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Learning Improper Fractions with the Number Line and the Area Model 

Number lines and area models are both used pervasively in teaching fractions. Prior 

studies found that second and third graders demonstrated better magnitude knowledge of 

proper fractions after a 15-minute training using the number line as compared to using the 

area model. The current study aimed to extend these findings to improper fractions. We 

randomly assigned fourth and fifth graders to a number line training, an area model 

training, or a non-numerical control condition. The number line and area model trainings 

involved both proper and improper fractions and were closely modeled on the training 

procedures in prior studies. Fraction training with the area model produced improvements 

in children’s area model estimation of proper and improper fractions. However, contrary to 

our expectations, training with the number line did not improve number line estimation, 

and neither training led to improvements in transfer tasks assessing fraction magnitude 

knowledge. These findings suggest that children can develop the skill to represent 

improper fractions on area models with brief training. Nevertheless, it is unclear whether 

this skill enhances a comprehensive understanding of fraction magnitudes. 

Keywords: number line; area model; fractions; intervention 
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Introduction 

Many children and even adults struggle with mastering fractions. On the 2013 National 

Assessment of Educational Progress (NAEP), only 55% of 4th graders chose the correct answer 

to 2/5 + 3/5 + 4/5, and 39% chose 9/15 (an answer that can be obtained by separately adding the 

numerators and the denominators of the three addends; U.S. Department of Education, 2013). 

Children’s poor performance is not restricted to arithmetic: on the 2007 NAEP, only 49% of 8th 

graders correctly ordered three fractions, 2/7, 1/2, and 5/9, from the least to the greatest (Martin, 

Strutchens, & Elliott, 2007). This lack of fraction knowledge often persists into adulthood: in a 

sample of more than 1,600 community college students, only 33% correctly identified the 

smallest among four fractions (Stigler, Givvin, & Thompson, 2010). 

Children’s poor knowledge of fractions is especially unfortunate given the importance of 

mastering fractions for academic achievement, career development, and life functioning. 

Fractions are essential for learning more advanced math, such as algebra (Booth & Newton, 

2012). In nationally-representative US and UK samples, knowledge of fractions in 5th grade 

predicted general math achievement in high school, over and above IQ, working memory, family 

background, and whole number knowledge (Siegler et al., 2012). The importance of fractions 

extends beyond school. In a representative sample of US workers, 68% reported using fractions 

at work (Handel, 2016). Fractions are also ubiquitous in adults’ daily life, such as in adjusting 

recipes, making medical decisions, and managing personal finances (e.g., Reyna, Nelson, Han, & 

Dieckmann, 2009).  

The importance of mastering fractions, and many children’s failure to do so, underscores 

the need for improving fraction instruction. Much intervention research has been done to 

improve children’s fraction understanding (Fazio, Kennedy, & Siegler, 2016; Jordan et al., 2013; 
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Moss & Case, 1999; Saxe et al., 2007). However, many fraction interventions have relatively 

small effects, suggesting that it is hard to mitigate children’s difficulty with fractions and that 

more efforts are needed to develop effective fraction instruction (Hwang, Riccomini, Hwang, & 

Morano, 2019; Misquitta, 2011; Roesslein & Codding, 2019). The current intervention study 

targeted one aspect of fraction instruction, the use of visual representations. In particular, we 

investigated whether learning fractions with the area model or the number line would lead to 

better understanding of fraction magnitude. 

Area models and number lines are frequently used in teaching fractions (National 

Governors Association Center for Best Practices, 2010). Representing fractions on area models 

involves shading parts of whole shapes. For instance, to represent a fraction, x/y, using an area 

model, a 2D shape is divided into y equal segments with x segments shaded (Figure 1A). Such 

representations capture the part-whole meaning of fractions, which might be familiar to children 

given that fractions are frequently used in part-whole contexts in children’s daily life (e.g., 

sharing pizza cut into pieces). However, representing fractions with area models may reinforce 

children’s misconceptions about fractions. Many children tend to view fractions as two separate 

whole numbers (i.e., whole number bias; Ni & Zhou, 2005). Area models may strengthen this 

bias by emphasizing the part (the numerator) and the whole (the denominator) rather than the 

relation between the two (Hamdan & Gunderson, 2017). 

====================== insert Figure 1 about here ======================== 

On number lines, in contrast, fractions are represented as integrated magnitudes. In other 

words, instead of representing fractions using multiple parts, a fraction can be represented on the 

number line as a single mark, with the distance between the mark and the zero point 

corresponding to the magnitude of the fraction (Figure 1B). To determine where a fraction goes 
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on the number line, both the numerator and the denominator of the fraction must be considered 

simultaneously, in relation to one another. This process may help mitigate children’s whole 

number bias, which occurs when students instead consider the numerator and denominator as 

separate whole number magnitudes (Ni & Zhou, 2005). Moreover, number lines take advantage 

of unidimensional mental representations of numbers: extensive behavioral and neuroimaging 

evidence suggests that numbers are represented in a manner similar to a number line, with 

smaller numbers on the left and larger numbers on the right (Ansari, 2008; Dehaene, Bossini, & 

Giraux, 1993; Toomarian & Hubbard, 2018). The number line allows children to integrate 

fractions with whole numbers, which conforms with the developmental trajectory of numerical 

magnitudes set forth by the integrated theory of numerical development (Siegler, Thompson, & 

Schneider, 2011). This theory posits that numerical development is a process of enhancing the 

magnitude representations of a broadening range of numbers and that learning fractions involves 

integrating fractions with existing whole number knowledge. Therefore, compared to the area 

model, using the number line seems to be more beneficial for children’s fraction learning. 

Consistent with this view, several interventions that focused on building fraction 

magnitude knowledge using number lines yielded better learning than regular school curricula 

(Dyson, Jordan, Rodrigues, Barbieri, & Rinne, 2018; Fuchs et al., 2016, 2013, 2014; Saxe et al., 

2007). For example, Fuchs et al. (2013) randomly assigned 4th graders to a 12-week intervention 

focused on learning fraction magnitudes on the number line or to a control curriculum that 

emphasized the part-whole interpretation of fractions with area models. Children who received 

the intervention using the number line improved more on fraction magnitude knowledge and 

arithmetic than those who were in the control condition.  



LEARNING IMPROPER FRACTIONS  
 

 

 

6 

The extensive intervention curricula in these studies involved multiple components 

(Dyson et al., 2018; Fuchs et al., 2016, 2013, 2014; Saxe et al., 2007), making it impossible to 

distinguish the effects of the number line on children’s fraction learning from other intervention 

components. Two recent experiments provided direct evidence for the advantages of using 

number lines, particularly over area models, in learning about fraction magnitude (Gunderson, 

Hamdan, Hildebrand, & Bartek, 2019; Hamdan & Gunderson, 2017). Hamdan and Gunderson 

(2017) randomly assigned 2nd and 3rd graders to a number line training, an area model training, or 

a non-numerical control condition. The number line and the area model trainings involved 

similar procedures and only differed in the visual representation used. After a 15-minute training, 

children in the number line condition were more accurate at estimating fractions on number lines 

than children in the other two conditions. Critically, compared to children in the area model 

training and the control condition, children in the number line training condition were also more 

accurate at comparing fractions, a task which none of the children were directly taught. These 

findings suggest that using number lines is more beneficial than area models for children to 

develop fraction magnitude understanding.  

Gunderson et al. (2019) replicated these findings and demonstrated that the 

unidimensionality of the number line is essential for it to produce superior fraction learning than 

the area model. This study involved four training conditions: pure unidimensional number line 

training (i.e., number lines being pure lines with no width), hybrid unidimensional number line 

training (i.e., number lines being long thin rectangles, same as the number line training condition 

in Hamdan and Gunderson, 2017; Figure 1B), square number line training (i.e., squares that were 

partitioned from left to right and had “0” at the left end and “1” at the right end; Figure 1C), and 

square area model training (Figure 1A). Similar to Hamdan and Gunderson (2017), compared to 
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children who were taught fractions with area models, those who were taught fractions with the 

unidimensional number lines (either pure or hybrid) were more accurate on number line 

estimation and magnitude comparison at posttest, controlling for pretest performance 

(Gunderson et al., 2019). Moreover, children who were taught fractions with two-dimensional 

square number lines showed similar performance at posttest to those who were taught with area 

models. Thus, being unidimensional is an essential feature of number lines to be more beneficial 

than area models for learning fraction magnitudes (Gunderson et al., 2019). 

The main purpose of the current study was to extend prior findings on the advantage of 

the number line over the area model to the learning of improper fractions. Many children 

experience similar, if not more, difficulty understanding improper fractions as compared to 

proper fractions (Resnick et al., 2016; Siegler et al., 2011; D. Zhang, Stecker, & Beqiri, 2017). In 

math class, improper fractions are introduced later than proper fractions (Grade 4 versus Grade 

3; National Governors Association Center for Best Practices, 2010). Before learning improper 

fractions, children’s exposure to fractions has been limited to proper fractions, leading to the 

belief that fractions are always smaller than one (Stafylidou & Vosniadou, 2004). Therefore, 

understanding the magnitudes of improper fractions, which are always greater than one, imposes 

great challenges for many children. Resnick et al. (2016) tracked the development of children’s 

estimation of proper and improper fractions from Grade 4 through 6. They found that most fourth 

graders estimated both proper and improper fractions as being smaller than one. While some 

children’s estimates of improper fractions gradually became reasonably accurate, more than 40% 

of children still estimated improper fractions to be smaller than one in 6th grade. This failure in 

understanding magnitudes of improper fractions is unfortunate as such understanding may be 
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essential for a comprehensive understanding of fraction magnitudes to emerge (Rinne, Ye, & 

Jordan, 2017). 

In the current study, we aimed to test whether the number line or the area model better 

facilitates children’s learning of improper fractions. The number line, which naturally extends 

beyond one, may better facilitate children’s transition from learning proper to improper fractions 

(Tian & Siegler, 2017). In contrast, representing improper fractions on area models may be 

awkward because more than one identical shape, with each shape representing one whole unit, 

must be involved (Behr, Wachsmuth, & Post, 1988; Wu, 2009). Therefore, we expected that 

teaching improper fractions with the number line would lead to greater learning than with the 

area model. 

To test this expectation, we randomly assigned 4th and 5th graders to a number line 

training, an area model training, or a non-numerical control condition. We implemented a 

training design involving a pretest, training, immediate posttest, and delayed posttest. The 

number line and the area model trainings involved both proper and improper fractions and were 

closely modeled on the training procedures in prior studies (Gunderson et al., 2019; Hamdan & 

Gunderson, 2017). The current study employed the hybrid rather than the pure unidimensional 

number line in the training because both Hamdan and Gunderson (2017) and Gunderson et al. 

(2019) used the hybrid number line in the intervention. Moreover, in Gunderson et al. (2019), 

training with both types of unidimensional number lines yielded greater improvement in fraction 

magntiude comparison than training with the square area model; however, only the hybrid 

number line training led to greater improvement than the square number line training. In the 

pretest and posttests of the present study, children completed a number line estimation task, an 

area model estimation task, a magnitude comparison task, and a comparison to one task (on 
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which children judged whether a given fraction was smaller than, equal to, or greater than one). 

To be consistent with prior studies using the number line estimation task (e.g., Gunderson et al., 

2019; Hamdan & Gunderson, 2017; Siegler, Thompson, & Schneider, 2011), pure 

unidimensional number lines, rather than hybrid unidimensional number lines, were employed in 

the pretest and posttests so that our findings would be comparable to prior work. We chose an 

older age group (4th and 5th graders) than prior studies (which focused on 2nd and 3rd graders) 

because improper fractions are taught later than proper fractions in school and because pilot 

testing suggested that this older age group was not at ceiling in improper fraction knowledge. 

Because our study was modeled on prior studies training children on proper fractions, we 

expected to conceptually replicate the results of those studies with improper fraction training 

(Gunderson et al., 2019; Hamdan & Gunderson, 2017). Therefore, we had four preregistered 

hypotheses: 

Hypothesis 1. At the immediate posttest, children in either the number line or the area 

model training condition will be more accurate at estimating fractions on the model they have 

received training on than children in the other two conditions.  

Hypothesis 2. The effects described in Hypothesis 1 will hold on both fractions that 

appear in training and fractions that do not appear in training. 

Hypothesis 3. On the magnitude comparison task at immediate posttest, children in the 

number line condition will have higher accuracy (across all magnitude comparison items) than 

children in the area model condition, and children in the area model condition will have higher 

accuracy than those in the control condition. 
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Hypothesis 4. The effects of condition on magnitude comparison in Hypothesis 3 will be 

present among ambiguous fraction pairs (in which the fraction with the smaller numerator has a 

larger denominator than the other fraction, such as 2/8 vs. 4/6). 

Hypothesis 4 was based on the finding that compared to the area model training, the 

number line training led to greater improvements in comparing ambiguous fraction pairs both in 

Hamdan and Gunderson (2017) and in Gunderson et al. (2019). However, the effect of training 

condition was not consistent across the two studies on whole-number consistent pairs (in which 

the larger fraction also has a larger numerator and a larger denominator than the other fraction, 

such as 8/4 vs. 3/2) or whole-number inconsistent pairs (in which the larger fraction has a 

smaller numerator and a smaller denominator than the other fraction, such as 2/6 vs. ½).  

Besides these four hypotheses, we also explored whether training effects would transfer 

to better performance on an additional task assessing fraction magnitude understanding (i.e., 

comparing fractions to one) and would persist two weeks after training. The study was pre-

registered on the Open Science Framework (OSF; https://osf.io/9wp5r). All study materials, 

deidentified data, and analysis scripts have been made publicly available on OSF 

(https://osf.io/c7a5q). 

Method 

Participants 

Participants were fourth and fifth grade students recruited from six schools (18 

classrooms) in a large city in the northeastern US (n = 133; 66 4th graders; 73 girls; Mage = 10.25, 

SDage = 0.66). One hundred and twenty-nine participants completed all three sessions of the 

study – two participants were absent on one or more testing days, and another two participants 

withdrew during the study. Another 10 participants were excluded because they were tested 
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outside the pre-determined time window (see the Procedure section below for more details). Our 

analytic sample included 119 participants.  

Participants came from diverse backgrounds. Participants’ parents reported their 

children’s race/ethnicity (demographic information reported here and below were of the 119 

participants in the analytic sample; nrace/ethnicity  = 105; 40.0% Caucasian, 24.8% Black/African 

American, 19.0% Hispanic, 6.7% Asian/Asian American, and 9.5% Multi-race), annual family 

income (nfamily income = 90; M = $56,869, SD = 32,290, range = < $15,000 to > $100,000), and 

parental education level (nparental education = 103; years of education: M = 14.54, SD = 2.54, range = 

10 [less than high school] to 18 [graduate degree]). On average, participants came from middle-

income families, and their parents completed 2 years of college.  

Procedure 

Each participant worked with a trained experimenter for three 20- to 30-minute sessions 

in a quiet space at their school. In Session 1, participants completed the pretest. In Session 2, 

participants were randomly assigned, within each classroom, to the number line training 

condition, the area model training condition, or the non-numerical control condition. After about 

15 - 20 minutes of training (or control activities), participants completed the immediate posttest. 

In Session 3, participants completed the delayed posttest. Session 2 was planned to be 

administered within seven days after Session 1, and Session 3 was planned to be administered 

between 14-16 days after Session 2. Due to scheduling errors, 10 participants were tested outside 

of the 14-16-day time window between Sessions 2 and 3 and were thus excluded from the 

sample based on our pre-registered Sampling Plan. The remaining sample included 119 

participants, with 40 in the number line training condition, 41 in the area model training 
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condition, and 38 in the non-numerical control condition. The average time between Sessions 1 

and 2 was 2.97 days (SD = 1.19) and between Sessions 2 and 3 was 14.26 days (SD = 0.48). 

The pretest and both posttests (immediate and delayed) consisted of the same four tasks: 

number line estimation, area model estimation, magnitude comparison, and comparison to one 

(see Figure 2 for an example problem from each task). The two estimation tasks were 

administered using PDF Expert (Readdle Inc., 2019) on an iPad, and the other two tasks were 

administered using E-Prime 2.0 (Schneider, Eschman, & Zuccolotto, 2002) on a laptop 

computer. The four tasks were presented in one of two orders, the following order or the reverse 

of this order: number line estimation, comparison to one, magnitude comparison, and area model 

estimation. Participants completed the four tasks in one order in the pretest and delayed posttest, 

and in the other order in the immediate posttest. The order of tasks was randomly assigned to 

each participant. 

====================== insert Figure 2 about here ======================== 

Training conditions 

In the two fraction training conditions, the experimenter showed participants how to 

represent fractions on number lines or area models, and participants practiced representing 

fractions with feedback. The training procedures were developed based on prior studies 

(Gunderson et al., 2019; Hamdan & Gunderson, 2017) and were parallel between the number 

line and the area model conditions (see Figure 3 for an overview of the training procedures and 

Supplementary Materials Sections A - C for the scripts used in the training and the control 

condition).  

====================== insert Figure 3 about here ======================== 
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At the beginning of the training, fractions were introduced as numbers that have a 

number on the top (i.e., the numerator) and a number on the bottom (i.e., the denominator). Then, 

participants were taught to represent fractions in three steps: 1) segment each unit of the visual 

representations (each unit of a visual representation represents one) into the number of equal 

segments corresponding to the denominator, 2) shade the number of segments corresponding to 

the numerator, and 3) label the visual representation by drawing a hash mark at the end of the 

shaded segments (number line training) or circling the shaded segments (area model training) 

and by writing the fraction next to the hash mark or the circle.  

Participants were taught to represent eight fractions during training (3/2, 1/2, 5/2, 3/4, 

7/4, 12/5, 2/5, and 4/5, in that order). For each fraction, participants practiced each of the three 

steps following the experimenter’s explanation of that step. If a participant performed a step 

incorrectly, the experimenter would demonstrate how to correctly perform that step and ask the 

participant to practice that step along with the steps leading up to it again on a blank number line 

or area model. For example, if a participant incorrectly labeled a fraction on the number line, the 

participant would be asked to segment, shade, and label a blank number line for that fraction. For 

fractions 3/2, 3/4, and 12/5 (the first fraction in each group of fractions with the same 

denominator), the experimenter demonstrated each step before the participant’s practice. Each 

training session took approximately 15 to 20 minutes and was administered with PDF Expert 

(Readdle Inc., 2019) on an iPad. 

Number line training  

Participants in the number line training condition (n = 40) were taught to show fractions 

on 0-3 number lines with labeled hash marks at 1 and 2 (Figure 3A). The number line (8 mm 

high × 180 mm wide) was similar to the “hybrid” number line in Gunderson et al. (2019). In the 
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training, the experimenter demonstrated representing fractions by segmenting each unit of the 

number line with vertical hash marks, shading segments from left to right, and labeling a longer 

hash mark at the end of the shaded portion with the represented fraction. 

Area model training  

Participants in the area model training condition (n = 41) were taught to show fractions 

on three squares (each square was 50 mm × 50 mm) with the numbers 1, 2, or 3 above the 

middle of each square. In the training, the experimenter demonstrated representing fractions by 

segmenting each square area model with vertical lines; shading the segments from left to right; 

and finally, circling the shaded portion and writing the represented fraction next to the shaded 

portion. In the area model training (but not the number line training), it was considered correct if 

participants segmented using horizontal or diagonal lines or shaded in a different order than from 

left to right. 

Non-numerical control 

Participants in the non-numeric control condition (n = 38) worked on crossword puzzles 

in collaboration with the experimenter. The activity lasted for 18 minutes, which was similar in 

length to the number line or area model training session based on pilot testing. Participants 

referred to crossword puzzle clues and had the option to use word banks for each puzzle printed 

on paper. There were six puzzles available for the participant to complete, and no participant 

completed all six puzzles. 

Pretest and posttest measures 

Number line estimation 

In this task, participants were asked to show fractions on 0-3 number lines (Figure 2A). 

At the beginning of the task, the experimenter illustrated where 1/2 goes on the number line. 



LEARNING IMPROPER FRACTIONS  
 

 

 

15 

Then, participants were asked to represent 12 fractions (i.e. 3/4, 4/5, 2/5, 2/6, 3/5, 2/3, 7/4, 12/5, 

5/2, 6/5, 7/6, and 8/3). Among the 12 fractions, six were proper fractions, and six were improper 

fractions; and six fractions were included in the number line and area model training, and six 

were not. Participants received the 12 fractions in a predetermined random order or the reverse of 

that order.  

On each trial, participants’ response value was calculated by dividing the length between 

the zero endpoint and the hash mark drawn by the participants by the total length of the line (i.e., 

180 mm) and then multiplying the quotient by the number line range (i.e., 3). For example, if the 

length between the hash mark and the zero endpoint was 90 mm, the response value = 90/180 × 

3 = 3/2. Trained researchers scored participants’ responses (see Supplementary Materials, 

Section D for detailed coding scheme adapted from Gunderson et al., 2019, Appendix D) and 

calculated percent absolute error (PAE) for each item: (|response value - correct value|)/(number 

line range). For example, if the participant was asked to represent 4/5 and responded at a point 

equivalent to 3/2, PAE = |3/2 – 4/5|/3 = 0.23. Individual PAEs were averaged for the analyses. 

Internal consistency of the task was adequate (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .69,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

 .73,𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .67).  

Area model estimation 

In this task, participants were asked to show fractions on area models. The area model 

consisted of three squares (50 mm high × 50 mm wide) presented side by side (Figure 2B). At 

the beginning of the task, the experimenter demonstrated 1/2 on the area model by shading 1/2 of 

the leftmost square. Then, participants were asked to show each of the same 12 fractions as in the 

number line estimation task on area models. On each trial, participants’ response value was 

calculated by dividing the shaded pixels by the total pixels of the three squares and then 



LEARNING IMPROPER FRACTIONS  
 

 

 

16 

multiplying the quotient by the numerical range of the area models (i.e., 3). Trained researchers 

scored participants’ responses by calculating the pixels of shaded area using Adobe Photoshop 

2017 (Faulkner & Chavez, 2017; see Supplementary Materials, Section D for detailed coding 

scheme adapted from Gunderson et al., 2019, Appendix D) and calculated the PAE for each trial: 

(|response value - correct value|)/(total area). Individual PAEs were averaged for the analyses. 

Reliability was good (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .76,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .88,𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .86).  

Magnitude comparison 

In this task, participants were asked to choose the larger fraction in each pair of fractions 

(Figure 2C). On each trial, participants were asked to press the yellow button (the “A” key 

covered with a yellow sticker) if the fraction on the left was larger or the blue button (the “L” 

key covered with a blue sticker) if the fraction on the right was larger. The fraction pair remained 

on the screen until a valid response was detected. Each trial was preceded by a blank screen of 

500ms. Participants were asked to respond as quickly and accurately as possible.  

Each participant completed 24 trials, with a unique pair of fractions on each trial (see 

Supplementary Materials Table E1 for the fraction pairs). Among the 24 fraction pairs, eight 

included a proper and an improper fraction, eight included two improper fractions, and eight 

included two proper fractions. As in past studies (Gunderson et al., 2019; Hamdan and 

Gunderson, 2017), the fraction pairs included “consistent” pairs (6 items), “inconsistent” pairs (6 

items), and “ambiguous” pairs (12 items). In the consistent pairs, the larger fraction also had a 

larger numerator and larger denominator than the other fraction (e.g., 8/4 vs. 3/2). Conversely, in 

the inconsistent pairs, the larger fraction had a smaller numerator and denominator than the other 

fraction (e.g., 2/6 vs. 1/2). In the ambiguous pairs, the fraction with the smaller numerator had a 

larger denominator than the other fraction (e.g., 2/8 vs. 4/6). We deliberately included more 
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ambiguous pairs to increase our power of detecting the effect of interest in Hypothesis 4. Order 

of fraction pairs was randomized for each participant. Children’s accuracy was scored by 

calculating the percentage of items answered correctly. Reliability was fair overall (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

 .71,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .71,𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .76) and excellent for each item type 

(𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  .92,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  .93,𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  .91). 

Comparison to one 

In this task, participants were asked to judge whether a fraction was less than 1, equal to 

1, or greater than 1. On each trial, a fraction was presented in the center of the screen with the 

three options (i.e., “less than one”, “equal to one”, and “greater than one”) below it (Figure 2D). 

Participants were asked to press the yellow button (the “A” key covered with a yellow sticker) if 

the fraction was less than one, the green button (the “G” key covered with a green sticker) if the 

fraction was equal to one, or the blue button (the “L” key covered with a blue sticker) if the 

fraction was greater than one. The problem remained on the screen until a valid response was 

detected. Each trial was preceded by a blank screen of 500ms. Participants were asked to respond 

as quickly and accurately as possible.  

Each participant completed 16 trials. Among the 16 fractions, 12 were the same fractions 

as in the number line and area model estimation tasks (6 proper fractions and 6 improper 

fractions), and four were fractions equal to one (2/2, 3/3, 4/4, and 6/6). Order of the trials was 

randomized for each participant. Children’s accuracy was scored by calculating the percentage of 

items answered correctly. Reliability was good overall (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .83,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

 .82,𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  .84). 
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Results 

Data exclusion 

According to our preregistered data analysis plan, participants’ data were excluded from 

analyses of a task (or a subset of items in a task, e.g., ambiguous magnitude comparison items) if 

they did not finish at least half of the relevant items. Among the participants included in each 

analysis, we used the mean scores of each participant’s available trials relevant to that analysis. 

We also preregistered that we would exclude a participant if the experimenter made an error 

during training. No participants needed to be excluded for this reason.  

Descriptive statistics 

Table 1 shows descriptive statistics of children’s demographic characteristics as well as 

performance on each task at pretest, immediate posttest, and delayed posttest by condition (see 

Supplementary Materials, Section F for descriptive statistics of children’s performance on 

different types of problems on each measure at pretest and posttests). Analyses comparing 

demographic characteristics and performance on each task at pretest revealed no differences 

among children assigned to each condition.  

Table 2 shows the correlations among all measures collapsed across conditions. Notably, 

accuracy of concurrent fraction measures did not correlate or only weakly correlated with each 

other (.02 < |r| < .32). For each fraction measure, accuracy across the three testing sessions 

correlated moderately to strongly (.38 < |r| < .64). Among all fraction measures at pretest and 

posttests, grade level only correlated with accuracy on the comparison to one task at pretest.  

==================== insert Tables 1 & 2 about here ====================== 
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Preregistered analyses 

Based on our preregistered analysis plan, we conducted analyses of covariance 

(ANCOVA) to test each of the four hypotheses. In each ANCOVA, the dependent variable was 

children’s mean score on a measure at immediate posttest. Condition (i.e., number line training, 

area model training, or cross-word puzzle control) was entered as the independent variable, and 

children’s age and mean score on the same measure at pretest were entered as covariates. In 

cases where a significant effect of condition was found, pairwise comparisons between 

conditions based on the estimated marginal (EM) means from each ANCOVA were conducted. 

The Bonferroni correction was applied to adjust for multiple comparisons. 

In all the ANCOVA analyses reported below, pretest scores significantly predicted 

posttest scores, but age did not. Only the effects of condition are reported below (see 

Supplementary Materials, Section G for detailed statistics on the effects of pretest scores and 

age). 

Hypothesis 1 

We expected children in either of the two training conditions to be more accurate at 

estimating fractions on the model that they received training on than children in the other two 

conditions at immediate posttest (Hypothesis 1). As expected, PAE on area model estimation at 

immediate posttest significantly differed across conditions, after adjusting for age and PAE on 

area model estimation at pretest, F (2, 114) = 27.25, p < .001, 𝜂𝜂𝑝𝑝2= .32 (Figure 4A).  

======================== insert Figure 4 about here ======================== 

Post-hoc analyses revealed that PAE on area model estimation at immediate posttest was 

significantly smaller among children in the area model training condition (EM mean = 0.08, SE = 

0.02) than those in the number line training condition (EM mean = 0.22, SE = 0.02), p.adj < 
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.001, and those in the cross-word puzzle control condition (EM mean = 0.22, SE = 0.02), p.adj < 

.001. However, controlling for age and PAE on number line estimation at pretest, PAE on 

number line estimation at immediate posttest did not differ across conditions, F (2, 108) = 0.44, 

p = .644, 𝜂𝜂𝑝𝑝2= .01 (Figure 4B).  

Hypothesis 2 

Children in the area model condition yielded more accurate estimates of fractions on area 

models than children in the other two conditions at immediate posttest, and we expected this 

effect to hold for both the trained and untrained fractions (Hypothesis 2). As expected, on area 

model estimation, a significant effect of condition emerged for PAE of both trained and 

untrained fractions at immediate posttest, adjusting for pretest PAE and age (trained fractions, F 

(2, 114) = 25.76, p < .001, 𝜂𝜂𝑝𝑝2= .31; untrained fractions, F (2, 114) = 21.77, p < .001, 𝜂𝜂𝑝𝑝2 = .28). 

Post-hoc analyses showed that children in the area model condition yielded significantly smaller 

area model PAEs on both trained (EM mean = 0.09, SE = 0.02) and untrained fractions (EM 

mean = 0.07, SE = 0.02) at immediate posttest than children in the number line condition 

(trained, EM mean = 0.22, SE = 0.02; untrained, EM mean = 0.21, SE = 0.02) and than children 

in the cross-word puzzle condition (trained, EM mean = 0.23, SE = 0.02; untrained, EM mean = 

0.22, SE = 0.02), p.adjs < .001.  

Hypothesis 3 

For the magnitude comparison task at immediate posttest, we hypothesized that children 

in the number line condition would have higher accuracy than children in the area model 

condition, and children in the area model condition would have higher accuracy than those in the 

crossword puzzle control condition. However, controlling for accuracy on magnitude comparison 
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at pretest and children’s age, no difference in accuracy at immediate posttest was seen across 

conditions, F (2, 113) = 1.36, p = .261, 𝜂𝜂𝑝𝑝2= .02 (Figure 4C).  

Hypothesis 4 

We hypothesized that the effects of condition on magnitude comparison in Hypothesis 3 

would be present among ambiguous items. However, similar to the lack of effect of condition on 

overall magnitude comparison accuracy, we found no significant effect of condition on 

magnitude comparison of ambiguous items, F (2, 113) = 0.17, p = .847, 𝜂𝜂𝑝𝑝2< .01. 

In summary, only children who received area model training, but not those who received 

number line training, estimated fractions more accurately on the models they were trained on in 

the immediate posttest. However, the area model training did not lead to significantly higher 

accuracy on the magnitude comparison task.  

Exploratory analyses 

We conducted exploratory analyses to understand the scope of improvement among 

children who received area model training and the lack of learning among children who received 

number line training. Similar to the pre-registered analyses, when comparing performance across 

conditions on posttests, we conducted ANCOVAs with pretest performance and age as 

covariates and condition as the independent variable. In cases where there was a significant 

effect of condition, we conducted post-hoc pairwise comparisons of estimated marginal means 

with the Bonferroni correction. 

Scope of improvement among children who received area model training  

We first explored whether area model training led to more accurate estimates of both 

proper and improper fractions on the area model. Separate ANCOVAs on PAE of area model 

estimation, adjusting for pretest accuracy and children’s age, were conducted for proper and 



LEARNING IMPROPER FRACTIONS  
 

 

 

22 

improper fractions. Both ANCOVAs yielded a significant effect of condition (proper fractions, F 

(2, 114) = 10.08, p < .001, 𝜂𝜂𝑝𝑝2 = .15; improper fractions, F (2, 113) = 29.06, p < .001, 𝜂𝜂𝑝𝑝2 = .34). 

Post-hoc analyses revealed that children in the area model condition had significantly smaller 

PAEs on both proper (EM mean = 0.05, SE = 0.02) and improper fractions (EM mean = 0.10, SE 

= 0.02) at immediate posttest than children in the number line condition (proper fractions, EM 

mean = 0.17, SE = 0.02; improper fractions, EM mean = 0.26, SE = 0.02) and children in the 

cross-word puzzle condition (proper fractions, EM mean = 0.15, SE = 0.02; improper fractions, 

EM mean = 0.31, SE = 0.02), p.adjs < .01. 

Next, we examined whether children’s improvement in area model estimation transferred 

to higher accuracy on the comparison to one task. Adjusting for pretest accuracy of the same task 

and children’s age, there was no significant effect of condition on accuracy at immediate 

posttest, F (2, 108) = 0.04, p = .964, 𝜂𝜂𝑝𝑝2 < .01 (Figure 4D). 

Additionally, we explored whether children’s improvement in area model estimation after 

area model training remained on the delayed posttest. Adjusting for pretest PAE on area model 

estimation and age, PAE on area model estimation at delayed posttest significantly differed by 

condition, F (2, 112) = 4.91, p = .009, 𝜂𝜂𝑝𝑝2= .08 (Figure 4A). Post-hoc analyses showed that 

children in the area model condition yielded significantly smaller PAEs (EM mean = 0.16, SE = 

0.02) than those in the number line condition (EM mean = 0.23, SE = 0.02), p.adj = .008, but not 

than those in the cross-word puzzle condition (EM mean = 0.21, SE = 0.02), p.adjs = .130. 

Therefore, after learning how to estimate fractions on area models, children’s 

improvement in area model estimation persisted to some extent on the delayed posttest, which 

was administered around two weeks after training. Yet the improvement on area model 
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estimation did not transfer to any of the other tasks in the current study (number line estimation, 

magnitude comparison, and comparison to one). 

Lack of improvement among children who received number line training 

We first examined whether children in the number line training condition at least 

improved on estimating the same fractions that they received training on. Results of the 

ANCOVA on PAE of number line estimation of the trained fractions suggested that they did not; 

no effect of condition arose, F (2, 108) = 0.53, p = .593, 𝜂𝜂𝑝𝑝2 = .01.  

Then, we examined whether children in the number line training condition at least 

improved on estimating proper fractions, on which improvements have been seen in prior studies 

with similar training (Gunderson et al., 2019; Hamdan & Gunderson, 2017). We did not find 

evidence for improvement even on proper fractions: results of the ANCOVA on PAE of number 

line estimation of proper fractions suggested that children in the number line training condition 

performed similarly at posttest as those in the other two conditions, F (2, 108) = 1.45, p = .240, 

𝜂𝜂𝑝𝑝2 = .03.  

Finally, we explored the possibility that the number line training procedure was more 

confusing for children than the area model training procedure. To do so, we compared the 

number of training trials on which children received corrective feedback between the two 

training conditions. During training, corrective feedback was provided when a child performed a 

step incorrectly following the experimenter’s instructions on that step. Receiving a large number 

of corrective feedback trials suggests difficulty in understanding the experimenter’s instructions. 

For children in the two training conditions, an analysis of variance (ANOVA) with training 

condition as the between-subject variable showed that children in the number line condition (M = 

2.42, SD = 3.02) received corrective feedback on a marginally greater number of training trials 
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than those in the area model condition (M = 1.46, SD = 1.55), F (1, 79) = 3.27, p = .074, 𝜂𝜂𝑝𝑝2 = 

.04. 

Discussion 

In prior studies, using the number line, as compared to the area model, in teaching 

fractions led to better fraction magnitude knowledge among children (Dyson et al., 2018; Fuchs 

et al., 2016, 2013, 2014; Gunderson et al., 2019; Hamdan & Gunderson, 2017; Moss & Case, 

1999; Saxe et al., 2007). The current study extended this work by testing the effects of a brief 

training on improper fractions with the number line versus the area model. Unexpectedly, 

fraction training with the area model produced improvements in children’s area model estimation 

of proper and improper fractions but training with the number line did not improve number line 

estimation. Further, neither training led to improvements in transfer tasks assessing fraction 

magnitude knowledge. We discuss potential reasons for these unexpected results, implications of 

these findings for learning improper fractions, and implications for educational practice. 

We expected the number line to better support children’s learning of improper fractions 

than the area model. However, contrary to this expectation, compared to children in the number 

line or the control condition, children who were taught fractions with the area models estimated 

both proper and improper fractions more accurately on the area model at immediate posttest. The 

improvement brought by the area model training was not only greater than the number line 

training or the control activities but also impressive in absolute terms: among children who 

received the area model training, PAE of area model estimation decreased from 0.25 to 0.08 

from pretest to posttest. Two weeks after training, children in the area model condition 

persistently yielded more accurate estimates on area model estimation than those in the number 

line condition (but not more accurate than those in the control condition). In contrast, children 
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who received the number line training were no better than children in the area model or the 

control condition at estimating fractions on the number line after training – not even on 

estimating the fractions on which they received training. In prior work training proper fractions 

(Gunderson et al., 2019), number line training also appeared to transfer to area model estimation, 

in that both trainings led to equivalent area model estimation performance. This was not the case 

in our study, providing further evidence that the number line training in the present study was not 

effective at improving fraction concepts. 

One reason for the ineffectiveness of the number line training might be that the training 

procedures were hard to follow. We developed the procedures for both the number line and the 

area model training based on prior interventions that enhanced 2nd and 3rd graders’ magnitude 

knowledge of proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 2017). The 

training included the same steps (i.e., segment, shade, and label) and lasted a similar amount of 

time as in prior studies (i.e., 15 minutes). However, because the current training involved both 

proper and improper fractions, children may have found the training more difficult to understand 

than in prior studies, which only involved proper fractions. Consistent with this idea, whereas 

prior number line training with only proper fractions led to more accurate estimates of proper 

fractions on the number line than the area model training and the control activity (Gunderson et 

al., 2019; Hamdan & Gunderson, 2017), children who completed number line training in the 

current study did not improve at estimating proper fractions. Training being hard to follow might 

be more evident in the number line than in the area model condition because children are more 

familiar with the area model than the number line for representing fractions (Ni, 2001; X. Zhang, 

Clements, & Ellerton, 2015). Consistent with this view, during training, children in the number 

line condition tended to execute procedures incorrectly more often than children in the area 
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model condition. Future studies should explore whether a more extensive number line training 

(e.g., training children on more fractions and providing more trials of experimenter 

demonstrations) would yield greater learning outcomes. 

The effectiveness of the area model training and the ineffectiveness of the number line 

training might also be due to the limitations of the stimuli used in training and at posttest. We 

expected the continuous number line to support learning of improper fractions because number 

lines naturally extend beyond one. To convert a 0-1 number line to represent improper fractions, 

one only needs to extend the number line beyond the endpoint of 1. Such a representation is 

analogous with the mental number line, on which proper fractions, the number one, and improper 

fractions are ordered in a continuous manner (Dehaene, 1992). In contrast, converting a one-unit 

area model to incorporate improper fractions requires adding discrete shapes identical to the one-

unit model (Behr et al., 1988; Wu, 2009). The area models employed in the current study (i.e., 

three blank squares; Figure 2B), however, eliminated the potential difficulty of adding identical 

shapes – because three shapes were already provided, children did not have to actively extend a 

one-unit area model to a multi-unit area model to represent improper fractions. 

Moreover, the perceptual dissimilarity between the number lines used in training and at 

posttest might be another reason why no improvement was seen on number line estimation. The 

number line used at posttest had labeled endpoints at 0 and 3 but did not have hash marks or 

numerical labels at 1 and 2, whereas the number line used in the training did. In the training, we 

included the hash marks and numerical labels with the goal of helping students connect fraction 

magnitudes to their existing whole-number knowledge. However, we did not include them in the 

number line estimation task at posttests to be consistent with prior studies using this task (e.g., 

Gunderson et al., 2019; Hamdan & Gunderson, 2017; Siegler, Thompson, & Schneider, 2011). 
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Eliminating the hash marks and labels at 1 and 2 may have substantially increased the difficulty 

of representing fractions on the number line: Most of children’s successful strategies of 

estimating fractions on number lines beyond 1 involve an initial step of segmenting the number 

line into whole number units, and some children have trouble with this step (D. Zhang et al., 

2017). Although the area models in the training also had numerical labels (i.e., 1, 2, and 3), 

eliminating these labels from the area models at posttest may not impose much difficulty as the 

three squares had clear boundaries for them to be considered as three whole number units. Future 

research should explore whether these perceptual features of the number line and the area model 

influence children’s performance of estimating fractions on them.  

Implications for Learning Improper Fractions 

The effectiveness of number line training for improving proper fraction knowledge in 

prior studies, and the ineffectiveness of similar number line training for improving improper 

fraction knowledge in the current study, suggest that improper fraction magnitudes might be 

harder to learn than proper fraction magnitudes. In two prior studies, a 15-minute number line 

training effectively improved knowledge of proper fractions among second and third graders 

who had limited formal instruction on fractions (Gunderson et al., 2019; Hamdan & Gunderson, 

2017). Although the current study involved older students (i.e., fourth and fifth graders), a 

number line training similar to that in the prior studies failed to yield any learning of fraction 

magnitudes. The lack of learning was not due to ceiling performance at pretest: the PAE of 

number line estimation among children in the number line condition was 0.28, similar to that on 

area model estimation, which decreased substantially after area model training.  

One reason for improper fractions to be harder than proper fractions might arise from the 

process of integrating improper fractions with existing whole number knowledge. The integrated 



LEARNING IMPROPER FRACTIONS  
 

 

 

28 

theory of numerical development posits that learning new types of numbers involves extending 

existing number knowledge, and understanding fractions requires integrating fractions with 

existing whole number knowledge (Siegler et al., 2011). This integration process can be 

challenging. Much of the difficulty in learning fractions is due to overgeneralization of whole 

number knowledge (Ni & Zhou, 2005). As compared to proper fractions, learning improper 

fractions may impose an additional challenge: the magnitudes of improper fractions may fall 

between any two whole numbers whereas proper fractions are always between 0 and 1. Learning 

magnitudes of improper fractions may thus require fluency in whole number arithmetic, 

particularly division. 

Another reason that improper fractions may be challenging is that understanding 

improper fraction magnitudes requires inhibiting the tendency to treat all fractions as smaller 

than one. The tendency to treat all fractions as smaller than one is seen when children estimate 

fractions on the number line (Resnick et al., 2016) and when children reason about whether there 

is a smallest or biggest fraction (Stafylidou & Vosniadou, 2004). In the current study, most 

children did not seem to explicitly hold such a belief given that their performance on the 

comparison to one task was well above chance. However, even college students have this 

tendency to treat all fractions as being smaller than one on tasks involving automatic processing 

of fraction magnitudes (Kallai & Tzelgov, 2009). It is likely that for children to learn and process 

the magnitudes of improper fractions, they need to inhibit an implicit tendency to treat all 

fractions as smaller than one. 

Although the present training on improper fractions was closely matched to prior ones on 

proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 2017), there are still important 

differences between the trainings. For example, the prior and current trainings both lasted about 
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15 minutes, but the prior training only involved proper fractions whereas the current involved 

both proper and improper fractions. This and other differences preclude direct comparison 

between the prior and current findings to reveal whether learning improper fractions is more 

challenging than learning proper fractions. To better understand whether and, if so, why learning 

improper fractions is harder than proper fractions, future studies need to closely match the proper 

and improper fraction trainings and include measures of factors that might contribute to 

differences in learning proper and improper fractions, such as whole number arithmetic fluency 

and inhibition. 

Educational implications 

Our findings indicate that children can learn to represent improper fractions on the area 

model with brief training, and this learning can last at least two weeks after training. 

Representing improper fractions with the area model can be challenging (Behr et al., 1988; Wu, 

2009). Nevertheless, children in the current study quickly learned how to do so after a 15-minute 

training, during which they saw the experimenter show three fractions on the area model and 

practiced and received feedback on eight fractions.  

However, it is less clear whether progress in estimating fractions on the area model 

promoted a comprehensive understanding of fraction magnitudes. Despite the considerable 

improvement in area model estimation, children who received the area model training did no 

better than other children who received the number line training or control activities on any other 

fraction tasks in the current study (i.e., number line estimation, fraction magnitude comparison, 

and comparison to one). These findings are in sharp contrast with prior interventions, in which 

the number line training not only led to more accurate number line estimation than the other 

conditions, but also transferred to fraction magnitude comparison (Gunderson et al., 2019; 
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Hamdan & Gunderson, 2017) and led to similar improvement in area model estimation as the 

area model training (Gunderson et al., 2019). However, they are in line with other findings that 

many children who could successfully express fractions on the area model did not develop 

conceptual understanding of fractions in non-area-model contexts (X. Zhang et al., 2015). It is 

possible that, given appropriate dosage and scaffolding, estimating fractions on the number line 

would better facilitate the development of a comprehensive understanding of fraction magnitudes 

than on the area model. It is also possible that children need more scaffolding to transfer the 

improvement in the area model estimation task to solving other fraction tasks, for example, by 

triggering children’s awareness of the relations between the tasks (Cooper & Sweller, 1987). 

These possibilities should be examined in future research. 
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Figure 1. Example of representation of the fraction 1/4 with (A) an area model, (B) a number 

line, and (C) a two-dimensional square number line (adapted from “Number Line 

Unidimensionality Is a Critical Feature for Promoting Fraction Magnitude Concepts,” By E. 

Gunderson et al., 2019, Journal of Experimental Child Psychology, 187, p. 4. Copyright 2019, 

Elsevier Inc.) 
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Figure 2. Example items of (A) the number line estimation task, (B) the area model estimation 

task, (C) the magnitude comparison task, and (D) the comparison to one task. 
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 (A)  Number Line Training 
 

(B) Area Model Training 

Blank Stimulus 

  

(1) Segment 

  

(2) Shade 

  

(3) Label 

  
 

 

Figure 3. Procedures of (A) number line training and (B) area model training. 
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Figure 4. Performance on (A) area model estimation, (B) number line estimation, (C) 

magnitude comparison, and (D) comparison to one at immediate posttest and delayed 

posttest. Values are adjusted means, controlling for age and pretest performance on the same 

measure. Error bars represent one standard error. ** p < .01; *** p < .001.  
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