ−1(1)

∣∣∣∣Pχ
n

(
Fe,ξ,v

∣∣∣∣FD,ξ,v, ED∪e,v

)
− 1

2k−1 − 1

∣∣∣∣ = 0.(30)

Next we show how to finish the lemma assuming (30). We claim that Q(D∪e) =
Q(D)(2k−1 − 1). To see this, observe that if ξ′ is a proper coloring of D and ξ′′ is
any coloring of e \ {1Γ} then the concatenation ξ′ � ξ′′ is a proper coloring of D ∪ e
unless ξ′′(g) = ξ′(1Γ) for all g ∈ e \ {1Γ}. Since |e \ {1Γ}| = k − 1, this implies
that every proper coloring of D admits 2k−1 − 1 proper extensions to D ∪ e. So
Q(D ∪ e) = Q(D)(2k−1 − 1) as claimed.

Since FD∪e,ξ,v = Fe,ξ,v ∩ FD,ξ,v,

P
χ
n (FD∪e,ξ,v) = P

χ
n

(
Fe,ξ,v

∣∣∣∣FD,ξ,v

)
P
χ
n (FD,ξ,v)

= P
χ
n

(
Fe,ξ,v

∣∣∣∣FD,ξ,v, ED∪e,v

)
P
χ
n (FD,ξ,v) + on(1).

The lemma now follows from the inductive hypothesis, (30) and Q(D ∪ e) =
Q(D)(2k−1 − 1).

It now suffices to prove (30). Let Dj denote the union of all subsets {gsij : i = 0,

· · · , k−1} over all g ∈ D such that {gsij : i = 0, · · · , k−1} ⊆ D. That is, Dj is the
union of all hyperedges generated by sj which lie completely within D. Because
e = {si1 : i = 0, · · · , k− 1}, e∩D1 = ∅. Multiplication by sj on the right preserves
Dj .

Fix v ∈ V = {1, . . . , n} and consider an injective function h : D → V such that
h(1Γ) = v and χ (h (e′)) = {0, 1} for all hyper-edges e′ ∈ D. Let N(χ, h) be the set
of σ ∈ Homχ(Γ, Sym(n)) such that σ(g−1)v = h(g) for all g ∈ D. By definition,

P
χ
n

(
σn(g

−1)(v) = h(g) ∀g ∈ D
)
=

|N(χ, h)|
|Homχ(Γ, Sym(n))| .

For each j ∈ {1, . . . , d}, let Nj(χ, h) be the set of permutations πj ∈ Sym(n) such
that

(1) the orbit-partition of πj is a k-partition which is properly colored by χ,

(2) h(gsj) = π−1
j h(g) for all g ∈ D ∩Ds−1

j .

We claim that the map

N(χ, h) �→ N1(χ, h)× · · · ×Nd(χ, h)

that sends σ to (σ(s1), . . . , σ(sd)) is a bijection.
The fact that it is injective is immediate since Γ is generated by s1, . . . , sd. In

order to prove that it is surjective, fix elements πj ∈ Nj(χ, h) for all j. Define σ ∈
Homχ(Γ, Sym(n)) by σ(sj) = πj . It suffices to check that σ(g−1)(v) = h(g) ∀g ∈ D.
By induction on the number of edges in D, it suffices to assume that the equation
σ(g−1)(v) = h(g) holds for some g ∈ D ∩Ds−1

j and prove σ((gsj)
−1)(v) = h(gsj).

This follows from:

σ((gsj)
−1)(v) = σ(s−1

j )σ(g−1)(v) = π−1
j h(g) = h(gsj).
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This proves the claim. Therefore,

P
χ
n

(
σn(·)−1(v) � D = h

)
=

∏d
j=1 |Nj(χ, h)|

|Homχ(Γ, Sym(n))| .(31)

Let HD = {h : D → V : h is injective, χ(h(g)) = ξ(g) ∀g ∈ D, and h(1Γ) = v}.
We have

P
χ
n(FD,ξ,v, ED,v) =

∑
h∈HD

P
χ
n(σn(·)−1(v) � D = h).

Similarly

P
χ
n(FD∪e,ξ,v, ED∪e,v) =

∑
h′∈HD∪e

P
χ
n(σn(·)−1(v) � D ∪ e = h′).

Each h ∈ HD is the restriction to D of

(m− 1)!

(
n/2−#ξ−1(1) ∩D

m− 1

)
(k −m)!

(
n/2−#ξ−1(0) ∩D

k −m

)
(32)

distinct h′ ∈ HD∪e where m = |ξ−1(1) ∩ e|. We can express

P
χ
n(Fe,ξ,v|FD,ξ,v, ED∪e,v) =

P
χ
n(FD∪e,ξ,v, ED∪e,v)

P
χ
n(FD,ξ,v, ED∪e,v)

=
P
χ
n(FD∪e,ξ,v, ED∪e,v)

P
χ
n(FD,ξ,v, ED,v)

+ on(1)

=

∑
h′∈HD∪e

P
χ
n(σn(·)−1(v) � D ∪ e = h′)∑

h∈HD
P
χ
n(σn(·)−1(v) � D = h)

+ on(1)

=

∑
h′∈HD∪e

∏d
j=1 |Nj(χ, h

′)|∑
h∈HD

∏d
j=1 |Nj(χ, h)|

+ on(1),

where the on(1) term follows from the inductive hypothesis and the fact that
P
χ
n(ED,v) ≥ P

χ
n(ED∪e,v) = 1− on(1).

If h1, h2 ∈ HD then χ(h1(g)) = ξ(g) = χ(h2(g)) for all g ∈ D. Observe
that |Nj(χ, h1)| = |Nj(χ, h2)|. This follows by conjugating by a permutation in
Sym(n, k) which preserves the color classes of χ and which maps h1(g) to h2(g) for
each g ∈ D. Similarly, if h′

1, h
′
2 ∈ HD∪e then |Nj(χ, h

′
1)| = |Nj(χ, h

′
2)|. Therefore,

P
χ
n(Fe,ξ,v|FD,ξ,v, ED∪e,v) =

|HD∪e|
∏d

j=1 |Nj(χ, h
′)|

|HD|
∏d

j=1 |Nj(χ, h)|
+ on(1)

for any h ∈ HD and h′ ∈ HD∪e.
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Next we choose h′ ∈ HD∪e and h ∈ HD so that h′ extends h. Note |Nj(χ, h
′)| =

|Nj(χ, h)| for all j �= 1 because Dj = (D ∪ e)j . Therefore,

P
χ
n(Fe,ξ,v|FD,ξ,v, ED∪e,v)

=
|HD∪e||N1(χ, h

′)|
|HD||N1(χ, h)|

+ on(1)

=
|N1(χ, h

′)|
|N1(χ, h)|

(m− 1)!

(
n/2−#ξ−1(1) ∩D

m− 1

)
(k −m)!

(
n/2−#ξ−1(0) ∩D

k −m

)
+ on(1)

∼ |N1(χ, h
′)|

|N1(χ, h)|
(n/2)k−1,

(33)

where the second equality uses (32). Here we are using the notation f(n) ∼ g(n)

to mean limn→∞
f(n)
g(n) = 1.

To compute |N1(χ, h)|, let

TD,n=

{
�t ∈ [0, 1]k+1 : t0=tk=0,

∑
i

ti=
1

k
,
∑
i

iti=
#χ−1(1) \ h(D1)

#V \ h(D1)
, (n−#D1)ti ∈ Z

}

be the set of possible types of orbit-partitions of permutations of V \ h(D1) that
contribute to the count |N1(χ, h)|. To be precise, if �t ∈ TD,n then there is a
k-partition of V \ h(D1) such that the number of parts P of the partition with
|P ∩ χ−1(1)| = i is ti(n−#D1).

If we fix �t ∈ TD,n then the number of permutations whose orbit partition has

type �t is

(k − 1)!(n−#D1)/k
(n/2−#ξ−1(1) ∩D1)!(n/2−#ξ−1(0) ∩D1)!∏k
j=0 j!

tj(n−#D1)(k − j)!tj(n−#D1)(tj(n−#D1))!
,

where we have used (8). It follows that

|N1(χ, h)| = (k − 1)!(n−#D1)/k
(n/2−#ξ−1(1) ∩D1)!(n/2−#ξ−1(0) ∩D1)!(

n−#D1

k

)
!

×
∑

�t∈TD,n

SD,n(�t),

where

SD,n(�t) =
((n−#D1)/k)!∏k−1

i=1 i!ti(n−#D1)(k − i)!ti(n−#D1)(ti(n−#D1))!
.(34)

So

|N1(χ, h
′)|

|N1(χ, h)|
∼ (n/k)

(k − 1)!(n/2)k

∑
�t∈TD∪e,n

SD∪e,n(�t)∑
�t∈TD,n

SD,n(�t)
.

We plug this into (33) to obtain

lim
n→∞

P
χ
n(Fe,ξ,v|FD,ξ,v, ED∪e,v) = lim

n→∞

2

k!

∑
�t∈TD∪e,n

SD∪e,n(�t)∑
�t∈TD,n

SD,n(�t)
.(35)

Define t∗ ∈ [0, 1]k+1 by t∗0 = t∗k = 0 and t∗i = 1
k(2k−2)

(
k
i

)
for 0 < i < k. We

establish asymptotic estimates of the sum of SD,n(�t) in Lemma 7.4 and show that
it suffices to sum over a small ball around t∗.
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Recall m = |ξ−1(1)∩ e|. Let T̃D,n = {�t ∈ TD,n : tm > 0}. We define fn : T̃D,n →
TD∪e,n by

fn(�t)j =

{
(n−#D1)tj−1
n−#D1−k if j = m
n−#D1

n−#D1−k tj if j �= m
.

Because e ∩D1 = ∅, if �t ∈ T̃D,n then fn(�t) ∈ TD∪e,n.
We claim that for any δ > 0 there exists an N := N(δ) and δ′ > 0 such that for

n > N , TD∪e,n ∩Bδ′(t
∗) ⊆ fn(T̃D,n ∩Bδ(t

∗)). This follows from observing that fn

is invertible and that d(fn(�t),�t) ≤ k2

n−#D1−k . By Lemma 7.4 we have

lim
n→∞

∑
�t∈TD∪e,n

SD∪e,n(�t)∑
�t∈TD,n

SD,n(�t)
= lim

n→∞

∑
�t∈T̃D,n∩Bδ(t∗)

SD∪e,n(fn(�t))∑
�t∈TD,n∩Bδ(t∗)

SD,n(�t)
.(36)

Furthermore, since 1 ≤ m ≤ k − 1 and t∗m > 0, for δ > 0 sufficiently small we have

T̃D,n∩Bδ(t
∗) = TD,n∩Bδ(t

∗). Because #(D∪e)1 = #D1+k, the ratio
SD∪e,n(fn(�t))

SD,n(�t)

simplifies to

k

n−#D1
m!(k −m)!tm(n−#D1) =

k(k!)(
k
m

) tm.

In particular, at t∗ we obtain

SD∪e,n(fn(t
∗))

SD,n(t∗)
=

k!

2k − 2
.

Suppose �t ∈ Bδ(t
∗). Then |tm − t∗m| < δ. So∣∣∣∣SD∪e,n(fn(�t))

SD,n(�t)
− k!

2k − 2

∣∣∣∣ = ∣∣∣∣SD∪e,n(fn(�t))

SD,n(�t)
− k!

2k − 2

∣∣∣∣
=

k(k!)(
k
m

) |tm − t∗m| ≤ k!δ.

Since δ is arbitrary, this and (36) imply

lim
n→∞

∑
�t∈TD∪e,n

SD∪e,n(�t)∑
�t∈TD,n

SD,n(�t)
=

k!

2k − 2
.

We plug this into (35) to obtain

lim
n→∞

P
χ
n(Fe,ξ,v|FD,ξ,v, ED∪e,v) =

1

2k−1 − 1
.

�

Lemma 7.4. For any δ > 0 we have

lim
n→∞

∑
�t∈TD,n∩Bδ(t∗)

SD,n(�t)∑
�t∈TD,n

SD,n(�t)
= 1.

Proof. We use the following general consequence of Stirling’s formula: let l ∈ N,
�t ∈ [0, 1]l with

∑
i ti = 1. Let �t(n) be any sequence in [0, 1]l such that n�t(n) ∈ N

l and
�t(n) → �t as n → ∞. If �t(n) = (tn,i)

l
i=1 then limn→∞ n−1 log

(
n

ntn,1,...,ntn,l

)
= H(�t).
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By (34)

SD,n(�t) =

(
(n−#D1)/k

tn,1(n−#D1), . . . , tn,k−1(n−#D1)

)⎛
⎝k−1∏

i=1

(
k

i

)ti(n−#D1)
⎞
⎠ k!−(n−#D1)/k.

By setting N = (n−#D1)/k, we obtain

lim
n→∞

n−1 log

(
(n−#D1)/k

tn,1(n−#D1), . . . , tn,k−1(n−#D1)

)
= k−1 lim

n→∞
N−1 log

(
N

tn,1kN, . . . , tn,k−1kN

)
= k−1H(k�t) = −

k∑
i=0

ti log(kti) = H(�t)− k−1 log(k).

We thus have:

lim sup
n→∞

sup
�t∈TD,n

∣∣∣∣ 1n logSD,n(�t)− ψ(�t)

∣∣∣∣ = 0,

where ψ is given by

ψ(�t) := −1

k
log(k(k)!) +H(�t) +

k∑
i=0

ti log

(
k

i

)
.

Note that ψ does not depend on n or D. Furthermore ψ is continuous and strictly
concave. By the method of Lagrange multipliers (see §4.2) its maximum on M :=
{x ∈ [0, 1]k+1 : x0 = xk = 0,

∑
i xi =

1
k} occurs at t∗. In particular given δ > 0

there is some 0 < η < δ such that

inf
x∈M∩Bη(t∗)

ψ(x)− sup
x∈M\Bδ(t∗)

ψ(x) > 0.

We claim that Bη(t
∗) ∩ TD,n ⊆ Bη(t

∗) ∩ M is non-empty for sufficiently large n.
Since #TD,n ≤ nk this claim and standard arguments involving the exponential
growth of SD,n(t) imply the lemma.

To prove the claim, we exhibit a member of Bη(t
∗)∩TD,n in a series of three steps.

First, let t(1) ∈ R
k+1 be defined by t

(1)
i =


t∗i (n−#D1)�
n−#D1

for each 0 ≤ i ≤ k. This

satisfies the integrality condition, that is (n−#D1)t
(1)
i ∈ Z for all i. Furthermore

|t∗ − t(1)| ≤
∑k

i=0 |t∗i − t
(1)
i | ≤ k−1

n−#D1
.

Second, define t(2) ∈ R
k+1 by

t
(2)
i =

{
t
(1)
1 +

(
1
k −

∑k−1
j=1 t

(1)
j

)
if i = 1

t
(1)
i otherwise

.

Since n−#D1

k ∈ Z and (n − #D1)t
(1)
i ∈ Z for each i we maintain the integrality

condition, and
∑

i t
(2)
i = 1

k . Furthermore∣∣∣t(2) − t(1)
∣∣∣ ≤ ∣∣∣∣∣1k −

k−1∑
i=1

t
(1)
i

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=0

(t∗i − t
(1)
i )

∣∣∣∣∣ ≤
k∑

i=0

∣∣∣t∗i − t
(1)
i

∣∣∣ ≤ k − 1

n−#D1
.



78 DYLAN AIREY, LEWIS BOWEN, AND YUQING FRANK LIN

Finally let Δ = #χ−1(1)\h(D1)
n−#D1

−
∑k

i=0 it
(2)
i . Define t(3) ∈ R

k+1 by

t
(3)
i =

⎧⎪⎨⎪⎩
t
(2)
1 −Δ if i = 1

t
(2)
2 +Δ if i = 2

t
(2)
i otherwise

.

We claim t(3) ∈ Bη(t
∗) ∩ TD,n for n sufficiently large. First t

(3)
0 = t

(2)
0 = t

(1)
0 =

t∗0 = 0, with the same equalities holding for t
(3)
k . We have t

(3)
i (n−#D1) ∈ Z since

t
(2)
i (n−#D1) ∈ Z for each i and Δ(n−#D1) ∈ Z. We also have

∑
i t

(3)
i =

∑
i t

(2)
i =

1
k . Furthermore

∑
i it

(3)
i =

∑
i it

(2)
i + 2Δ−Δ = χ−1(1)\h(D1)

n−#D1
. Finally by repeated

application of the triangle inequality

|t∗ − t(3)| ≤ k − 1

n−#D1
+

k − 1

n−#D1
+ 2|Δ|.

We show that |Δ| is small for n sufficiently large. This will not only imply that

t(3) ∈ Bη(t
∗), but also that t

(3)
i ∈ [0, 1] for each i. Note that

n/2−#D1

n
≤ #χ−1(1) \ h(D1)

n−#D1
≤ n/2

n−#D1
=

(n−#D1)/2 + #D1/2

n−#D1
.

This implies
∣∣∣#χ−1(1)\h(D1)

n−#D1
− 1

2

∣∣∣ ≤ max{#D1

n , #D1

2(n−#D1)
}. Thus

|Δ| ≤
∣∣∣∣#χ−1(1) \ h(D1)

n−#D1
− 1

2

∣∣∣∣+
∣∣∣∣∣12 −

k∑
i=0

it
(2)
i

∣∣∣∣∣
≤ max

{
#D1

n
,

#D1

2(n−#D1)

}
+

∣∣∣∣∣
k∑

i=0

it∗i −
k∑

i=0

it
(1)
i

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=0

it
(1)
i −

k∑
i=0

it
(2)
i

∣∣∣∣∣
≤ max

{
#D1

n
,

#D1

2(n−#D1)

}
+

2(k − 1)2

n−#D1
.

As k and #D1 are fixed, we have |t∗− t(3)| < η for large enough n. Since t∗i ∈ (0, 1)

for each 1 ≤ i ≤ k − 1 we have |t(3)i − t∗i | ≤ |t(3) − t∗|. Thus for sufficiently large n

we will also have t
(3)
i ∈ (0, 1) for each 1 ≤ i ≤ k − 1. Therefore t(3) ∈ [0, 1]k+1 and

we have t(3) ∈ Bη(t
∗) ∩ TD,n for n sufficiently large. �

Proof of Lemma 7.1. Let μχ
n be the Borel probability measure on X defined by

μχ
n(B) = E

χ
n

(
1

#V

∑
v∈V

�B (Πσn
v (χ))

)
for any Borel set B ⊂ X. By Proposition 7.2, it suffices to show that μχ

n(B) → μ(B)
as n → ∞ for any clopen set B ⊂ X. Because clopen sets are finite unions of
cylinder sets, it suffices to show that if D ⊂ Γ is a finite subset and ξ ∈ {0, 1}D
then limn→∞ μχ

n([ξ]) = μ([ξ]) where [ξ] is the cylinder set {x ∈ X : x � D = ξ}. We
can further assume D to be a connected finite union of hyperedges with 1Γ ∈ D.
The proof now follows from Lemma 7.3 since

μχ
n([ξ]) = n−1

∑
v∈V

P
χ
n (FD,ξ,v) = n−1

∑
v∈χ−1(ξ(1Γ))

P
χ
n (FD,ξ,v) = (1/2)Pχ

n (FD,ξ,v0) ,
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where, in the last equality, v0 is any vertex in χ−1(ξ(1Γ)). These equations are
justified as follows. By symmetry, if v0, v1 ∈ χ−1(ξ(1Γ)), then P

χ
n (FD,ξ,v0) =

P
χ
n (FD,ξ,v1). On the other hand, if v /∈ χ−1(ξ(1Γ)), then P

χ
n (FD,ξ,v) = 0. Lastly,

|χ−1(ξ(1Γ))| = n/2. �
7.2. The density of the rigid set. This subsection proves Lemma 6.1. So we
assume the hypotheses of Proposition 5.9. An element x ∈ X is a 2-coloring of the
Cayley hyper-tree of Γ. Interpreted as such, Cl(x), Al(x), A

′
l(x) are well-defined

subsets of Γ (see §6 to recall the definitions).
For l ∈ N ∪ {∞}, let

C̃l = {x ∈ X : 1Γ ∈ Cl(x)},
Ãl = {x ∈ X : 1Γ ∈ Al(x)},
Ã′

l = {x ∈ X : 1Γ ∈ A′
l(x)}.

Recall that λ0 = 1
2k−1−1

and λ = dλ0. Since we assume the hypothesis of

Proposition 5.9, λ is asymptotic to log(2)k as k → ∞.

Proposition 7.5.

μ(C̃∞) ≥ 1− λ2e−λ +O(k62−2k),

μ(C̃∞ ∪ Ã∞) ≥ 1− e−λ +O(k42−2k).

Proof. For brevity, let ei ⊂ Γ be the subgroup generated by si. So ei is a hyper-edge
of the Cayley hyper-tree. Let F i

l ⊂ X be the set of all x such that

(1) 1Γ supports the edge ei with respect to x and
(2) ei \ {1Γ} ⊂ Cl(x).

Since Cl+1(x) ⊂ Cl(x), it follows that F i
l+1 ⊂ F i

l . The events F i
l for i = 1, . . . , d

are i.i.d. Let pl = μ(F i
l ) be their common probability.

We write Pr(Bin(n, p) = m) =
(
n
m

)
pm(1 − p)n−m for the probability that a

binomial random variable with n trials and success probability p equals m. Since
the events F 1

l−1, . . . , F
d
l−1 are i.i.d., Ãl is the event that either 1 or 2 of these events

occur and C̃l is the event that at least 3 of these events occur, it follows that

μ(Ãl) = Pr(Bin(d, pl−1) ∈ {1, 2}).
μ(C̃l) = Pr(Bin(d, pl−1) ≥ 3).

Thus
μ(C̃l ∪ Ãl) = Pr(Bin(d, pl−1) > 0).

Claim 2. p0 = λ0 and for l ≥ 0, pl+1 = f(pl) where

f(t) = λ0 Pr(Bin(d− 1, t) ≥ 3)k−1.

Proof. To reduce notational clutter, let Fl = F 1
l . Note that p0 = μ(F0) = λ0 is the

probability that the edge e1 is critical. So

pl+1 = μ(F0)μ(Fl+1 | F0) = λ0μ(Fl+1 | F0).

Conditioned on F0, Fl+1 is the event that e1 \ {1Γ} ∈ Cl+1(x). By symmetry and
the Markov property μ(Fl+1 | F0) is the (k − 1)-st power of the probability that
s1 ∈ Cl+1(x) given that 1Γ supports e1. By translation invariance, that probability
is the same as the probability that 1Γ ∈ Cl+1(x) given that 1Γ does not support
the edge e1. By definition of Cl+1(x) and the Markov property, this is the same
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as the probability that a binomial random variable with (d− 1) trials and success
probability pl is at least 3. This implies the claim. �

The next step is to bound Pr(Bin(d− 1, t) ≥ 3) from below:

Pr(Bin(d− 1, t) ≥ 3) = 1− (1− t)d−1 − (d− 1)t(1− t)d−2 −
(
d− 1

2

)
t2(1− t)d−3

≥ 1− e−(d−1)t

(
1 +

(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2

)
.(37)

The last inequality follows from the fact that (1− t)d−1 ≤ e−(d−1)t. This motivates
the next claim:

Claim 3. Suppose t is a number satisfying λ0

(
1− λ2e1−λ

)k−1 ≤ t ≤ λ0. Then for
all sufficiently large k,

0 ≤ λ− (d− 1)t ≤ 1

1 +
(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2
≤ (d− 1)2t2.

Proof. The first inequality follows from:

λ− (d− 1)t ≥ λ− (d− 1)λ0 = λ0 > 0.

The second inequality follows from:

λ− (d− 1)t ≤ λ− (d− 1)λ0

(
1− λ2e1−λ

)k−1

= dλ0 − (d− 1)λ0

(
1− λ2e1−λ

)k−1

≤ dλ0 − (d− 1)λ0(1− (k − 1)λ2e1−λ)

≤ λ0 + (d− 1)λ0(k − 1)λ2e1−λ ≤ λ0 + kλ3e1−λ →k→∞ 0.

The third line follows from the general inequality (1 − x)k−1 ≥ 1 − (k − 1)x valid
for all x ∈ [0, 1]. To see the limit, observe that under the hypotheses of Proposition
5.9, d ∼ (log(2)/2)k2k. So λ ∼ log(2)k. In particular, kλ3e1−λ → 0 and λ0 → 0 as
k → ∞. The implies the limit. Thus if k is large enough then the second inequality
holds.

To see the last inequality, observe that since t ≤ λ0, t → 0 as k → ∞. On the

other hand, (d − 1)t ∼ λ ∼ log(2)k. Thus (d−1)t
1−t and (d − 1)t are asymptotic to

log(2)k. Since 1 + log(2)k + log(2)2k2

2 ≤ log(2)2k2 for all sufficiently large k, this
proves the last inequality assuming k is sufficiently large. �

Now suppose that t is as in Claim 3. Then

f(t) ≥ λ0

(
1− e−(d−1)t

(
1 +

(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2

))k−1

≥ λ0

(
1− e1−λ(d− 1)2t2

)k−1 ≥ λ0

(
1− λ2e1−λ

)k−1
.

The first inequality is implied by (37). The second and third inequalities follow
from Claim 3. For example, since λ− (d− 1)t ≤ 1, e−(d−1)t ≤ e1−λ.

Therefore, if pl satisfies the bounds λ0

(
1− λ2e1−λ

)k−1 ≤ pl ≤ λ0 then f(pl) =

pl+1 satisfies the same bounds. Since p∞ = liml→∞ f l(λ0), it follows that

(38) λ0 ≥ p∞ ≥ λ0

(
1− λ2e1−λ

)k−1
= λ0 +O(k32−2k).
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Because (1− t
n )

n ≤ e−t for any t, n > 0,

μ(C̃∞ ∪ Ã∞) = lim
l→∞

μ(C̃l ∪ Ãl) = lim
l→∞

Pr(Bin(d, pl−1) > 0) = Pr(Bin(d, p∞) > 0)

= 1− (1− p∞)d ≥ 1− exp(−p∞d) = 1− e−λ +O(k42−2k).

The first equality occurs because C̃l∪ Ãl decreases to C̃∞∪ Ã∞. By (37) and Claim
3 (with d in place of d− 1),

μ(C̃∞) = Pr(Bin(d, p∞) ≥ 3) ≥ Pr(Bin(d, λ0 +O(k32−2k)) ≥ 3)

≥ 1− exp(−λ0d)

(
1 +

dλ0

1− λ0
+

d2λ2
0

2(1− λ0)2

)
+O(k62−2k)

≥ 1− λ2e−λ +O(k62−2k).

�

Lemma 7.6. μ(Ã′
∞) = o(e−λ) where the implied limit is as k → ∞ and η is

bounded.

Proof. As in the previous proof, let ei ⊂ Γ be the subgroup generated by si. So ei
is a hyper-edge of the Cayley hyper-tree.

Let x ∈ X. We say that an edge e is attaching (for x) if it is supported by a
vertex v ∈ A∞(x) and e \ {v} ⊂ C∞(x). Let F (x) = 0 if 1Γ /∈ C∞(x). Otherwise,
let F (x) be the number of attaching edges containing 1Γ. Then by translation
invariance,

(39) μ(Ã′
∞) ≤

d∑
m=2

mμ(F (x) = m).

Let G ⊂ X be the set of all x such that

(1) e1 is a critical edge supported by some vertex v �= 1Γ,
(2) e1 \ {v, 1Γ} ⊂ C∞(x),
(3) v ∈ A∞(x).

By the Markov property and symmetry,

(40) μ(F (x) = m) ≤
(
d

m

)
μ(G)m(1− μ(G))d−m.

Let

• G1 ⊂ X be the set of all x such that e1 is supported by s1,
• G2 ⊂ X be the set of all x such that e1 \ {s1, 1Γ} ⊂ C∞(x),
• G3 ⊂ X be the set of all x such that s1 ∈ A∞(x).

By symmetry

μ(G) = (k − 1)μ(G3|G2 ∩G1)μ(G2|G1)μ(G1).

Conditioned on G1∩G2, if G3 occurs then there are no more than 1 attaching edge
e supported by s1 with e �= e1. By the Markov property and symmetry,

μ(G3|G2 ∩G1) ≤ Pr(Bin(d− 1, p∞) ≤ 1) = O(λe−λ),

where we have used (38). Also μ(G1) = λ0. Thus μ(G) ≤ O(k2e−2λ). So (39) and

(40) along with straightforward estimates imply μ(Ã′
∞) = o(e−λ). �

Lemma 7.7. lim supl→∞ μ(Ã′
l) ≤ μ(Ã′

∞).
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Proof. Given a coloring χ : Γ → {0, 1} of the Cayley hyper-tree and l ∈ N, define

A′′
l (χ) = ∪m≥lA

′
m(χ). Also define Ã′′

l = {x ∈ X : 1Γ ∈ A′′
l (x)}. Since Ã′′

l ⊃ Ã′
l

and the sets Ã′′
l are decreasing in l, it suffices to prove that ∩l≥0Ã

′′
l ⊂ Ã′

∞.

Suppose x ∈ ∩l≥0Ã
′′
l . Then there exists an infinite set S ⊂ N such that x ∈ Ã′

l

(∀l ∈ S). So 1Γ ∈ A′
l(x) (∀l ∈ S). So for each l ∈ S, there exist gl ∈ Al(x) \ {1Γ}

and hyper-edges el, fl ⊂ Γ such that

(1) 1Γ supports el (with respect to x),
(2) gl supports fl (with respect to x),
(3) el ∪ fl \ {1Γ, gl} ⊂ Cl−1(x),
(4) el ∩ fl �= ∅.

Because el ∩ fl �= ∅, gl is necessarily contained in the finite set {spi

i s
pj

j : 1 ≤ i, j ≤
d, 0 ≤ pi ≤ k}. So after passing to an infinite subset of S if necessary, we may
assume there is a fixed element g ∈ Γ such that g = gl (∀l ∈ S). Similarly, we may
assume there are edges e, f ⊂ Γ such that el = e and fl = f (∀l ∈ S).

Observe that 1Γ /∈ C∞(x) because 1Γ ∈ Al(x) implies 1Γ /∈ Cl(x) (∀l ∈ S).
Similarly, g /∈ C∞(x). Because el ∪ fl \ {1Γ, gl} ⊂ Cl(x) (∀l ∈ S) and the sets Cl(x)
are decreasing in l, it follows that e ∪ f \ {1Γ, g} ⊂ C∞(x). Therefore {1Γ, g} ⊂
A∞(x). This verifies all of the conditions showing that 1Γ ∈ A′

∞(x) and therefore

x ∈ Ã′
∞ as required. �

We can now prove Lemma 6.1:

Proof of Lemma 6.1. Observe that the sets C̃l, Ãl, Ã
′
l are clopen for finite l. By

Lemma 7.1,

(41) lim
δ↘0

lim inf
n→∞

P
χ
n

(∣∣∣∣ |Cl(χ) ∪ Al(χ) \A′
l(χ)|

n
− μ

(
C̃l ∪ Ãl \ Ã′

l

)∣∣∣∣ < δ

)
= 1

for any finite l. Since Ã∞∪C̃∞ is the decreasing limit of Ãl∪C̃l, Lemma 7.7 implies

lim inf
l→∞

μ(C̃l ∪ Ãl \ Ã′
l) ≥ μ(C̃∞ ∪ Ã∞ \ Ã′

∞).

By Proposition 7.5 and Lemma 7.6,

μ(C̃∞ ∪ Ã∞ \ Ã′
∞) ≥ 1− e−λ + o(e−λ).

Together with (41), this implies the lemma. �

8. Rigid vertices

This section proves Lemma 6.2. So we assume the hypotheses of Proposition 5.9.
As in the previous section, fix an equitable coloring χ : V → {0, 1}. We assume

|V | = n and let σ : Γ → Sym(V ) be a uniformly random uniform homomorphism
conditioned on the event that χ is proper with respect to σ.

Lemma 8.1 (Expansivity Lemma). There is a constant k0 > 0 such that the
following holds. If k ≥ k0 then with high probability (with respect to the planted
model), as n → ∞, for any T ⊂ V with |T | ≤ 2−k/2n the following is true. For a
vertex v let Ev denote the set of hyperedges supported by v. Let ET be the set of all
edges e ∈ ∪v∈TEv such that |e ∩ T | ≥ 2. Then

#ET ≤ 2#T.



A DYNAMICAL SYSTEM WITH MULTIPLE SOFIC ENTROPIES 83

Proof.

Claim 4. There exists k0 ∈ N such that k ≥ k0 implies

• k/2 ≤ λ ≤ k,
• 1/2− k21−k/2 ≥ 1√

8
,

• and for any 0 < t ≤ 2−k/2 and k/2 ≤ λ′ ≤ k

H(t, 1− t) + λ′H(2t/λ′, 1− 2t/λ′) + 2t log(4k) + 4t log(t) ≤ 0.9t log(t).

Proof. Recall that λ = log(2)k+O(k2−k). So the first two requirements are imme-
diate for k0 large enough.

We estimate each of the first three terms on the left as follows. Because 1 =
limt↘0

H(t,1−t)
−t log(t) , there exists k0 ∈ N such that k ≥ k0 implies H(t,1−t)

−t log(t) ≤ 1.01.

Note,

λ′H(2t/λ′, 1− 2t/λ′) = −2t log(2t/λ′)− (λ′ − 2t) log(1− 2t/λ′)

= −2t log(2t/λ′) +O(t) ≤ −2t log(t) + 2t log(λ′) + O(t)

≤ −2t log(t) + 2t log(k) +O(t).

So by making k0 larger if necessary, we may assume

λ′H(2t/λ′, 1− 2t/λ′)

−t log(t)
≤ 2.01.

Since
2t log(4k)

−t log(t)
≤ 2 log(4k)

(k/2) log(2)
,

we may also assume 2t log(4k)
−t log(t) ≤ 0.01. Combining these inequalities, we obtain

H(t, 1− t) + λ′H(2t/λ′, 1− 2t/λ′) + 2t log(4k) + 4t log(t)

≤ (1.01 + 2.01 + 0.01− 4)(−t log(t)) ≤ 0.9t log(t).

�

From now on, we assume k ≥ k0 with k0 as above. To simplify notation, let
ζ = 2−k/2. Given a 2d-tuple c = (c1,0, c1,1, . . . , cd,0, cd,1) of natural numbers, let
Ec be the event that there are exactly ci,0 critical edges of the form {σ(si)j(v) :
0 ≤ j ≤ k − 1} and supported by a vertex of color 0, and ci,1 critical edges of the
form {σ(si)j(v) : 0 ≤ j ≤ k − 1} and supported by a vertex of color 1. We denote
|c| =

∑
1≤i≤d,b∈{0,1} ci,b. Let P

χ
c,n be the planted model conditioned on Ec.

This measure can be constructed as follows. Let Ic be the set of triples (i, b, j)
with 1 ≤ i ≤ d, b ∈ {0, 1} and 1 ≤ j ≤ ci,b. First choose edges {ei,b,j}(i,b,j)∈Ic

uniformly at random subject to the conditions:

(1) each ei,b,j ⊂ [n] has cardinality k and ei,b,j ∩ ei,b′,j′ = ∅ whenever b �= b′ or
j �= j′,

(2) each ei,b,j is critical and is supported by a vertex of color b with respect to
χ.

Next choose a uniformly random uniform homomorphism σ subject to:

(1) χ is a proper coloring with respect to σ,
(2) each ei,b,j is of the form {σ(si)j(v) : 0 ≤ j ≤ k − 1} with respect to σ,
(3) the edges {ei,b,j}(i,b,j)∈Ic are precisely the critical edges of χ with respect

to σ.
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Then σ is distributed according to P
χ
c,n.

For 1 ≤ l ≤ n, let Tl be the collection of all subsets T ⊂ V = [n] such that
|T | = l and |ET | > 2|T |. Note that T1 is empty.

To prove the lemma, we claim it suffices to show the following:

Claim 5. If n is sufficiently large and kn/2 ≤ |c| ≤ kn then
∑

2≤l≤ζn E
χ
c,n[#Tl]

tends to zero in n.

We briefly return to the model Pχ
n not conditioned on Ec. Let E be the set of

all critical edges. By Lemma 7.1, with high probability in P
χ
n, |E| is asymptotic to

λn as n → ∞. Let E′
n be the event that (k/2)n ≤ |E| ≤ kn. So P

χ
n(E

′
n) → 1 as

n → ∞.
By a first moment argument and the above paragraph, to prove the lemma it

suffices to show that
∑

2≤l≤ζn E
χ
n(#Tl|E′

n) tends to 0 in n. Now E
χ
n(#Tl|E′

n) is a

convex combination of Eχ
c,n(#Tl) over those c such that kn/2 ≤ |c| ≤ kn, so the

lemma follows from Claim 5.
Before proving the above claim we need to prove another claim, which needs the

following setup. For s ∈ Ic and T ⊂ V , let FT,s be the event that es is supported
by a vertex in T and |es ∩ T | ≥ 2. For S ⊂ Ic, let FT,S = ∩s∈SFT,s. Note that for
any T ⊂ [n], the event {T ∈ Tl} is contained in ∪SFT,S where the union is over all
S ⊂ Ic with |S| = 2l. So

(42) E
χ
c,n[#Tl] ≤

∑
S,T

P
χ
c,n(FT,S),

where the sum is over all T ⊂ [n] and S ⊂ Ic with |T | = l and |S| = 2l.
Before proving the claim above, we need to prove:

Claim 6. For 1 ≤ l ≤ ζn, any T ⊂ V with cardinality |T | = l, any S ⊂ Ic with

|S| ≤ 2l − 1, and any s0 ∈ Ic \ S, one has Pχ
c,n(FT,s0 |FT,S) ≤ 2kl2

n2 .

Proof of Claim 6. For s ∈ Ic, let es be a random edge in [n] with cardinality k as
in the sampling algorithm above. Without loss of generality, we imagine that es for
s ∈ S has been chosen before es0 . Let s0 = (i0, b0, j0). We say that an edge e is of
type i if e is of the form {σ(si)j(v) : 0 ≤ j ≤ k − 1}. Let S0 ⊂ S be those edges of
type i0, and let V0 = ∪e∈S0

e,

• ni be the number of vertices v ∈ [n] \ V0 such that χ(v) = i, and
• li be the number of vertices v ∈ T \ V0 such that χ(v) = i.

Let e0 = es0 . The probability that e0 is supported by a vertex v in T is lb0/nb0

(this is conditioned on the edges es for s ∈ S).
Suppose first that e0 is supported by a vertex v in T with χ(v) = 0 (so b0 = 0).

Then the probability that |e0 ∩ T | = 1 is(
n1−l1
k−1

)(
n1

k−1

) .

It follows that for b0 = 0

P
χ
c,n(FT,s0 |FT,S) =

l0
n0

(
1−

(
n1−l1
k−1

)(
n1

k−1

) )
.
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In order to bound this expression, consider(
n1−l1
k−1

)(
n1

k−1

) =

(
n1 − l1
n1

)
· · ·

(
n1 − l1 − k + 2

n1 − k + 2

)

≥
(
n1 − l1 − k + 2

n1 − k + 2

)k−1

=

(
1− l1

n1 − k + 2

)k−1

≥ 1− (k − 1)l1
n1 − k + 2

≥ 1− kl1
n1

.

Thus,

P
χ
c,n(FT,s0 |FT,S) ≤

kl0l1
n0n1

.

A similar argument shows that the same bound above holds for the case b0 = 1.
Because l0 + l1 ≤ |T | = l, (l0 + l1)

2 − (l0 − l1)
2 ≤ l2, so that l0l1 ≤ l2/4. Note

n0 ≥ n/2− 2kl ≥ n(1/2− k21−k/2) ≥ n/
√
8,

where we have used the assumption l ≤ ζn = 2−k/2n and Claim 4. Similarly,
n1 ≥ n/

√
8. Substitute these inequalities above to obtain

P
χ
c,n(FT,s0 |FT,S) ≤

2kl2

n2
. �

We now prove Claim 5. Apply the chain rule and Claim 6 to obtain: if S ⊂ Ic
has |S| = 2l and T ⊂ [n] with |T | = l then

P
χ
c,n(FT,S) ≤

(
2kl2

n2

)2l

.

By (42)

E
χ
c,n[#Tl] ≤

∑
S,T

P
χ
c,n(FT,S) ≤

(
n

l

)(
|c|
2l

)(
2kl2

n2

)2l

,

where the sum is over all T ⊂ [n] and S ⊂ Ic with |T | = l, |S| = 2l. Define t, λ′ by
tn = l and |c| = λ′n. By hypothesis k/2 ≤ λ′ ≤ k. Consider the following cases:

Case 1. 2 ≤ l ≤ n0.1. Then we make the following estimates:(
n

l

)
≤ nl,(

|c|
2l

)
≤ (kn)2l.

It follows that Eχ
c,n[#Tl] ≤

(
4k4l4

n

)l

, which is bounded by n−1.1 for large enough
n.

Case 2. l > n0.1. We make the following estimates:(
n

l

)
= exp(nH(t, 1− t) + 0.5 log(n) +O(1)),(

|c|
2l

)
≤ exp(λ′nH(2t/λ′, 1− 2t/λ′) + 0.5 log(kn) +O(1))

so that

E
χ
c,n[#Tl] ≤ Ckn exp(n(H(t, 1− t) + λ′H(2t/λ′, 1− 2t/λ′) + 2t log(2k) + 4t log(t)))
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for some constant C. For n sufficiently large and t ≤ 2−k/2, this is bounded above

by Ckn exp(0.9nt log(t)) ≤ Ckn2−0.45kn0.1

by Claim 4 and the choice of k0 and l.
It follows that in this range of l, Eχ

c,n[#Tl] decays super-polynomially.
This proves Claim 5 and finishes the lemma. �

Lemma 8.2. Let ρ > 0. Then there exists L such that l > L implies Cl(χ) ⊂ [n]
is ρ-rigid (with high probability in the planted model as n → ∞).

Proof. Without loss of generality, we may assume that 0 < ρ < μ(C̃∞).

Observe that the sets C̃l are clopen for finite l. By Lemma 7.1,

lim
η↘0

lim inf
n→∞

P
χ
n

(∣∣∣∣ |Cl(χ)|
n

− μ
(
C̃l

)∣∣∣∣ < η

)
= 1.

Since the sets Cl(χ) are decreasing with l, this implies the existence of L such that
l > L implies

lim inf
n→∞

P
χ
n

(∣∣∣∣ |Cl(χ)|
n

− |Cl+1(χ)|
n

∣∣∣∣ < ρ/3

)
= 1.

Choose l > L. Let ψ : V → {0, 1} be a σ-proper coloring. Let

Tl = {v ∈ Cl(χ) : χ(v) �= ψ(v)}.
Define Tl+1 similarly. Since |Cl(χ) \ Cl+1(χ)| < ρn/3 (with high probability) and
Tl\Tl+1 ⊂ Cl(χ)\Cl+1(χ), it follows that |Tl\Tl+1| < ρn/3 (with high probability).

For every v ∈ Tl+1, let Fv ⊂ Ev be the subset of χ-critical edges e such that
e ⊂ Cl(χ).

We claim that if v ∈ Tl+1 then Fv ⊂ ETl
where

ETl
= {e ∈ ∪v∈Tl

Ev : |e ∩ Tl| ≥ 2}.
Since v ∈ Tl+1, ψ(v) �= χ(v). If e ∈ Fv then v supports e with respect to χ.
Therefore because ψ : [n] → {0, 1} is a proper coloring, there must exist a vertex
w ∈ e \ {v} such that ψ(w) �= ψ(v). This, combined with χ(w) �= χ(v), implies
ψ(w) �= χ(w) since there are only two possible colors. Since {v, w} ⊂ e ⊂ Cl(χ),
this means that |e ∩ Tl| ≥ 2 and therefore e ∈ ETl

, which proves the claim.
For every v ∈ Tl+1, |Fv| ≥ 3 by the definition of the sets Cl(χ). Since edges can

only be supported by one vertex, the sets Fv are pairwise disjoint. So

|ETl
| ≥

∣∣∣∣∣∣
⋃

v∈Tl+1

Fv

∣∣∣∣∣∣ ≥ 3|Tl+1| ≥ 3|Tl| − ρn.

If |Tl| > ρn then |ETl
| ≥ 3|Tl| − ρn > 2|Tl|. So it follows from Lemma 8.1 that

(with high probability), |Tl| > 2−k/2n. Thus Cl is ρ-rigid. �

We can now prove Lemma 6.2.

Proof of Lemma 6.2. Let ρ > 0. By Lemma 8.2, there exists L such that l > L
implies Cl(χ) is (ρ/3)-rigid with high probability in the planted model as n → ∞.
So without loss of generality we condition on the event that Cl(χ) is (ρ/3)-rigid.

Now let l − 1 > L. Let ψ : V → {0, 1} be a σ-proper coloring. Let

Tl−1 = {v ∈ Cl−1(χ) : χ(v) �= ψ(v)}
Tl = {v ∈ Cl(χ) : χ(v) �= ψ(v)}

T ′ = {v ∈ Al(χ) \A′
l(χ) : χ(v) �= ψ(v)}.
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We claim that |Tl−1| ≥ |T ′|. To see this, let v ∈ T ′. Then there exists an edge e
supported by v (with respect to χ) with e \ {v} ⊂ Cl−1(χ). Since ψ is proper and
ψ(v) �= χ(v), there must exist a vertex w ∈ e \ {v} with ψ(w) �= χ(w). Necessarily,
w ∈ Tl−1. So there exists a function f : T ′ → Tl−1 such that f(v) is contained in
an edge e supported by v with e\{v} ⊂ Cl−1(χ). Because v /∈ A′

l(χ), f is injective.
This proves the claim.

Now suppose that |Tl∪T ′| > ρn. Since Tl and T ′ are disjoint, either |Tl| > (ρ/3)n
or |T ′| > (2ρ/3)n. If |Tl| > (ρ/3)n, we are done because by assumption that Cl(χ)
is (ρ/3)-rigid, |Tl| > 2−k/2n and so

|Tl ∪ T ′| > 2−k/2n.

If |T ′| > (2ρ/3)n the claim implies |Tl−1| > (2ρ/3)n. Now in the proof of Lemma
8.2 we have shown that |Tl−1 \ Tl| < (ρ/3)n, so |Tl| > (ρ/3)n and we are again
done. This proves the lemma. �

Appendix A. Topological sofic entropy notions

In this appendix, we recall the notion of topological sofic entropy from [10] and
prove that it coincides with the definition given in §2.

Let T be an action of Γ on a compact metrizable space X. So for g ∈ Γ,
T g : X → X is a homeomorphism and T gh = T gTh. We will also denote this
action by Γ�X. Let σ : Γ → Sym(n) be a map, ρ be a pseudo-metric on X, F � Γ
be finite and δ > 0. For x, y ∈ Xn, let

ρ∞(x, y) = max
i

ρ(xi, yi), ρ2(x, y) =

(
1

n

∑
i

ρ(xi, yi)
2

)1/2

be pseudo-metrics on Xn. Also let

Map(T, ρ, F, δ, σ) = {x ∈ Xn : ∀f ∈ F, ρ2(T
fx, x ◦ σ(f)) < δ}.

Informally, elements of Map(T, ρ, F, δ, σ) are “good models” that approximate par-
tial periodic orbits with respect to the chosen sofic approximation.

For a pseudo-metric space (Y, ρ), a subset S ⊂ Y is (ρ, ε)-separated if for all
s1 �= s2 ∈ S, ρ(s1, s2) ≥ ε. Let Nε(Y, ρ) = max{|S| : S ⊂ Y, S is (ρ, ε)-separated}
be the maximum cardinality over all (ρ, ε)-separated subsets of Y .

Given a sofic approximation Σ to Γ, we define

h̃Σ(Γ�X, ρ) = sup
ε>0

inf
F�Γ

inf
δ>0

lim sup
i→∞

|Vi|−1 log(Nε(Map(T, ρ, F, δ, σi), ρ∞)),

where the symbol F � Γ means that F varies over all finite subsets of Γ.
We say that a pseudo-metric ρ on X is generating if for every x �= y there

exists g ∈ Γ such that ρ(gx, gy) > 0. By [10, Proposition 2.4], if ρ is continuous and

generating, h̃Σ(T, ρ) is invariant under topological conjugacy and does not depend

on the choice of ρ. So we define h̃Σ(T ) = h̃Σ(T, ρ) where ρ is any continuous
generating pseudo-metric. The authors of [10] define the topological sofic entropy

of Γ�X to be h̃Σ(T ). The main result of this appendix is:

Proposition A.1. Let A be a finite set and X ⊂ AΓ a closed shift-invariant
subspace. Let T be the shift action of Γ on X. Then hΣ(Γ�X) = h̃Σ(T ) where
hΣ(Γ�X) is as defined in §2.
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Proof. To begin, we choose a pseudo-metric on AΓ as follows. For x, y ∈ AΓ,
let ρ(x, y) = 1x1Γ

	=y1Γ
. Then ρ is continuous and generating. So h̃Σ(Γ�X) =

h̃Σ(Γ�X, ρ).
Let ε > 0, O ⊂ AΓ be an open set. We first analyze Ω(O, ε, σ) from the definition

of hΣ(Γ�X). Note that the topology for AΓ is generated by the base B = {[a] : a ∈
AF , F � Γ} where if a ∈ AF then [a] = {x ∈ AΓ : x|F = a}. In other words, open
sets of B are those that specify a configuration on a finite subset of coordinates.
For F � Γ let O(F ) = {y ∈ AΓ : ∃x ∈ X, y|F = x|F } = ∪ a∈AF

[a]∩X 	=∅
[a] be the open

set containing all elements containing some configuration that appears in X in the
finite window F .

Claim 7. Every open superset O ⊃ X contains some open set of the form O(F ).

Because Ω(O, ε, σ) decreases as O decreases, it suffices to only consider open sets
of the form O(F ) in the definition of hΣ(Γ�X).

Proof. O is a union of elements in B and X is compact, so that there exists X ⊂
O′ ⊂ O with O′ containing only finitely many base elements. Let F be the union
of all coordinates specified by base elements in O′. It follows that O′ contains
O(F ). �

Without loss of generality and for convenience we can assume that F is symmet-
ric, i.e. F = F−1, and contains the identity. This is because we can replace any F
with the larger set F ∪ F−1 ∪ {1Γ}, and both Map(T, ρ, F, δ, σi) and Ω(O(F ), ε, σi)
are monotone decreasing in F .

Let n = |Vi|. We assume limi→∞ |Vi| = ∞. Now for each x ∈ Ω(O(F ), ε, σi)
we obtain an element x̃ ∈ Xn and then show that these partial orbits form a good
estimate for h̃Σ. Let G(x) = {v ∈ Vi : Π

σi
v (x) ∈ O(F )}. For every v ∈ G(x), choose

some x̃v ∈ X that agrees with Πσi
v (x) on F . For v /∈ G(x) choose an arbitrary

element x̃v ∈ X. Thus x̃ ∈ Xn .
Now for v ∈ G(x), f ∈ F , T f x̃v(1Γ) = x̃v(f

−1) = xσi(f)v. On the other

hand we also want x̃σi(f)v(1Γ) = xσi(f)v, which is true if v ∈ σi(f)
−1G(x) and

σi(1Γ)σi(f)v = σi(f)v. It follows that ρ2(T
f x̃, x̃ ◦ σi(f)) <

√
2ε.

Now consider separation of {x̃ : x ∈ Ω(O(F ), ε, σi)}. We will show that a slightly
smaller subset is (ρ∞, 1)-separated. By the pigeonhole principle there exists a sub-
set V̄i of size at least (1 − ε)n such that Ω(O(F ), ε, σi, V̄i) := {x ∈ Ω(O(F ), ε, σi) :
G(x) = V̄i} has cardinality at least e−n(H(ε,1−ε)+o(1))#Ω(O(F ), ε, σi). Further-
more, if x, y ∈ Ω(O(F ), ε, σi, V̄i) then ρ∞(x̃, ỹ) = 1 if x(v) �= y(v) for some
v ∈ V̄i ∩ Fix(1Γ), where Fix(1Γ) = {v ∈ Vi : σi(1Γ)v = v}. Since there are
at most |A|(ε+o(1))n configurations in AVi with some fixed configuration on V̄i ∩
Fix(1Γ), there exists a (ρ∞, 1)-separated subset of Ω(O(F ), ε, σi, V̄i) of size at least
|A|−(ε+o(1))n#Ω(O(F )), ε, σi, V̄i). It follows that

N1(Map(T, ρ, F,
√
2ε, σi), ρ∞) ≥ |A|−(ε+o(1))ne−n(H(ε,1−ε)+o(1))#Ω(O(F ), ε, σi).

On the other hand, suppose we have some x̃ ∈ Map(T, ρ, F, δ, σi). This means that

for every f ∈ F , there exists a set Ṽi(f) of size > (1− δ2)n such that for v ∈ Ṽi(f),

x̃σi(f)v(1Γ) = T f x̃v(1Γ) = x̃v(f
−1). Let Ṽi = ∩f∈F Ṽi(f). Then |Ṽi| > (1− |F |δ2)n

and for v ∈ Ṽi, for every f ∈ F , x̃σi(f)v(1Γ) = T f x̃v(1Γ) = x̃v(f
−1).
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Define x ∈ AVi by xv = x̃v(1Γ). Then for any fixed v ∈ Ṽi, for every f ∈ F ,

Πσi
v (x)(f) = xσi(f−1)v = x̃σi(f−1)v(1Γ) = T f−1

x̃v(1Γ) = x̃v(f). Since x̃v ∈ X, it

follows that x ∈ Ω(O(F ), δ2|F |, σi).
Also note that x̃, ỹ ∈ Map(T, ρ, F, δ, σi) are (ρ, ε)-separated for any ε ≤ 1 if and

only if x̃v(1Γ) �= ỹv(1Γ) for some v ∈ Vi, so that x �= y. It follows that

Nε(Map(T, ρ, F, δ, σi), ρ∞) ≤ #Ω(O(F ), δ2|F |, σi).

Note that in the definitions of hΣ and h̃Σ, F is fixed with respect to δ. �

Appendix B. Concentration for the planted model

Definition 8 (Hamming metrics). Define the normalized Hamming metric
dSym(n) on Sym(n) by

dSym(n)(σ1, σ2) = n−1#{i ∈ [n] : σ1(i) �= σ2(i)}.
Define the normalized Hamming metric dHom on Hom(Γ, Sym(n)) by

dHom(σ1, σ2) =

d∑
i=1

dSym(n)(σ1(si), σ2(si)).

The purpose of this section is to prove:

Theorem B.1. There exist constants c, λ > 0 (depending only on k, d) such that
for every δ > 0 there exists Nδ such that for all n > Nδ, for every 1-Lipschitz
f : Homχ(Γ, Sym(n)) → R,

P
χ
n (|f − E

χ
n[f ]| > δ) ≤ c exp(−λδ2n).

B.1. General considerations. To begin the proof we first introduce some general-
purpose tools.

Definition 9. A metric measure space is a triple (X, dX , μ) where (X, dX) is a
metric space and μ is a Borel probability measure on X. We will say (X, dX , μ) is
(c, λ)-concentrated if for any 1-Lipschitz function f : X → R,

μ

(∣∣∣∣f −
∫

f dμ

∣∣∣∣ > ε

)
< ce−λε2 .

If (X, dX , μ) is (c, λ)-concentrated and f : X → R is L-Lipschitz, then since f/L is
1-Lipschitz,

(43) μ

(∣∣∣∣f −
∫

f dμ

∣∣∣∣ > ε

)
= μ

(∣∣∣∣f/L−
∫

f/L dμ

∣∣∣∣ > ε/L

)
< c exp(−λε2/L2).

Lemma B.2. Let (X, dX , μ) be (c, λ)-concentrated. If φ : X → Y is an L-Lipschitz
map onto a measure metric space (Y, dY , ν) and ν = φ∗μ is the push-forward mea-
sure, then (Y, dY , ν) is (c, λ/L2)-concentrated.

Proof. This follows from the observation that if f : Y → R is 1-Lipschitz, then the
pullback f ◦ φ : X → R is L-Lipschitz. So equation (43) implies

ν

(∣∣∣∣f −
∫

f dν

∣∣∣∣ > ε

)
= μ

(∣∣∣∣f ◦ φ−
∫

f ◦ φ dμ

∣∣∣∣ > ε

)
< c exp(−λε2/L2).

�
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The next lemma is concerned with the following situation. Suppose X = �i∈IXi

is a finite disjoint union of spaces Xi. Even if we have good concentration bounds
on the spaces Xi, this does not imply concentration on X because it is possible
that a 1-Lipschitz function f will have different means when restricted to the Xi’s.
However, if most of the mass of X is concentrated on a sub-union ∪j∈JXj (for
some J ⊂ I) and the sets Xj are all very close to each other, then there is a weak
concentration inequality on X.

Lemma B.3. Let (X, dX , μ) be a measure metric space with diameter ≤ 1. Suppose
X = �i∈IXi is a finite disjoint union of spaces Xi, each with positive measure
(μ(Xi) > 0). Let μi be the induced probability measure on Xi. Suppose there exist
J ⊂ I and constants η, δ, λ, c > 0 satisfying:

(1) μ(∪j∈JXj) ≥ 1− η ≥ 1/2.
(2) For every j, k ∈ J , there exists a measure μj,k on Xj ×Xk with marginals

μj , μk respectively such that

μj,k({(xj , xk) : dX(xj , xk) ≤ δ}) = 1.

(3) For each j ∈ J , (Xj , dX , μj) is (c, λ)-concentrated.

Then for every 1-Lipschitz function f : X → R and every ε > δ + 2η,

μ

(∣∣∣∣f −
∫

f dμ

∣∣∣∣ > ε

)
≤ η + c exp

(
−λ (ε− δ − 2η)

2
)
.

Proof. Let f : X → R be a 1-Lipschitz function. After adding a constant to f
if necessary, we may assume

∫
f dμ = 0. Note that the mean of f is a convex

combination of its restrictions to the Xi’s:

0 =

∫
f(x) dμ(x) =

∑
i∈I

μ(Xi)

∫
f(xi) dμi(xi)

=
∑

i∈I\J
μ(Xi)

∫
f(xi) dμi(xi) +

∑
j∈J

μ(Xj)

∫
f(xj)dμj(xj).

Since f is 1-Lipschitz with zero mean, |f | ≤ diam(X) ≤ 1. So∣∣∣∣∣∣μ(∪j∈JXj)
−1

∑
j∈J

μ(Xj)

∫
f(xj) dμj(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣μ(∪j∈JXj)
−1

∑
i∈I\J

μ(Xi)

∫
f(xi) dμi(xi)

∣∣∣∣∣∣
≤ η

1− η
≤ 2η,

where the last inequality uses that μ(∪j∈JXj) ≥ 1− η and η ≤ 1/2.
For any j, k ∈ J , the μj and μk-means of f are δ-close:∣∣∣∣∫ f(xj) dμj(xj)−

∫
f(xk) dμk(xk)

∣∣∣∣ = ∣∣∣∣∫ f(xj)− f(xk) dμj,k(xj , xk)

∣∣∣∣
≤

∫
|f(xj)− f(xk)| dμj,k(xj , xk) ≤ δ.
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So for any j0 ∈ J ,∣∣∣∣∣∣
∫

f(xj0) dμj0(xj0)− μ(∪j∈JXj)
−1

∑
j∈J

μ(Xj)

∫
f(xj) dμj(xj)

∣∣∣∣∣∣ ≤ δ.

Combined with the previous estimate, this gives∣∣∣∣∫ f(xj0) dμj0(xj0)

∣∣∣∣ ≤ δ + 2η.

Now we estimate the μ-probability that f is > ε (assuming ε > δ + 2η):

μ

(∣∣∣∣f −
∫

f dμ

∣∣∣∣ > ε

)
= μ(|f | > ε)

≤ η +
∑
j∈J

μj(|f | > ε)μ(Xj)

≤ η +
∑
j∈J

μj

(∣∣∣∣f −
∫

f(xj) dμj(xj)

∣∣∣∣ > ε−
∣∣∣∣∫ f(xj) dμj(xj)

∣∣∣∣)μ(Xj)

≤ η +
∑
j∈J

μj

(∣∣∣∣f −
∫

f(xj) dμj(xj)

∣∣∣∣ > ε− δ − 2η

)
μ(Xj)

≤ η + c exp
(
−λ (ε− δ − 2η)

2
)
.

�

The next lemma is essentially the same as [11, Proposition 1.11]. We include a
proof for convenience.

Lemma B.4 ([11]). Suppose (X, dX , μ) is (c1, λ1)-concentrated and (Y, dY , ν) is
(c2, λ2)-concentrated. Define a metric on X × Y by dX×Y ((x1, y1), (x2, y2)) =
dX(x1, x2) + dY (y1, y2). Then (X × Y, dX×Y , μ × ν) is (c1 + c2,min(λ1, λ2)/4)-
concentrated.

Proof. Let F : X × Y → R be 1-Lipschitz. For y ∈ Y , define F y : X → R by
F y(x) = F (x, y). Define G : Y → R by G(y) =

∫
F y(x) dμ(x). Then F y and G are

1-Lipschitz.
If |F (x, y) −

∫
F dμ × ν| > ε then either |F y(x) −

∫
F y dμ| > ε/2 or |G(y) −∫

G dν| > ε/2. Thus

μ× ν

({
(x, y) :

∣∣∣∣F (x, y)−
∫

F dμ× ν

∣∣∣∣ > ε

})
≤ μ× ν

({
(x, y) :

∣∣∣∣F y(x)−
∫

F y dμ

∣∣∣∣ > ε/2

})
+ ν

({
y :

∣∣∣∣G(y)−
∫

G dν

∣∣∣∣ > ε/2

})
≤ c1e

−λ1ε
2/4 + c2e

−λ2ε
2/4 ≤ (c1 + c2) exp(−min(λ1, λ2)ε

2/4).

�
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Lemma B.5. Let (X, dX , μ) and (Y, dY , ν) be metric-measure spaces. Suppose

(1) X,Y are finite sets, μ and ν are uniform probability measures,
(2) there is a surjective map Φ : X → Y and a constant C > 0 such that

|Φ−1(y)| = C for all y ∈ Y ,
(3) (Y, dY , ν) is (c1, λ1)-concentrated,
(4) for each y ∈ Y , the fiber Φ−1(y) is (c2, λ2)-concentrated (with respect to the

uniform measure on Φ−1(y) and the restricted metric),
(5) for each y1, y2 ∈ Y there is a probability measure μy1,y2

on Φ−1(y1) ×
Φ−1(y2) with marginals equal to the uniform measures on Φ−1(y1) and
Φ−1(y2) such that

μy1,y2
({(x1, x2) : dX(x1, x2) ≤ dY (y1, y2)}) = 1.

Then (X, dX , μ) is (c1 + c2,min(λ1, λ2)/4)-concentrated.

Proof. Let f : X → R be 1-Lipschitz. Let E[f |Y ] : Y → R be its conditional
expectation defined by

E[f |Y ](y) = |Φ−1(y)|−1
∑

x∈Φ−1(y)

f(x).

Also let E[f ] = |X|−1
∑

x∈X f(x) be its expectation.
We claim that E[f |Y ] is 1-Lipschitz. So let y1, y2 ∈ Y . By hypothesis (5)

E[f |Y ](y1)− E[f |Y ](y2) =

∫
f(x1)− f(x2) dμy1,y2

(x1, x2)

≤
∫

dX(x1, x2) dμy1,y2
(x1, x2)

≤ dY (y1, y2).

The first inequality holds because f is 1-Lipschitz and the second by hypothesis
(5). This proves E[f |Y ] is 1-Lipschitz.

Let ε > 0. Because Φ is C-to-1, it pushes forward the measure μ to ν. Because
(Y, dY , ν) is (c1, λ1)-concentrated,

(44) μ

(∣∣∣∣E[f |Y ] ◦ Φ−
∫

f dμ

∣∣∣∣ > ε/2

)
= ν (|E[f |Y ]− E[f ]| > ε/2) < c1e

−λ1ε
2/4.

Because each fiber Φ−1(y) is (c2, λ2)-concentrated, for any y ∈ Y ,

|Φ−1(y)|−1#
{
x ∈ Φ−1(y) : |f(x)− E[f |Y ](y)| > ε/2

}
< c2e

−λ2ε
2/4.

Average this over y ∈ Y to obtain

μ ({x ∈ X : |f(x)− E[f |Y ](Φ(x))| > ε/2) < c2e
−λ2ε

2/4.

Combine this with (44) to obtain

μ

(∣∣∣∣f −
∫

f dμ

∣∣∣∣ > ε

)
≤ μ (|f − E[f |Y ](Φ(x))| > ε/2)

+ μ

(∣∣∣∣E[f |Y ](Φ(x))−
∫

f dμ

∣∣∣∣ > ε/2

)
≤ c2e

−λ2ε
2/4 + c1e

−λ1ε
2/4

which implies the lemma. �
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B.2. Specific considerations. Given an equitable coloring χ : [n] → {0, 1}, let
Hχ be the stabilizer of χ:

Hχ = {g ∈ Sym(n) : χ(gv) = χ(v) ∀v ∈ [n]}.
Lemma B.6. The group Hχ is (4, n/16)-concentrated (when equipped with the
uniform probability measure and the restriction of the normalized Hamming metric
dSym(n)).

Proof. The group Hχ is isomorphic to the direct product Sym(χ−1(0)) ×
Sym(χ−1(1)) which is isomorphic to Sym(n/2)2. By [11, Corollary 4.3], Sym(n/2)
is (2, n/16)-concentrated. So the result follows from Lemmas B.4 and B.2. This
uses that the inclusion map from Sym(n/2)2 to itself is (1/2)-Lipschitz when the
source is equipped with the sum of the dSym(n/2)-metrics and the target equipped
with the dSym(n) metric. �

We need to show that certain subsets of the group Sym(n) are concentrated. To
define these subsets, we need the following terminology.

Recall that a k-partition of [n] is an unordered partition π = {P1, . . . , Pn/k} of
[n] such that each Pi has cardinality k. Let Part(n, k) be the set of all k-partitions
of [n]. The group Sym(n) acts on Part(n, k) by gπ = {gP1, . . . , gPn/k}.

Let σ ∈ Sym(n). The orbit-partition of σ is the partition Orb(σ) of [n] into
orbits of σ. For example, for any v ∈ [n] the element of Orb(σ) containing v is
{σiv : i ∈ Z} ⊂ [n]. Let Sym(n, k) ⊂ Sym(n) be the set of all permutations
σ ∈ Sym(n) such that the orbit-partition of σ is a k-partition.

Recall from §4.1 that a k-partition π has type �t = (tj)
k
j=0 ∈ [0, 1]k+1 with

respect to a coloring χ if the number of partition elements P of π with |P ∩
χ−1(1)| = j is tjn. We will also say that a permutation σ ∈ Sym(n, k) has type
�t = (tj)

k
j=0 ∈ [0, 1]k+1 with respect to a coloring χ if its orbit-partition Orb(σ)

has type �t with respect to χ.
Let Sym(n, k;χ,�t) be the set of all permutations σ ∈ Sym(n, k) such that σ has

type �t with respect to χ.

Lemma B.7. The subset Sym(n, k;χ,�t) is either empty or (6, λn)-concentrated
(when equipped with the normalized Hamming metric dSym(n) and the uniform prob-
ability measure) where λ > 0 is a constant depending only on k.

Proof. Let Part(n, k;χ,�t) be the set of all (unordered) k-partitions of [n] with type
�t (with respect to χ). We will consider this set as a metric space in which the

distance between partitions π, π′ ∈ Part(n, k;χ,�t) is d(π, π′) = k|π�π′|
2n where �

denotes symmetric difference.
Let Orb : Sym(n, k;χ,�t) → Part(n, k;χ,�t) be the map which sends a permu-

tation to its orbit-partition. We will verify the conditions of Lemma B.5 with
X = Sym(n, k;χ,�t), Y = Part(n, k;χ,�t) and Φ = Orb. Condition (1) is immediate.

Observe that Orb is surjective and constant-to-1. In fact for any partition π ∈
Part(n, k;χ,�t), |Orb−1(π)| = (k−1)!n/k since an element σ ∈ Orb−1(π) is obtained
by choosing a k-cycle for every part of π. To be precise, if π = {P1, . . . , Pn/k} then

Orb−1(π) is the set of all permutations σ of the form σ =
∏n/k

i=1 σi where σi is a
k-cycle with support in Pi. This verifies condition (2) of Lemma B.5.

Observe that Hχ acts transitively on Part(n, k;χ,�t). Fix π ∈ Part(n, k;χ,�t)

and define a map φ : Hχ → Part(n, k;χ,�t) by φ(h) = hπ. We claim that φ is
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k2/2-Lipschitz. Indeed, if h1, h2 ∈ Hχ then

d(h1π, h2π) =
k|h1π � h2π|

2n

≤ k2#{p ∈ [n] : h1(p) �= h2(p)}
2n

=
k2

2
dSym(n)(h1, h2).

Because Hχ is (4, n/16)-concentrated by Lemma B.6, Lemma B.2 implies

Part(n, k;χ,�t) is (4, n/4k4)-concentrated. This verifies condition (3) of Lemma
B.5.

We claim that Orb−1(π) is (2, n/2k)-concentrated. To see this, let π = {P1,
. . . , Pn/k} and let Symk(Pi) ⊂ Sym(n) be the set of all k-cycles with support in

Pi. Then Orb−1(π) is isometric to Symk(P1) × · · · × Symk(Pn/k). The diameter
of Symk(Pi), viewed as a subset of Sym(n) with the normalized Hamming metric
on Sym(n), is k/n. So the claim follows from [11, Corollary 1.17]. This verifies
condition (4) of Lemma B.5.

For π1, π2 ∈ Part(n, k;χ,�t), let Xπ1,π2
be the set of all pairs (σ1, σ2) ∈ Orb−1(π1)

× Orb−1(π2) such that if P ∈ π1 ∩ π2 then the restriction of σ1 to P equals the
restriction of σ2 to P . Observe that Xπ1,π2

is non-empty and the projection maps

Xπ1,π2
→ Orb−1(πi) (i = 1, 2) are constant-to-1. In fact, for any σ1 ∈ Orb−1(π1),

the set of σ2 with (σ1, σ2) ∈ Xπ1,π2
is bijective with the set of assignments of

k-cycles to parts in π2 \ π1.
Let μπ1,π2

be the uniform probability measure on Xπ1,π2
. Since the projection

maps are constant-to-1, the marginals of μπ1,π2
are uniform. Moreover, if (σ1, σ2) ∈

Xπ1,π2
then

{i ∈ [n] : σ1(i) �= σ2(i)} ⊂ ∪P∈π1\π2
P.

Thus

dSym(n)(σ1, σ2) ≤ n−1| ∪P∈π1\π2
P | = n−1k|π1 � π2|/2 = d(π1, π2).

This verifies condition (5) of Lemma B.5.
We have now verified all of the conditions of Lemma B.5. The lemma follows. �

Let Sym(n, k;χ) be the set of all σ ∈ Sym(n, k) such that if �t = (tj)
k
j=0 is the

type of σ with respect to χ then t0 = tk = 0. In other words, σ ∈ Sym(n, k;χ) if
and only if the orbit-partition π of σ is proper with respect to χ (where we think
of π as a collection of hyper-edges).

Let �s = (sj) with s0 = sk = 0 and sj = 1
k(2k−2)

(
k
j

)
for 0 < j < k. For δ > 0 let

Symδ(n, k;χ) be the set of all σ ∈ Sym(n, k;χ) such that if �t = (ti)
k
i=0 is the type

of σ (with respect to χ) then

k∑
i=0

|si − ti|2 < δ2.

Lemma B.8. With notation as above, for sufficiently large n

|Symδ(n, k;χ)|
|Sym(n, k;χ)| ≥ 1− e−λ1δ

2n,

where λ1 > 0 is a constant depending only on k.
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Proof. Let

Part(n, k;χ,�t) = {π ∈ Part(n, k) : π has type �t with respect to χ},
Part(n, k;χ) = {π ∈ Part(n, k) : χ is proper with respect to π},

Partδ(n, k;χ) =

{
π ∈ Part(n, k;χ) : if �t is the type of π

with respect to χ then

k∑
i=0

|ti − si|2 < δ2

}
.

The orbit-partition map from Sym(n, k) → Part(n, k) is constant-to-1 and maps
Sym(n, k;χ) onto Part(n, k;χ) and Symδ(n, k;χ) onto Partδ(n, k;χ). Therefore, it
suffices to prove

|Partδ(n, k;χ)|
|Part(n, k;χ)| ≥ 1− e−λδ2n,

where λ > 0 is a constant depending only on k.

Let M̃ be the set of all vectors �t = (ti)
k
i=0 ∈ [0, 1]k+1 such that t0 = tk = 0,∑

i ti = 1/k and
∑

j jtj = 1/2.

Recall from Lemma 4.3 that if �t ∈ M̃ and n�t is Z-valued then

(1/n) log |Part(n, k;χ,�t)| = (1− 1/k)(log(n)− 1)− log(2) + J(�t) +O(n−1 log(n)),

where J(�t) = H(�t)−
∑k

j=0 tj log(j!(k − j)!). By the proof of Theorem 4.2 (specifi-

cally equation (10)), J is uniquely maximized in M̃ by the vector �s.

In order to get a lower bound on |Part(n, k;χ)|, observe that there exists �r ∈ M̃
such that n�r is Z-valued and |si − ri| ≤ k/n for all i. Thus J(�r)− J(�s) = O(1/n).
It follows that

1

n
log |Part(n, k;χ)| ≥ 1

n
log |Part(n, k;χ,�r)|

= (1− 1/k)(log(n)− 1)− log(2) + J(�s) +O(n−1 log(n)).

We claim that the Hessian of J is negative definite. To see this, one can consider
J to be a function of [0, 1]k+1. The linear terms in J do not contribute to its
Hessian. Since the second derivative of x �→ −x log x is −1/x,

∂2J

∂ti∂tj
=

{
0 i �= j

−1/ti i = j.

Thus the Hessian is diagonal and every eigenvalue is negative; so it is negative
definite.

Thus if �t ∈ M̃ is such that
∑

i |ti − si|2 ≥ δ2 then

(1/n) log |Part(n, k;χ,�t)|
≤ (1− 1/k)(log(n)− 1)− log(2) + J(�s)− δ2λ′

1 +O(n−1 log(n)),

where λ′
1 = 1

2 min�t∈M̃
min1≤i≤k−1 1/ti is half the smallest absolute value of an

eigenvalue of the Hessian of J on M̃ .
If �t is the type of a k-partition π of n then ti ∈ {0, 1/n, 2/n, . . . , 1}. Thus the

number of different types of k-partitions of [n] is bounded by a polynomial in n
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(namely (n+ 1)k+1). Thus

|Partδ(n, k;χ)|
|Part(n, k;χ)|

≥ 1− (n+ 1)k+1 exp(n[(1− 1/k)(log(n)− 1)− log(2) + J(�s)− δ2λ′
1 +O(n−1 log(n))])

exp(n[(1− 1/k)(log(n)− 1)− log(2) + J(�s) +O(n−1 log(n))])

= 1− nc exp(−δ2λ′
1n),

where c = Ok(1). This implies the lemma. �
Recall that a k-cycle is a permutation π ∈ Sym(n) of the form π = (v1, . . . ,

vk) for some v1, . . . , vk ∈ [n]. In other words, π has n − k fixed points and one
orbit of size k. The support of π ∈ Sym(n) is the complement of the set of π-fixed
points. It is denoted by supp(π). Two permutations are disjoint if their supports
are disjoint. A permutation π ∈ Sym(n) is a disjoint product of k-cycles if there
exist pairwise disjoint k-cycles π1, . . . , πm such that π = π1 · · ·πm. In this case we
say that each πi is contained in π.

Lemma B.9. Let �t, �u ∈ [0, 1]k+1. Suppose

k∑
i=0

|ti − ui| < δ.

Suppose Sym(n, k;χ,�t) and Sym(n, k;χ, �u) are non-empty (for some integer n and
equitable coloring χ).

For σ, σ′ ∈ Sym(n, k), let |σ � σ′| be the number of k-cycles τ that are either in
σ or in σ′ but not in both. Let

Z = {(σ, σ′) ∈ Sym(n, k;χ,�t)× Sym(n, k;χ, �u) : |σ � σ′| ≤ δn}.
Then Z is non-empty and there exists a probability measure μ on Z with marginals
equal to the uniform probability measures on Sym(n, k;χ,�t) and Sym(n, k;χ, �u) re-
spectively.

Proof. Let ρ ∈ Sym(n) be a disjoint product of k-cycles. The type of ρ with
respect to χ is the vector �r = (ri)

k
i=0 defined by: ri is 1/n times the number of

k-cycles ρ′ contained in ρ such that | supp(ρ′) ∩ χ−1(1)| = i.
Let σ ∈ Sym(n, k;χ,�t). Then there exist disjoint k-cycles σ′

1, . . . , σ
′
m in σ such

that if ρ = σ′
1 · · ·σ′

m and �r = (ri)
k
i=0 is the type of ρ then ri = min(ti, ui). Note

m ≥ n(1/k− δ/2) by assumption on �t and �u. Moreover, there exist k-cycles σ′
m+1,

· · · , σ′
n/k such that the collection σ′

1, . . . , σ
′
n/k is pairwise disjoint and the type of

σ′ = σ′
1 · · ·σ′

n/k is �u. Then |σ � σ′| = 2(n/k − m) ≤ δn. So (σ, σ′) ∈ Z which

proves Z is non-empty.
We claim that there is a constant C1 > 0 such that for every σ ∈ Sym(n, k;χ,�t)

the number of σ′ ∈ Sym(n, k;χ, �u) with (σ, σ′) ∈ Z is C1. Indeed the following
algorithm constructs all such σ′ with no duplications:

Step 1. Let σ = σ1 · · ·σn/k be a representation of σ as a disjoint product of k-cycles.

Choose a vector �r = (ri)
k
i=0 such that

(1) there exists a subset S ⊂ [n/k] with cardinality |S| ≥ n(1/k − δ/2) such
that if ρ =

∏
i∈S σi then �r is the type of ρ;

(2) ri ≤ ui for all i.

Step 2. Choose a subset S ⊂ [n/k] satisfying the condition in Step 1.
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Step 3. Choose pairwise disjoint k-cycles σ′
1, . . . , σ

′
n/k−|S| such that

(1) supp(σi) ∩ supp(σ′
j) = ∅ (∀i ∈ S) (∀j);

(2) σ′
j is not contained in σ (∀j);

(3) if σ′ =
∏

i∈S σi

∏
j σ

′
j then σ′ has type �u.

The range of possible vectors �r in Step 1 depends only on k, n,�t, �u. The number
of choices in Steps 2 and 3 depends only on the choice of �r in Step 1 and on k, n,�t, �u.
This proves the claim.

Similarly, there is a constant C2 > 0 such that for every σ′ ∈ Sym(n, k;χ, �u) the
number of σ ∈ Sym(n, k;χ,�t) with (σ, σ′) ∈ Z is C2. It follows that the uniform
probability measure on Z has marginals equal to the uniform probability measures
on Sym(n, k;χ,�t) and Sym(n, k;χ, �u) respectively. �

Corollary B.10. Let USym(n,k;χ) denote the uniform probability measure on
Sym(n, k;χ) and let ESym(n,k;χ) be the associated expectation operator. There are
constants c, λ > 0 (depending only on k) such that for every δ > 0, there exists Nδ

such that for all n > Nδ, for every 1-Lipschitz f : Sym(n, k;χ) → R,

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > δ

)
≤ c exp(−λδ2n).

Moreover δ �→ Nδ is monotone decreasing.

Proof. The set Sym(n, k;χ) is the disjoint union of Sym(n, k;χ,�t) over �t ∈ [0, 1]k+1.
Let δ > 0. Lemmas B.7, B.8 and B.9 imply that for all sufficiently large n, this
decomposition of Sym(n, k;χ) satisfies the criterion in Lemma B.3 where we set
c = 3, η = exp(−λ1δ

2n) and λ = λ0n where λ0, λ1 > 0 depend only on k. So for
every 1-Lipschitz function f : Sym(n, k;χ) → R, every ε > δ+2η and all sufficiently
large n,

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > ε

)
≤ exp(−λ1δ

2n)+c exp
(
−λ0n (ε− δ − 2η)2

)
.

In particular, there exist Nδ such that if n > Nδ the inequality above holds and
2η < δ. By choosing Nδ larger if necessary, we require that δ �→ Nδ is monotone
decreasing.

Set ε = 3δ. Because ε− δ − 2η ≥ δ

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > 3δ

)
≤ exp(−λ1δ

2n) + c exp
(
−λ0nδ

2
)

≤ (1 + c) exp(−λδ2n),

where λ = min(λ0, λ1). The corollary is now finished by changing variables. �

Proof of Theorem B.1. The space of homomorphisms Homχ(Γ, Sym(n)) is the d-
fold direct power of the spaces Sym(n, k;χ). So the Theorem follows from Corollary
B.10 and the proof of Lemma B.4. �
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