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Triggers and biological processes controlling male or female gonadal
differentiation vary in vertebrates, with sex determination (SD) governed
by environmental factors or simple to complex genetic mechanisms that
evolved repeatedly and independently in various groups. Here, we
review sex evolution across major clades of vertebrates with information
on SD, sexual development and reproductive modes. We offer an up-to-
date review of divergence times, species diversity, genomic resources,
genome size, occurrence and nature of polyploids, SD systems, sex
chromosomes, SD genes, dosage compensation and sex-biased gene
expression. Advances in sequencing technologies now enable us to study
the evolution of SD at broader evolutionary scales, and we now hope to
pursue a sexomics integrative research initiative across vertebrates. The ver-
tebrate sexome comprises interdisciplinary and integrated information on
sexual differentiation, development and reproduction at all biological
levels, from genomes, transcriptomes and proteomes, to the organs
involved in sexual and sex-specific processes, including gonads, secondary
sex organs and those with transcriptional sex-bias. The sexome also includes
ontogenetic and behavioural aspects of sexual differentiation, including
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malfunction and impairment of SD, sexual differentiation
and fertility. Starting from data generated by high-through-
put approaches, we encourage others to contribute expertise
to building understanding of the sexomes of many key
vertebrate species.

This article is part of the theme issue ‘Challenging the
paradigm in sex chromosome evolution: empirical and
theoretical insights with a focus on vertebrates (Part I)'.

1. Introduction

(a) Towards an integrative understanding of vertebrate
sexual differentiation, development and sex

determination

In gonochoristic (for this and other terms see Glossary) ver-
tebrates, the genetic and cellular biological processes
determining whether an undifferentiated gonad develops
towards male or female exhibit great diversity [1,2]. Sex
determination (SD) in vertebrates ranges from environmental
SD (ESD) to simple or complex genetic systems (genotypic
SD (GSD)) that have evolved repeatedly and independently
[3-6]. Great plasticity of the developmental processes deter-
mining gonads and their initiation during embryogenesis
contrasts with the evolutionary conservation of pathways
that regulate development of most other tissues and organs
[3,7]. In poikilothermic vertebrates, much of the epigenetics
and genetics of SD, sex differentiation and sexual develop-
ment remains poorly understood, and knowledge in
homeotherms is mostly restricted to a few models such as
humans, mice and chickens [7]. For fishes and amphibians,
a diversity of master SD genes defining sex chromosomes
was early postulated [8], with some downstream components
of the SD networks appearing conserved. Fascinatingly,
recent work has illustrated that the molecular control and
regulation of SD factors and gonadal differentiation can sub-
stantially differ even among closely related groups with
indistinguishable gonadal development at the morphological,
histological and cellular levels [3,7,9,10].

An interesting heterogeneity exists in the evolution of SD
in that some clades exhibit very ancient conservation of sex
chromosomes (e.g. birds, therian mammals and many reptile
lineages, figure 1), whereas others show frequent evolutionary
turnovers with variation even between related clades or even
species, such as in many amphibians and fishes, and some rep-
tilian lineages [11]. Highly diverse sex chromosomes may
derive from frequent turnovers of SD genes [12,13], suggesting
that new SD systems may evolve de novo and independently.
Deep homology of some sex chromosome systems across dis-
parate taxa suggest that gene content may predispose certain
linkage groups to become sex chromosomes [4,14-16], how-
ever, so far with relatively weak support in amniotes [17].
Numerous theoretical concepts and models about transitions
among SD systems, degeneration and turnover of sex chromo-
somes [18-23] often remain to be empirically tested in
vertebrates. To understand the diversity of SD and sexual
development, a deeper and broader knowledge in multiple
species from major phylogenetic lineages is necessary. This
may have far-reaching consequences also for other fields,
owing to likely coevolution of SD, reproductive modes and

life history, which are up to now poorly studied, especially n

in poikilothermic vertebrates [24-26], although these aspects
are very relevant for theoretical and empirical studies of sex
ratio ecology and evolution [27].

Here we present an overview of the current knowledge
about SD and the genomic resources available for each
vertebrate group, as an overture towards a more comprehen-
sive understanding of vertebrate sex evolution. We review the
available whole-genome information in all major clades
across the vertebrate tree of life, in relation to knowledge
about SD, sexual development and reproductive modes,
and available genomic resources. We provide an up-to-date
overview on divergence times, species numbers, available
genomes, genome size, occurrence and nature of polyploids,
SD systems, sex chromosomes, SD genes, dosage compensation
and sex-biased gene expression.

Despite the fast-developing sequencing technologies
allowing genome assemblies of many vertebrates, we con-
sider high-quality genomes only as a starting point that
should be complemented by and synthesized with additional
information types in order to comprehensively understand
sex evolution. We then pledge for an integrative sexomics
research initiative, which uses high-throughput approaches
(e.g. RADSex, PoolSex, RNASex, epigenomics) that would
integrate the growing numbers of vertebrate species with
an available genome assembly to better understand the
evolution of genetic SD and differentiation in vertebrates.
This sexomics approach could be a starting point for a
more in-depth characterization of the ‘complete’ sexone of
representative species that would require physiological,
cell-biological, behavioural information and beyond to
better understand sexual reproduction across lineages.

2. Overview of current knowledge about sex
evolution across the vertebrate phylogeny

(a) Vertebrate sister groups: CEPHALOCHORDATA

(LANCELETS) and TUNICATA (TUNICATES)

Extant fish-like lancelets (also called amphioxi; [28,29] are con-
sidered the sister group to tunicates and vertebrates (e.g. [30]).
Lancelets are gonochorists, but little is known about their SD.
Recent genetic evidence suggests a female-heterogametic
(ZZ/ZW) GSD system [31]. The karyotype of lancelets is
considered to resemble that of ancestral vertebrates [32].
According to traditional models, the early vertebrate ancestors
experienced two successive rounds of whole-genome dupli-
cations (assigned as 1R, 2R) between approximately 500 and
450 Ma [33,34]. However, Simakov et al. [29] suggested three
duplication events—the first before the diversification of
extant chordates, the second in the ancestor of lampreys, and
the third in the ancestor of jawed vertebrates.

Tunicates, the putative sister group of vertebrates, possess

a wide array of reproductive systems. Sedentary ascidians are
mostly sequential hermaphrodites, but some produce sperms
and eggs simultaneously with incompatible cell-surface pro-
teins, preventing self-fertilization [35]. Colonial species
reproduce asexually by budding. Appendicularian tunicates
are mostly sequential hermaphrodites [36] but the pelagic
tunicate Oikopleura dioica has an XX/XY genetic sex-determin-
ing system with possible dosage compensation [37].
Pyrosomes are hermaphroditic as well, reproducing both
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Figure 1. Phylogenetic tree of major clades of vertebrates. Divergence times in millions of years ago (Ma) according to sources provided in the text; typesetting

indicates cladistic hierarchies as also used in the text and in table 1.

asexually and sexually with internal fertilization. Thaliaceans
(salps) have complex life cycles, obligatorily alternating
between sexual and asexual reproduction, allowing rapid
population growth while preserving genetic variability [38].
The oozooid develops from a zygote produced by budding,
resulting in a chain of individuals that contains an ovary
and a testis. The eggs are fertilized internally and the
embryo is brooded by the ‘mother’. The life cycle of
doliolids is the most complex, again including asexual
reproduction with a sequential hermaphroditic phase (for
overview: [39]).

With respect to the chordate ancestor, extant lancelets and
tunicates may have a derived sexual development, life cycles
and SD systems, which evolved during the hundreds of
millions of years of divergence from the vertebrate lineage.
Nevertheless, as the closest living vertebrate outgroups, they
might provide important insights into the deep evolutionary
history of sex-related traits and SD genes in vertebrates.

(b) VERTEBRATA (VERTEBRATES)
CYCLOSTOMATA (JAWLESS FISHES)

The branch of jawless vertebrates with its approximately 120
living species branched off approximately 540 Ma from the
lineage leading to all other vertebrates during the Cambrian
(figure 1). Agnatha comprises the extant clades of hagfishes
(Myxini) and lampreys (Petromyzontiformes). Four lamprey
genomes are available [40-42], and an assembly from hagfish
(Myxinidae) is available. Hagfish genome size (c-value: 2.4
4.5 Gb; [43]) exceeds that of lampreys (1.4-2.4 Gb). Hagfishes
and lampreys are oviparous (table 1). SD and sexual develop-
ment of hagfishes is poorly understood. Some species appear
as protogynous hermaphrodites [44], but no functional

simultaneous hermaphrodites have been documented
[45,55], other species are gonochoristic [56]. It is possible
that SD in lampreys is epigenetic/environmental [57]. How-
ever, the critical sex differentiation period is unexplored,
and the evidence for ESD in lampreys remains equivocal
since GSD as a possible alternative has been proposed
recently [58]. The sea lamprey genome contains several hun-
dred genes that are eliminated from somatic cells during early
development [41]. Other lampreys and hagfish likewise
undergo genome elimination [46], but it remains unknown
whether genome elimination plays a role in sexual
development.

GNATHOSTOMATA (JAWED VERTEBRATES)

CHONDRICHTHYES (CARTILAGINOUS FISHES)

With approximately 1200 extant species, cartilaginous fishes
comprise the sister group to all other living jawed vertebrates,
with elasmobranchs (sharks, rays and relatives) and holocepha-
lans (chimaeras) sharing an Ordovician common ancestor with
Osteichthyes approximately 450 Ma [59]. The genomes of only a
few species have been characterized, hindered by large genome
sizes (2.6-16.6 Gb; [43]). Currently, six sharks [60], two skates
[61] and two chimaera genomes [62] have been assembled
(recent overview: table 1). The modes of reproduction are very
diverse, including yolk-sac viviparity, histotrophy (nutrition of
an embryo by uterine secretions), oophagy and placental repro-
duction [45,63]. Several studies report cases of occasional
(facultative) parthenogenetic reproduction giving rise to
all-female offspring [64]. Intersexes (often reported as hermaph-
rodites) were reported in more than 30 elasmobranch species.
They frequently showed improper development or maturation
rendering one or both sexes nonfunctional [47]. Nevertheless,
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no functional hermaphroditism was described in this group. SD
in Chondrichthyes appears to be largely genotypic with cytoge-
netic data suggesting XX/XY sex chromosomes in the few
studied species of sharks [65] and rays [66], or possibly other
forms of male heterogamety in freshwater stingrays (Potamotry-
gon; [67,68]). A ZZ/ZW system was tentatively reported in the
stingray Hypanus americana [65]. We can conclude that there is
currently more information about the evolution of the male
genitalia, the claspers [69], than on genetic or possible
environmental triggers of SD.

OSTEICHTHYES (BONY FISHES)

ACTINOPTERYGII (RAY-FINNED FISHES)

With some more than 31 000 species, the ray-finned fishes are a
very diverse vertebrate class, largely comprising extant Teleos-
tei and few non-teleosts: Cladistia (bichirs), Chondrostei
(sturgeons and paddlefish, and Holostei (bowfins and
gars). The ancestor of Teleostei underwent another round of
whole-genome duplication (traditionally called 3R WGD’, or
‘teleost-specific WGDY; [33,70]).

CLADISTIA (BICHIRS)

These ray-finned fishes diverged more than 350 Ma in the
Devonian from other actinopterygians [71]. Cladistia comprise
13 Polypterus and a single Erpetoichthys species, with large gen-
omes (4.6 Gb to possibly 7.00 Gb) in Polypterus, and a similar
genome size (4.4 Gb) in Erpetoichthys [43]. A BAC-library of
the Senegal bichir, Polypterus senegalus, was prepared [72].
For the reedfish, Erpetoichthys calabaricus, a chromosome-
scale genome assembly is available (table 1). Bichirs are
egg-laying and share holoblastic embryonic cleavage with stur-
geons. Heteromorphic sex chromosomes have not been found
in bichirs [73-75]. Given their phylogenetic position, infor-
mation on SD and development might provide important
insights into the ancestral condition of Actinopterygii.

CHONDROSTEI (STURGEONS and PADDLEFISH)

Sturgeons and paddlefish comprise 27 living species [76] that
diverged 330 Ma [77] from the ancestor of the Teleostei and
Holostei [33,70]. After their divergence from the other ray-
finned fish lineages, sturgeons and paddlefish experienced
several polyploidization events, yielding extant species kar-
yotypes from basal approximately 120 up to as many as
about 380 chromosomes [78] (and even more in single indi-

viduals), and moderate to large genome sizes from 1.4 to
44 Gb [43]. Several projects are underway to assemble
high-quality sturgeon genomes [77], and a paddlefish
genome has been recently published [79]. In contrast to
other polyploid fishes, sturgeon genomes maintain a high
proportion of ohnologues, i.e. they exhibit a slow deduplica-
tion process and loss of several homeologous chromosomes
(segmental rediploidization), posing major challenges for
genome assembly [77,80]. Chondrostei have exclusively
oviparous reproduction [76] and share holoblastic cleavage
with most amphibians but not teleosts [81]. Sturgeons do
not possess cytologically differentiated sex chromosomes
[77,82]. The sex ratio of offspring from experimental gyno-
genesis yielded contradictory results suggesting either
male (XX/XY; [48]) or female heterogamety (ZZ/ZW;
[49]) in a paddlefish (Polyodon spathula) and a female-
heterogametic (ZZ/ZW) SD system in sturgeon [83], yet a
sex-linked marker was not found for decades [77]. Using

chromosome-scale assemblies and pool-sequencing, an n

approximately 16 kb female-specific sequence from sterlet
(Acipenser ruthenus) was detected by Kuhl et al. [84]. A poly-
merase chain reaction-genotyping test, yielding female-
specific products in six sturgeon species, spanning the entire
phylogeny with the most divergent extant lineages
(Acipenser sturio, Acipenser oxyrinchus versus Acipenser ruthe-
nus, Huso huso), stemming from an ancient tetraploidization.
Similar results were obtained in two octoploid species (Acipen-
ser gueldenstaedtii, Acipenser baerii). Phylogenetic conservation
during 180 Myr of sturgeon evolution and across at least one
polyploidization event revealed the oldest known vertebrate
system with undifferentiated sex chromosomes, based
presumably on a ZZ/ZW-mode of sex determination [84].

HOLOSTEI (BOWFINS and GARS)

A single species of extant bowfin (Amia calva) [85] from North
America and closely related gars (Lepisosteiformes), occurring
in North and Central America plus the Caribbean, with seven
living species [86] represent the sister taxon of teleosts. These
two lineages diverged in the Early Permian (approx. 300 Ma;
[71]), before the teleost-specific WGD. Eased by reasonable
genome sizes in bowfin (1.0-1.3 Gb) and gars (1.0-1.3 Gb), a
gar [87], and most recently the bowfin genome [88] have
been assembled. Gars and bowfins are oviparous [89,90] and
show holoblastic embryonal cleavage. No information on the
SD in Holostei is available and no sex-specific genome regions
have been identified so far [88].

TELEOSTEI (TELEOSTS)

The rise of teleosts, which comprise approximately 31000
species [91]) and thus make up over 99% of all ray-finned
fishes (Actinopterygii), was accompanied by the teleost-specific
WGD (traditionally assigned as 3R WGLY) in their common
ancestor approximately 300 Ma [34,71]. Some lineages, e.g. sal-
monids and carps, independently experienced yet additional
WGD events. Teleosts evolved meroblastic embryonal cleavage
[92]. To date several hundreds of teleost genomes have been
assembled (table 1). Owing to advanced deduplication and
diploidization of genomes and relatively small to large
genome sizes (0.4-5.3 Gb; with most genomes less than
2.0 Gb; [43], whole-genome sequencing (WGS) of teleosts
shows great progress among vertebrates. Teleosts feature the
largest diversity of reproductive modes [93]. All-female
sperm-dependent parthenogenetic (gynogenetic) or hybrido-
genetic species of hybrid origin [94,95], and even sequential
(protandrous, protogynous or serial, ie. bidirectional)
hermaphroditism [96], in some cases involving socially con-
trolled sex change [97,98] and simultaneous hermaphroditism
exist [99,100], the latter including the only self-fertilizing ver-
tebrate [101]. Sexual development of teleosts is also very

plastic [102], and sex reversal can be easily induced by hormo-
nal and sometimes by environmental triggers or treatments
[103], rendering them susceptible to endocrine-disruptive pol-
lution [104]. Data in zebrafish and medaka indicate that germ
cell number can drive SD [105,106].

Teleosts show the widest variety of sex-determining
mechanisms among vertebrates [107]. This includes gono-
chorism with ESD and GSD (as well as its environmental
modulation), GSD ranging from homomorphic to hetero-
morphic female (ZZ/ZW) or male heterogametic (XX/XY)
systems, plus polygenic SD [108,109] or multiple sex chromo-
somes [110], with different systems evolved in closely related
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species. Pure temperature-dependent sex determination
(TSD, e.g. [111]) appears to occur in teleosts relatively rarely
[107]. In teleosts, the largest number of master SD genes in
vertebrates has been characterized [112]. Teleost master SD
genes evolved from well-known members of the sexual
development regulatory network (the ‘usual suspects’, [3]),
stemming in some cases from transcription factors (Dmrtl,
Sox3), Tgf-beta signalling pathway members (Amh, Amhr2,
Gsdf, Gdf6), or exceptionally from an immune gene in salmo-
nids (Irf9; [113]), triggering male gonadogenesis through an
unknown mechanism. The non-recombining region of
young teleost sex chromosomes may be remarkably small,
e.g. 300 kb in Atlantic herring (Clupea harengus; [114]), some
sex chromosomes may even freely recombine, and rarely,
the X and Y may differ by just a single nucleotide polymorph-
ism, as reported in the Japanese pufferfish, Takifugu rubripes
[115]. In teleosts, the research on rewiring of SD- and sex
differentiation gene networks is the most advanced [3]. Com-
pared to the huge teleost biodiversity, the discovery of novel
SD genes and systems can be expected from WGS of additional
species. Many teleosts, among them sequential or simul-
taneous hermaphrodites and recent polyploids with specific
reproductive modes, such as gynogenesis or hybridogenesis
[116], still lack the characterization of their genomes, SD sys-
tems and SD genes as well as interactions of allospecific sex
chromosomes in taxa of hybrid origin.

SARCOPTERYGII (LOBE-FINNED FISHES)

Coelacanths and lungfishes are the only living sarcoptery-
gian fishes [117] that all trace back to a divergence in
Silurian times, i.e. more than 420 Ma [71]; all other extant sar-
copterygians comprise tetrapods.

COELACANTHIMORPHA (COELACANTHS)

There are two coelacanth species from southeastern Africa
and Sulawesi [118]. Coelacanths are ovoviviparous
[119,120]. A coelacanth 2.86 Gb genome of Latimeria chalum-
nae has been assembled [121]. Over 50 genes involved in
sex differentiation and gametogenesis were sequenced in
L. chalumnae and Latimeria menadoensis, but no master SD
genes have been characterized [122,123]. This situation may
not change, given the secretive deep-sea lifestyle of these
species and their conservation status (CITES).

DIPNOI (LUNGFISHES)

The six living known species of lungfish occur in Africa, South
America and Australia. As their closest living relatives, lung-
fishes are in a uniquely informative phylogenetic position to
infer the ancestral condition of tetrapods [124]. Lungfishes
are oviparous [125] and show a pattern similar to holoblastic
cleavage [92,125]. While coelacanths have moderate vertebrate
genome sizes (2.6 Gb; [121]), lungfish genomes range among
the largest in vertebrates (49-60 Gb; [43]). Despite their huge
size, the assemblies without information about SD systems
from the Australian lungfish (Neoceratodus forsteri) and the
African lungfish (Protopterus annectens) have recently been
obtained [126,127]. In P. annectens, more than 50 genes related
to sex differentiation and gametogenesis have been character-
ized [123]. Master SD genes have not been identified in
lungfishes. The availability of captive breeding in some
lungfish species might ease elucidation of SD.

TETRAPODA (TETRAPODS)

AMPHIBIA (AMPHIBIANS)

Soon after their Devonian divergence (335 Ma; [128]) from
Amniota, the amphibian lineage to Gymnophiona (caecilians)
branched off from that of Anura (frogs and toads) and Urodela
(=Caudata: newts and salamanders), while the latter two
clades (Anura, Caudata) diverged in the Early Permian
(300 Ma, [129]). Many amphibian families are deeply (100-
150 Ma) diverged [130,131], with recent evidence that 88% of
anurans (Hyloidea, Microhylidae, Natatanura) underwent a

rapid Cretaceous-Palaeogene boundary diversification [132].
Gymnophiona also exhibit deep divergences, raising expec-
tations for major genomic evolutionary differences [133].
Cleavage in most frog and salamander embryos is radially
symmetrical and holoblastic. The limited knowledge on caeci-
lians, however, suggests meroblastic cleavage in this group
[134].

Although there are more species of amphibians (over
8260; [135]) than mammals (6485; [136,137], to date only 19
amphibian genomes of various quality have been assembled,
including 15 out of 7291 Anura, 1 out of 760 of Urodela (Cau-
data) and 3 out of 213 Gymnophiona [42,135]. Even fewer
assemblies have reached chromosome-scale quality. The so
far slow progress in amphibian genomics is mostly caused
by large genome sizes, reaching from 3.9 to 9.8 Gb in Gymno-
phiona, 1.9-13.1Gb in Anura, and huge 16.6-78.2Gb in
Urodela [138], and by the large proportions of repetitive
sequences. The ongoing dawn of amphibian genomics will
be much enlightened by long-read and three-dimensional
technologies [139], with many amphibian families still
awaiting their first WGS.

Anurans evolved a great diversity of reproductive modes,
with terrestrial eggs and exotrophic aquatic larvae, preceding
the frequent and repeated evolutionary rise of direct develop-
ment (terrestrial eggs, no tadpoles), while non-feeding
(endotrophic) larvae never led to direct developers [140].
Newts and salamanders exhibit aquatic larvae (rarely invol-
ving exceptional or even obligate neoteny, ie. larval
reproduction), as well as terrestrial eggs, and ovo-viviparity
with birth of larvae or fully metamorphosed offspring,
rarely boosting development by intrauterine cannibalism
[141]. Gymnophiona are oviparous or viviparous [142,143],
including rare direct developers [144].

While true parthenogenesis most likely did not evolve in
amphibians (table 1), hybridogenetic systems, including
male- or female-biased and probably GSD-governed popu-
lation systems occur in anurans [145] as well as
kleptogenesis (previously called ‘gynogenesis’; [51]) in sala-
manders [50], where all-female hybrids of five ploidy levels
acquire full or partial genomes from allospecific males and
‘purge’ genomes from deleterious alleles. Recent auto- and
allo- (i.e. hybrid origin) polyploids, presenting in amphibians
the highest frequency of all vertebrates, are known from sev-
eral families of anurans and salamanders [146] but are so far
unknown in Gymnophiona. Occasional reports on natural sex
change in adult anurans (e.g. [147] in Hyperolius viridiflavus)
require further examination.

About 96% of the amphibians exhibit undifferentiated sex
chromosomes [148,149]. All studied amphibians show GSD
and either male (XY/XX) or female (ZZ/ZW) heterogamety
[150-152], in addition a putative case of a female W0/00 male
SD system [153] and several cases of multiple sex chromosomes

9TH00707 ‘9LS § 20S 'y “suvij iyd  qysy/jeuinol/bio’buiysijgndAyaposiedos



Downloaded from https://royalsocietypublishing.org/ on 09 March 2022

[154] have been reported, which form a ring during meiosis in
the smoky jungle frog, Leptodactylus pentadactylus [155]. While
the vast majority of amphibians exhibit homomorphic XX /XY
or ZZ/ZW sex chromosome systems, there are several
prominent examples of cytogenetically differentiated sex
chromosomes [156,157], and for the African bullfrog, Pyxicepha-
lus adspersus, a draft genome is pre-published [158], from which
potential upregulation of the heterogametic W-chromosome
and/or repression in the homogametic Z might inform about
dosage compensation. In the cytologically indistinguishable
sex chromosomes of the western clawed frog, Xenopus tropicalis,
male-biased expression of sex-linked transcripts is suspected to
be owing to degeneration of the non-recombining portion of the
W-chromosome, coupled with incomplete or absent dosage
compensation [159]. Cases of sex chromosome-autosome trans-
locations have been shown by cytogenetics [160]. A balanced
lethal system in newts (Triturus) may have evolved from a
vestigial sex chromosome pair [161,162]. Sex chromosomes of
most newts and salamanders are homomorphic [157,163], and
the observation of balanced sex ratios from clutches is inter-
preted as indication for GSD but has remained without
genetic evidence [164]. Whole-genome approaches in multiple
individuals identified the homomorphic sex chromosome of
axolotl (Ambystoma mexicanum), and a putative approximately
300 kb SD region on the W-chromosome [164,165]. Genomic
approaches recently also suggested sex-linked loci in ancient
clades of giant salamanders (family Cryptobranchidae;
[166,167]). Transcriptomic approaches try to circumvent
limitations of huge urodelean genome sizes to address
sexual developmental aspects [168,169]. Evidence for hetero-
morphic sex chromosomes exists for at least one species of
Gymnophiona [170].

Homomorphic sex chromosomes in amphibians may be
caused by high turnover rates [171], where autosomes evolve
into new sex chromosomes [8], as documented in ranid frogs
[15] and pipid frogs [10]. Another hypothesis to explain
homomorphy is occasional X-Y recombination (‘fountain-of-
youth’-model; [9]), assuming recombination arrest in males to
be controlled by maleness (i.e. by the sexual phenotype rather
than the sex chromosomal genotype). Thus, Y chromosomes
may recombine, for example, in sex-reversed XY-females, pre-
venting long-term Y degeneration, supported by data from
tree frogs [172], true frogs [173] and Palaearctic green toads
[174]. Generally, sex reversal in early developmental stages
owing to environmental cues is possible, making semi-aquatic
amphibians, like fishes, vulnerable to pollution of aquatic
ecosystems with endocrine-disruptive compounds [104,175].

Early studies on SD involved experimental sex reversal
[176,177], cytogenetics and crossing experiments [148,149].
In-depth molecular studies on amphibian SD stem mostly
from clawed frogs (Xenopus), where LG7 is sex-linked in
diploid X. tropicalis [178,179] and coexisting X, Y and W-
chromosomes are suggested [154,159] but no master SD gene
is known [180]. The only well-characterized anuran master
SD gene is a Dmrtl-paralogue, the W-linked Dm-w of Xenopus
laevis [151,181], present in some closely related Xenopus species
but not in the entire pipid radiation [10,182]. Dm-w arose after
(and perhaps in response to) tetraploidization [182-184] and
may initially not have governed sexual differentiation. Dmrt1
itself is considered a candidate master SD gene in some hylid
frogs [185,186], bufonid toads [174] and common frogs (Rana
temporaria; [173]), and is also sex-linked in several other

ranids [15]. The male versus female-determining molecular n

mechanisms suggest that parallel amino acid substitutions
contributed to the establishment of DmrtlY (medaka fish)
and Dm-w (Xenopus) as SD genes [187]. A well-studied ranid
frog system is that of the Japanese wrinkled frog, Glandirana
rugosa, with five genetic lineages: the west Japan, east Japan
and XY-groups possess XX/XY systems; the ZW- and Neo-
ZW groups ZZ/ZW SD systems [188]. In all lineages, the
genes androgen receptor (Ar), splicing factor 1 (Sf-1) and Sry-box
transcription factor 3 (Sox3) are located on the Z and W or X
and Y chromosomes [189,190]. In most amphibians, the charac-
terization of diploid and polyploid SD systems, evolution by
hybridization and introgression and generally the characteriz-
ation of SD systems, sex chromosomes and their evolution
remain unknown from a genomic perspective.

AMNIOTA (AMNIOTES)
Sauropsida (sauropsids, reptiles and birds)

Lepidosauria (lepidosaurs)

Rhynchocephalia/Sphenodontia (tuatara)

The only extant species in the reptilian order Rhynchocephalia
(Sphenodontia), diverged approximately 250 Ma from their
sister taxon Squamata (lizards and snakes), is the tuatara (Sphe-
nodon punctatus), endemic to New Zealand. The 5 Gb tuatara
genome has been recently reported [191], including a list of
sex developmental genes [192]. The oviparous tuataras exhibit
a unique form of TSD, with females produced below, and
males above 22°C [193]. Tuataras possess no sex chromosomes
with neither population genomic resources nor global
CG-methylation patterns revealing sex specificity [191,193].
Orthologues of genes acting antagonistically in masculinizing
(e.g. Sfl, Sox9) or feminizing (e.g. Rspol, Wnt4) networks pro-
moting testicular or ovarian development, have been
identified, as were genes implicated in TSD (e.g. Cirbp; [7]).
This example shows that WGS alone can be insufficient to
understand SD, particularly TSD. However, a high-quality
genome is an important resource for the evaluation of embryo-
nic transcriptomes or proteomes, which are critical data sources
for characterization of genes related to sexual development.

Squamata (squamates, lizards and snakes)

Squamates, comprising currently more than 11 000 species [194],
diverged approximately 250 Ma from Rhynchocephalia [195],
while lepidosaurs diverged 277 Ma from archosaurs and turtles
[191]. To date, more than 35 genomes have been assembled
(table 1). Genome studies are eased by moderate genome sizes,
ranging from 1.3 to 3.7 Gb [196]. Squamate reptiles are oviparous
or viviparous; ‘ovo-viviparity’ may be difficult to distinguish
from viviparity [197]. They mostly exhibit gonochorism, and
very rarely true parthenogenesis (females give birth to geneti-
cally identical—'clonal’'—daughters; [94,198]). In several clades
of lizards and in a blind snake, diploid or triploid all-female obli-
gate parthenogenetic complexes, mostly of hybrid origin, are
known [199,200] or arose in the laboratory [201]. Interestingly,
natural polyploid reptiles appear only fertile as triploids [202].
Squamates exhibit GSD with male (XX/XY) or female (ZZ/
ZW) heterogamety, having undifferentiated or often differen-
tiated, heteromorphic sex chromosomes, or ESD, mostly in the
form of TSD [6,18,203-205]. ESD seems relatively rare, currently
estimated to occur in roughly 5% of non-avian reptile species
[206]. Multiple neo-sex chromosomes evolved via sex
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chromosome-autosome fusions more frequently in iguanas with
male heterogamety than in snakes with female heterogamety
[207], which agrees with similar apparent patterns in other ver-
tebrates [110,207,208]. Neither simultaneous nor sequential
hermaphrodite species are known in reptiles [209]. Facultative
parthenogenesis is well documented in many snake and lizard
lineages, with all-female progeny under male heterogamety
but all-male progeny under female heterogamety with degener-
ated W-chromosomes [210]. Facultative parthenogenesis
yielding genetically variable offspring of both sexes was discov-
ered in a xantusiid lizard [211]. Five squamate clades (iguanas,
lacertid lizards, varanids, skinks and caenophidian snakes)
covering approximately 60% of extant squamates show
evolutionary conserved sex chromosomes [206,212-216], while
other lineages, particularly Acrodonta (agamid lizards and cha-
meleons), boas and pythons, and geckos exhibit more variable
SD [18,205,217-219]. In two snake families and the Komodo
dragon (Varanus komodoensis) with female heterogamety, sub-
stantial W-chromosome degeneration and the absence of
global Z-chromosome dosage compensation has been shown,
dosage balance is largely lacking in Z-specific genes in these
species [215,220,221]. By contrast, X-linked genes are twofold
upregulated in males and thus fully dosage-compensated in
Anolis carolinensis [222,223], a species with a 160 Myr-old sex
chromosome system [212]. However, a lack of dosage balance
under male heterogamety was found in Basiliscus vittatus and
Lialis burtonis [224-226]. Rates of evolution in Z-linked genes
were demonstrated to be increased, relative to their autosomal
homologues in snakes, supporting the fast-Z effect [220]. Never-
theless, many questions remain regarding SD, dosage
compensation and evolutionary rates of sex-linked lodi, includ-
ing the reasons for differences in the variability of SD among
squamate lineages.

Testudines (turtles)

Despite their derived anatomy, turtles, containing 361 extant
species [194], are related to the bird-crocodilian (Archosaurian)
lineage, from which they split between the Upper Permian and
Triassic, approximately 270-250 Ma [227], or earlier, in the
Carboniferous, 320 Ma [228]. Twenty-two species have draft
genomes assembled [42], specifically 18 Cryptodira and four
Pleurodira (table 1). Turtles exhibit highly homologous and
similarly sized genomes as crocodiles and some birds [229],
ranging from 2 to 2.9 Gb [43]. Turtles are exclusively oviparous
[197]. They comprise ESD (TSD) or GSD species, the latter with
either ZZ/ZW or XX/XY systems [204,230-233]. While ESD is
possibly ancestral to turtles and has been found in most
studied species, GSD evolved independently at least five
times and stayed notably stable in trionychids (ZZ/ZW) and
probably also in chelids for many millions of years [233—
235], although in chelids their XX/XY sex chromosomes
display considerable morphological evolution, including a Y-
to-autosome fusion [236]. No global dosage compensation
was found in the female-heterogametic trionychid Apalone
ferox [237], yet, dosage compensation varying by tissue, age,
and temperature is suggested in Apalone spinifera [238]. Pre-
liminary analyses of few sex-linked genes hint to fast-Z and
slow-X effects in turtles [239,240]. Despite efforts to elucidate
the molecular basis of GSD in turtles by searching for reptilian
homologues of genes [232] involved in sexual development of
mammals [241] and birds [242], no master SD gene has been
identified yet [204]. However, SfI (a testis development gene)

is translocated to the ZW-chromosomes in Apalone and n

remains a candidate [243]. Natural polyploids are found in
Platemys platycephala, specifically triploids, diploid-triploid
mosaic and triploid-tetraploid mosaicism [54]. Transcriptomic
analyses in turtles with ESD targeted the network of gonadal
development [244-246], including its epigenetic regulation
[246,247]. In early embryos of Trachemys scripta, the histone
H3 lysine 27 (H3K27) demethylase Kdm6b has temperature-
dependent sexually dimorphic expression. Knockdown of
Kdmé6b at 26°C (all-male offspring) triggers male-to-female
sex reversal in more than 80% of embryos. Kdm6b directly pro-
motes transcription of Dmrt1 by eliminating the trimethylation
of H3K27 near its promoter. Additionally, overexpression of
Dmirt] was sufficient to rescue the sex reversal induced by dis-
ruption of Kdmé6b [248]. Recent research revealed that
temperature-mediated influx of calcium at 31°C drives phos-
phorylation of Stat3, which represses transcription of Kdmé6b
[249]. Still, many research questions on the genomics and
molecular mechanisms of SD remain unanswered.

Archosauria (archosaurs)

Crocodilia (crocodiles)

Crocodiles, containing only 24 extant species [194] diverged
from birds more than 240 Ma [250,251], whereas forms, mor-
phologically similar to the living crocodilians (Alligatoridae,
Crocodylidae, Gavialidae), first appear in the fossil record
80-90 Ma [252]. With moderately large genome sizes (2.3—
29Gb; [251]), four genomes (Alligator mississippiensis,
Alligator sinensis, Crocodylus porosus, Gavialis gangeticus) have
been sequenced [251,253]. All crocodiles are oviparous [254].
Crocodiles have no sex chromosomes [255], and sexual differ-
entiation is determined during development by a temperature-
sensing mechanism with a poorly understood molecular basis.
Earlier gene expression studies [256,257] have more recently
been extended using gonadal RNAseq and revealed 41 differ-
entially expressed/spliced genes at a male-producing
temperature, including Wnt1, Kdmé6b, C/EBP [258] and Jumonji
chromatin modifiers [259]. In the Chinese alligator, ortholo-
gues of male-determining genes show an increasing or
steady expression during gonadogenesis under the male-
inducing but a decreasing expression pattern under the
female-inducing temperature [260].

Aves (birds)

Birds contain more than 10000 extant species [261]. They
shared the last common ancestor with the sister taxon of cro-
codiles earlier than 240 Ma [251,252]. Eased by high synteny
[262] and compact genome sizes (0.9-2.1 Gb; [43]), over 502
[42] of bird genome assemblies have been published [263]
and more are in preparation (table 1). Birds share homolo-
gous female-heterogametic sex chromosomes, i.e. a ZZ/ZW
system [264]. No candidate for a female (W-specific) SD
gene has been identified [265,266] and current knowledge
strongly suggests that SD in birds is based on copy-number
(i.e. dosage) variation of the Z-linked master SD gene
Dmrt1 with a key role in testis development, which is missing
on the W [267]. The gene Dmrtl resides in the oldest evol-
utionary stratum of the Z-chromosome [268], shared by
palaeognath and neognath birds [269-271]. A recent study
using a CRISPR-Cas9 based mono-allelic targeting approach
with sterile surrogate chicken hosts supports this hypothesis
[272]. Such a chromosomally male (ZZ) chicken with a single
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functional copy of Dmrtl developed ovaries with typical
female markers and exhibited follicular development. Inter-
estingly, these animals were indistinguishable in external
appearance from wild-type adult males, supporting that the
development of male secondary sexual characters is driven
by cell-autonomous sex identity and independent of gonadal
hormones [272,273]. The rarity of Z0 and ZZW individuals in
birds may suggest that these genotypes are often lethal or
infertile [274], and that a locus on the W might control
dosage compensation of some Z-linked genes [275,276]. Leth-
ality of polyploid bird embryos may be owing to a general
disruption of development. Mortality was high among ZZZ
individuals, which developed as males [277]. In a study of
4182 chicken embryos, haploids (1.4%), triploids (0.8%,
9 277, 7 ZZW, 15 ZWW) and tetraploids (0.1%, 1 ZZZZ,
1 ZZWW) were found, none of which survived to hatching
([278]; discussed in: [279]). ZZ-eggs can be sex-reversed to
female by oestrogen-exposure during the critical period of
gonad formation [7]. Gynandromorphs with male versus
female bilateral morphology can arise from double fertiliza-
tion of a binucleate egg and this bilaterally distinctive
chromosomal constitution of cells governs perception of the
hormone environment [7]. Facultative parthenogenesis in
birds mostly leads to early embryonic mortality, but hatchl-
ings or even adults (all males) were reported in turkey and
chicken [52,53]. Multiple neo-sex chromosomes have been
found only extremely rarely in birds [280]; however, extended
Z and W chromosomes, formed by addition of autosomal
material to both Z and W chromosomes, evolved within
songbirds in the Sylvioidea superfamily [281-283] and in
Eopsaltria australis [284].

Genomics of avian sex chromosomes is well studied and
revealed great interspecies diversity of pseudoautosomal
regions (PAR) and Z/W differentiation, from relatively
modest degradation in some palaeognath species to extreme
degradation in most modern birds [285,286]. The PAR is
short in many neognaths, and even without genes in chicken
[287]. Similar to the surviving genes on the mammalian Y
chromosomes, the retained genes on the bird W chromo-
somes are enriched for housekeeping or putative dosage-
sensitive genes with stronger selective constraints than the
lost ones, and are conserved between distantly related
lineages of birds [287,288]. Shared or lineage-specific recom-
bination suppression produced ‘evolutionary strata’, ie.
punctuated sequence divergence owing to stepwise suppres-
sion of recombination between Z and W [268]. These strata
evolved by a complex process of W- and Z-linked inversions,
the latter comprising 25 in total across avian lineages [270].

All studied birds exhibit incomplete ZZ/ZW dosage com-
pensation [289], which seems gene-specific and partial [290].
Moderation of expression levels partially balances out the
otherwise twofold difference [291,292], presumably because
not all genes are equally sensitive to dosage differences. For
many genes, this twofold expression difference does not
appear to be associated with severe fitness costs. In addition,
other bird genes have evolved sex-biased expression
[285,293]. Likewise, in palaeognath birds, sex chromosome
genomics recently revealed incomplete dosage compensation,
confirmed large (more than 100 Myr-old) PARs, where genes
in some species, however, evolve faster than autosomal ones
[294]. Like other sex chromosomes, those of birds accumulate
transposable elements in the non-recombining regions of the
W [295]. On the W, Peona et al. [296] revealed enrichment of

endogenous retroviruses, which can be expressed and may n

retrotranspose,  inducing genome-wide female-biased
mutation rates. Furthermore, probably all songbirds have a
germline-restricted chromosome (GRC) and thus undergo a
form of partial genome elimination [40,41]. First cytogeneti-
cally described in zebra finch, Taeniopygia guttata [297],
GRC is absent in somatic cells but present in one copy in
male germline cells (but eliminated during spermatogenesis)
and two copies in female germline cells (reviewed in
[298,299]). Recent genomic, transcriptomic and comparative
cytogenetic work suggests that the GRC is enriched in
genes [300-302]. The zebra finch GRC contains more than
115 paralogues to single-copy genes on 18 autosomes and
the Z is enriched in genes involved in female gonadal devel-
opment. These genes are transcribed in testes and ovaries
[301]. Although the exact function of GRC is currently
unclear, the GRC resembles an XX/X0 system, albeit one lim-
ited to the germline on top of a ZZ/ZW system in germline
and soma. Another level of complexity for understanding
the songbird sexome arises from the proposed maternal
inheritance of the GRC (but see [303]), implying that it is
co-inherited with the W and the mitochondrial genome.

Mammalia (mammals)

Monotremata (monotremes)

With five extant species [137], this order includes the sole
representatives of the subclass Prototheria, which diverged
200 Ma from viviparous mammals (Theria; [304]), rep-
resented by Ornithorhynchidae with a single species
(platypus) and the 50 Ma diverged Tachyglossidae (echid-
nas) with four species. Platypus and echidna genomes are
among the smallest in mammals (2.7-2.8 Gb; [43]). Mono-
tremes display a fascinating mixture of derived mammalian
and primitive amniote morphological and physiological fea-
tures shared with sauropsids (reptiles including birds), and
have a unique reproductive system that combines egg-
laying with lactation. Likewise, the platypus genome exhibits
a combination of derived and plesiomorphic characters [305].
The echidna genome has just become available [306]. The
monotreme karyotypes have been controversial for almost
half a century (cf. [307]) but turned out to contain multiple
sex chromosomes, which probably arose from sequential
rearrangements between ancient sex chromosomes and sev-
eral autosomes. During gametogenesis, meiotic chains form
that comprise 10 sex chromosomes (five Xs and five Ys) in
male platypus and 9 (five Xs and four Ys) in male echidnas
[307,308]. This monotreme sex chromosome system evolved
independently of the sex chromosomes of viviparous mam-
mals approximately 175Ma [304,309]. The mammalian
master SD gene, Sry, is absent from the genome, while the
putative avian SD gene, Dmrt1, is located on the chromosome
X5, in two copies in females and one in males, i.e. the oppo-
site situation from birds [310]. The most promising master SD
candidate is Amh (AmhY), which is known to have a funda-
mental role in SD of fishes, and is carried by the Ys
chromosome that corresponds to the oldest of the evolution-
ary strata of the monotreme sex chromosomes [304,311]. The
recent improvement of a male platypus genome revealed
seven strata, distributed across the five Xs, which sequentially
suppressed recombination with their homologous Ys, five of
which are shared with echidna [306]. This work also pro-
vided insights into the origin and evolution of the 10
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platypus sex chromosomes. Sequence homology was found
between the chromosome Ys, where AmhY is located, and
the chromosome X;, suggesting that the 10 platypus sex
chromosomes ancestrally formed a ring, rather than a chain.
In contrast to autosomes, there are extensive interchromoso-
mal contacts between the extant platypus sex chromosome
pairs. Unusually frequent interchromosomal contacts were
also found between the autosomal regions in humans hom-
ologous to the platypus sex chromosomes, suggesting that
reciprocal translocations leading to the evolution of the mul-
tiple platypus sex chromosomes were facilitated by spatial
proximity of these chromosomes that pre-existed in the
mammalian ancestor. Monotreme dosage compensation of
X-linked genes occurs on a gene-by-gene basis [312], rather
than through chromosome-wide silencing, as in eutherians
and marsupials [313,314].

Theria (viviparous mammals)

Metatheria (marsupials)

Marsupials diverged approximately 180 Ma from Eutheria
(placentals) [304] and contain 385 extant species [136,137],
inhabiting Australasia and the Americas. Marsupials exhibit
moderate genome sizes of approximately 3.9 Gb [43,315]. To
date, eight genomes have been sequenced [42] and genomic
evolution has recently been reviewed [316]. Marsupials differ
from eutherian mammals in many features of reproduction
and development, e.g. extraembryonic tissues have undergone
remarkable modifications to accommodate reduced egg size
and quantity of yolk/deutoplasm versus increasing emphasis
on viviparity and placentation [317]. While all marsupials
show male heterogamety (XX/XY), the X of marsupials vary
substantially in size, morphology and banding patterns, even
between species with an ancestral-like 2n=14 karyotype
[318]. The marsupial X shares complete homology with two-
thirds of the eutherian X, the remaining third is autosomal in
marsupials and corresponds to an early addition on the euther-
ianlineage. The marsupial X, therefore, represents the ancestral
therian X [285]. Translocations or fusions between autosomes
and sex chromosomes have been observed in several marsu-
pials [207,319]. While marsupials usually inactivate the
paternal X chromosome in the female soma by a marsupial-
specific non-coding RNA (RSX: RNA on silent X; [320]),
dosage compensation often remains incomplete, contrasting
to random but tightly controlled eutherian X inactivation
[321]. Marsupial dosage compensation is associated with
specific epigenetic modifications [322]. Cytogenetics in some
bandicoots (family Peramelidae) revealed somatic elimination
of one X in females and the Y in males at different ontogenetic
stages, resulting in sex chromosome mosaics in various tissues
[323]. The marsupial Y is much smaller than the eutherian Y;
marsupial X and Y do not share a PAR, and thus cannot form
a synaptonemal complex or recombine during the first meiotic
division, but a special structure, the dense plate, maintains sex
chromosome association to ensure proper segregation
[319,324,325]. Marsupial Y chromosomes share the master
male SD gene, Sry, with placental Y chromosomes [316,326].

Eutheria (placentals)

Placental mammals diverged 180 Ma from marsupials [304]
and with 6992 species comprise the vast majority of living
mammals [136,137]. Genome size varies between approxi-
mately 2.7Gb in Laurasiatheria, approximately 3.3 Gb in
Supraprimates/Euarchontoglires, approximately 4.4 Gb in

Xenarthra and approximately 5.3 Gb in Afrotheria [315],
with the largest mammalian genome (approx. 7.7 Gb) being
that of a rodent from South America, Tympanoctomys barrerae
[327]. Placental genome assemblies are available from 411
species [42] (table 1). Presumably owing to sex-specific
methylation [328] and/or other aspects of development
[279], no polyploid mammals are viable and reports on natu-
ral polyploids have been disproved [327,329]. Eutherian sex
chromosomes evolved from a pair of autosomes in the ther-
ian lineage around 180 Ma, they are nowadays highly
differentiated in both size and gene content owing to the
arrest of recombination causing the degeneration of the Y
[285,330]. The eutherian X chromosome carries more than
1000 genes, whereas the Y contains only a few protein-
coding genes [304]. The degree of heteromorphism and
PAR of eutherian sex chromosomes can differ dramatically,
e.g. humans exhibit two PARs with the larger of about
2.5 Mb, whereas the house mouse PAR is only 0.5 Mb, and
other species have even lost their PAR [331,332]. Lineages
with multiple neo-sex chromosomes (X;XX;X»/X;X;Y or
XX/XY1Y,) have independently evolved by fusion with an
autosome at least 20 times [207]. In some rare cases, a trans-
location of an autosome to both sex chromosomes has
restored a large segment of homology between X and Y, creat-
ing a neo-PAR, as found in the African pygmy mouse (Mus
minutoides), where it appears to show signs of early stages
of sex chromosome differentiation [333]. Eutherians ran-
domly inactivate one of two Xs in female somatic cells by a
non-coding RNA (Xist: X-inactive specific transcript; [334]).
Active and inactive X chromosomes localize to different sub-
nuclear positions with distinct chromosomal architectures
and epigenetic signatures, reflecting their activity state
[335]. The eutherian Y exhibits strata that stopped recombin-
ing at well-dated time points [304] and carries the master SD
gene (Sry). This testis development initiating transcription
factor is homologous to the X-linked Sox3 [7,336]. The gene
regulatory network of male and female SD- and developmen-
tal pathways are best-studied in laboratory house mice [7].
While for 30 years Sry has been thought to comprise a
single exon, a cryptic second exon, essential for male SD in
mice has just been identified [337]. Although eutherian XX/
XY sex determination is extremely conserved, a few rodent
species evolved unusual, derived sex chromosome systems
[338]. For example, spiny rats, Tokudaia osimensis, and mole
voles, Ellobius lutescens, have lost their Y chromosomes
including Sry [339,340], and the gene efv is hypothesized to
activate Sox9 [7]. On the other hand, fertile females with a
Y chromosome are known in some rodents (e.g. Akodon
azarae). The situation is probably best explored in the African
pygmy mouse (Mus minutoides), with a sex reversal mutation
on a mutant X (called X*) and only XY individuals presenting
phenotypic males, while genotypic XX, XX* and X*Y mice are
females [341]. Genotypic XX females in moles (Talpa occiden-
talis) develop ovotestes instead of ovaries and exhibit a
masculinized phenotype (musculature, external genitalia,
aggressiveness). The testicular part of the ovotestes lacks fer-
tile germ cells but contains typical male androgen-producing
cells. Recently, it was uncovered that the increased androgen
synthesis in female moles is caused by a tandem triplication
of a region containing Cyp17A1, a gene controlling androgen
synthesis, and an intrachromosomal inversion involving the
pro-testicular growth factor gene Fgf9, heterochronically
expressed in the ovotestes [342]. Adult mammals cannot
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Figure 2. Scheme on sexomics as a first high-throughput step to improve our understanding of the complete sexome of vertebrates.

perform sex reversal but genetic perturbations can destabilize
the commitment to Sertoli and granulosa cell fate in adult life
[7], showing that adult mammalian testes or ovaries require
repression of the alternative state [343,344]. Gene expression
in eutherians across 12 tissues (human, macaque, mouse,
rat, dog) revealed hundreds of genes with conserved sex-
biased expression but showed that it has arisen recently
and is thus not shared between most mammals [345].
XX-genotypes have been experimentally shown to increase
lifespan in mice [346].

3. Beyond whole vertebrate genomes: a pledge
for ‘sexomics’

There are several ongoing initiatives to sequence many of the
71000 vertebrate genomes [347-350]. In context to future
research on vertebrate SD and differentiation, we hereby
suggest that future sequencing efforts target species with
missing information on their SD system, the sex chromo-
somes or special developmental and/or reproductive
modes of interest. As an overview, we have prepared
table 1, a summary of the electronic supplementary material,
table S1, which summarizes currently (December 2020) avail-
able whole-genome information in the context of knowledge
on sex evolution from [42]. This is where we are now and we
think that sequencing technology and bioinformatics will

make it increasingly easier to obtain high-quality genomes
from non-model species.

An obvious priority for the sexome (figure 2) to be exam-
ined by sexomics is the sequencing and assembly of sex
chromosomes in taxa possessing them. Assembling the sex-
limited sex chromosome, the Y or W, has been historically dif-
ficult owing to the accumulation of repetitive elements and
palindromic sequences on the Y and W [287,351]. Many
early genome assembly projects chose to sequence the homo-
gametic sex (XX or ZZ individuals) to avoid problems with
assembling sex chromosomes and prevent mis-assembly
[352,353]. The advent of long-read sequencing, e.g. PacBio
and Oxford Nanopore, has made assembly of the hemizy-
gous sex chromosome (Y or W) feasible, and many genome
assembly consortia are now using the heterogametic sex as
the reference assembly [354,355]. However, sexomics is more
than just including sex chromosomes in genome assemblies.

While genome sequencing per se will undoubtedly present
a driving force towards our understanding of vertebrate sex,
we wish to point out that genome sequencing is only a starting
point to comprehensively understand SD and sex evolution.
For integrative research from here and far beyond, we propose
to introduce the terms sexome (and sexomics; figure 2). As the
sexome, we consider the information about an individual
regarding its sexual differentiation, development and repro-
duction on all levels of biological organization. This includes
the genomic and epigenetic information, the transcriptomes
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of the organs involved in these sex-specific processes. These
organs comprise the gonads, secondary sex organs and charac-
ters, organs with a transcriptional sex-bias (e.g. brain, liver
gene expression for yolk production, placenta, prostate), the
respective proteomes as well as information about environ-
mental factors that induce puberty and reproductive activity,
maturation of gametes, etc., sexual behaviour, and finally the
factors that determine fertility and the end of or transitions in
reproduction (e.g. menopause). It should also include infor-
mation on malfunction and impairment (e.g. teratology and
endocrine disruption).

While we will not be able to cover this universe, we first
focus on the analyses of genomes, transcriptomes and pro-
teomes and how they influence the whole picture. We also
would like to encourage others (neurobiologists, ethologists,
ecologists) to contribute their expertise to complete the
sexome (figure 2) of as many species as possible.

Like other “-omics’ terms, sexomics describes a special feature
of an organism, and the sexomics idea is a term to gather all rel-
evant ‘-omics’ approaches, applicable in high-throughput
mode. We argue that the sexone in the first place is a comprehen-
sive description, which comprises all aspects of sexual
development and is an archive of data that characterizes a com-
plex phenotype, specific to the reproductive mode of an
organism (e.g. female, male, hermaphrodite). Information
about the sexone feeds into the classical disciplines (see above)
and should be considered at the level of ‘comparative sexomics’
as a tool for improving the approaches to a better understanding
of molecular and phenotypic evolution, population dynamics,
ecology and more. We are convinced that only such comparative
approaches across the phylogeny as well as information on
intraspecific and intra-population variation, and its regulation
will lead to substantial scientific progress. We are sure that this
holds particularly true for the sexome.

Elucidating the evolution of sex chromosomes and SD in
non-model vertebrates primarily addresses fundamental
research questions [2,11], including turnovers of SD systems
[356], speciation [357], hybridization [358] and evolutionary
development [359]. Likewise, based on similarities and differ-
ences in SD and sexual differentiation in non-vertebrates,
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Glossary

Autosomes:

Budding:

Deduplication:

Diploidization:

Dosage balance:

Dosage compensation:

Environmental sex
determination:

Epigenetic modification:

all chromosomes of the nucleus,
which are not sex chromosomes
(or B chromosomes).

a type of asexual reproduction,
where the new organism emerges
gradually as a bud from the cellular
membrane or a body part of the
parent.

the process by which duplicated
genes revert to single-copy genes
owing to loss or silencing of one
copy.

the process by which a polyploid
genome turns functionally and
structurally (e.g. by gene expression
changes, chromosome loss or diver-
gence between homologous
chromosomes in autopolyploids)
into a diploid state.

(also ‘male-to-female expression
balance’, or “parity in the expression
between sexes’): the molecular
mechanisms that equalize the
expression of X-/Z-linked genes
missing copies on the Y/W chromo-
somes between sexes, regardless of
whether the ancestral expression
levels are restored.

the molecular mechanisms that
restore the expression of X-/Z-
linked genes with missing copies on
the Y/W chromosome equalizing
the expression of these genes between
sexes, according to some definitions,
to the ancestral expression levels.

sex is determined by environmental
factors, most commonly temperature
(TSD) during a sensitive embryonic
stage of gonadal development, in
species without sex-specific sequence
differences in their genome.
reversible changes that modify
the genetic material and regulate
expression without affecting the
DNA sequence (e.g. DNA methyl-
ation, histone modification).

Evolutionary stratum:

Exotrophic larvae:
Facultative
parthenogenesis:

Fast(er)-X/Z effect:

Female heterogamety:

Gametogenesis:

Gametologues:

Genome elimination:

Genotypic sex determi-
nation (GSD):

Germline-restricted
chromosomes (GRCs):

Gonochorism:

chemicals. Curr. Opin. Endocrinol. Metab. Res. 7,
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a region of the sex chromosomes,
which ceased recombination in a
single step and thus evolutionary
period (plural: ‘evolutionary strata’).
larvae feeding on external resources
(including maternal trophic eggs)
(opposite term ‘endotrophic’).
occasional parthenogenetic repro-
duction in a species that typically
reproduces sexually.

the accelerated evolutionary rate of
X- or Z-linked sequences relative to
that of autosomal loci.

species with sex determination
controlled by a ZZ/ZW sex chromo-
some system (and similar derived
systems, eg. with multiple sex
chromosomes).

the developmental process to pro-
duce (usually sex-specific and
usually haploid) cells specialized
for reproduction (gametes), com-
monly referred to as ovum/egg (in
females) and sperm (in males).
homologous genes shared by sex
chromosomes (e.g. between X and
Y chromosomes) in
recombining parts.
regulated loss of genomic regions

their non-

during development of an organism.
sex is determined by a sex-specific
genomic region (at least a single-
nucleotide polymorphism), most
commonly by a sex-specific combi-
nation of chromosomes (i.e. sex
chromosomes).

type of partial genome elimination
where one or more entire chromo-
somes, the GRCs, are lost during
germline-soma differentiation.
having just one of at least two dis-
tinct sexes in any one individual
organism throughout its lifetime.
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Gynogenesis:

Hemizygous genes:

Hermaphroditism:

Heterogametic sex:

Heteromorphic sex
chromosomes:

Holoblastic (total)
embryonal cleavage:
Homeologues:

Homeologous
chromosomes:

Homeothermic:

Homogametic sex:

Homomorphic sex
chromosomes:

Hybridogenesis:

Introgression:

reproductive mode, requiring the
activation of embryogenesis by
sperm without contribution of
paternal DNA (often also called
‘sperm-dependent parthenogenesis’
or sometimes ‘pseudogamy’).
genes present in a single copy in an
otherwise diploid «cell, typically
Y- and W-specific genes, and likewise
X-specific genes in males (i.e. genes
present on the X and missing on the
Y chromosome or X-linked genes in
X0-males of XX/X0 systems), and
Z-spedific genes in females.
developing both male and female
gametes during the life cycle of an
organism.

the sex that produces two types of
gametes that each contain one of
two different types of sex chromo-
somes, e.g. XY-males or ZW-females.
sex chromosomes that are morpho-
logically ~ distinguishable =~ when
viewed with a light microscope
(opposite term: ‘homomorphic”).
the zygote and blastomeres are com-
pletely divided during the cleavage.
orthologous genes derived from
different lineages or species, com-
bined by hybridization in the same
diploid or polyploid genome.
homologous chromosomes derived
from different lineages or species,
combined in the same genome of
hybrid origin (diploid or polyploid).
having stable, usually physiologically
maintained, internal temperature.

the sex that produces gametes that
all contain the same type of sex
chromosomes, e.g. XX females or
ZZ males.

sex chromosomes that are morpho-
logically indistinguishable in size
and  shape
‘heteromorphic’).
reproductive mode with selective
(usually clonal: ‘hemiclonal’, ie.
‘half clonal’) transmission of one of
the two parental genomes of hybrids
to their offspring; more complex
inheritance patterns may occur in
hybrid polyploid organisms, some-
times collectively termed
‘hybridogenesis” (or ‘meroclonal’,
i.e. “partly clonal’, inheritance).

the transfer/moving of genetic/
genomic material from one popu-
lation or species into the gene pool
of another, by hybridization.

(opposite term:

Kleptogenesis:

Male heterogamety:

Menopause:

Meroblastic (partial)

embryonal cleavage:

Mosaicism:

Neo-sex chromosome:

Neoteny:

Obligate parthenogenesis:

Ohnologues:

Orthologues:

Owiparity:

Ovo-viviparity:

Ovotestis:

Palindromic sequence:

Parthenogenesis:

reproductive mode of a hybrid unisex- [EZ]

ual species, requiring sperm from a
related, often parental, species to trig-
ger the embryonic development; the
sperm can either be eliminated (see
Gynogenesis) or its genome can be
partially or completely incorporated.
species with sex determination
controlled by an XX/XY sex
chromosome system (and similar
derived systems, e.g. with multiple
sex chromosomes).
post-reproductive life period after
the end of female reproduction;
known from few cetaceans and
hominins.

the cleavage furrows do not com-
pletely divide the fertilized egg
(usually in eggs with large amounts
of yolk).

the presence of more than one
population of somatic or germline
cells with different genotypes or
ploidies within an individual.
derived sex chromosome, formed
by fusion of the ancestral sex
chromosome with an autosome.
reproduction while retaining juven-
ile  characteristics, e.g. in
amphibians (urodela) without full
metamorphosis.

offspring are produced exclusively
by parthenogenesis.

paralogous genes originated from
whole-genome duplications, in ver-
tebrate research usually understood
as diversified paralogues, evolved by
ancient whole-genome duplications.
homologous genes originated from
a single common ancestor, now pre-
sent in different genomes (usually
separated by a speciation event).
the egg is expelled and the embryo
largely develops and hatches out-
side the body of the mother.

the egg develops until hatching
within the mother, where the
embryo is feeding exclusively on
nutrients pre-deposited in the egg.
a gonad with both ovarian and tes-
ticular tissues (irrespective of their
functionality).

complementary short DNA or RNA
sequence motifs, arranged in close
proximity but with opposite orien-
tation; they can potentially form

secondary structures, such as
hairpins.
reproductive mode by which

offspring (or at least an embryo)
is produced from an egg without
genetic contribution from sperm.
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Paralogues:

Poikilothermic:

Ploidy:

Polygenic sex
determination:

Polyploidy:

Protandrous
hermaphroditism:

Protogynous
hermaphroditism:
Pseudoautosomal region:

Recombination:

Sequential
hermaphroditism:

Sex determination:

Sex-determining locus:

Sex chromosomes:

homologous genes in the same
genome, originated by duplication
(local gene duplication, whole-
genome duplication).

having variable, usually environ-
mentally  dependent,
temperature.

the number of the complete sets of
chromosomes in a eukaryotic cell

internal

(i.e. one set =haploidy, two sets=
diploidy).

sex is controlled by multiple genes
(also  called
determination’).
more than two complete sets of
chromosomes occur in a eukaryotic
cell.

producing male gametes in the first
stage of the life cycle, and female
gametes in a later stage of an

‘multilocus  sex

organism.

producing female gametes in the first
stage of the life cycle, and male
gametesina later stage of an organism.
recombining  part of  sex
chromosomes.

the exchange of genetic material
between  homologous  chromo-
somes, occurring during meiosis
(most frequent and regularly) or
mitosis in eukaryotes.

producing female and male gametes
at different periods of the life cycle
of an organism.

the developmental process deciding
the sex of the individual.

a locus determining the sex of an
individual, in vertebrates triggering
the differentiation of the initially
bipotential gonad either towards
testis or ovary.

chromosomes that carry a sex-deter-
mining locus (or loci) and segregate
in a sex-specific manner.

Sex chromosome
differentiation:

Sex chromosome
turnover:

Sex reversal:

Simultaneous
hermaphroditism:

Synaptonemal complex:

Transcription factor:

Transposable element:

Viviparity:

the process leading to changes in [EE]

content and structure between the
homologous X and Y (or Z and W)
sex chromosomes, involving one
or more of the following events:
accumulation of sexually antagon-
istic alleles, loss of functional genes,
recombination arrest, chromosomal
rearrangements, heterochromatini-
zation and/or accumulation of
repetitive elements.

evolutionary switch from one sex
chromosome system to another, e.g.
by the emergence of new master SD
genes on new chromosomes or trans-
location of the sex-determining locus
to another chromosome.

the change of sex during the devel-
opment of an organism, evident
by a mismatch between gonadal
phenotype (phenotypic sex) and
sex-specific genotype (genotypic
sex).

producing both female and male
gametes at the same time in one
organism.

a protein structure that connects
paired homologous chromosomes
during the meiotic prophase in
eukaryotes.

protein that regulates the transcrip-
tion of genes.

genetic  elements capable of
mobilizing via  copy-and-paste
(retrotransposons, including

endogenous retroviruses) or cut-
and-paste mechanisms (most DNA
transposons).

the egg develops exclusively within
the mother, where the embryo is
feeding on nutrients, regularly
provided by the mother.
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