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Abstract. Understanding transport processes in complex nanoscale systems, like ionic conductivities in
nanofluidic devices or heat conduction in low-dimensional solids, poses the problem of examining fluc-
tuations of currents within nonequilibrium steady states and relating those fluctuations to nonlinear or
anomalous responses. We have developed a systematic framework for computing distributions of time
integrated currents in molecular models and relating cumulants of those distributions to nonlinear trans-
port coefficients. The approach elaborated upon in this perspective follows from the theory of dynamical
large deviations, benefits from substantial previous formal development, and has been illustrated in several
applications. The framework provides a microscopic basis for going beyond traditional hydrodynamics in
instances where local equilibrium assumptions break down, which are ubiquitous at the nanoscale.

1 Introduction

In molecular and nanoscopic systems, fluctuations
abound, material properties depend on their spatial
extent, and nonlinear response is typical. These fea-
tures render the study of transport phenomena on
such small scales distinct from its study on macro-
scopic scales, where fluctuations are suppressed and lin-
ear laws are largely valid. Here we review a perspec-
tive on nanoscale transport phenomena based on large
deviation theory [1]. Large deviation theory provides a
means of characterizing fluctuations of currents within
nonequilibrium steady states, [2–4] and also a practi-
cal route to evaluating the likelihood of fluctuations
with computer simulations [5–9]. Further, recent devel-
opments have elucidated how particular fluctuations of
microscopic variables can encode nonlinear response,
enabling an atomistic description of transport behavior
far from equilibrium [10–14]. This enables the devel-
opment of approaches that go beyond the locally lin-
ear phenomenology of traditional hydrodynamics, and
allows for linear and nonlinear constitutive relations to
be derived directly from molecular principles.

The study of nanoscale transport phenomena is moti-
vated by advances in nanofabrication techniques and
experimental measurements that have driven increas-
ingly sophisticated empirical observations into fluxes
and flows on small scales. Such experimental investi-
gations have established a number of emergent behav-
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iors when systems are scaled down. These range from
the anticipated importance of boundaries when surface-
to-volume ratios are large, to unexpected violations of
continuum laws valid on macroscopic scales, due to
the confinement of fluctuations to low dimensions or
to local departures from equilibrium [15–21]. At the
same time, the continued miniaturization of devices
has emphasized the importance of establishing con-
nections between molecular properties and emergent
device characteristics to develop novel design rules. For
example, the efficiency of blue energy harvesting and
waste heat storage devices depend strongly on par-
ticular chemical compositions and molecular geome-
tries, as well as the emergent nonlinearity ubiquitous at
the nanoscale [22–25]. Similarly, high-throughput sen-
sors and low power logical circuits utilize locally non-
linear responses to operate effectively and so cannot
be understood with continuum theories [26–30]. These
point to the need and timeliness of new theories bridg-
ing the divide between our traditional understanding
of transport phenomena and that which occurs at the
nanoscale.

Large deviation theory has emerged as a potential
formalism to fill this role, connecting nonequilibrium
statistical mechanics to mesoscopic observable phenom-
ena. It provides anticipated scaling forms for proba-
bility distributions of time extensive random variables
and their cumulant generating functions. These results
underpin fluctuation theorems [31–35] and thermody-
namic uncertainty relations [36,37] that provide bounds
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and symmetry relations for current fluctuations arbi-
trarily far from equilibrium. In some cases, large devia-
tion functions also serve dual roles as generating func-
tions, encoding statistics of currents, in addition to
thermodynamic potentials, from which response rela-
tions can be derived [13,38–40]. Just as hydrodynamic
theories relate transport problems near equilibrium to
Gaussian fluctuations about equilibrium, large devia-
tion theory fills a gap relating far from equilibrium,
nonlinear response at the nanoscale to rare fluctuations
in equilibrium. Numerical techniques to evaluate large
deviation functions have been widely applied in lat-
tice and low-dimensional models of transport [41–47].
In molecular models, similar analysis has been slower,
though large deviations have been studied in glassy
systems, [48–52] and active matter [53–56]. Recent
advances reviewed here show that the application of
large deviation theory to molecular transport models is
now tractable.

In this perspective, we review some large deviation
theory in the context of nanoscale transport phenomena
with a focus on classical molecular systems. We illus-
trate how fluctuations and their associated nonlineari-
ties can be treated consistently from a molecular, rather
than phenomenological, perspective. We first consider
basic formal results, reviewing past work clarifying the
structure of nonequilibrium fluctuations and their con-
nection to response functions in principle. We then con-
sider advances in numerical approaches that allow those
formal results to be brought to bare on complex sys-
tems in practice. We illustrate some specific applica-
tions of this view on transport, where large deviation
functions have been evaluated in models that provide
a realistic description of physical systems. Finally, we
conclude briefly on what is needed to extend this theory
of nonequilibrium steady-states to more general classes
of systems, and discuss open areas worthy of pursuit.

2 Large deviations in principle

A central problem in nonequilibrium statistical mechan-
ics is the evaluation of the probability distribution of
fluctuating variables. Large deviation theory provides a
path to do this. In the context of transport and dynam-
ical systems, the relevant stochastic variable whose
extent can be take arbitrarily large is a time integrated
current, J , or generalized displacement,

J =
∫ tN

0

dt J̇(t), (1)

where J̇(t) is an instantaneous flux at time t, and tN
is the observation time, taken to be larger than any
characteristic correlation time of J̇(t).

The fluctuations of J can be characterized by a prob-
ability distribution, or alternatively by its character-
istic function. For a dynamical property or a system
away from equilibrium where Boltzmann statistics do

not hold, the calculation of either is a daunting task.
The fundamental principle of large deviation theory is
that currents that are correlated over a finite amount
of time admit an asymptotic, time intensive form of the
logarithm of their distribution function [2,4]

φE(j) = lim
tN→∞

1
tN

ln〈δ(jtN − J [X])〉E , (2)

where φE(j) is known as the rate function and is a nat-
ural variable of the time intensive current, j = J/tN.
We will adopt a notation that distinguishes averages
in the presence of an external field E that drives the
current, where 〈..〉E denotes an average in the steady
state generated by field E, and δ(jtN −J [X]) is Dirac’s
delta function evaluated using a fluctuating current
J [X] that depends on a trajectory X. This asymptotic
form implies that deviations away from the mean are
exponentially unlikely, with a rate set by φE(j). From
large deviation theory, the characteristic function asso-
ciated with fluctuations of J can be computed from the
Laplace transform of Eq. (2),

ψE(λ) = lim
tN→∞

1
tN

ln
〈
e−λJ

〉
E

, (3)

where ψE(λ) is known as a scaled cumulant generating
function, and depends on the Laplace parameter λ but
not tN. Derivatives of ψE(λ) with respect to λ evaluated
at λ = 0 yield the time intensive cumulants of J .

The pair φE(j) and ψE(λ) are related to partition
functions for path ensembles that are either condi-
tioned to exhibit a value of J or that are statistically
biased towards different J ’s through λ [57,58]. They
completely characterize the fluctuations of the current
within a nonequilibrium steady-state. When both φE(j)
and ψE(λ) exist and are smooth and differentiable,
they contain the same information. Specifically, they
are related to each other through a Legendre–Fenchel
transform, [1]

φE(j) = inf
λ

[ψE(λ) + λj], (4)

as follows from a saddle point approximation to the
integral definition, valid in the long time limit. Fur-
ther, when this relation holds, trajectories taken from
the conditioned ensemble are equivalent to trajectories
under the statistical bias [59]. Figure 1 illustrates these
two quantities near equilibrium.

Many formal results have been derived for large devi-
ation functions of time integrated currents. Some of
the most foundational and useful in the context of
nanoscale transport are reviewed below. In the follow-
ing, a distinction is drawn between systems near equi-
librium and those far from it.

2.1 Fluctuations near equilibrium

Assuming that the departure from equilibrium is small
and that Boltzmann statistics hold, Onsager originally
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Fig. 1 Illustration of the expected form of the rate func-
tion, φE(j), and cumulant generating function, ψE(λ),
under small applied field E (solid lines) and at equilibrium
(dashed lines)

conjectured that the log-probability of a current fluc-
tuation was given by the entropy production to create
it [38,39]. In what he called a dissipation function, now
identifiable as a rate function, the log-probability of a
current fluctuation was given by

φ0(j) ≈ −βEj/4
= −βj2/4χ, (5)

where in the second line the dependence on the field has
been eliminated through a phenomenological linear law
relating the current to the field, j = χE, through a con-
stant of proportionality χ that is observed to be a gener-
alized conductivity. The Gaussian form for the current
fluctuations is consistent with microscopic reversibility
in equilibrium that requires φ0(j) is an even function
of j.

The corresponding scaled cumulant generating func-
tion is,

ψ0(λ) = λ2χ/β, (6)

where under the Gaussian approximation to the cur-
rent fluctuations, ψ0(λ) is quadratic in λ. As a scaled
cumulant generating function, derivatives of ψ0(λ) with
respect to its argument provide the intensive cumulants
of J , for example,

d2ψ0(λ)
dλ2

∣∣∣∣
λ=0

=
1
tN

〈δJ2〉0
= 2χ/β, (7)

which relates the conductivity with the variance of the
current, χ = β〈δJ2〉0/2tN. In the long time limit this is
equivalent to

χ = β

∫ tN

0

dt 〈j(0)j(t)〉0, (8)

assuming current correlations decay faster than 1/t.
The first form of the fluctuation dissipation relation is
known as an Einstein–Helfand moment [60,61]. Equa-
tion 8 follows from time reversal symmetry, and results
in a traditional Green–Kubo expression for the response

of a current in terms of an integrated time correlation
function [62–64].

The Gaussian form of φ0(j) is valid only for small j,
as is the subsequent linear response relationship that
follows. Their utility derives from their thermodynamic
origin, in which the entropy production uniquely deter-
mines the response. This endows linear response rela-
tionships with great generality. They are equally valid
independent of the specific dynamics of the system, pro-
vided the large deviation form holds. In practice, this
requires that correlation times for the current are finite.

2.2 Fluctuations far from equilibrium

Unlike fluctuations about an equilibrium steady-state,
fluctuations away from equilibrium are not generically
determined solely by thermodynamic considerations
[65]. Thermodynamics can bound the scale of fluctua-
tions and impose specific symmetries, but their detailed
form will depend in general on the specific equations of
motion developing those fluctuations. In the following
we will restrict our discussion to processes describable
by a Langevin equation [66]. For concreteness, in the
next few sections, we will consider an underdamped
equation of the form

ṙ = vi , miv̇i = Fi

[
rN

]
+ Ei − γivi + ηi, (9)

for particle i where the final two terms obey a local
detailed balance with a temperature Ti, by dissipating
energy through the friction, γi, and adding energy by
a random force ηi(t) with Gaussian statistics described
by 〈ηi(t)〉 = 0, 〈ηi(t)ηT

j (t′)〉 = 2γikBTi1δijδ(t − t′),
where kB is Boltzmann’s constant and 1 is the unit
matrix. The force, Fi

[
rN

]
, is assumed to be gradient

but depends on the full configuration of the system,
rN , and Ei is an external field driving a nonequilib-
rium steady-state. In the limit that Ei = 0 and Ti = T
for all i, the system evolving with Eq. (9) will develop a
Boltzmann distributed steady state and exhibit micro-
scopic reversibility [67].

A consequence of the underlying microscopic reversibil-
ity of Eq. (9), and its local detailed balance, is that
when driven away from equilibrium its trajectories sat-
isfy the Crooks fluctuation theorem [34]. In terms of a
scalar current j driven by a scalar field E, this symme-
try is manifest in the current rate function as

φE(j) − φE(−j) = βEj, (10)

due to Kurchan for diffusive dynamics [33]. This sym-
metry means that currents that evolve in opposition
to their driving field are exponentially unlikely with a
scale set by the entropy production associated with the
current. This fluctuation theorem is a specific realiza-
tion of a more general fluctuation theorem for the total
entropy production [68], can be generalized to multi-
ple currents [12], and is a microscopic statement of the
second law of thermodynamics [69]. Importantly this
relationship is valid for arbitrary E. When E = 0, it
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reduces to a condition that the equilibrium probability
of a current is an even function, from which the linear
response relationships discussed above follow [70]. Its
equivalent statement in terms of the scaled cumulant
generating function is

ψE(λ) = ψE(βE − λ), (11)

which in the context of stochastic dynamics is known as
Lebowitz–Spohn symmetry, [31] or in the deterministic
limit as Gallavati–Cohen symmetry [32]. As these sym-
metry relations are thermodynamic in origin, equivalent
expressions exist independent of the specific evolution
equation.

Around an equilibrium steady state, Eq. (10) or
Eq. (11) is sufficient to deduce a linear response rela-
tionship in the form of the fluctuation–dissipation theo-
rem [71]. This reflects the fact that, in this specific case,
the fluctuations of J in equilibrium encode the response
of J to the field E. However, for nonlinear response, or
linear response around a nonequilibrium steady-state,
additional functional information is needed. One way
to proceed elaborated upon by Gaspard [12] evaluates
the average current 〈J〉E in terms of mixed derivatives
of ψE(λ). Using the fluctuation theorem, the current up
to second order in the field is

〈J〉E

tN
=

∂2ψ0(λ)
∂λ2

∣∣∣∣
λ=0

βE

2
+

∂3ψE(λ)
∂λ2∂βE

∣∣∣∣
λ,E=0

(βE)2

2

=
〈δJ2〉0
2tN

βE +
1

2tN

d〈δJ2〉E

dβE

∣∣∣∣
E=0

(βE)2, (12)

where the second line follows from the definition of the
scaled cumulant generating function [12,14]. This illus-
trates that in addition to knowledge of the fluctuations
of J about equilibrium, it is necessary to know how
those fluctuations change with an applied field to pre-
dict higher order response. This is due to the general
breakdown of the fluctuation-dissipation relationship
away from equilibrium, and the fact that kinetic factors,
like the effective diffusivity 〈δJ2〉E , become important
within nonequilibrium steady states.

An alternative way to interpret the fact that equi-
librium fluctuations of J are insufficient to predict the
full response of a current to a field E is to note that
only near equilibrium are J and E conjugate dynamical
quantities. From Maes and coworkers, away from equi-
librium, in general the quantity conjugate to E in the
path probability will have components that are asym-
metric under time reversal, as well as components that
are symmetric under time reversal [72,73]. While the
fluctuation theorem uniquely determines the former to
be the entropy production, the specific form of the lat-
ter depends on the equation of motion. If we designate
Q as the fluctuating time reversal symmetric contribu-
tion conjugate to E in the path probability, which is
zero on average in equilibrium, then

Q =
∫ tN

0

dt Q̇(t), (13)

Fig. 2 Nonlinear response like current rectification
through a diode can be understood by how (left) cur-
rent fluctuations described by φE(j) change at equilibrium
(dashed lines) or for large fields (solid lines), or alternatively
how (right) current and activity fluctuations described by

φ̂0(j, q) are correlated in equilibrium

which is extensive in time with increment Q̇ and q =
Q/tN its intensive counterpart. Considering the joint
rate function, φ̂E(j, q) for the time intensive j and q,
we have from the fluctuation theorem

φ̂E(j, q) − φ̂E(−j, q) = βEj, (14)

while its complement

φ̂E(j, q) + φ̂E(−j, q) = βDE(q) (15)

defines a function of q that encodes the time sym-
metric contribution, βDE(q), to the joint rate function
φ̂E(j, q). This function can be readily calculated from
an explicit equation of motion like that in Eq. (9), and
specific forms are shown in Sects. 3.1 and 4.3. Using
these two relations, both valid for arbitrary E, we can
relate the joint rate function φ̂E(j, q) under the applied
field to its value in the absence of the field, φ̂0(j, q), as

φ̂E(j, q) − φ̂0(j, q) = βEj/2 + βΔDE(q)/2, (16)

where ΔDE(q) = DE(q) − D0(q) is referred to as the
excess dynamical activity, the time symmetric analogue
to the entropy production.

While for general dynamical processes and arbitrary
currents ΔDE(q) may be complicated, for currents that
are linear in the microscopic velocities driven by fields
that enter linearly into the equation of motion given
in Eq. (9), ΔDE(q) simplifies significantly. Specifically,
we have found that it can be deduced to be linear in q
with an additive constant proportional to E2 [13]. This
means that the joint rate function for j and q, driven
arbitrarily far from equilibrium by E, is related to its
equilibrium counterpart by

φ̂E(j, q) − φ̂0(j, q) = βE(j + q)/2 − βχidE2/4, (17)

where χid is the conductivity in the non-interacting par-
ticle limit. Analogously, the scaled cumulant generating
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function is

ψ̂E(λj , λq) =
1
tN

ln
〈
e−λjJ−λqQ

〉
E

= ψ̂0(λj − βE/2, λq − βE/2) − βχidE2/4.

(18)

This implies that, for systems in which Eqs. (17) and
(18) hold, φ̂0(j, q) acts as a thermodynamic potential
that completely determines the response of a current
to an applied field [13]. Further, it implies a nonequi-
librium ensemble reweighting principle between steady-
states evolved under different applied fields with E and
the sum J +Q acting as conjugate dynamical variables
[74]. While this is restricted to diffusions of the form
of Eq. (9), a similar result has recently been proved for
driven exclusion processes [75]. Using these relations,
the average current 〈J〉E is

〈J〉E = 〈JeβE(J+Q)/2−βχidtNE2/4〉0, (19)

valid for arbitrary E. To second order in the field, the
current is given by

〈J〉E
tN

=
∂2ψ̂0(λj , λq)

∂λ2
j

∣∣∣∣∣
λ=0

βE

2
− ∂3ψ̂0(λj , λq)

∂λ2
j∂λq

∣∣∣∣∣
λ=0

(βE)2

4

=
〈δJ2〉0

tN

βE

2
+

〈δJ2δQ〉0
tN

(βE)2

4
, (20)

where we have invoked the time reversal symmetry of
the equilibrium average to eliminate terms that aver-
age to 0 and employed the fact that 〈J〉0 = 〈Q〉0 = 0
[13]. Comparing to Eq. (12), we observe that the corre-
lations between J and Q, 〈δJ2δQ〉0, encode the change
of the fluctuations in J with the applied field through
an equilibrium expectation value. These two views are
illustrated in Fig. 2. Thus, to construct response the-
ories for nanoscale transport where nonlinearities and
departures from equilibrium are commonplace, one can
either determine the functional dependence of the dis-
tribution of currents on the driving field, or consider the
joint distribution of the current and activity in equilib-
rium.

3 Large deviations in practice

While large deviation functions have been evaluated in
analytically tractable systems, and in lattice models,
the application of large deviation theory to nanoscale
transport problems with detailed molecular or meso-
scopic models has been limited. In large part, this is
due to the lack of suitable numerical tools. With recent
advances by us and others, this formalism can now be
brought to bare on complex systems. Below we review
some existing techniques for evaluating large devia-
tion functions numerically. We distinguish two existing

approaches that either attempt to solve for a large devi-
ation function directly by solving a generalized eigen-
value equation from those that are based on estimating
them stochastically by sampling rare trajectories.

3.1 Evaluating large deviation functions directly

The traditional approach to compute large deviation
functions is to employ the Feynman–Kac theorem,
[2,59,76] which relates the scaled cumulant generating
function to the largest eigenvalue of a tilted or deformed
operator [31]. For the Markovian process in Eq. (9), and
an observable of the form j =

∑
i ai · ṙi + bi · v̇i, the

generalized eigenvalue equation is

LλRλ = ψE(λ)Rλ, (21)

and

Lλ =
∑

i

vi∇ri
+

1
mi

[Fi(rN ) + Ei − γvi] (∇vi
+ λbi)

+
kBTiγi

m2
i

(∇vi
+ λbi)

2 − λaivi, (22)

where the adjoint of L0 is the Fokker–Planck opera-
tor and Rλ is the dominate right eigenvector. Typi-
cally the force Fi(rN ) complicates the analytic solution
of the eigenvalue equation. In force-free cases, like free
diffusion [77] and open Levy walks, [78] and linear sys-
tems, like collections of harmonic oscillators [79] and
Ornstein–Uhlenbeck processes, [58,80,81] the cumulant
generating function can be calculated. In Sect. 4.1, we
review a study on the diffusive transport of a tagged
active Brownian particle, which can be solved exactly
by integrating out degrees of freedom with a many body
expansion [82].

Absent analytical solutions, basis set techniques can
be used to numerically solve Eq. (21). For example,
Fig. 3 illustrates the joint rate function φ̂0(j, q) for
diffusive transport in a periodic ratchet potential. An
overdamped equation of motion reduces the dimension-
ality of the system to a simple periodic coordinate, r,

γṙ = F (r) + f + η 0 ≤ r ≤ 2π, (23)

and φ̂0(j, q) is the joint rate function for j = ṙ and
corresponding dynamical activity q = −γ−1F (r), the
negative external force. As a periodic problem, Eq. (21)
can be diagonalized using a Fourier basis and φ̂0(j, q)
evaluated using an analogue of Eq. (4). In this spe-
cific system, F (r) = −∂rU(r), where U(r) = − sin(r +
sin(r)/2), lacks inversion symmetry, and the nonlinear
response of j to an applied force f exhibits current recti-
fication, see Fig. 3. The joint j and q fluctuations encode
this asymmetric response. In the joint rate function,
fluctuations that increase q are correlated with increas-
ing the scale of fluctuations in j, or 〈δJ2δQ〉0 > 0,
and vice versa, leading to a larger current and differen-
tial mobility for f > 0 than for f < 0, from Eq. (20).
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Fig. 3 Top: Illustration of a Brownian particle in a ratchet
potential subject to an applied force. Bottom left: The joint
rate function φ̂0(j, q) encoding the response of the particle’s
current. Bottom right: The associated current as a function
of the applied drift force computable from φ̂0(j, q) using
Eq. (19)

For interacting problems, significant developments into
compact basis sets employing matrix and tensor prod-
uct states have advanced the state of the art for lattice
transport problems [83–87]. However, these have not
yet been translated into the continuum for molecular
problems.

A very attractive alternative to the generalized eigen-
value equation for the direct evaluation of the large
deviation functions is through variational principles
that ψE(λ) satisfies [88–92]. While the non-Hermitian
nature of Lλ precludes traditional eigenvalue-based
variational statements from being formulated, a result
from optimal control theory can be used. Specifically,
employing an auxiliary system with additional drift
u(rN ,vN )

ψE(λ) = sup
u(rN ,vN )

[−λ〈j〉u + 〈ΔU〉u] , (24)

where

ΔU =
∑

i

u
4kBTiγi

(u − 2mv̇i + 2Fi + 2Ei − 2γivi) ,

(25)

is the change in the action following from a Gir-
sanov transform and application of Jensen’s inequal-
ity. Here 〈. . . 〉u denotes an average with the additional
drift. The maximization is over all control drifts and
is solved by the dominant eigenvector with compo-
nent ui(rN ,vN ) = 2kBTi/γi∇i ln Rλ [59,93,94]. While
the eigenvector is many-bodied, low rank approximate
forms have been optimized using analogues of varia-
tional Monte Carlo [90] and machine learning, [95,96]

which have been found to yield accurate results. The
variational Monte Carlo approach is made efficient
by explicit forms for the derivatives of Eq. (24) with
respect to the added drift [90]. Further, perturbative
corrections in the form of a cumulant expansion can
be formulated to increase the accuracy of the estimate
at the cost of breaking the variational structure [90,97].
This method has been applied to low-dimensional mod-
els and colloidal assemblies in shear flows [98]. With
the concurrent development of expressive forms for
u(rN ,vN ), this technique is poised to be widely applied
to molecular systems.

3.2 Estimating large deviation functions
stochastically

An alternative to the direct evaluation of a large devi-
ation function is to estimate it by sampling molec-
ular dynamics simulations. This direction has seen
significant recent development as a means of avoid-
ing nonequilibrium simulations that induce long range
correlations or to evaluate field-dependent differential
transport coefficients directly. To accurately estimate
the large deviation function, one must sample a path
ensemble that incorporates the exponentially rare fluc-
tuations in the dynamical observable of interest. If
PE [X] denotes a reference path ensemble driven by a
field E, then the path ensemble to be sampled to com-
pute ψE(λ) or φE(j) for a current J is

Pλ[X] = PE [X]e−λJ[X]−ψ(λ)tN , (26)

where the new path ensemble Pλ[X] is biased by the
factor exp[−λJ ] and normalized by ψ(λ). While the
dynamics that generates PE [X] are defined by the
model, the dynamics that generate Pλ[X] are deter-
mined by the solution of the generalized eigenvalue
problem in Eq. (21). Therefore, the weight factor
exp[−λJ ] is typically incorporated through an impor-
tance sampling process on top of direct dynamical prop-
agation.

Two main classes of trajectory importance sampling
exist, transition path sampling [99] and diffusion Monte
Carlo, or the cloning algorithm [5–7]. Transition path
sampling performs a sequential update to a single tra-
jectory with fixed time in the manner of a Markov chain
Monte Carlo algorithm, though through the trajectory
space [100]. The weighting factor is accommodated by
a trajectory acceptance criterion. The application of
transition path sampling to large deviation functions
was first applied in the context of equilibrium glass for-
mation problems, [48,101] and later extended to trans-
port problems evolving non-detailed balanced dynamics
[8,41]. Alternatively, the cloning algorithm propagates
an ensemble of short trajectories in parallel using the
reference dynamics. Each trajectory accumulates a local
weight which is used as a basis for a population dynam-
ics that reduces the variance of the weights by a branch-
ing and annihilation process. The cloning algorithm has
been used widely in model transport problems [42–46].
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Both transition path sampling and the cloning algo-
rithm can evaluate large deviation functions sufficiently
accurately to be used to compute transport coefficients.
In particular, in recent work, we showed that the use
of the cloning algorithm can yield statistically supe-
rior estimates of linear transport coefficients using the
direct calculation of the curvature of the large deviation
function through Eq. (7), as compared to their direct
evaluation through Green–Kubo theory [102]. This was
demonstrated in the calculation of the thermal conduc-
tivity in a WCA solid and the liquid-solid friction in
a Lennard Jones solution. In Sect. 4.2, we show how
this procedure was used to study the anomalous heat
transport in low-dimensional carbon lattices [103]. The
cloning algorithm has also been used to evaluate the
joint large deviation function of the current and activ-
ity, and efficiently estimate nonlinear response functions
by Eqs. (18) and (20). For example, we have analyzed
the rectification of heat currents in chains of nonlinear
oscillators with inhomogeneous mass distributions [13].

While the calculation of linear transport properties
are tractable even for models with complex force fields,
the evaluation of nonlinear response is significantly
more computationally challenging. This is because the
cloning algorithm, as well as transition path sam-
pling, both augment the propagation of the bare sys-
tem dynamics with importance sampling, without any
guidance from the rare events that contribute to the
large deviation function. As a consequence, for expo-
nentially rarer fluctuations, both Monte Carlo algo-
rithms require exponentially more samples of the tar-
geted stationary distribution as the overlap between it
and the proposed distribution becomes exponentially
small [8,9,104]. Recent advances that incorporate auxil-
iary dynamics to guide the path sampling using approx-
imate solutions to Eq. (24) have been successful at sig-
nificantly dropping the computational cost of both algo-
rithms. In Ref. [90], we report a gain of over 3 orders
of magnitude in the statistical efficiency of the cloning
algorithm with a guiding force. Various approaches have
incorporated analytical approximations, [9,56] varia-
tionally optimized ansatzes, [90,91] or feedback control
procedures [105–107].

An alternative route we have pursued for the evalua-
tion of nonlinear current-field relationships is to lever-
age the reweighting principle valid between equilibrium
and nonequilibrium ensembles when Eq. (17) holds. In
such a case, the probability of observing a trajectory
in a driven ensemble is equal to the probability of that
trajectory in equilibrium times a weighting factor

P0[X] = PE [X]e−β(J+Q)E/2+βχidE2/4, (27)

where the sum J + Q depends on the trajectory, but
βχidE2/4 is a trajectory-independent constant. Using
a series of different nonequilibrium ensembles at dif-
ferent values of E, rare equilibrium fluctuations of the
current and activity can be probed [74,108]. Employ-
ing standard equilibrium techniques like the weighted
histogram analysis method [109] or multistate Bennet

acceptance ratio, [110] many simulations can be com-
bined to enhance expectation values at each field. Anal-
ogous to standard histogram reweighting methods used
between equilibrium ensembles, [111] this approach
offers an attractive ability to compute the average cur-
rent as a continuous function of the field using Eq. (19).
Formally, this bypasses assumptions of the existence
of a Taylor series expansion of the current in terms
of the applied field. Practically, it avoids having to
numerically evaluate the gradient as would be neces-
sary in direct nonequilibrium simulations. In Sect. 4.3,
we illustrate how this procedure is used to study the
field dependence of the ionic conductivity in electrolyte
solutions.

4 Applications

Building upon the formal developments connecting
large deviation theory and nanoscale transport, and
the recent advances in numerical techniques to char-
acterize dynamical fluctuations in complex systems, a
number of different canonical transport problems have
been studied. In the following, we illustrate a few spe-
cific examples in which the currents result from single
tagged particles or their collections. We consider exam-
ples of the transport of mass, energy and charge. In
each, large deviation theory enables the computational
study of either linear or nonlinear phenomena, in a way
not feasible without the tools it provides.

4.1 Active Brownian particle diffusion

Much of the framework outlined above is agnostic to
whether the system is evolving within an equilibrium
or nonequilibrium steady state. As an illustration of
the latter, the diffusion of a tagged particle in an active
fluid is considered [82]. An active fluid is one in which a
constant source of energy is continuously converted into
directed motion of individual particles, and can be real-
ized with synthetic colloids or swimming bacteria [112–
121]. In such a fluid, novel transport processes disal-
lowed in equilibrium can occur due to the time-reversal
symmetry breaking inherited from the persistent dissi-
pation [122–125]. For example, the viscosity of the fluid
can acquire odd components, and the Stokes–Einstein
relation can break down [126–128].

The specific active fluid previously considered was a
collection of active Brownian particles in two dimen-
sions. In addition to interparticle interactions and ran-
dom bath forces, active Brownian particles are con-
vected along a velocity vector that rotates diffusively
with constant amplitude vo. The specific equations of
motion are of the form of Eq. (9) in an overdamped
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Fig. 4 The response of a system of active Brownian parti-
cles to a density gradient (top) is computable from the rate
function of single particle displacement statistics (bottom)
for a variety of self-propulsion velocities (left) and densities
(right). The symbols denote numerical calculations from the
cloning algorithm, solid lines the exact solution of the gener-
alized eigenvalue equation, and the dashed lines a Gaussian
rate function with unit variance. Figure adapted from Ref.
[82]

limit,

ṙi =
1
γ
Fi

[
rN

]
+ voei +

√
2kBT

γ
ηi , θ̇i =

√
2Dθξi,

(28)

where ei = {cos(θi), sin(θi)} is the unit vector which
undergoes diffusive motion due to the random force ξi

and rotational diffusion constant Dθ. The inter-particle
force Fi

[
rN

]
was derived from the gradient of a WCA

potential [129]. To characterize diffusive transport, the
statistics of single particle displacements was consid-
ered,

Jρ(tN) =
∫ tN

0

dt ṙi(t), (29)

in the long time limit, tN → ∞. The distribution of par-
ticle displacements was derived by solving the equiva-
lent eigenvalue equation in Eq. (21) for a tagged active
Brownian particle. This was possible in an interact-
ing system because Eq. (21) took the form of a Math-
eiu equation, [130] with a single unknown λ-dependent
parameter resulting from the closure of a BBGKY-
like hierarchy [131]. This parameter could be computed
numerically from an integral over an empirical pair dis-
tribution function.

As reported in Ref. [82], the distribution of single
particle displacements was found to be non-Gaussian,
except in the limit of passive particles. Example rate
functions, φ0(Jρ/tN), are shown in Fig. 4, which while
parabolic around their means exhibited short tails
reflective of suppressed fluctuations around large con-
ditioned displacements. From the variance of the dis-
tribution computed at fixed density ρ, the self-diffusion
coefficient could be determined,

D(ρ) = lim
tN→∞

1
2tN

〈J2
ρ 〉, (30)

which was in excellent agreement with direct esti-
mates from the mean-squared displacement over a
range of self-propulsion velocities and densities. Gener-
ically, the self-diffusion coefficient decreased modestly
with increasing density, and increased significantly with
increasing self-propulsion.

The tagged particle current fluctuations encoded by
the large deviation rate function provided the response
of a hydrodynamic current, jρ, generated from a slowly
varying spatial density, ρ(r). This is analogous to
the perspective in Eq. (12). From the Kramers–Moyal
expansion, [132] jρ can be expressed as a gradient
expansion

jρ = −
∞∑

n=1

(−1)n

n!tN
∂n−1

r Mn[ρ(r)]ρ(r), (31)

where Mn[ρ(r)] is the local density-dependent nth cen-
tered moment of the current, 〈(Jρ − 〈Jρ〉)n〉. To first
order at low density, the mass current is linear in
the density gradient and is given by Fick’s law, jρ ≈
−D(ρ)(∂ρ/∂r), where D(ρ) is the proportionality con-
stant relating the current to the gradient. Thus, mass
transport is Fickian in that the diffusion constant deter-
mines the response of a small density gradient, but
nonlinear responses are computable from the density
dependence of the current distribution. Direct estimates
of gradient diffusivity from the simulation of an ini-
tial density gradient were in good agreement with those
computed from the rate function. Nonlinear corrections,
while relevant for the observed motility induced phase
separation in these materials, [133] remain to be tested
numerically.

4.2 Heat transport in low-dimensional solids

Utilizing our observations that the statistical conver-
gence of linear transport coefficients is accelerated
when evaluated from the large deviation function rela-
tive to traditional Green–Kubo expressions, [102] this
approach was applied to study the thermal conduction
through low-dimensional carbon lattices [103]. Heat
transport within carbon nanotubes and graphene sheets
have received considerable recent attention, due to
experimental and simulation reports claiming a vio-
lation of Fourier’s law of conduction [18–21]. These
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reports expand on a large literature of anomalous trans-
port in systems that can be taken macroscopically large
in fewer than three dimensions [134–137]. Experimen-
tally, reports on low-dimensional lattices have shown
indications of anomalous conductivities, though diffi-
culties extracting definitive values are complicated by
boundary effects.

To understand the mechanism of heat transport in
low dimensional carbon lattices, the energy current
fluctuations were considered within a nanotube and a
graphene sheet. The individual atoms evolved deter-
ministically in the bulk of the material through the solu-
tion of Newton’s equation of motion, but two stochas-
tic reservoirs at each end imposed a constant temper-
ature through the Langevin equation in Eq. (9). The
geometry is illustrated in Fig. 5. The atoms interacted
through the conservative force described by the gradi-
ent of a Tersoff potential parameterized to recover the
phonon spectrum of carbon nanostructures [138].

The heat transport was studied by monitoring the
energy exchanged with the stochastic reservoirs. Specif-
ically, the energy current through the kth reservoir is
given by a sum over Nk atoms in that region,

jk(t) =
Nk∑
i∈k

[mv̇i(t) − Fi(t)] · vi(t), (32)

and thus the energy exchanged from the rth reservoir
into the lth reservoir over a time tN is the integrated
current

Jε =
∫ tN

0

dt [jl(t) − jr(t)], (33)

in the long time limit, tN → ∞. If the system is main-
tained at thermal equilibrium, with the reservoirs fixed
to a common temperature T and separated by a dis-
tance L, the conductivity is computable from the mean-
squared fluctuations of the energy exchanged with the
reservoirs,

κL = lim
ΔT→0

lim
tN→∞ −〈Jε〉ΔT

tNΔT
L

= lim
tN→∞

〈J2
ε 〉0

2tNkBT 2
L, (34)

where at long times, for a finite open system, the mean-
squared fluctuations are expected to scale linearly with
time. This exact expression follows from the definition
of κL as the differential increase of the average heat
current with a temperature difference and the stochas-
tic process in Eq. (9). This specific form is an example
of an Einstein–Helfand moment, equivalent to a Green–
Kubo relation [61].

To compute the rate function of heat current fluctua-
tions, the Monte Carlo procedure discussed in Sect. 3.2
was employed to importance sample the probabil-
ity of an integrated current at equilibrium. Using a
range of λ’s, a set of φλ(Jε) was related to φ0(Jε)

Fig. 5 Large deviation scaling of the heat current for a
nanotube (d = 1) and graphene sheet (d = 2). (Top)
Illustrates the two geometries in contact with stochastic
reservoirs. (Bottom) Rate functions for the heat current
for a variety of system sizes, collapsed by scaling func-
tions that asymptotically approach f1(L) ∼ √

L/� and
f2(L) ∼ L ln L/� with characteristic length �. This figure
is adapted from Ref. [103]

using histogram reweighting, [109] enabling the con-
struction of φ0(Jε) far into the tails of the distribu-
tion. These are shown in Fig. 5 for both carbon nan-
otubes and graphene sheets. Studying a range of sys-
tem lengths, φ0(Jε) was found to be collapsed with
a dimensional-dependent scaling function fd(L), from
which the system-size-dependence of the conductivity
was deduced, κL ∝ fd(L)/L. For carbon nanotubes,
the thermal conductivity κL was found to increase as
the square root of the length of the nanotube, while for
graphene sheets the thermal conductivity was found to
increase as the logarithm of the length of the sheet.
The particular length dependence and nonlinear tem-
perature profiles place carbon lattices into a universal-
ity class with nonlinear lattice models, and suggest that
heat transport through carbon nanostructures is better
described by a Lévy walk rather than simple diffusion
[135,139–141]. However, recent results suggests these
anomalous scalings might plateau at even larger lengths
than considered in our study [142]. While this calcu-
lation considered linear phenomena, generalizations to
heat current rectification have been considered in model
systems [13].

4.3 Ionic conductivity at high fields

The framework presented here allows arbitrary nonlin-
ear transport behavior to be considered on the same
footing as traditional linear response. To explore the

123



  145 Page 10 of 16 Eur. Phys. J. B          (2021) 94:145 

former, our approach was applied to nonlinear electroki-
netic phenomena in ionic solutions. Advances in the
fabrication and observation of nanofluidic devices have
enabled the study of electrokinetic phenomena on the
smallest scales [15,17,143]. When confined to nanome-
ter dimensions, large thermodynamic gradients can be
generated, driving nonlinear responses such as field-
dependent transport coefficients and nonequilibrium
behaviors like current rectification [144–146]. Existing
theories for nonlinear conductivities are valid only in
the dilute solution regime [147–149].

The field dependence of the ionic conductivity was
studied in strong and weak electrolytes, [74] developing
a contemporary perspective on the so-called Onsager–
Wien effect [150]. Initially a monovalent salt was stud-
ied in implicit solvents with dielectric constants of 10
and 60 to model a weak and strong electrolyte, respec-
tively. The ions evolved with Eq. (9), with frictions cho-
sen to recover the self diffusion coefficients in the dilute
limit. To predict the field dependent ionic conductivity
from equilibrium fluctuations, knowledge of both the
ionic current

Jζ =
∑

i

∫ tN

0

dt zivi, (35)

where zi is the charge on ion i, and its time reversal
symmetric counter part, and the dynamical activity,

Qζ =
∑

i

∫ tN

0

dt
zi

γi

(
miv̇i − Fi

[
rN

])
, (36)

which is a difference between momentum flux and inter-
molecular force weighted by the charge and friction
is needed. Using nonequilibrium ensemble reweighting,
the joint rate function φ0(Jζ , Qζ) was computed far into
its tails. This reweighting procedure is made possible by
the relationship given in Eq. (17), where typical fluctu-
ations of Jζ and Qζ for simulations under finite applied
fields can be used to reconstruct rare fluctuations in the
absence of a field. The marginalization of the joint dis-
tribution constructed from a series of nonequilibrium
simulations onto the current is shown in Fig. 6. For the
strong electrolyte, the current fluctuations were found
to be incredibly Gaussian. For the weak electrolyte,
locally Gaussian fluctuations around its mean broaden
significantly into fat tails. The tails were well described
by a second Gaussian with larger variance, manifest-
ing the suppression of current fluctuations when ions
are paired in the weak electrolyte and its enhancement
when they dissociate upon conditioning on a large cur-
rent.

With the joint rate function, the differential conduc-
tivity, σ(E), was computed as a continuous function of
an applied field E . This follows from the definition of
σ(E), as the differential change in the the current den-

Fig. 6 Ionic current fluctuations (top) and associated field
dependent conductivities (bottom) of a strong (left) and
weak (right) electrolyte solution. Insets illustrate character-
istic snapshots of the weak and strong electrolyte. Figure
adapted from Ref. [74]

sity with applied field

σ(E) =
1

tNV

d〈Jζ〉E
dE

=
1

2tNkBTV
〈(δJ2

ζ + δJζδQζ)eβ(Jζ+Qζ)E/2〉0,
(37)

where V is the system volume and the long time limit,
tN → ∞ is taken to evolve a nonequilibrium steady-
state. While the first line is a definition, the second
line employs the nonequilibrium ensemble reweighting
relation.

Figure 6 illustrates the differential conductivity com-
puted in this way, which is in good agreement with that
evaluated from a numerical derivative of the current-
field relationship; however, the latter is statistically
much more difficult to converge. As anticipated from
the Gaussian current statistics, the strong electrolyte
exhibits a field-independent conductivity equal to its
Nernst-Einstein value. By contrast, the weak elec-
trolyte, with its marked non-Gaussian current statis-
tics, exhibits a strongly field dependent conductivity.
For the weak electrolyte, an initially low value of σ(E)
increases, exhibits a small maximum, before plateauing
to its Nernst-Einstein limit. The maximum reflects the
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increased fluctuations at fields just strong enough to
dissociate ion pairs. Opposing these enhanced current
fluctuations are negative correlations between j and q,
which reflect ionic relaxation dynamics whereby electric
fields generated by distortions of the ionic cloud around
an ion are anti-correlated with displacements of the ion
in the direction of the external field. Extensions of this
analysis to explicit solvent models has been recently
undertaken, [108] and their implications for simulations
with explicit nanoconfinement remains to be studied
[151–153].

5 Beyond

The perspective articulated here illustrates how to
leverage formal advances in nonequilibrium statistical
mechanics and novel numerical techniques to address
contemporary problems in nanoscale transport. While
significant strides have been made recently in applying
large deviation theory to molecular systems driven far
from equilibrium, there are clearly outstanding ques-
tions.

First, there are technical issues associated with the
appropriate equation of motion to describe molecu-
lar systems away from equilibrium. Near equilibrium,
ensemble equivalence [154] requires linear response
functions to be equal whether they are propagated
under Newtonian or stochastic equations of motion,
provided the characteristic timescale of the bath is
large. Away from equilibrium, however, nonlinear res-
ponse functions depend on the details of the equa-
tion of motion. The constant supply of energy through
an applied field requires a means to dissipate that
energy to evolve a nonequilibrium steady state, so
absent explicit boundaries a thermostat of some sort
must be used. While in some cases the details of
the thermostat can be motivated physically, extending
the nonlinear response formalism and sampling algo-
rithms discussed here to non-Markovian and deter-
ministic equations of motion would provide for alter-
native modeling choices and further generality. Typi-
cally physically derived non-Markovian equations can
be embedded to yield Markovian models in larger
phase spaces [155,156]. Exploring connections to other
response formalisms employed with deterministic ther-
mostats would undoubtedly be fruitful [157–159]. Sim-
ilarly, we have focused entirely on classical systems,
but extending this perspective to quantum mechani-
cal transport problems would undoubtedly yield novel
insights. In weak coupling regimes, this is likely possi-
ble; however, away from these regimes it is uncertain
[160,161].

Second, there are issues of how to translate con-
nections between underlying microscopic dynamics and
mesoscopic behavior into novel design principles. The
response theories relate particular dynamical correla-
tions to emergent transport phenomena, and have been
successfully used to explain experimental observations.
However, inverting that relationship, and rationally

designing a molecular system with a target emergent
response is difficult. A potential route to this inverse
design is to view Eq. (24) as a cost function to be
optimized. Its interpretation is clear, with the added
drift being the smallest change to an equilibrium sys-
tem to make a specific current response typical within
its steady state. Indeed, this insight has already been
used in the context of nonequilibrium self-assembly,
[98] and in the design of flow fields for tracer particles
[162]. A number of outstanding challenges in renew-
able energy, separations, and computation could be
solved provided a nonequilibrium inverse design prin-
ciple [163]. Within the perspective here, this seems
possible.
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D. Anselmetti, A. Gölzhäuser, Rapid water permeation
through carbon nanomembranes with sub-nanometer
channels. ACS Nano 12, 4695–4701 (2018)

18. C.-W. Chang, D. Okawa, H. Garcia, A. Majumdar, A.
Zettl, Breakdown of Fourier’s law in nanotube thermal
conductors. Phys. Rev. Lett. 101, 075903 (2008)

19. X. Xu, L.F. Pereira, Y. Wang, J. Wu, K. Zhang, X.
Zhao, S. Bae, C.T. Bui, R. Xie, J.T. Thong et al.,
Length-dependent thermal conductivity in suspended
single-layer graphene. Nat. Commun. 5, 3689 (2014)

20. N. Yang, G. Zhang, B. Li, Violation of Fourier’s law and
anomalous heat diffusion in silicon nanowires. Nano
Today 5, 85–90 (2010)

21. M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat con-
ductions in nanomaterials. J. Appl. Phys. 110, 064310
(2011)

22. A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for
the large-scale harvesting of blue energy. Nat. Rev.
Chem. 1, 0091 (2017)

23. G. Laucirica, M.E. Toimil-Molares, C. Trautmann, W.
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