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ABSTRACT

The COVID-19 pandemic resulted in profound changes in mobility patterns and
altered travel behaviors locally and globally. As a result, movement metrics have
widely been used by researchers and policy makers as indicators to study, model,
and mitigate the impacts of the COVID-19 pandemic. However, the veracity and
variability of these mobility metrics have not been studied. This paper provides a
systematic review of mobility and social distancing metrics available to researchers
during the pandemic in 2020 in the United States. Twenty-six indices across nine
different sources are analyzed and assessed with respect to their spatial and temporal
coverage as well as sample representativeness at the county-level. Finally global and
local indicators of spatial association are computed to explore spatial and temporal
heterogeneity in mobility patterns. The structure of underlying changes in mobil-
ity and social distancing is examined in different US counties and across different
data sets. We argue that a single measure might not describe all aspects of mobility
perfectly. A more comprehensive measure of mobility is required to model the com-
plex effects of the epidemic. We urge that various limitations inherent in data sets
from different providers should be acknowledged and these data must be used with
caution.
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1. Introduction

The COVID-19 pandemic led to major non-pharmaceutical interventions (NPIs) in
the United States and worldwide to combat the spread of SARS-CoV-2. These NPIs
are public policy measures such as mask mandates, travel restrictions, quarantines,
stay-at-home orders, business shutdowns, social distancing, and contact tracing, which
significantly impacted people’s daily life, their travel behavior, and social interaction.
Governments have relied heavily on digital technologies such as mobile phones, apps,
and location-based services to monitor the implementation and assess the impacts of
these unprecedented measures on the virus transmission (Kitchin 2020).

Mobility and close contacts between people are major contributing factors in the
transmission of coronavirus infection across and within communities (Badr et al. 2020).
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Therefore, it is essential that mobility insights are investigated and used to inform
epidemiological models and to further amend interventions and health policies (Oliver
et al. 2020). Since early 2020, we have witnessed a shift in the data sharing culture
from big technology companies such as Google, Apple, and Facebook. Equally eager to
join or spearhead data-sharing initiatives, are smaller location intelligence companies
and educational institutions, such as Cuebiq, StreetLight, Descartes Labs, PlacelQ,
SafeGraph, Unacast and the Maryland Transportation Institute of the University of
Maryland (UMD). The data sets published by these organizations have been widely
used and made available through data dashboards to inform the general public and
the scientific community in the United States (Cuebiq 2021, SafeGraph 2021, Mary-
land Transportation Institute 2020). These data have also enabled researchers and
policy makers to model the impact of the pandemic and the associations between the
transmission of COVID-19 and mobility through data-driven approaches (Dodge et al.
2020). Using these large aggregate mobility data, literature documented the profound
impact of the pandemic on mobility and the effects of the NPIs on the containment of
COVID-19 worldwide (McKenzie and Adams 2020) and across different regions and
countries such as in the USA (Gao et al. 2020, Klein et al. 2020, Chang et al. 2020,
Kim and Kwan 2021), Europe (Flaxman et al. 2020), China (Kraemer et al. 2020,
Peng et al. 2020), Germany (Schlosser et al. 2020), Austria (Heiler et al. 2020), Italy
(Gatto et al. 2020, Bonaccorsi et al. 2020), and elsewhere. In this paper, we mainly
focus on the mobility data sets that are available for the United States.

Mobility data are complex and are commonly gathered from call data records
(CDR), location data obtained from location-aware technologies such as Global Posi-
tion Systems (GPS), Bluetooth, and mobile applications installed in smart phones and
wearable devices (Grantz et al. 2020). Depending on the required granularity, model-
ing purposes and privacy guarding algorithms, raw measurements may be aggregated
resulting in biases originating from ecological fallacy (Robinson 2009), the modifi-
able area unit problem (Yule and Kendall 1950), scaling problem, interpolation, mis-
alignment, multi-scale and multi-resolution re-aggregation (Gotway and Young 2002).
Various mobility metrics outlined in this paper have been designed to approximate
and/or measure aggregate movement patterns. These indices may agree or disagree
on the spatial and temporal specifics of the process in question (as demonstrated in
the course of this paper), but at the very least, they further our understanding of the
complexity of human mobility. Another data issue is missing data and gaps. Imperfect
data can lead to major flaws in data-driven models and policies. While it is not always
possible to assess data biases and deficiencies, as access to raw data is restricted due
to privacy concerns or their proprietary nature, it is important to assess the validity
of our inferences by utilizing multiple data sources and evaluate discrepancies in ob-
served spatial and temporal patterns through comparative analysis. Especially during
the turbulent pandemic times when the demands are high for fast pace flow of informa-
tion and publication of scientific research, ignoring the inherent spatiotemporal biases
and uncertainties in data sets may be inevitable, yet it can pose serious consequences
when the data and research are used to inform governmental policies and the public.

Kishore et al. (2020) outlined the main characteristics and concerns regarding data
pipelines for COVID-19 research, including data types, data-sharing policies, privacy
safeguards, established baselines, data representativeness, and commonly used spatial
and temporal aggregation methods to generate these data. Shuja et al. (2021) provided
a comprehensive overview of open-source COVID-19 data sets by categorizing them
as medical images, case reports, social media, lockdown and quarantine measures.
Yet little attention is paid to inherent bias that could be introduced in analysis by



the choice of one particular data source or provider. Existing efforts for data-driven
COVID-19 modeling, as well as research and media reports on the associations between
mobility and the spread of the infection often rely on single-source or limited data for
mobility insights. For example, McKenzie and Adams (2020) investigated place-based
activity patterns in response to governments’ mitigation actions across various nations
using Google’s community mobility data set. The New York Times mainly used Cuebiq
Mobility Insight (CMI) data for their analyses (Gabriel Dance, Lazaro Gamio 2020).
Arnal et al. (2020) examined COVID-related regional mobility trends in Spain using
both Google and Facebook data sets, while Morita et al. (2020) utilized Apple and
Google mobility data to analyze behavioral changes in Japan. Similarly, Cacciapaglia
et al. (2020) utilized Google and Apple data to characterize social distancing patterns
during the first wave of COVID-19 in Europe and in the USA. Fewer studies have
focused on combining insights from several data sources. For instance, Huang et al.
(2021) attempted to quantify mobility response to COVID-19 by combining data from
Descartes Labs, Apple, Google, and Twitter to calculate the COVID responsive index
in the United States.

In this study, we evaluate spatial and temporal structures of human mobility pat-
terns recorded through multi-source mobility and social distancing indices. Specifi-
cally, through a comprehensive exploratory analysis of 26 mobility indices obtained
from nine commercial and open data sources, this research provides unique insights
on the spatial and temporal changes in mobility patterns across the US in response to
the COVID-19 pandemic in 2020. The heterogeneity in data coverage, representative-
ness, and observed patterns are discussed. Using global and local Moran’s I statistics
on multi-source mobility data, we characterize and map spatial and temporal asso-
ciations in the structure of daily mobility patterns at the county level. In doing so,
we show how observed changes in mobility patterns vary across different data sources
and different geographic regions in the United States. Compared to existing works,
e.g. Huang et al. (2021), we draw from several more data sources and characterize
mobility metrics in terms of their spatial and temporal coverage and by assessing the
indicators of spatial association for different data providers.

2. Overview of Data Providers

As part of open research initiatives, private companies, universities and various orga-
nizations have made anonymized aggregate movement data available for scholars and
policy-makers to help understand the impacts of COVID-19 NPI responses, and mea-
sure the influence of mobility on the overall infection rates in the communities. Table 1
summarizes major commercial and non-commercial providers used for the COVID-19
mobility response in the United States. As Table 1 shows, seven out of ten data sets
are available at no cost for research purposes. Of the three commercial sources, we
only had access to two: Cuebiq and Streetlight data. Hence, Unacast indicators are
not analyzed in this paper.

This study investigates 26 indicators of mobility obtained from nine different data
sources, including Apple, Cuebiq, Descartes Labs, Facebook, Google, PlacelQ, Safe-
graph, Streetlight, and the University of Maryland (see Table 1 and Supplementary
Material for a more detailed description of the indices). We focus mainly on four
categories of indicators: traversed distance metrics, social distancing metrics, con-
tact/exposure indices, and number of trips indices. Therefore, the network-based and
origin-destination flow indices offered by these providers (such as PlacelQ LEX and



Table 1. Major mobility data providers in COVID-19 studies for the United States, listed

alphabetically.
Data source Access Aval.labﬂlty # O.f Coverage® (%)
(since) metrics

1 Apple Open Jan 13, 2020 1 42.7
2 Cuebiq Commercial  Jan 1, 2019 4 93.4
3 Descartes Labs Open Mar 1, 2020 2 65.3
4  Facebook Open Mar 1, 2020 2 62.6
5 Google Open Feb 15, 2020 6 35.0
6 PlacelQ Open Jan 20, 2020 2 57.0
7  SafeGraph Open Jan 1, 2019 2 93.3
8  StreetLight Commercial Jan 1, 2019 1 98.5
9  University of Maryland Open Jan 1, 2020 6 97.8
10 Unacast® Commercial  Feb, 24, 2020 3 -

PCoverage is defined as the percentage of complete (non-missing) records for all of the observed
counties (n=3140) and days (n=366) in the observation period (January - December 2020) sum-
marized for each data source.

¢Unacast provides data on a commercial basis. Since we do not have access to this data, the
coverage information is not provided and the readers are referred to their homepage (Engle et al.
2020). The number of metrics is calculated based on the number of products in Unacast COVID-
19 Location Data Toolkit.

Cuebiq Mobility Flows) are not included in this study. The focus is narrowed to the
metrics available at the county-level for the spatial unit and daily for the tempo-
ral granularity. Among the data providers, all except SafeGraph publish data at the
county level. Safegraph provides raw data at the census block group (CBG!) and
points-of-interest (POI?) levels. On the temporal scale, the metrics are tracked and
made available on a daily resolution. The temporal extent considered in this study is
January 1, 2020 — December 31, 2020.

3. Methodological Framework

3.1. Overview

Generally, assessing multi-source heterogeneous data that are measured and recorded
using different units and baselines is cumbersome, particularly so for spatially and
temporally correlated data. Here, we propose a multi-stage framework (summarized in
Figure 1) which incorporates various geostatistics and exploratory data analysis tools
and enables a more swift and comprehensive comparison of heterogeneous mobility
data. Different processes involved in the proposed framework include:

(1) Data collection and integration: Various data sets are collected from different
providers (as described in Section 2). The data are validated for errors and gaps
and pre-processed for integration in a comprehensive database on a server. The
database uses county as the spatial unit and a week for temporal granularity. We
opted to analyze data at weekly intervals for two reasons: First, because raw data
is available at the daily time scale, the next level of aggregation that is suitable
for differentiating mobility trends and patterns is one week to account for the
variability during weekdays and weekends. Second, the COVID-19 dynamics can
be reasonably described at a weekly time scale as demonstrated by McAloon

LCensus Block Groups - Census divisions containing Census blocks. Typically around 600-3000 people.
2Points of Interest - georeferenced point feature containing information on housing locations, gas stations,
parking, tourist attractions, etc.



et al. (2020).

(2) Exploratory Data Analysis (EDA): A series of EDA is applied to gauge spatial
sampling bias, assess spatial and temporal coverage (see Figures Al, A2), and
temporal trends. The results for each outlined mobility index are discussed in
Sections 4.1— 4.3. The spatial and temporal coverage of the data sets is detailed
in Supplementary Material.

(3) Spatial and temporal structure analysis: Global and Local Moran’s I are calcu-
lated to test for spatial associations across four groups of the mobility metrics and
to pinpoint the locations of hotspots and coldspots in data (Sections 4.4—4.6).
This stage further compares the trends for different mobility indices within the
same data provider as well as across multiple providers:

(a) Cross-comparison of spatiotemporal structures: Spatiotemporal structures
for various mobility indices obtained from each data source are examined
by summarizing the temporal trends and the consistency of the spatial
clusters throughout 2020 for each individual county. These trends are then
visualized to capture the clustering patterns on the national scale. The
results are mapped and discussed in Section 4.5.

(b) Assessment of between-source consistency in patterns: The variability in
spatiotemporal structures of patterns across different data sources is com-
pared by visualizing the agreement between consistency of hotspots and
coldspots across mobility indices. The results are discussed in Section 4.6.

(4) Mapping and data visualization: At each stage, different data visualization tech-
niques are offered to map the identified patterns in space and time and commu-
nicate the outcomes. The proposed visualizations are described and interpreted
in light of the results in Section 4.

Data collection & integration

> Exploratory data analysis

v Within-source comparison

v

Spatial & temporal structure analysis —

Between-source comparison 1

Mapping and data visualization !

Figure 1. The proposed methodology to analyze spatial and temporal variability in mobility patterns within-
and between-source.

Below we expand on our approach to study variability in spatial and temporal
structures of heterogeneous mobility data (i.e. Stage 3 of the methodology).

3.2. Spatial and temporal structure analysis

Since each metric quantifies mobility differently, in order to compare trends across
data sets we make a comparative assessment of derived patterns representing spatial
clusters instead of comparing raw values directly. To quantify the systemic spatial
variation in mobility data, spatial autocorrelation is estimated. There are many global



measures that capture correlation of georeferenced data, including Getis and Ord’s G
(Getis and Ord 1992), Ripley’s K (Ripley 1976), Geary’s C' (Geary 1954), Matheron’s
Semivariance y(h) (Matheron 1963), and Moran’s I (Moran 1948). We use the latter,
as it is well-documented and widely used in GIScience literature. Formally, Global
Moran’s [ is calculated as follows:
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where wj; is the spatial-weight matrix, S, = >, >, wij, i = i — X and X is the
mean, and n is the number of observations. While there are many ways to model
spatial effects (e.g. distance band, k-nearest neighbors, Thiessen tessellation), spatial
models designed with the first order contiguity tend perform better on average, as
demonstrated by Stakhovych and Bijmolt (2009). Following the scientific principle
of parsimony and in line with Anselin and Rey (1991), Florax and Rey (1995), and
Farber et al. (2009) low-order weight specification should be preferred to higher-order
weight matrix specification, as high matrix connectivity and overspecification may
lead to decreased probability of detecting the true model, introducing strong biases
in estimation of spatial autocorrelation (Smith 2009). Therefore, Queen’s contiguity
was selected as a sufficient approximation of the true weight specification for the
assessed mobility data. Because each spatial unit (i.e. county in this case) is assessed
in relation to the global mean, larger deviations would produce larger cross-products.
The resulting value of I is positive when the counties with high values are clustered
with other counties of high values (i.e. hotspots), or when counties of low values are
clustered with other counties of low values (i.e. coldspots). Conversely, Moran’s [ is
negative when the high values are in close proximity to low values, or when low values
are located near high values. Permutation inference is then used to test for spatial
randomness and report simulated pseudo p-values:
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where R is the number of times when the simulated statistic is more extreme than the
observed statistic, and M is the number of permutations. Since the null hypothesis
for Global Moran’s I is spatial randomness, the tests returning statistically significant
simulated values would indicate clustering in spatial data (i.e. in this case across the
entire United States). We can then pinpoint the location of these clusters by utilizing
LISA-the Local Indicators of Spatial Association (Anselin 1995).

Geometrically, Global Moran’s I is a slope of a fitted regression line, where orig-
inal variable values (x-axis) are mapped against the spatially lagged variable values
(y-axis), which denote weighted sum of the values observed at neighboring locations,
where 'neighborhood’ is defined by a spatial weights matrix drawn from Queen’s conti-
guity. This effectively separates the values into four distinct types of spatial association,
corresponding to four quadrants of Moran’s plot: spatial clusters (high-high, low-low)
and spatial outliers (high-low, low-high). Here, instead of a single value that quantifies
global spatial autocorrelation, we calculate local Moran’s I for each location i (i.e.



each county):

[ = 2T (3)
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where z; = x; — ¥ and T is the mean.

Following Benjamini and Hochberg (1995), we use the False Discovery Rate (FDR)
to account for multiple testing in assessing the significance of local Moran’s I val-
ues. Therefore, for each test, the metric is considered significant for counties, where
pi < i/n x a (for a = 0.05, simulated p-value (p;), sample size n, sorted index 7).
Combining the notion of spatial clusters with the notion of significance allows us to
pinpoint the core of clusters, including significant hotspots and coldspots for each mo-
bility indicator. The word ‘cluster’ refers to the spatial arrangement when testing for
complete spatial randomness (null hypothesis) and clustering / dispersion (alternative
hypothesis) in the observed data. The core of clusters may appear as a single county
or a group of counties on the map, depending on the set statistical significance thresh-
old. The size of the clusters would depend on the adopted correction procedure for
multiple testing. Inferences without such corrections would yield the least conservative
estimates (producing clusters of larger size), and inferences utilizing Bonferroni correc-
tions would lead to spatial arrangements of smaller sizes, most likely denoting ’cores’
of positive spatial association (hotspots and coldspots). We selected FDR correction
as it produces medium-sized spatial clusters, while also minimizing Type I error and
decreasing the number of false positives (see Anselin et al. (2010) for discussion of sta-
tistical significance in assessing LISA clusters). In this context, a significant hotspot
represents counties with higher mobility values that are spatially clustered with other
neighboring counties exhibiting high values. In contrast, a significant coldspot repre-
sents counties with lower values that are spatially clustered with other neighboring
counties exhibiting low values. Using this approach, the trends in the spatial struc-
ture of the identified hotspots and coldspots over time are analyzed and mapped as
described in Section 4.5.

4. Results and Discussions

4.1. Spatial sampling bias

Sampling bias is a type of error that occurs when intended subgroups of the population
(e.g. smartphone users) do not have proportional representation in the sample. If there
is no sampling bias in our data set, we would expect the number of observations from
each county to be proportional to the population of that county. Figure 2 uses scatter
plots to map census population (x-axis) against the number of users (i.e. userbase) in
each data set (y-axis), where such information is available. The regression lines in the
scatter plots show the ideal situation where there is perfect correlation between the
number of observations and the population. The counties above the regression lines are
overrepresented in the data, while the counties below the regression lines are underrep-
resented in the data set. Among the data sets examined, the userbase information is
only provided in four data sources: PlacelQ, Descartes Labs, Cuebiq, and SafeGraph.
All four data sources provide a high level of correlation, indicating that the sampling
bias is fairly low. The estimated Pearson R is above 0.9 for all sources: SafeGraph
(0.97), Cuebiq (0.94), Descartes Labs (0.90) and PlacelQ (0.94). This demonstrates



a high correlation between the number of samples in the data and census population
for most counties for all four data sources. The evident outliers are large metropolitan
areas, where the captured smartphone users seem to underrepresent the actual popula-
tion of these metro areas. Examples include: Los Angeles, CA; Harris, TX (Houston),
Cook, IL (Chicago); Maricopa, AZ (Phoenix); Tarrant, TX (Fort Worth). This can be
due to different demographic structures observed in these large and highly populated
metropolitan areas. Also, these areas usually have different day-time and night-time
populations that may affect the userbase counts.
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Figure 2. Sampling bias across four different data sources. The regression line corresponds to the expected
counts for a truly random sample, where the userbase is representative of the population.

4.2. Spatiotemporal coverage of mobility metrics

We group mobility sources into three data-coverage Tiers (see Figures A1, A2): Tier 1
(complete coverage), Tier 2 (medium coverage), Tier 3 (heterogeneous coverage). There
are four data sources in Tier 1 demonstrating the most complete spatial and temporal
coverage: Cuebiq, University of Maryland, StreetLight and SafeGraph. Additionally,
these four sources have more observation days in 2020 than any other data providers.
Tier 2 includes three data sources: Descartes Labs, PlacelQ, and Facebook. These data
sets have a medium spatial and temporal coverage across the United States, but the
coverage remains consistent within the observation period. The bulk of the missing
values is in counties located in the Rockies and in some least populated counties. Tier
3 contains the data sources with patchier spatial and temporal coverage: Google and
Apple mobility reports. Since Google publishes data for various category of trips, there
is a lot of variation in the coverage. In particular, a highly heterogeneous coverage is
observed for ‘transit station %-change’ focusing only on locations of transit stations,
and ‘parks %-change’ concentrating on the locations of major national and state parks.



It is necessary to note that the userbase for both Google and Apple is dependent on
the mobile operating systems (OS) and the portability of the various location-based
applications across both OS. Therefore, it is logical to assume that the majority of users
captured by Google come from Android devices, and the majority of users captured by
Apple come from i0S devices®. A more detailed source-specific description of spatial
and temporal coverage may be found in Supplementary Material.

4.3. Temporal trends of mobility

To evaluate the temporal trends of mobility across data sources, the indices are grouped
into four categories based on the nature of mobility parameters that they approximate:
(1) metrics quantifying social distancing, (2) metrics estimating the traversed distance,
(3) metrics modeling contacts or exposure, and (4) metrics quantifying the number of
trips or visit counts. To compare the trends, the time-series of these indices are then ag-
gregated at Census Bureau-designated regions: South, Midwest, Northeast, and West
(Figures 3-6). This delineation is often used for socioeconomic analysis with Census
data, therefore it was logical to assess the temporal patterns of mobility at the regional
level. While causal inferences on Census-designated regionalizations may be too broad
to elicit meaningful insights, they are well-suited for descriptive and exploratory spa-
tial data analysis. The time-series plotting is supplemented with corresponding violin
plots (Figures B1, B2, B3, B4), and box plots (Figures B5, B6, B7, B8) in the Ap-
pendix. Violin plots are ideally suited for cross-comparison of distributions, as they
allow to assess the number of modes, skewness, and overall dispersion of the distri-
bution, whereas the box plots are better suited to denote median and interquartile
range (IQR). The metrics are converted to standardized scores (z = ==£) to ease the
comparison, and kernel density estimation is used to plot and smooth distributions.

4.8.1. Metrics Quantifying Social Distancing

This category includes 7/26 metrics: Ratio single tile users (Facebook), Social distanc-
ing index (UMD), % staying home (UMD), % working from home (UMD), % sheltered
in place (Cuebiq), % sheltered in place (SafeGraph), Residential %-change (Google).
In general, the indicators in this group approximate the number of people or pro-
portion of population staying home (i.e. not moving away from home-base locations)
on any given day. The general trends across different regions appear uniform in the
observed period. As shown in Figure 3, there is a sharp increase across all of the met-
rics shortly after the start of the pandemic (March 11), which peaks around May and
steadily decreases to slightly above the pre-pandemic levels. An exception is observed
in % working from home (UMD), which remains between 30%-40% until the end of
2020. There is less variability among different U.S. regions captured in these data sets
compared to the distance traversed metrics, as demonstrated by the width of the con-
fidence intervals and the spread of values in the time series plots (Figure 3 and 4).
This can be attributed to the unit of measurements, standardized by the size of the
population. As seen on Figure 3, according to Google, Cuebiq, Facebook and Safe-
Graph data sets, the highest percentage of sheltering at home is observed consistently
in the Northeast, while the lowest is captured in the South. The violin plots and box
plots (Figure B1, B5 in the Appendix) confirm that the distribution across regions and

3The market share of other OS, such as Windows and Linux, for tablets and smartphones is usually less than
0.5% for the United States



within these metrics are relatively similar and have unimodal distributions, with the
exception of % working from home (UMD), which has its second peak at two standard
deviations away from the mean. This is most likely indicative of two distinct groups
of counties in the sample centered at two observed modes. The number of outliers (i.e.
r=Q1—-15xIQR or x = Q3+ 1.5 x IQR) varies for all of the metrics across four
regions from 5-15 standard deviations. Supporting our earlier claim, as seen on Figure
B5, the median standardized values of these mobility metrics across all data sources
are higher for the Northeast and the West, illustrating a higher percentage of sheltered
population in these regions.
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Figure 3. COVID-induced regional mobility trends in the U.S. in 2020 for metrics quantifying the social
distancing. The gray vertical line denotes March 11, 2020, when COVID-19 was declared a pandemic. The
shaded areas represent the confidence intervals of the average values for each time series.

4.3.2.  Metrics Estimating the Traversed Distance

This category includes 8/26 metrics: Bing tiles visited relative change (Facebook), Me-
dian maz-distance mobility (DL), % of normal median maz-distance (DL), Miles per
person (UMD), Cuebiq mobility index (Cuebiq), 7d rolling average Cuebiq mobility
index (Cuebiq), Vehicles miles traveled (StreetLight), median distance traveled (Safe-
Graph). These indicators estimate the average traversed distance by the recorded users.
Overall, a similar dynamic is observed for most indices in this group (Figure 4): a
sharp decline around the start of the pandemic (March 11) following various statewide
stay-at-home orders, which reaches a global minima around April. From that point,
the observed traveled distances steadily increase—with various degrees of variability
across different data sets and regions—to either the pre-pandemic levels or to slightly

10



below the pre-pandemic levels. In spite of the similarity in the general trend, a high
level of local variability is observed among different U.S. regions for these data sources
as demonstrated by the width of the confidence intervals and the spread of values
(Figure 4, B2, B6). One interesting observation is that Cuebiq points to the sharp
decline in traversed distance for the Northeast compared to other regions. This trend,
however, is not observed across other data sources (UMD, DL, Facebook and Safe-
Graph), where the value of indices remained lower than other regions. The confidence
intervals calculated for StreetLight are very wide, especially in the Northeast and the
western US, most likely indicating a higher variation in data. This is further supported
by Figure B6, B2 in the Appendix. Compared to social distancing metrics, the number
of outliers is much higher across this category for Facebook (25 standard deviations),
Descartes Labs (from 50 to 155 standard deviations), and StreetLight (35 standard
deviations). There is high variability in dispersion of the variables as illustrated by the
shape of the distribution in violin plots and the size of boxes and whiskers on the box
plots (Figures B6, B2). For example, Descartes Labs and StreetLight are much more
centered around the median and have wider tales than the metrics in other sources.
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Figure 4. COVID-induced regional mobility trends in the U.S. in 2020 for metrics estimating traversed
distance. The gray vertical line denotes March 11, 2020, when COVID-19 was declared a pandemic. The
shaded areas represent the confidence intervals of the average values for each time series.

4.8.8.  Metrics Modeling Contacts or Exposure

This category includes 3/26 metrics: Device exposure index (PlacelQ)), Adjusted device
exposure index (Placel@), Cuebiq contact index, 7d rolling average (Cuebiq). These
indicators approximate the number of users or contacts that the devices encounter
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on a given day (i.e. the spatial proximity between users). Again, the trend is uniform
across the three indices (Figure 5): an abrupt drop around the start of the pandemic
(March 11), which plateaus around mid-April and then steadily increases to the pre-
pandemic levels. The exposure appears to be highest in the South and the lowest in
the West. The Northeast region also demonstrates a lower exposure, except for the
Cuebiq Contact Index. This is supported by public health policies in the Pacific West
states, which implemented rigorous stay-at-home orders to curb the possibilities for
interaction by limiting or closing non-essential businesses such as restaurants, shopping
malls, theaters, places of worships, salons, etc. It is important to note that although the
West and the Northeast regions include densely populated areas such as the Californian
coastal cities and the NYC metro, the exposure and contact indices generally capture
a lower interaction level in these regions, perhaps highlighting the impact of the stay-
at-home orders. The dispersion between metrics (Figure B3, B7 in the Appendix), as
captured by IQR, is similar. The outliers cap at 20 standard deviations (for PlacelQ)
and 25 standard deviations for Cuebiq. The highest median and IQR is observed in
the South across all the metrics.
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Figure 5. COVID-induced regional mobility trends in the U.S. in 2020 for metrics modeling contacts or
exposure. The gray vertical line denotes March 11, 2020, when COVID-19 was declared a pandemic. The
shaded areas represent the confidence intervals of the average values for each time series.

4.3.4.  Metrics Quantifying the Number of Trips or Visit Counts

This category includes 8/26 metrics: Retail and recreation %-change (Google), Gro-
cery and pharmacy %-change, Parks %-change (Google), Transit stations %-change
(Google), Workplaces %-change (Google), Non-work trips per person (UMD), % change
in consumption (UMD), Mobility trend reports (Apple). The indicators in this group
approximate mobility via the number of trips made per device. The behavior of dif-
ferent regions exhibits a sharp decline at the onset of the pandemic, but the ‘recovery’
phase captured in different indices appears to be quite different. For example, Mobil-
ity trend reports (Apple), Parks %-change (Google) and Non-working trips per person
(UMD) illustrate a more moderate decline, and a steeper rise peaking in the mid-
summer, which is most likely indicative of the underlying connection between the
normal travel season and the nature of these indices. That is, the users are more likely
to use Google and Apple products to navigate for vacation/leisure and to travel to
recreational places that are farther away from home and require routing help (as op-
posed to a memorized route to the grocery stores). It is necessary to remark that the
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Apple Mobility Trends data does not capture the different phases of the pandemic
in detail, as observed in the other distance or percentage based measures discussed
earlier. The signal seems to only represent an oversimplified trend of mobility patterns
with less granularity, and therefore it should be used as such. Apple data also indicate
a higher mobility in the West and a lower mobility in the South, which is opposite
of what was observed in other metrics as shown in Figures 4 and 3. This shows that
the Apple Mobility Trends may not be a good measure of local mobility in general,
and perhaps can mainly be used as an indicator for the trips made for non-commuting
travel and vacation. Further examination (Figure B8, B4 in the Appendix) illustrates
the differences between outlined regions. Workplaces %-change (Google) has a bimodal
distribution with the first peak around the mean and the second around two standard
deviations for all of the four regions, and Transit stations %-change (Google) has a
bimodal distribution for the Northeast and the West. This means that two distinct
workplace mobility patterns are latent in the data: one with a relatively high workplace
%-change and another pattern with change values centered around the median. Sim-
ilar trend is observed for %-change in transit stations mobility, suggesting two types
of transit-dependent changes in the Northeast and the West, most likely attributed to
changes in large metro areas (New York, Los Angeles, Portland, San Francisco) and
less urbanized areas. The highest number of outliers is observed for Non-working trips
per person (UMD) (60 standard deviations), and % change in consumption (UMD)
(130 standard deviations), pointing to the highest spread in mobility metrics for data
derived by the University of Maryland.
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Figure 6. COVID-induced regional mobility trends in the U.S. in 2020 for metrics quantifying the number of
trips or visit counts. The gray vertical line denotes March 11, 2020, when COVID-19 was declared a pandemic.
The shaded areas represent the confidence intervals of the average values for each time series.
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4.4. Global spatial structure

In order to measure spatial autocorrelation, the PySAL Python library (Rey and
Anselin 2007) is used. Figure B9 in the Appendix plots Moran’s I values for every
week in 2020. Because Moran’s [ is highly dependent on spatial weights matrix, only
mobility metrics (13 out of 26) that have complete spatial coverage are assessed, so
that for each county there is at least one other neighboring county with shared edge
and a corner (i.e. Queen’s contiguity). These indices are metrics created for the UMD,
Cuebiq, StreetLight and SafeGraph data sets. All of the Moran’s I values are statis-
tically significant (o = 0.05) and positive, which implies clustering of high-high and
low-low values for different metrics of mobility. The range of I values varies depending
on the specific indicator of mobility: from 0.08 for Vehicle Miles Traveled (StreetLight)
to 0.4 for social distancing index (UMD) and % change in consumption (UMD).

4.5. Cross-comparison of spatiotemporal structures across metrics

While the methodology described in Section 3.2 can be easily applied to any met-
ric with high spatial and temporal coverage, we demonstrate this technique on four
mobility metrics: Cuebiq Mobility Index (Cuebiq), Median Distance Traveled (Safe-
Graph), % sheltered in place, rolling average (Cuebiq), % sheltered (SafeGraph) due to
the completeness of their coverage and comparability (see Section 2 and Supplemen-
tary Material for more details). The choice of these two sources is intentional: Cuebiq
provides data by subscription, while SafeGraph provides data free of charge through
an open data consortium. Both data sources are widely used by the media and the
research community, and in COVID-19 related news and literature. They both contain
indices that can be easily compared.

Local spatiotemporal structure of clusters for different mobility metrics is analyzed
and mapped, as follows: (1) Local Moran’s I is calculated for every county in the
United States; (2) The corresponding statistically significant clusters (hotspots and
coldspots) are extracted; (3) Cluster ‘recency’ (i.e. how recent a cluster appeared in
2020) is mapped to the color gradient, so that the hotspots/coldspots occurring in the
beginning of 2020 are denoted in lighter shades of red/blue. Conversely, more recent
clusters are denoted in darker shades; and (4) Cluster consistency (i.e. how frequently a
cluster appeared in 2020) , defined as the number of weeks the county was consistently
ranked as either a hotspot or coldspot, is mapped to the centroid marker size. Thus,
larger consistency values correspond to proportionally larger marker sizes. Figure 7
illustrates the recency and consistency of the produced spatial clusters, assessed via
LISA. In this figure, Cuebiq is depicted in the top row (a and b), and SafeGraph is
plotted in the lower row (¢ and d). Distance-based metrics are plotted in the left half
of the Figure (a and c), while social-distancing metrics are plotted in the right half of
the Figure (b and d).

4.5.1.  Metrics Estimating Traversed Distance

Because the number of counties is higher in the Eastern United States, there are a
lot more markers in that part of the country. This is easily noticeable from Figure 7a
(Cuebiq Mobility Index), where the highly attenuated hotspot cluster of counties is
situated in the Southeastern states. This is the cluster of high-high values, associated
with relatively high traversed distance in the neighboring counties. On the contrary,
the same cluster of high-high values in the Southeast is not well pronounced in Safe-
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(a) Cuebiq mobility index (Cuebiq) (b) % sheltered in place (Cuebiq)
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Figure 7. Spatial cluster recency and consistency for the United States. The markers of red color denote
the counties that were classified as hotspots (high values co-located with other high values), the markers of
blue color denote the counties that were classified as coldspots (low values co-located with other low values).
Clustering consistency is illustrated by size. Clustering recency is depicted by color intensity.

Graph’s Median Distance Traveled (Figure 7c). Using SafeGraph, fewer counties are
classified as hotspots within these states. In contrast to hotspot delineation, the Safe-
Graph coldspot cluster located in the Northeast is more pronounced compared to
Cuebiq. It is impossible to find out whether this is due to inherent methodological
issues stemming from data aggregation or due to different algorithms used for privacy
safeguarding. The original spatial unit of SafeGraph data is census block group, while
for Cuebiq it is county. But under close examination, more differences can be found,
particularly in the Dakotas, Nebraska and Colorado, which are classified as coldspots in
Cuebiq and hotspots in SafeGraph. This might also be attributed to different userbase
configurations of the two data sources.

4.5.2.  Metrics Quantifying Social Distancing

Evidently there is a lot more agreement between % sheltered (Cuebiq) and % sheltered
(SafeGraph) in location (see Figure 7b,d), but their recency and consistency varies
from state to state. While the location of coldspots in both sources is centered in the
South, with the core in Northern Texas, Mississippi, Alabama, Louisiana and Georgia,
more cluster consistency (i.e. bigger markers) is observed in Cuebiq data for Nebraska,
Iowa and Kansas. The location of hotspots is similar in the Northeastern states, Great
Lakes region, and in Western United States, but the recency and consistency is higher
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(i.e. darker and bigger markers) for Cuebiq data in Wisconsin and Michigan. In both
sources, the states with some of the least recent hotspots are situated in Indiana and
Ohio. It is necessary to remark that here, the hotspots represent lower mobility (higher
percentage of sheltered-in-place population).

Some of the more interesting cases are found in the states that have both hotspots
and coldspots, where the mobility patterns may be indicative of the differences in so-
cioeconomic structure. For example, Northern Illinois hotspots with the core in Cook’s
County (Chicago) witnessed a consistently higher percentage of sheltered population
together with its nearby counties, whereas Southern Illinois coldspot and its nearby
counties witnessed a consistently lower percentage of sheltered population as compared
to the national average. Another peculiar division found in spatiotemporal structures
of mobility is between the East River and the West River South Dakota, separated
by the Missouri River. The eastern part of the state exhibited consistent coldspots
behavior, similar to other states with heavy agricultural production (Iowa, Nebraska),
whereas the western part of the state exhibited consistent hotspots behavior (more
people sheltering at home).

4.6. Assessment of between-source consistency in patterns

To supplement the assessment of trends in clustering consistency, a simple aggregate
visualization is proposed that enables swift comparison over various mobility indices
and data sources. The visualization is compiled as follows: (a) Identify hotspots and
coldspots for each week and county, (b) Mark each county on the number of weeks
a county remained significant as either a hotspot or a coldspot, and (¢) Calculate
the percentage of counties classified as either hotspots or coldspots for each state.
Figure 8 illustrates the resulting summaries as a series of scatter plots, where each
state is marked on the y-axis, and there is a separate column for each indicator.
The value of each marker is mapped on the horizontal axis to denote the percentage of
coldspots/hotspots (from the total number of counties within a state). The blue mark-
ers indicate coldspots and the red markers indicate hotspots. It is not uncommon for
some states to include counties of both cluster types. In such cases, two markers (blue
and red) per line are visualized. The primary goal of this visualization is to summarize
and communicate the differences in spatial structure across various mobility indices.
This works better when similar types of mobility indicators are assessed (e.g. metrics
quantifying the social distancing). The visualization can be read vertically or horizon-
tally. Vertically, it allows to assess the overall split between the hotspots and coldspots,
and to identify the states which are primarily hotspots, coldspots or a combination of
both. Horizontally, it allows a comparison in three dimensions: state-level, source-level,
and indicator-level. For example, the first row in Figure 8 summarizes spatial cluster-
ing in Alabama over time. For distance-based metrics, only Cuebiq captures hotspots,
which classifies 46.3% of counties as hotspots. For %-sheltered at home, the percentage
of counties classified as coldspots is roughly the same. For metrics assessing traversed
distance in Texas, both sources capture coldspots and hotspots, but the percentage
of counties classified as hotspots/coldspots is higher for Cuebiq. In Massachusetts, no
spatial clusters are identified when looking at Cuebiq Mobility Index, whereas Safe-
graph Median Distance Traveled identifies 23% of counties as coldspots. Overall, the
figure reveals some similarities and discrepancies across the two different providers
and mobility indices, as described in the following sections. These similarities and dis-
crepancies also differ for various states. To learn more about the heterogeneity in the
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Table 2. Major mobility data providers in COVID studies in the.

Distance-based metrics  Social distancing metrics

Cuebiq SafeGraph Cuebiq SafeGraph

# of states with no counties classified as hot/coldspots 11 24 2 1
# of states with both hotspots and coldspots 8 1 16 12
# of states where # hotspots &~ # coldspots 3 1 4 3

revealed patterns, our future research plan is to contextualize the identified hotspots
and coldspots using sociodemographic information of the counties as well as statewide
COVID-19 mitigation policies throughout 2020.

4.6.1. Metrics Estimating Traversed Distance

There is a lot of disagreement between the two sources, as shown in the scatter plot in
Figure 8 and Table 2. For example, in Missouri, around 4% of counties are classified
as hotspots in Cuebiq data, and roughly 2% of counties in SafeGraph data are classi-
fied as coldspots. This is indicative of the differences in the underlying spatiotemporal
structure of mobility measured by different indices in certain states. Similar behavior
is observed in Idaho and North Dakota: SafeGraph reveals co-location of high-high
traversed distance values, whereas Cuebiq reveals co-location of low-low traversed dis-
tance values. The frequency and consistency of clusters vary widely for different states:
the percentage of coldspots is very similar in Illinois, Maryland, Michigan, and Vir-
ginia. This indicates agreement in clustering delineation between the two sources. In
other words, the spatiotemporal structure of mobility in these states is very simi-
lar. On the other hand, the ‘disagreement’ between the two sources for coldspots is
highest in Arizona, Colorado, Nevada, and New Mexico and for hotspots is highest
in Alabama, Georgia, Mississippi, North Carolina, and South Carolina. Some states
appear to have no coldspots or hotspots whatsoever, indicating that counties in these
states did not respond similarly to the intervention measures. For example, there are
no cold/hotspots in Arizona, Arkansas, Alabama, Delaware, Florida, Georgia, Iowa,
Louisiana, Maine, Montana, Mississippi, Minnesota, New Hampshire and several oth-
ers in SafeGraph; and in Connecticut, Delaware, Iowa, Massachusetts and some others
for Cuebiq. There are three states per each data source that have roughly the same
number of hotspots and coldspots (Table 2): Maryland, New Jersey, and New York.
Additionally, Cuebiq identifies eight states with both hotspots and coldspots, which is
eight times as many as SafeGraph. This might be indicative of the fact that there is
less smoothing in Cuebiq data and that it captures within-state variations more effec-
tively. This claim is also supported by the higher number of states without statistically
significant clusters for the SafeGraph measure (24 vs 11 states).

4.6.2.  Metrics Quantifying Social Distancing

A lot more agreement is observed between the social distancing metrics as demon-
strated in Table 2. Figure 8 illustrates similar percentage of coldspots in Alabama,
Georgia, Indiana, Massachusetts and a few others, and similar percentage of hotpots
in Georgia, Massachusetts, Montana, South Dakota and Utah, pointing to the sim-
ilarities in spatial structure between mobility in these states. On other other hand,
the disagreement is more pronounced in Iowa, Kansas and Nebraska, where Cuebiq
differentiates higher number of coldspot counties; and in Connecticut, Delaware and
Rhode Island where SafeGraph discerns higher number of hotspot counties. Overall,
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Figure 8. Number of counties classified as either hotspot (red) or coldspot (blue) per state across four
indicators in 2020.
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according to Table 2, we see a lot more states with both hotspots and coldspots (16 for
Cuebiq and 12 for SafeGraph), and a lower number of states without counties classified
as hotspot/coldspot, which is indicative of the higher degree of spatial heterogeneity
in data, compared to metrics estimating traversed distance.

5. Conclusions

In this brief overview of available data, we identified and assessed the set of metrics
that have been used to understand the impact of COVID-19 pandemic on human
mobility. Since different metrics of mobility and social distancing have various mea-
surement units and are created by different algorithms, it is extremely challenging to
compare them. To do so, we proposed a framework to explore the spatial and tem-
poral structure of these data sets using standard geostatistical tools, such as global
and local autocorrelation. We further supplemented this analysis with multivariate
cartographic visualizations to reveal the changes in spatial clusters and outliers over
time. The developed visualizations enable us to detect the underlying spatiotemporal
trends at a glance, and make visual comparison between the metrics more efficient.
In general, since this is an exploratory data analysis, we used visualizations to illicit
hypotheses, and not confirm them with inferential statistics.

While there are other methods that can be used to assess changes in spatiotempo-
ral structure of mobility, such as Bivariate Spatial Association (Lee 2001), Differential
Local Moran (Anselin and Rey 2014), and Local Neighbor Match Test (Anselin and
Li 2020), we believe that the proposed methodology provides a robust framework for
assessing both spatial and temporal structure of the data. It strikes a good balance
between spatial data analysis and user-friendly visualization, that is easy to interpret.
More importantly, this framework allows us to explore and examine each of the data
source independently, by characterizing its spatial and temporal coverage, and con-
textualizing the metric in relation to other comparable and similar behaving metrics.
Finally, it enables us to pinpoint general regional and national trends in clustering
behavior in space and in time.

In conclusion, all reviewed data sets in this paper have limitations, which also limit
the inferences that can be made on the data. With this paper, we aimed to shed light
on inherent spatial and temporal heterogeneity in commonly used mobility indices,
and to caution researchers to be mindful of biases that are present in data and can be
exacerbated by re-aggregating, smoothing and interpolating. This paper might help
researchers to better understand the differences in mobility data and utilize the metrics
that are better suited for their research questions. However, relying solely on one data
source may be misleading as demonstrated in this paper via discrepancies captured
in recency and consistency of the clusters for various mobility metrics in space and
time. Future research is needed to contextualize these similarities and differences in
associations with sociodemographic and geographic heterogeneity of different states.

Further research should assess the effects of different spatial matrix specifications
and spatial units (e.g. regular raster grids, heterogeneous polygons) on the delineation
of hotspots and coldspots, and investigate the issues of analytical scale on visualizations
of patterns. Additionally, standardizing and summarizing reviewed mobility metrics
should yield a more universal mobility metric, allowing more formal analysis with
inferential statistics.
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Data and Codes Availability Statement

Code

To supplement reusability and replicability in research and to allow reproduction
of maps, figures and tables included in the manuscript, we shared our code and a
data sample from SafeGraph via Figshare: https://doi.org/10.6084/m9.figshare.
16892320.v1. Please see the README file in the root directory for more details.

Data

There are two types of availability for the data used in the paper: open-source data
(Group 1) and commercial data (Group 2).

Group 1: the data that support the findings of this study are openly available or
available upon request at no charge:

(1) Apple COVID-19 Mobility Trend Reports at https://covidl9.apple.com/
mobility

(2) Facebook Data for Good at https://dataforgood.fb.com/tools/
movement-range-maps/

(3) Google COVID-19 Community Mobility Reports at https://www.google.com/
covid19/mobility/

(4) Exposure indices derived from PlacelQ movement data at https://github.
com/COVIDExposureIndices/COVIDExposureIndices

(5) SafeGraph Data for Academics at https://www.safegraph.com/academics
(upon request, for academic use)

(6) Data for Mobility Changes in Response to COVID-19 (Descartes Labs) at https:
//github.com/descarteslabs/DL-COVID-19

(7) University of Maryland COVID-19 Impact Analysis Platform at https://data.
covid.umd.edu/

Group 2: Restrictions apply to the availability of these data, which were used
under license for this study. Data are available with the permission of third party:

(1) Cuebiq Mobility Insights at https://www.cuebiq.com/
visitation-insights-covid19/

(2) StreetLight Big Data for Mobility at https://www.streetlightdata.com/
covid-transportation-metrics/
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Appendix A. Spatial and temporal coverage of mobility indices
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Figure A1l. Spatial coverage of mobility sources. Darker shade indicates higher percentage of complete ob-
servations per county for spatial coverage.

Appendix B. Box plots of standardized mobility metrics
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Figure A2. Temporal coverage of mobility sources. Darker shade indicates higher percentage of complete

observations per day.
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Figure B1. The violin plots of standardized mobility metrics quantifying social distancing by US region (blue
- West, green - Midwest, purple - Northeast, tawny - South). Custom linear scaling on the y-axis is used for
values exceeding 5 standard deviations. Inside of each violin plot is a box plot. Each distribution is scaled to
be of the same area.
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Figure B2. The violin plots of standardized mobility metrics estimating traversed distance by US region
(blue - West, green - Midwest, purple - Northeast, tawny - South). Custom linear scaling on the y-axis is used
for values exceeding 5 standard deviations. Inside of each violin plot is a box plot. Each distribution is scaled

to be of the same area.
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Figure B3. The violin plots of standardized mobility metrics modeling contacts or exposure by US region
(blue - West, green - Midwest, purple - Northeast, tawny - South). Custom linear scaling on the y-axis is used
for values exceeding 5 standard deviations. Inside of each violin plot is a box plot. Each distribution is scaled

to be of the same area.
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Figure B4. The violin plots of standardized mobility metrics quantifying the number of trips or visit counts
by US region (blue - West, green - Midwest, purple - Northeast, tawny - South). Custom linear scaling on
the y-axis is used for values exceeding 5 standard deviations. Inside of each violin plot is a box plot. Each
distribution is scaled to be of the same area.
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Figure B5. The box plots of standardized mobility metrics quantifying social distancing by US region (blue
- West, green - Midwest, purple - Northeast, tawny - South).
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Figure B6. The box plots of standardized mobility metrics estimating traversed distance by US region (blue
- West, green - Midwest, purple - Northeast, tawny - South).
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Figure B7. The box plots of standardized mobility metrics modeling contacts or exposure by US region (blue
- West, green - Midwest, purple - Northeast, tawny - South).
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Figure B8. The boxplot of standardized mobility metrics quantifying the number of trips or visit counts by
US region (blue - West, green - Midwest, purple - Northeast, tawny - South).
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Figure B9. Weekly estimated Global Moran’s I for the United States. Blue points denote statistically sig-
nificant Moran’s I values. Grey line denotes the date when COVID-19 was declared a pandemic by the World
Health Organization.
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