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Learning Improper Fractions with the Number Line and the Area Model

Number lines and area models are both used pervasively in teaching fractions. Prior
studies found that second and third graders demonstrated better magnitude knowledge of
proper fractions after a 15-minute training using the number line as compared to using the
area model. The current study aimed to extend these findings to improper fractions. We
randomly assigned fourth and fifth graders to a number line training, an area model
training, or a non-numerical control condition. The number line and area model trainings
involved both proper and improper fractions and were closely modeled on the training
procedures in prior studies. Fraction training with the area model produced improvements
in children’s area model estimation of proper and improper fractions. However, contrary to
our expectations, training with the number line did not improve number line estimation,
and neither training led to improvements in transfer tasks assessing fraction magnitude
knowledge. These findings suggest that children can develop the skill to represent
improper fractions on area models with brief training. Nevertheless, it is unclear whether

this skill enhances a comprehensive understanding of fraction magnitudes.
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Introduction

Many children and even adults struggle with mastering fractions. On the 2013 National
Assessment of Educational Progress (NAEP), only 55% of 4" graders chose the correct answer
to 2/5 +3/5 +4/5, and 39% chose 9/15 (an answer that can be obtained by separately adding the
numerators and the denominators of the three addends; U.S. Department of Education, 2013).
Children’s poor performance is not restricted to arithmetic: on the 2007 NAEP, only 49% of 8™
graders correctly ordered three fractions, 2/7, 1/2, and 5/9, from the least to the greatest (Martin,
Strutchens, & Elliott, 2007). This lack of fraction knowledge often persists into adulthood: in a
sample of more than 1,600 community college students, only 33% correctly identified the
smallest among four fractions (Stigler, Givvin, & Thompson, 2010).

Children’s poor knowledge of fractions is especially unfortunate given the importance of
mastering fractions for academic achievement, career development, and life functioning.
Fractions are essential for learning more advanced math, such as algebra (Booth & Newton,
2012). In nationally-representative US and UK samples, knowledge of fractions in 5 grade
predicted general math achievement in high school, over and above IQ, working memory, family
background, and whole number knowledge (Siegler et al., 2012). The importance of fractions
extends beyond school. In a representative sample of US workers, 68% reported using fractions
at work (Handel, 2016). Fractions are also ubiquitous in adults’ daily life, such as in adjusting
recipes, making medical decisions, and managing personal finances (e.g., Reyna, Nelson, Han, &
Dieckmann, 2009).

The importance of mastering fractions, and many children’s failure to do so, underscores
the need for improving fraction instruction. Much intervention research has been done to

improve children’s fraction understanding (Fazio, Kennedy, & Siegler, 2016; Jordan et al., 2013;
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Moss & Case, 1999; Saxe et al., 2007). However, many fraction interventions have relatively
small effects, suggesting that it is hard to mitigate children’s difficulty with fractions and that
more efforts are needed to develop effective fraction instruction (Hwang, Riccomini, Hwang, &
Morano, 2019; Misquitta, 2011; Roesslein & Codding, 2019). The current intervention study
targeted one aspect of fraction instruction, the use of visual representations. In particular, we
investigated whether learning fractions with the area model or the number line would lead to
better understanding of fraction magnitude.

Area models and number lines are frequently used in teaching fractions (National
Governors Association Center for Best Practices, 2010). Representing fractions on area models
involves shading parts of whole shapes. For instance, to represent a fraction, x/y, using an area
model, a 2D shape is divided into y equal segments with x segments shaded (Figure 1A). Such
representations capture the part-whole meaning of fractions, which might be familiar to children
given that fractions are frequently used in part-whole contexts in children’s daily life (e.g.,
sharing pizza cut into pieces). However, representing fractions with area models may reinforce
children’s misconceptions about fractions. Many children tend to view fractions as two separate
whole numbers (i.e., whole number bias; Ni & Zhou, 2005). Area models may strengthen this
bias by emphasizing the part (the numerator) and the whole (the denominator) rather than the

relation between the two (Hamdan & Gunderson, 2017).

insert Figure 1 about here

On number lines, in contrast, fractions are represented as integrated magnitudes. In other
words, instead of representing fractions using multiple parts, a fraction can be represented on the
number line as a single mark, with the distance between the mark and the zero point

corresponding to the magnitude of the fraction (Figure 1B). To determine where a fraction goes
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on the number line, both the numerator and the denominator of the fraction must be considered
simultaneously, in relation to one another. This process may help mitigate children’s whole
number bias, which occurs when students instead consider the numerator and denominator as
separate whole number magnitudes (Ni & Zhou, 2005). Moreover, number lines take advantage
of unidimensional mental representations of numbers: extensive behavioral and neuroimaging
evidence suggests that numbers are represented in a manner similar to a number line, with
smaller numbers on the left and larger numbers on the right (Ansari, 2008; Dehaene, Bossini, &
Giraux, 1993; Toomarian & Hubbard, 2018). The number line allows children to integrate
fractions with whole numbers, which conforms with the developmental trajectory of numerical
magnitudes set forth by the integrated theory of numerical development (Siegler, Thompson, &
Schneider, 2011). This theory posits that numerical development is a process of enhancing the
magnitude representations of a broadening range of numbers and that learning fractions involves
integrating fractions with existing whole number knowledge. Therefore, compared to the area
model, using the number line seems to be more beneficial for children’s fraction learning.
Consistent with this view, several interventions that focused on building fraction
magnitude knowledge using number lines yielded better learning than regular school curricula
(Dyson, Jordan, Rodrigues, Barbieri, & Rinne, 2018; Fuchs et al., 2016, 2013, 2014; Saxe et al.,
2007). For example, Fuchs et al. (2013) randomly assigned 4™ graders to a 12-week intervention
focused on learning fraction magnitudes on the number line or to a control curriculum that
emphasized the part-whole interpretation of fractions with area models. Children who received
the intervention using the number line improved more on fraction magnitude knowledge and

arithmetic than those who were in the control condition.
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The extensive intervention curricula in these studies involved multiple components
(Dyson et al., 2018; Fuchs et al., 2016, 2013, 2014; Saxe et al., 2007), making it impossible to
distinguish the effects of the number line on children’s fraction learning from other intervention
components. Two recent experiments provided direct evidence for the advantages of using
number lines, particularly over area models, in learning about fraction magnitude (Gunderson,
Hamdan, Hildebrand, & Bartek, 2019; Hamdan & Gunderson, 2017). Hamdan and Gunderson
(2017) randomly assigned 2™ and 3™ graders to a number line training, an area model training, or
a non-numerical control condition. The number line and the area model trainings involved
similar procedures and only differed in the visual representation used. After a 15-minute training,
children in the number line condition were more accurate at estimating fractions on number lines
than children in the other two conditions. Critically, compared to children in the area model
training and the control condition, children in the number line training condition were also more
accurate at comparing fractions, a task which none of the children were directly taught. These
findings suggest that using number lines is more beneficial than area models for children to
develop fraction magnitude understanding.

Gunderson et al. (2019) replicated these findings and demonstrated that the
unidimensionality of the number line is essential for it to produce superior fraction learning than
the area model. This study involved four training conditions: pure unidimensional number line
training (i.e., number lines being pure lines with no width), hybrid unidimensional number line
training (i.e., number lines being long thin rectangles, same as the number line training condition
in Hamdan and Gunderson, 2017; Figure 1B), square number line training (i.e., squares that were
partitioned from left to right and had “0” at the left end and “1” at the right end; Figure 1C), and

square area model training (Figure 1A). Similar to Hamdan and Gunderson (2017), compared to
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children who were taught fractions with area models, those who were taught fractions with the
unidimensional number lines (either pure or hybrid) were more accurate on number line
estimation and magnitude comparison at posttest, controlling for pretest performance
(Gunderson et al., 2019). Moreover, children who were taught fractions with two-dimensional
square number lines showed similar performance at posttest to those who were taught with area
models. Thus, being unidimensional is an essential feature of number lines to be more beneficial
than area models for learning fraction magnitudes (Gunderson et al., 2019).

The main purpose of the current study was to extend prior findings on the advantage of
the number line over the area model to the learning of improper fractions. Many children
experience similar, if not more, difficulty understanding improper fractions as compared to
proper fractions (Resnick et al., 2016; Siegler et al., 2011; D. Zhang, Stecker, & Beqiri, 2017). In
math class, improper fractions are introduced later than proper fractions (Grade 4 versus Grade
3; National Governors Association Center for Best Practices, 2010). Before learning improper
fractions, children’s exposure to fractions has been limited to proper fractions, leading to the
belief that fractions are always smaller than one (Stafylidou & Vosniadou, 2004). Therefore,
understanding the magnitudes of improper fractions, which are always greater than one, imposes
great challenges for many children. Resnick et al. (2016) tracked the development of children’s
estimation of proper and improper fractions from Grade 4 through 6. They found that most fourth
graders estimated both proper and improper fractions as being smaller than one. While some
children’s estimates of improper fractions gradually became reasonably accurate, more than 40%
of children still estimated improper fractions to be smaller than one in 6 grade. This failure in

understanding magnitudes of improper fractions is unfortunate as such understanding may be
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essential for a comprehensive understanding of fraction magnitudes to emerge (Rinne, Ye, &
Jordan, 2017).

In the current study, we aimed to test whether the number line or the area model better
facilitates children’s learning of improper fractions. The number line, which naturally extends
beyond one, may better facilitate children’s transition from learning proper to improper fractions
(Tian & Siegler, 2017). In contrast, representing improper fractions on area models may be
awkward because more than one identical shape, with each shape representing one whole unit,
must be involved (Behr, Wachsmuth, & Post, 1988; Wu, 2009). Therefore, we expected that
teaching improper fractions with the number line would lead to greater learning than with the
area model.

To test this expectation, we randomly assigned 4™ and 5™ graders to a number line
training, an area model training, or a non-numerical control condition. We implemented a
training design involving a pretest, training, immediate posttest, and delayed posttest. The
number line and the area model trainings involved both proper and improper fractions and were
closely modeled on the training procedures in prior studies (Gunderson et al., 2019; Hamdan &
Gunderson, 2017). The current study employed the hybrid rather than the pure unidimensional
number line in the training because both Hamdan and Gunderson (2017) and Gunderson et al.
(2019) used the hybrid number line in the intervention. Moreover, in Gunderson et al. (2019),
training with both types of unidimensional number lines yielded greater improvement in fraction
magntiude comparison than training with the square area model; however, only the hybrid
number line training led to greater improvement than the square number line training. In the
pretest and posttests of the present study, children completed a number line estimation task, an

area model estimation task, a magnitude comparison task, and a comparison to one task (on
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which children judged whether a given fraction was smaller than, equal to, or greater than one).
To be consistent with prior studies using the number line estimation task (e.g., Gunderson et al.,
2019; Hamdan & Gunderson, 2017; Siegler, Thompson, & Schneider, 2011), pure
unidimensional number lines, rather than hybrid unidimensional number lines, were employed in
the pretest and posttests so that our findings would be comparable to prior work. We chose an
older age group (4™ and 5 graders) than prior studies (which focused on 2" and 3™ graders)
because improper fractions are taught later than proper fractions in school and because pilot
testing suggested that this older age group was not at ceiling in improper fraction knowledge.
Because our study was modeled on prior studies training children on proper fractions, we
expected to conceptually replicate the results of those studies with improper fraction training
(Gunderson et al., 2019; Hamdan & Gunderson, 2017). Therefore, we had four preregistered
hypotheses:

Hypothesis 1. At the immediate posttest, children in either the number line or the area
model training condition will be more accurate at estimating fractions on the model they have
received training on than children in the other two conditions.

Hypothesis 2. The effects described in Hypothesis 1 will hold on both fractions that
appear in training and fractions that do not appear in training.

Hypothesis 3. On the magnitude comparison task at immediate posttest, children in the
number line condition will have higher accuracy (across all magnitude comparison items) than
children in the area model condition, and children in the area model condition will have higher

accuracy than those in the control condition.
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Hpypothesis 4. The effects of condition on magnitude comparison in Hypothesis 3 will be
present among ambiguous fraction pairs (in which the fraction with the smaller numerator has a
larger denominator than the other fraction, such as 2/8 vs. 4/6).

Hypothesis 4 was based on the finding that compared to the area model training, the
number line training led to greater improvements in comparing ambiguous fraction pairs both in
Hamdan and Gunderson (2017) and in Gunderson et al. (2019). However, the effect of training
condition was not consistent across the two studies on whole-number consistent pairs (in which
the larger fraction also has a larger numerator and a larger denominator than the other fraction,
such as 8/4 vs. 3/2) or whole-number inconsistent pairs (in which the larger fraction has a
smaller numerator and a smaller denominator than the other fraction, such as 2/6 vs. %).

Besides these four hypotheses, we also explored whether training effects would transfer
to better performance on an additional task assessing fraction magnitude understanding (i.e.,
comparing fractions to one) and would persist two weeks after training. The study was pre-
registered on the Open Science Framework (OSF; https://osf.io/9wp5r). All study materials,
deidentified data, and analysis scripts have been made publicly available on OSF
(https://osf.i0/c7a5q).

Method
Participants

Participants were fourth and fifth grade students recruited from six schools (18
classrooms) in a large city in the northeastern US (n = 133; 66 4™ graders; 73 girls; Mag.= 10.25,
SDjge = 0.66). One hundred and twenty-nine participants completed all three sessions of the
study — two participants were absent on one or more testing days, and another two participants

withdrew during the study. Another 10 participants were excluded because they were tested
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outside the pre-determined time window (see the Procedure section below for more details). Our
analytic sample included 119 participants.

Participants came from diverse backgrounds. Participants’ parents reported their
children’s race/ethnicity (demographic information reported here and below were of the 119
participants in the analytic sample; Zrace/ethnicity = 105; 40.0% Caucasian, 24.8% Black/African
American, 19.0% Hispanic, 6.7% Asian/Asian American, and 9.5% Multi-race), annual family
income (7family income = 90; M = $56,869, SD = 32,290, range = < $15,000 to > $100,000), and
parental education level (#parental education = 103; years of education: M = 14.54, SD = 2.54, range =
10 [less than high school] to 18 [graduate degree]). On average, participants came from middle-
income families, and their parents completed 2 years of college.

Procedure

Each participant worked with a trained experimenter for three 20- to 30-minute sessions
in a quiet space at their school. In Session 1, participants completed the pretest. In Session 2,
participants were randomly assigned, within each classroom, to the number line training
condition, the area model training condition, or the non-numerical control condition. After about
15 - 20 minutes of training (or control activities), participants completed the immediate posttest.
In Session 3, participants completed the delayed posttest. Session 2 was planned to be
administered within seven days after Session 1, and Session 3 was planned to be administered
between 14-16 days after Session 2. Due to scheduling errors, 10 participants were tested outside
of the 14-16-day time window between Sessions 2 and 3 and were thus excluded from the
sample based on our pre-registered Sampling Plan. The remaining sample included 119

participants, with 40 in the number line training condition, 41 in the area model training
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condition, and 38 in the non-numerical control condition. The average time between Sessions 1
and 2 was 2.97 days (SD = 1.19) and between Sessions 2 and 3 was 14.26 days (SD = 0.48).
The pretest and both posttests (immediate and delayed) consisted of the same four tasks:
number line estimation, area model estimation, magnitude comparison, and comparison to one
(see Figure 2 for an example problem from each task). The two estimation tasks were
administered using PDF Expert (Readdle Inc., 2019) on an iPad, and the other two tasks were
administered using E-Prime 2.0 (Schneider, Eschman, & Zuccolotto, 2002) on a laptop
computer. The four tasks were presented in one of two orders, the following order or the reverse
of this order: number line estimation, comparison to one, magnitude comparison, and area model
estimation. Participants completed the four tasks in one order in the pretest and delayed posttest,
and in the other order in the immediate posttest. The order of tasks was randomly assigned to

each participant.

insert Figure 2 about here

Training conditions

In the two fraction training conditions, the experimenter showed participants how to
represent fractions on number lines or area models, and participants practiced representing
fractions with feedback. The training procedures were developed based on prior studies
(Gunderson et al., 2019; Hamdan & Gunderson, 2017) and were parallel between the number
line and the area model conditions (see Figure 3 for an overview of the training procedures and
Supplementary Materials Sections A - C for the scripts used in the training and the control

condition).

insert Figure 3 about here
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At the beginning of the training, fractions were introduced as numbers that have a
number on the top (i.e., the numerator) and a number on the bottom (i.e., the denominator). Then,
participants were taught to represent fractions in three steps: 1) segment each unit of the visual
representations (each unit of a visual representation represents one) into the number of equal
segments corresponding to the denominator, 2) shade the number of segments corresponding to
the numerator, and 3) label the visual representation by drawing a hash mark at the end of the
shaded segments (number line training) or circling the shaded segments (area model training)
and by writing the fraction next to the hash mark or the circle.

Participants were taught to represent eight fractions during training (3/2, 1/2, 5/2, 3/4,
7/4, 12/5, 2/5, and 4/5, in that order). For each fraction, participants practiced each of the three
steps following the experimenter’s explanation of that step. If a participant performed a step
incorrectly, the experimenter would demonstrate how to correctly perform that step and ask the
participant to practice that step along with the steps leading up to it again on a blank number line
or area model. For example, if a participant incorrectly labeled a fraction on the number line, the
participant would be asked to segment, shade, and label a blank number line for that fraction. For
fractions 3/2, 3/4, and 12/5 (the first fraction in each group of fractions with the same
denominator), the experimenter demonstrated each step before the participant’s practice. Each
training session took approximately 15 to 20 minutes and was administered with PDF Expert
(Readdle Inc., 2019) on an iPad.

Number line training

Participants in the number line training condition (n = 40) were taught to show fractions

on 0-3 number lines with labeled hash marks at 1 and 2 (Figure 3A). The number line (§ mm

high X 180 mm wide) was similar to the “hybrid” number line in Gunderson et al. (2019). In the
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training, the experimenter demonstrated representing fractions by segmenting each unit of the
number line with vertical hash marks, shading segments from left to right, and labeling a longer
hash mark at the end of the shaded portion with the represented fraction.
Area model training

Participants in the area model training condition (rz = 41) were taught to show fractions
on three squares (each square was 50 mm X 50 mm) with the numbers 1, 2, or 3 above the
middle of each square. In the training, the experimenter demonstrated representing fractions by
segmenting each square area model with vertical lines; shading the segments from left to right;
and finally, circling the shaded portion and writing the represented fraction next to the shaded
portion. In the area model training (but not the number line training), it was considered correct if
participants segmented using horizontal or diagonal lines or shaded in a different order than from
left to right.
Non-numerical control

Participants in the non-numeric control condition (n = 38) worked on crossword puzzles
in collaboration with the experimenter. The activity lasted for 18 minutes, which was similar in
length to the number line or area model training session based on pilot testing. Participants
referred to crossword puzzle clues and had the option to use word banks for each puzzle printed
on paper. There were six puzzles available for the participant to complete, and no participant
completed all six puzzles.
Pretest and posttest measures
Number line estimation

In this task, participants were asked to show fractions on 0-3 number lines (Figure 2A).

At the beginning of the task, the experimenter illustrated where 1/2 goes on the number line.

14
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Then, participants were asked to represent 12 fractions (i.e. 3/4, 4/5, 2/5, 2/6, 3/5, 2/3, 7/4, 12/5,
5/2, 6/5,7/6, and 8/3). Among the 12 fractions, six were proper fractions, and six were improper
fractions; and six fractions were included in the number line and area model training, and six
were not. Participants received the 12 fractions in a predetermined random order or the reverse of
that order.

On each trial, participants’ response value was calculated by dividing the length between
the zero endpoint and the hash mark drawn by the participants by the total length of the line (i.e.,
180 mm) and then multiplying the quotient by the number line range (i.e., 3). For example, if the
length between the hash mark and the zero endpoint was 90 mm, the response value = 90/180 X
3 =3/2. Trained researchers scored participants’ responses (see Supplementary Materials,
Section D for detailed coding scheme adapted from Gunderson et al., 2019, Appendix D) and
calculated percent absolute error (PAE) for each item: (response value - correct value|)/(number
line range). For example, if the participant was asked to represent 4/5 and responded at a point
equivalent to 3/2, PAE =|3/2 — 4/5|/3 = 0.23. Individual PAEs were averaged for the analyses.

Internal consistency of the task was adequate (apretest = 69, Aimmediate posttest =

73, Xgelayed posttest = -67).
Area model estimation
In this task, participants were asked to show fractions on area models. The area model
consisted of three squares (50 mm high X 50 mm wide) presented side by side (Figure 2B). At
the beginning of the task, the experimenter demonstrated 1/2 on the area model by shading 1/2 of
the leftmost square. Then, participants were asked to show each of the same 12 fractions as in the
number line estimation task on area models. On each trial, participants’ response value was

calculated by dividing the shaded pixels by the total pixels of the three squares and then
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multiplying the quotient by the numerical range of the area models (i.e., 3). Trained researchers
scored participants’ responses by calculating the pixels of shaded area using Adobe Photoshop
2017 (Faulkner & Chavez, 2017; see Supplementary Materials, Section D for detailed coding
scheme adapted from Gunderson et al., 2019, Appendix D) and calculated the PAE for each trial:
([response value - correct value|)/(total area). Individual PAEs were averaged for the analyses.
Reliability was good (@pretest = -76, Aimmediate posttest = -88, Xgelayed posttest = -86).
Magnitude comparison

In this task, participants were asked to choose the larger fraction in each pair of fractions
(Figure 2C). On each trial, participants were asked to press the yellow button (the “A” key
covered with a yellow sticker) if the fraction on the left was larger or the blue button (the “L”
key covered with a blue sticker) if the fraction on the right was larger. The fraction pair remained
on the screen until a valid response was detected. Each trial was preceded by a blank screen of
500ms. Participants were asked to respond as quickly and accurately as possible.

Each participant completed 24 trials, with a unique pair of fractions on each trial (see
Supplementary Materials Table E1 for the fraction pairs). Among the 24 fraction pairs, eight
included a proper and an improper fraction, eight included two improper fractions, and eight
included two proper fractions. As in past studies (Gunderson et al., 2019; Hamdan and
Gunderson, 2017), the fraction pairs included “consistent” pairs (6 items), “inconsistent” pairs (6
items), and “ambiguous” pairs (12 items). In the consistent pairs, the larger fraction also had a
larger numerator and larger denominator than the other fraction (e.g., 8/4 vs. 3/2). Conversely, in
the inconsistent pairs, the larger fraction had a smaller numerator and denominator than the other
fraction (e.g., 2/6 vs. 1/2). In the ambiguous pairs, the fraction with the smaller numerator had a

larger denominator than the other fraction (e.g., 2/8 vs. 4/6). We deliberately included more
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ambiguous pairs to increase our power of detecting the effect of interest in Hypothesis 4. Order
of fraction pairs was randomized for each participant. Children’s accuracy was scored by

calculating the percentage of items answered correctly. Reliability was fair overall (@pretest =

71, @immediate posttest = -7 1, Xgetayed posttest = -76) and excellent for each item type

(Aconsistent = 92, Ainconsistent = 93, Xambiguous = 91).
Comparison to one

In this task, participants were asked to judge whether a fraction was less than 1, equal to
1, or greater than 1. On each trial, a fraction was presented in the center of the screen with the
three options (i.e., “less than one”, “equal to one”, and “greater than one”) below it (Figure 2D).
Participants were asked to press the yellow button (the “A” key covered with a yellow sticker) if
the fraction was less than one, the green button (the “G” key covered with a green sticker) if the
fraction was equal to one, or the blue button (the “L” key covered with a blue sticker) if the
fraction was greater than one. The problem remained on the screen until a valid response was
detected. Each trial was preceded by a blank screen of 500ms. Participants were asked to respond
as quickly and accurately as possible.

Each participant completed 16 trials. Among the 16 fractions, 12 were the same fractions
as in the number line and area model estimation tasks (6 proper fractions and 6 improper
fractions), and four were fractions equal to one (2/2, 3/3, 4/4, and 6/6). Order of the trials was

randomized for each participant. Children’s accuracy was scored by calculating the percentage of

items answered correctly. Reliability was good overall (apretest = -83, Ximmediate posttest =

82, Xgelayed posttest = .84).
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Results
Data exclusion

According to our preregistered data analysis plan, participants’ data were excluded from
analyses of a task (or a subset of items in a task, e.g., ambiguous magnitude comparison items) if
they did not finish at least half of the relevant items. Among the participants included in each
analysis, we used the mean scores of each participant’s available trials relevant to that analysis.
We also preregistered that we would exclude a participant if the experimenter made an error
during training. No participants needed to be excluded for this reason.

Descriptive statistics

Table 1 shows descriptive statistics of children’s demographic characteristics as well as
performance on each task at pretest, immediate posttest, and delayed posttest by condition (see
Supplementary Materials, Section F for descriptive statistics of children’s performance on
different types of problems on each measure at pretest and posttests). Analyses comparing
demographic characteristics and performance on each task at pretest revealed no differences
among children assigned to each condition.

Table 2 shows the correlations among all measures collapsed across conditions. Notably,
accuracy of concurrent fraction measures did not correlate or only weakly correlated with each
other (.02 < |r| <.32). For each fraction measure, accuracy across the three testing sessions
correlated moderately to strongly (.38 < |r| <.64). Among all fraction measures at pretest and

posttests, grade level only correlated with accuracy on the comparison to one task at pretest.

insert Tables 1 & 2 about here
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Preregistered analyses

Based on our preregistered analysis plan, we conducted analyses of covariance
(ANCOVA) to test each of the four hypotheses. In each ANCOVA, the dependent variable was
children’s mean score on a measure at immediate posttest. Condition (i.e., number line training,
area model training, or cross-word puzzle control) was entered as the independent variable, and
children’s age and mean score on the same measure at pretest were entered as covariates. In
cases where a significant effect of condition was found, pairwise comparisons between
conditions based on the estimated marginal (EM) means from each ANCOVA were conducted.
The Bonferroni correction was applied to adjust for multiple comparisons.

In all the ANCOVA analyses reported below, pretest scores significantly predicted
posttest scores, but age did not. Only the effects of condition are reported below (see
Supplementary Materials, Section G for detailed statistics on the effects of pretest scores and
age).

Hypothesis 1

We expected children in either of the two training conditions to be more accurate at
estimating fractions on the model that they received training on than children in the other two
conditions at immediate posttest (Hypothesis 1). As expected, PAE on area model estimation at
immediate posttest significantly differed across conditions, after adjusting for age and PAE on

area model estimation at pretest, (2, 114) = 27.25, p <.001, nz= .32 (Figure 4A).

insert Figure 4 about here
Post-hoc analyses revealed that PAE on area model estimation at immediate posttest was
significantly smaller among children in the area model training condition (EM mean = 0.08, SE =

0.02) than those in the number line training condition (EM mean = 0.22, SE = 0.02), p.adj <
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.001, and those in the cross-word puzzle control condition (EM mean = 0.22, SE = 0.02), p.adj <
.001. However, controlling for age and PAE on number line estimation at pretest, PAE on
number line estimation at immediate posttest did not differ across conditions, F (2, 108) = 0.44,
p = .644, n;= .01 (Figure 4B).
Hypothesis 2

Children in the area model condition yielded more accurate estimates of fractions on area
models than children in the other two conditions at immediate posttest, and we expected this
effect to hold for both the trained and untrained fractions (Hypothesis 2). As expected, on area
model estimation, a significant effect of condition emerged for PAE of both trained and
untrained fractions at immediate posttest, adjusting for pretest PAE and age (trained fractions, F'
(2,114)=25.76, p <.001, 7712,: .31; untrained fractions, F' (2, 114) =21.77, p <.001, 77;% =.28).
Post-hoc analyses showed that children in the area model condition yielded significantly smaller
area model PAEs on both trained (EM mean = 0.09, SE = 0.02) and untrained fractions (EM
mean = 0.07, SE = 0.02) at immediate posttest than children in the number line condition
(trained, EM mean = 0.22, SE = 0.02; untrained, EM mean = 0.21, SE = 0.02) and than children
in the cross-word puzzle condition (trained, EM mean = 0.23, SE = 0.02; untrained, EM mean =
0.22, SE =0.02), p.adjs < .001.
Hypothesis 3

For the magnitude comparison task at immediate posttest, we hypothesized that children
in the number line condition would have higher accuracy than children in the area model
condition, and children in the area model condition would have higher accuracy than those in the

crossword puzzle control condition. However, controlling for accuracy on magnitude comparison

20



LEARNING IMPROPER FRACTIONS

at pretest and children’s age, no difference in accuracy at immediate posttest was seen across
conditions, F (2, 113) = 1.36, p = .261, n;= .02 (Figure 4C).
Hypothesis 4

We hypothesized that the effects of condition on magnitude comparison in Hypothesis 3
would be present among ambiguous items. However, similar to the lack of effect of condition on
overall magnitude comparison accuracy, we found no significant effect of condition on
magnitude comparison of ambiguous items, F (2, 113)=0.17, p = .847, nf,< .01.

In summary, only children who received area model training, but not those who received
number line training, estimated fractions more accurately on the models they were trained on in
the immediate posttest. However, the area model training did not lead to significantly higher
accuracy on the magnitude comparison task.

Exploratory analyses

We conducted exploratory analyses to understand the scope of improvement among
children who received area model training and the lack of learning among children who received
number line training. Similar to the pre-registered analyses, when comparing performance across
conditions on posttests, we conducted ANCOV As with pretest performance and age as
covariates and condition as the independent variable. In cases where there was a significant
effect of condition, we conducted post-hoc pairwise comparisons of estimated marginal means
with the Bonferroni correction.

Scope of improvement among children who received area model training

We first explored whether area model training led to more accurate estimates of both

proper and improper fractions on the area model. Separate ANCOV As on PAE of area model

estimation, adjusting for pretest accuracy and children’s age, were conducted for proper and
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improper fractions. Both ANCOVAs yielded a significant effect of condition (proper fractions, F
(2,114)=10.08, p <.001, r)f, =.15; improper fractions, F' (2, 113) =29.06, p <.001, nzz, =.34).
Post-hoc analyses revealed that children in the area model condition had significantly smaller
PAEs on both proper (EM mean = 0.05, SE = 0.02) and improper fractions (EM mean = 0.10, SE
= 0.02) at immediate posttest than children in the number line condition (proper fractions, EM
mean = 0.17, SE = 0.02; improper fractions, EM mean = 0.26, SE = 0.02) and children in the
cross-word puzzle condition (proper fractions, EM mean = 0.15, SE = 0.02; improper fractions,
EM mean = 0.31, SE = 0.02), p.adjs < .01.

Next, we examined whether children’s improvement in area model estimation transferred
to higher accuracy on the comparison to one task. Adjusting for pretest accuracy of the same task
and children’s age, there was no significant effect of condition on accuracy at immediate
posttest, F' (2, 108) = 0.04, p = .964, 7712, <.01 (Figure 4D).

Additionally, we explored whether children’s improvement in area model estimation after
area model training remained on the delayed posttest. Adjusting for pretest PAE on area model
estimation and age, PAE on area model estimation at delayed posttest significantly differed by
condition, F (2, 112) =4.91, p = .009, n;= .08 (Figure 4A). Post-hoc analyses showed that
children in the area model condition yielded significantly smaller PAEs (EM mean = 0.16, SE =
0.02) than those in the number line condition (EM mean = 0.23, SE = 0.02), p.adj = .008, but not
than those in the cross-word puzzle condition (EM mean = 0.21, SE = 0.02), p.adjs = .130.

Therefore, after learning how to estimate fractions on area models, children’s
improvement in area model estimation persisted to some extent on the delayed posttest, which

was administered around two weeks after training. Yet the improvement on area model
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estimation did not transfer to any of the other tasks in the current study (number line estimation,
magnitude comparison, and comparison to one).
Lack of improvement among children who received number line training

We first examined whether children in the number line training condition at least
improved on estimating the same fractions that they received training on. Results of the
ANCOVA on PAE of number line estimation of the trained fractions suggested that they did not;
no effect of condition arose, F (2, 108) = 0.53, p = .593, rhz, =.01.

Then, we examined whether children in the number line training condition at least
improved on estimating proper fractions, on which improvements have been seen in prior studies
with similar training (Gunderson et al., 2019; Hamdan & Gunderson, 2017). We did not find
evidence for improvement even on proper fractions: results of the ANCOVA on PAE of number
line estimation of proper fractions suggested that children in the number line training condition
performed similarly at posttest as those in the other two conditions, F' (2, 108) = 1.45, p = .240,
np =.03.

Finally, we explored the possibility that the number line training procedure was more
confusing for children than the area model training procedure. To do so, we compared the
number of training trials on which children received corrective feedback between the two
training conditions. During training, corrective feedback was provided when a child performed a
step incorrectly following the experimenter’s instructions on that step. Receiving a large number
of corrective feedback trials suggests difficulty in understanding the experimenter’s instructions.
For children in the two training conditions, an analysis of variance (ANOVA) with training
condition as the between-subject variable showed that children in the number line condition (M =

2.42, SD =3.02) received corrective feedback on a marginally greater number of training trials
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than those in the area model condition (M = 1.46, SD = 1.55), F' (1, 79) =3.27, p = .074, rhz, =
.04.
Discussion

In prior studies, using the number line, as compared to the area model, in teaching
fractions led to better fraction magnitude knowledge among children (Dyson et al., 2018; Fuchs
etal.,, 2016, 2013, 2014; Gunderson et al., 2019; Hamdan & Gunderson, 2017; Moss & Case,
1999; Saxe et al., 2007). The current study extended this work by testing the effects of a brief
training on improper fractions with the number line versus the area model. Unexpectedly,
fraction training with the area model produced improvements in children’s area model estimation
of proper and improper fractions but training with the number line did not improve number line
estimation. Further, neither training led to improvements in transfer tasks assessing fraction
magnitude knowledge. We discuss potential reasons for these unexpected results, implications of
these findings for learning improper fractions, and implications for educational practice.

We expected the number line to better support children’s learning of improper fractions
than the area model. However, contrary to this expectation, compared to children in the number
line or the control condition, children who were taught fractions with the area models estimated
both proper and improper fractions more accurately on the area model at immediate posttest. The
improvement brought by the area model training was not only greater than the number line
training or the control activities but also impressive in absolute terms: among children who
received the area model training, PAE of area model estimation decreased from 0.25 to 0.08
from pretest to posttest. Two weeks after training, children in the area model condition
persistently yielded more accurate estimates on area model estimation than those in the number

line condition (but not more accurate than those in the control condition). In contrast, children
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who received the number line training were no better than children in the area model or the
control condition at estimating fractions on the number line after training — not even on
estimating the fractions on which they received training. In prior work training proper fractions
(Gunderson et al., 2019), number line training also appeared to transfer to area model estimation,
in that both trainings led to equivalent area model estimation performance. This was not the case
in our study, providing further evidence that the number line training in the present study was not
effective at improving fraction concepts.

One reason for the ineffectiveness of the number line training might be that the training
procedures were hard to follow. We developed the procedures for both the number line and the
area model training based on prior interventions that enhanced 2™ and 3™ graders’ magnitude
knowledge of proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 2017). The
training included the same steps (i.e., segment, shade, and label) and lasted a similar amount of
time as in prior studies (i.e., 15 minutes). However, because the current training involved both
proper and improper fractions, children may have found the training more difficult to understand
than in prior studies, which only involved proper fractions. Consistent with this idea, whereas
prior number line training with only proper fractions led to more accurate estimates of proper
fractions on the number line than the area model training and the control activity (Gunderson et
al., 2019; Hamdan & Gunderson, 2017), children who completed number line training in the
current study did not improve at estimating proper fractions. Training being hard to follow might
be more evident in the number line than in the area model condition because children are more
familiar with the area model than the number line for representing fractions (Ni, 2001; X. Zhang,
Clements, & Ellerton, 2015). Consistent with this view, during training, children in the number

line condition tended to execute procedures incorrectly more often than children in the area
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model condition. Future studies should explore whether a more extensive number line training
(e.g., training children on more fractions and providing more trials of experimenter
demonstrations) would yield greater learning outcomes.

The effectiveness of the area model training and the ineffectiveness of the number line
training might also be due to the limitations of the stimuli used in training and at posttest. We
expected the continuous number line to support learning of improper fractions because number
lines naturally extend beyond one. To convert a 0-1 number line to represent improper fractions,
one only needs to extend the number line beyond the endpoint of 1. Such a representation is
analogous with the mental number line, on which proper fractions, the number one, and improper
fractions are ordered in a continuous manner (Dehaene, 1992). In contrast, converting a one-unit
area model to incorporate improper fractions requires adding discrete shapes identical to the one-
unit model (Behr et al., 1988; Wu, 2009). The area models employed in the current study (i.e.,
three blank squares; Figure 2B), however, eliminated the potential difficulty of adding identical
shapes — because three shapes were already provided, children did not have to actively extend a
one-unit area model to a multi-unit area model to represent improper fractions.

Moreover, the perceptual dissimilarity between the number lines used in training and at
posttest might be another reason why no improvement was seen on number line estimation. The
number line used at posttest had labeled endpoints at 0 and 3 but did not have hash marks or
numerical labels at 1 and 2, whereas the number line used in the training did. In the training, we
included the hash marks and numerical labels with the goal of helping students connect fraction
magnitudes to their existing whole-number knowledge. However, we did not include them in the
number line estimation task at posttests to be consistent with prior studies using this task (e.g.,

Gunderson et al., 2019; Hamdan & Gunderson, 2017; Siegler, Thompson, & Schneider, 2011).

26



LEARNING IMPROPER FRACTIONS

Eliminating the hash marks and labels at 1 and 2 may have substantially increased the difficulty
of representing fractions on the number line: Most of children’s successful strategies of
estimating fractions on number lines beyond 1 involve an initial step of segmenting the number
line into whole number units, and some children have trouble with this step (D. Zhang et al.,
2017). Although the area models in the training also had numerical labels (i.e., 1, 2, and 3),
eliminating these labels from the area models at posttest may not impose much difficulty as the
three squares had clear boundaries for them to be considered as three whole number units. Future
research should explore whether these perceptual features of the number line and the area model
influence children’s performance of estimating fractions on them.
Implications for Learning Improper Fractions

The effectiveness of number line training for improving proper fraction knowledge in
prior studies, and the ineffectiveness of similar number line training for improving improper
fraction knowledge in the current study, suggest that improper fraction magnitudes might be
harder to learn than proper fraction magnitudes. In two prior studies, a 15-minute number line
training effectively improved knowledge of proper fractions among second and third graders
who had limited formal instruction on fractions (Gunderson et al., 2019; Hamdan & Gunderson,
2017). Although the current study involved older students (i.e., fourth and fifth graders), a
number line training similar to that in the prior studies failed to yield any learning of fraction
magnitudes. The lack of learning was not due to ceiling performance at pretest: the PAE of
number line estimation among children in the number line condition was 0.28, similar to that on
area model estimation, which decreased substantially after area model training.

One reason for improper fractions to be harder than proper fractions might arise from the

process of integrating improper fractions with existing whole number knowledge. The integrated
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theory of numerical development posits that learning new types of numbers involves extending
existing number knowledge, and understanding fractions requires integrating fractions with
existing whole number knowledge (Siegler et al., 2011). This integration process can be
challenging. Much of the difficulty in learning fractions is due to overgeneralization of whole
number knowledge (Ni & Zhou, 2005). As compared to proper fractions, learning improper
fractions may impose an additional challenge: the magnitudes of improper fractions may fall
between any two whole numbers whereas proper fractions are always between 0 and 1. Learning
magnitudes of improper fractions may thus require fluency in whole number arithmetic,
particularly division.

Another reason that improper fractions may be challenging is that understanding
improper fraction magnitudes requires inhibiting the tendency to treat all fractions as smaller
than one. The tendency to treat all fractions as smaller than one is seen when children estimate
fractions on the number line (Resnick et al., 2016) and when children reason about whether there
is a smallest or biggest fraction (Stafylidou & Vosniadou, 2004). In the current study, most
children did not seem to explicitly hold such a belief given that their performance on the
comparison to one task was well above chance. However, even college students have this
tendency to treat all fractions as being smaller than one on tasks involving automatic processing
of fraction magnitudes (Kallai & Tzelgov, 2009). It is likely that for children to learn and process
the magnitudes of improper fractions, they need to inhibit an implicit tendency to treat all
fractions as smaller than one.

Although the present training on improper fractions was closely matched to prior ones on
proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 2017), there are still important

differences between the trainings. For example, the prior and current trainings both lasted about
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15 minutes, but the prior training only involved proper fractions whereas the current involved
both proper and improper fractions. This and other differences preclude direct comparison
between the prior and current findings to reveal whether learning improper fractions is more
challenging than learning proper fractions. To better understand whether and, if so, why learning
improper fractions is harder than proper fractions, future studies need to closely match the proper
and improper fraction trainings and include measures of factors that might contribute to
differences in learning proper and improper fractions, such as whole number arithmetic fluency
and inhibition.

Educational implications

Our findings indicate that children can learn to represent improper fractions on the area
model with brief training, and this learning can last at least two weeks after training.
Representing improper fractions with the area model can be challenging (Behr et al., 1988; W,
2009). Nevertheless, children in the current study quickly learned how to do so after a 15-minute
training, during which they saw the experimenter show three fractions on the area model and
practiced and received feedback on eight fractions.

However, it is less clear whether progress in estimating fractions on the area model
promoted a comprehensive understanding of fraction magnitudes. Despite the considerable
improvement in area model estimation, children who received the area model training did no
better than other children who received the number line training or control activities on any other
fraction tasks in the current study (i.e., number line estimation, fraction magnitude comparison,
and comparison to one). These findings are in sharp contrast with prior interventions, in which
the number line training not only led to more accurate number line estimation than the other

conditions, but also transferred to fraction magnitude comparison (Gunderson et al., 2019;
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Hamdan & Gunderson, 2017) and led to similar improvement in area model estimation as the
area model training (Gunderson et al., 2019). However, they are in line with other findings that
many children who could successfully express fractions on the area model did not develop
conceptual understanding of fractions in non-area-model contexts (X. Zhang et al., 2015). It is
possible that, given appropriate dosage and scaffolding, estimating fractions on the number line
would better facilitate the development of a comprehensive understanding of fraction magnitudes
than on the area model. It is also possible that children need more scaffolding to transfer the
improvement in the area model estimation task to solving other fraction tasks, for example, by
triggering children’s awareness of the relations between the tasks (Cooper & Sweller, 1987).

These possibilities should be examined in future research.
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Figure 1. Example of representation of the fraction 1/4 with (A) an area model, (B) a number
line, and (C) a two-dimensional square number line (adapted from “Number Line
Unidimensionality Is a Critical Feature for Promoting Fraction Magnitude Concepts,” By E.
Gunderson et al., 2019, Journal of Experimental Child Psychology, 187, p. 4. Copyright 2019,

Elsevier Inc.)
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Figure 2. Example items of (A) the number line estimation task, (B) the area model estimation

task, (C) the magnitude comparison task, and (D) the comparison to one task.
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Figure 3. Procedures of (A) number line training and (B) area model training.
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Figure 4. Performance on (A) area model estimation, (B) number line estimation, (C)

magnitude comparison, and (D) comparison to one at immediate posttest and delayed

posttest. Values are adjusted means, controlling for age and pretest performance on the same

measure. Error bars represent one standard error. ** p <.01; *** p <.001.
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