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KT-GAN: Knowledge-Transfer
Generative Adversarial Network

for Text-to-Image Synthesis
Hongchen Tan , Xiuping Liu , Meng Liu , Member, IEEE , Baocai Yin,

and Xin Li , Senior Member, IEEE

Abstract— This paper presents a new framework, Knowledge-
Transfer Generative Adversarial Network (KT-GAN), for
fine-grained text-to-image generation. We introduce two novel
mechanisms: an Alternate Attention-Transfer Mecha-
nism (AATM) and a Semantic Distillation Mechanism (SDM),
to help generator better bridge the cross-domain gap between
text and image. The AATM updates word attention weights
and attention weights of image sub-regions alternately, to
progressively highlight important word information and enrich
details of synthesized images. The SDM uses the image encoder
trained in the Image-to-Image task to guide training of the text
encoder in the Text-to-Image task, for generating better text
features and higher-quality images. With extensive experimental
validation on two public datasets, our KT-GAN outperforms the
baseline method significantly, and also achieves the competive
results over different evaluation metrics.

Index Terms— Generative adversarial network, knowledge
distillation, Text-to-Image Generation, alternate attention-
transfer mechanism.

I. INTRODUCTION

PHOTOGRAPHIC Text-to-Image (T2I) synthesis aims to
generate a realistic image that is semantically consis-

tent with a given text description, by learning a mapping
between the semantic text space and the complex RGB image
space [25], [36]. A key challenge in synthesizing realistic
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Fig. 1. Images generated by I2I task, Direct T2I task, Guided T2I task (Use
I2I to guide T2I to better encode text feature and synthesize images) and the
corresponding ground truth (GT).

objects with semantic details is the heterogeneous gap between
high-level concepts in text descriptions and pixel-level con-
tents of synthetic images. Building an effective synthesizer to
bridge this domain gap is difficult.

Many approaches [11], [16], [24], [25], [41], [42] based
on Generative Adversarial Networks (GANs) [9] bridge the
domain gap by utilizing a discriminator to distinguish the
synthesized text-image pair and the ground-truth pair. How-
ever, such a discriminator alone is usually insufficient to
model underlying semantic consistency between text and
image [23], and consequently, results in semantic or structural
errors in synthesized images (see Figure 1, the “Direct T2I”
column). Recently, the attention mechanism [13], [22], [35]
has been exploited to address this problem, which guides the
generator to better match certain visual words with corre-
sponding image subregions. But using word-level attention
alone does not ensure global semantic consistency due to
the diversity between text and image modalities [23]. Thus,
MirrorGAN [23] models Text-to-Image and Image-to-Text
together to enhance global cross-domain semantic consistency.
However, the Image-to-Text in MirrorGAN [23] is still a
cross-domain generation, which is not easier than homoge-
neous generation task such as I2I task. Thus, the problem
of semantic inconsistency between heterogeneous information
still remains. SEGAN [13] introduces a new contrastive loss
and a Semantic Consistency Module (SCM) to better align
the synthesized image and the ground truth in feature space.
But still due to the heterogeneous semantic inconsistency,
SEGAN cannot extract effective text features that can guide
the synthesis of realistic and detailed images.

Our observation is that Image-to-Image (I2I) synthesis
belongs to a homogeneous generation task, whose information
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Fig. 2. The left part is cascade-attention generation networks in AttnGAN [35]. The black dotted box is the attention block in AttnGAN. The red dotted
box is the attention block in AATM. NCC denotes the Normalized Cross Correlation.

gap is much smaller than that between heterogeneous gap.
I2I can generate a synthesized image that has much stronger
semantic consistency with the ground truth image. Thus, I2I
may effectively guide T2I to better encode text features and
synthesize images. As shown in Figure 1, T2I guided by I2I
(last column) produces much better results than direct T2I
synthesis.

In addition, the recent AttnGAN [35] and its subsequent
improvements [10], [13], [17], [22], [31] adopt the word-level
attention mechanism to enhance the local semantic matching
between word features and local image features. In these
algorithms, during the process of image synthesis, the weights
of word features are fixed. Consequently, if the attention
mechanism does not produce accurate weight estimation in one
pass, then important words will be neglected, and image details
will be missing. Thus, our second technical development is
an attention update mechanism so that attention module can
gradually focus on important words in a progressive way
during the process of image synthesis.

Based on the above observations, we propose a new
Knowledge-Transfer Generative Adversarial Network (KT-
GAN) for T2I synthesis with two new components: (1) a
Semantic Distillation Mechanism (SDM) that uses the I2I
task to guide the T2I task for both text feature encod-
ing and image generation, and (2) an Alternate Attention-
Transfer Mechanism (AATM) to better identify important
words in text. The main contributions of this paper are as
follows:
(i) We designed a Semantic Distillation Mechanism with a

novel distillation loss function, to use I2I to guide T2I for
better text feature extraction and image synthesis.

(ii) We designed an Alternate Attention-Transfer Mechanism
to progressively refine word-level attention weights and
enrich details of the synthesized image.

(iii) We validated our KT-GAN on two datasets: CUB-
Bird [32] and large-scale MS-COCO [19]. Extensive exper-
imental results and analysis demonstrate the effectiveness
of KT-GAN and significantly improved performance

compared against most previous most state-of-the-art meth-
ods on all four evaluation metrics.

II. RELATED WORK

A. Semantic Attention Mechanism

Attention models have been extensively exploited in com-
puter vision and natural language processing, for instance in
object detection [40], image/video captioning [39], person Re-
identification [33] and visual question answering [29]. In T2I
synthesis, recently, AttnGAN [35] introduces the word-level
visual attention mechanism for T2I synthesis, it enhances the
synthesis of fine-grained details at different image regions.
The following work, obj-GAN [17] proposes a object-driven
attention mechanism to further improve the detail synthesis,
and produces finer images. A limitation of both AttnGAN [35]
and obj-GAN [17] is that weight of words are fixed, which
sometimes results in attention mechanism neglecting many
important words. Recently, SEGAN [13] introduce the atten-
tion regularization term to filter out unimportant words and
highlight the important words. But it is difficult to find the
adaptive threshold in the regularization term.

Recently, [43] propose the attention update mechanism
to transfer the pose of a given person to a target pose.
The mechanism can effectively and dynamically utilize pose
and appearance features to smoothly guide the pose transfer
process. Inspired by [43], we propose the suitable attention
update mechanism to progressively focus on important words.

B. Knowledge Distillation

Knowledge Distillation (KD) [15], [34] with neural net-
works was pioneered by Hinton [8], which is a transfer
learning method that aims to improve the training of a student
network by relying on knowledge borrowed from a powerful
teacher network. This has also been addressed for model
compression [2], [7], cross-domain task [1], [20] and continual
learning tasks [21], [6]. Reference [2] propose two distinct
teacher-student frameworks based on knowledge distillation
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mechanism for person detection. Reference [20] apply domain-
invariant feature distillation mechanism for cross-domain sen-
timent classification. Lifelong GAN [21] employs knowledge
distillation to address catastrophic forgetting for conditional
generative continual learning tasks. However, above works
belongs to homologous information distillation mechanism,
because both teacher task and student task belong to the
same or similar tasks. In KT-GAN, we solve the more chal-
lenging heterogeneous information distillation task. In our
KT-GAN, teacher task (I2I) is quite different from student
task (T2I).

III. PROPOSED METHOD

We first revisit the attention mechanism in AttnGAN
(Sec. III-A), then introduce our two new mechanisms: the
Alternate Attention-Transfer Mechanism (AATM) (Sec. III-B)
and Semantic Distillation Mechanism (SDM) (Sec. III-C). By
integrating the AATM and SDM into the AttnGAN, we get
our proposed KT-GAN.

A. Attention Generator in AttnGAN [35] Revisit

The AttnGAN [35] introduced an Attentional Generative
Network (AGN) to guide the synthesis of different sub-regions
in the image following their most relevant words. The input
text description is transformed into the sentence feature s and
word features W0 by a pre-trained bi-directional LSTM text
encoder in [35].

As shown in left part of Figure 2, the AGN has m blocks
(B0, B1, · · · , Bm−1) and the corresponding m generators (G0,
G1, · · · , Gm−1). The generators take the hidden states (H0,
H1, · · · , Hm−1) as input and generate images of small-to-large
scales (I ′

0, I ′
1, · · · , I ′

m−1):

B0 : H0 = F0(z, Fca(s));
Bi : Hi = Fi (Hi−1||Fattn

i (W0, Hi−1)), i = 1, 2, · · · , m − 1;
Gi : I ′

i = Gi (Hi). (1)

Here, z ∼ N(0, 1). Fca is a conditioning augmentation
module [41] that converts a sentence feature s to a conditioning
feature for the generator. Fca , Fattn

i , Fi , and Gi are modeled
as neural networks. Here, ‖ denotes the concatenation of two
maps along depth axis.

Consider the i -th block Bi , the black dotted box in the
middle row of Figure 2: the core of Bi is Fattn

i (W0, Hi−1),
which can update where to draw or highlight the details of
the image according to word feature W0. Fattn

i (W0, Hi−1) has
two inputs: the word features W0 ∈ R

D×T (T is the number
of words, D is the dimension of word features) and the image
features from the previous hidden layer Hi−1 ∈ R

D̂×N . Fattn
i

is computed in three steps: (1) Normalized Cross Correla-
tion (NCC) between W0 and Hi−1 is computed as the attention
weights to words; (2) A word-context matrix Fattn

i (W0, Hi−1)
for image feature is computed; and (3) the image feature Hi

is updated by: Hi = Fi (Hi−1 ‖ Fattn(W0, Hi−1)). For more
details please refer to AttnGAN [35].

B. AATM

We can observe that the input of word feature is always
W0 in the block Bi (i = 1, 2, 3, · · · , m − 1) of AttnGAN [35].
A problem for the attention mechanism in AttnGAN is that
word weights calculated in a single attentional block are
not guaranteed to be correct. As a result, some visually
important words could be neglected and their semantics are
not reflected in the synthesized image. In order to tackle this
problem, we design an Alternate Attention-Transfer Mecha-
nism (AATM) to iteratively and progressively identify visually
important words in the sentence. We construct the AATM by
introducing a Word Feature Update module into the block
Bi (i = 1, 2, 3, · · · , m − 1), as illustrated in the red dotted
box in Figure 2.

Each block Bi in AATM contains two modules: Word
Feature Update module (components in yellow in Fig. 2)
and Image Feature Update module (components in black
in Fig. 2). Firstly, the Word Feature Update module updates
the weight of word feature based on the image feature and
word feature from the last block. With these blocks, important
words will gradually aggregate their weights and they will
get highlighted. Secondly, the image features should also be
updated according to such change, i.e., image features are
synchronized to indicate where to draw the detail on the image
according to the updated word features.

1) Word Feature Update Module: In the i -th block Bi ,
it takes in image features Hi−1 and word features Wi−1 from
the Bi−1 block, and outputs the updated word features Wi

through a three-step procedure.
(Step 1) Calculate an NCC Matrix R∗ ∈ R

T ×N between
Hi−1 ∈ R

D̂×N and Wi−1 ∈ R
D×T : (i) We map word features

to the same latent semantic space of the image features by
W ′

i−1 = U Wi−1, W ′
i−1 = {w′ j

i−1 ∈ R
D̂| j = 1, 2, · · · , T },

where U ∈ R
D̂×D is a perceptual layer. Each column of

Hi−1 = {h j
i−1 ∈ R

D̂| j = 1, 2, · · · , N} (hidden features)
is a feature vector of an image’s sub-region. (ii) The word-
image Cross Correlation Matrix is R = (ri, j ) = W ′T

i−1 Hi−1 ∈
R

T ×N . Here, ri, j encodes the dot-product similarity between
the i th word in the sentence and j th sub-region in the image.
(iii) The NCC Matrix R∗ is R∗ = (r∗

i, j ) = exp(ri, j )∑T
k=1 exp(rk, j )

.

(Step 2) Calculate attentional weight mask R̂ of words:
(i) We reshape R∗ ∈ R

T ×N to R′ ∈ R
T by maxpooling. Each

element in R′ represents the maximum similarity of a word
to all image sub-regions, which is regarded as this word’s
weight. (ii) In order to match R′ with the word feature matrix
Wi−1 ∈ R

T ×D , we reshape R′ to attention weight mask
R̂ ∈ R

T ×D by repeating the column of R′ for D times.
(Step 3) Update the word feature Wi by

Wi = α · [R̂ � Wi−1] ⊕ β · [Wi−1], (i = 1, 2, 3, . . . m − 1)

(2)

where � denotes element-wise product, α is the retention
factor of current word feature information, β is the attenuation
parameter of the word feature information in the previous
stage, which reduces the interference of non-important words
to some extent. By multiplying the transformed word features
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Fig. 3. The Framework of the proposed KT-GAN. KT-GAN contains two novel strategies: Semantic Distillation Mechanism (SDM) and Alternate Attention-
Transfer Mechanism (AATM) in Figure2. The AATM is embedded in the generator of the student task. The SDM contains three main components: the teacher
task (Image-to-Image task, I2I), the student task (Text-to-Image task, I2I), and the Semantic Distillation Loss (SDL).

Wi−1 with the weight R̂, features Wi of certain words are
either preserved or suppressed. The residual connection ⊕
and the progressive feedback from discriminators of pre-
vious blocks together help important words to aggregate their
weights quickly.

2) Image Feature Update Module: We use the whole
operations (Eq. 1) Fi in AttnGAN as the Image Feature
Update module in our each block Bi . However, in AttnGAN
the input word feature of Fi is always W0, but in our
AATM, the word features and image features need to
be updated alternately, thus, in our each Bi , we need
to rewrite Hi = Fi (Hi−1||Fattn

i (W0, Hi−1)) in Eq. 1 as
Hi = Fi (Hi−1||Fattn

i (Wi , Hi−1)). With this modification, our
AATM can be implemented correctly.

C. SDM

Besides introducing a better attention mechanism (AATM)
into the T2I, we also design a new Semantic Distillation
Mechanism (SDM) to guide the text encoder to provide better
input features for the T2I. As illustrated in the green box
in Figure 3, the SDM trains a student task (T2I) under the
guidance of a trained teacher task (I2I), which performs the
supervised cross-task semantic transfer. Our SDM contains
three main components: the teacher task (I2I), the student task
(T2I), and the Semantic Distillation Loss (SDL).

In the teacher task, we train an I2I task to obtain a good
image encoder and a good image generator. We design an SDL
to train a good text encoder, GTE (Guided Text Encoder), that
matches with the trained image encoder in I2I. In the student
task, we train a T2I task to get a good image generator. The
implementation steps are as follows.

Step 1: Train networks in the teacher task (I2I).

Step 2: Train text encoder by SDL.

Step 3: Train networks in the student task (T2I).

In Step 1, I2I transforms an input image into a global
image feature v ∈ R

D by an image encoder. This image
encoder is initialized using a pre-trained Inception-V3 [28] on
ImageNet [26], and is then fine-tuned during the I2I training.
We modify AttnGAN [35] from an T2I synthesizer to an I2I
synthesizer. Note that choosing the structure of AttnGAN [35]
as the teacher’s network is appropriate, because it aligns well
with the T2I task. The modification of AttnGAN mainly

includes two operations. (i) Remove the attention mechanism
in the generator, use global image feature v as the input of the
generator. (ii) Introduce the perceptual loss (Lper ) [4] into the
I2I to improve the quality of synthesized image. More details
of these modifications can be found in Appendix-A.

In Step 2, we use use the trained image encoder in I2I task
to guide training of an effective text encoder for the T2I task.

In Step 3, we use the text encoder trained by SDL in
Step 2 to generate text feature as the input to T2I. Meanwhile,
we use the generator and discriminator trained in Step 1 as
the initial generator and discriminator. Rather than training
the generator and discriminator from scratch, this inheritance
greatly improves the generator’s performance.

1) Semantic Distillation Loss (SDL): The core of SDM is
SDL. In this distillation, image encoder needs to be fixed,
because it was already trained in I2I, and can provide effective
feature template for text encoder in T2I to follow. In training
process, we should design the SDL to (1) globally, push the
sentence feature s to match the fixed global image feature v,
and (2) locally, push the word feature W0 to match the fixed
image feature’s sub-regions V0. The DAMSM loss in [35] is a
widely used function to match image features and text features.
We made two main modifications on DAMSM Loss. (1) First,
unlike AttnGAN [35] that trains both image encoder and
text encoder, we modify DAMSM loss to fix image encoder
and only train text encoder. (2) Second, DAMSM can not
effectively deal with imbalanced easy/difficult data samples
in training process. Inspired by [18], Focal Loss can better
balance the easy and hard samples. Thus, we further revise
the construction of SDL following the design of Focal Loss.

The SDL is composed of LS∗ and LW ∗ . The distillation loss
LS∗ (“S∗” stands for “Sentence”) is designed for matching
sentence feature s and global image feature v. The distillation
loss LW ∗ between Word feature W0 and local image feature
V0 (“W∗” stands for “Words”) is designed similarly.

2) The Distillation Loss LS∗: For a batch of image-sentence
pairs {(vi , si )}M

i=1, firstly we define the probability of matching
between sentence feature si and fixed image feature v∗

i (trained
in I2I) as P(si , v

∗
i ):

P(si , v
∗
i ) = 2 · ex p(d(v∗

i , si ))∑M
j=1 ex p(d(v∗

j , si )) + ∑M
j=1 ex p(d(v∗

i , s j ))
.

(3)
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Here, d(x, y) is cosine distance between x and y. Then,
we define the LS∗ as the negative log matching probability
as

LS∗ = −
M∑

i=1

(1 − P(si , v
∗
i ))γ log P(si , v

∗
i ). (4)

Here, γ is tunable focusing parameter γ ≥ 0 in [18].
3) The Distillation Loss LW ∗: In LW ∗ , we aim to make the

word feature W0 = {w j
0 ∈ R

D| j = 1, 2, · · · , T } (output of
the text encoder) to align with the fixed image feature’s sub-
regions V ∗

0 = {v∗ j
0 ∈ R

D| j = 1, 2, · · · , N} (output of the
fixed image encoder).

(1) Following [14], [17], [35], we define a normalized
image-text similarity matrix R+ ∈ R

T ×N through two
operations:

(1.a) Let R = (ri, j ) = W T
0 V ∗

0 ∈ R
T ×N encode the dot-

product similarity between the i -th word in the sentence and
j -th sub-region in the image.

(1.b) This R is normalized to R∗ = (r∗
i, j ) = exp(ri, j )∑T

k=1 exp(rk, j )
,

and then normalized to R+ = (r+
i, j ) = exp(r∗

i, j )∑N
k=1 exp(r∗

i,k )
.

(2) Same as [14], [17], [35], we also define the attention-
driven word-image matching score:

(2.a) We define the dynamic representation of the image
with respect to the i -th word using a vector Oi =∑N

j=1 r+
i, j v

∗ j
0 .

(2.b) We can define the attention-driven word-image
matching score between image v∗ and sentence s,

RW (v∗, s) = log(

T∑

i=1

ex p(β0Oi · wi
0))

1
β0 , (5)

where β0 is a factor weighing the importance of the most
relevant word-to-region pair. As described in [35], when
β0 → ∞, RW (v∗, s) → max T

i=1 Oi · wi
0.

(3) Based on the attention-driven word-image matching
score, for a batch of image-sentence pairs {(v∗

i , si )}M
i=1, we

define the probability of matching between sentence feature si

and fixed image feature v∗
i (trained in I2I) as P(si , v

∗
i ):

P(si , v
∗
i )

= 2 · ex p(RW (v∗
i , si ))∑M

j=1 ex p(RW (v∗
i , s j )) + ∑M

j=1 ex p(RW (v∗
j , si ))

, (6)

Finally, follow the design of Focal Loss [18], we define
the Distillation Loss LW ∗ by introducing a modulating factor
(1 − P(si , v

∗
i ))γ with a tunable focusing parameter γ ≥ 0:

LW ∗ = −
M∑

i=1

(1 − P(si , v
∗
i ))γ log P(si , v

∗
i ). (7)

Here, the value of γ in LW ∗ is the same as the value of γ
in LS∗

Finally, the Semantic Distillation Loss is defined as

LS DL = λ1LS∗ + λ2LW ∗ . (8)

Here, the subscript SDL stands for “Semantic Distillation
Loss”.

4) Generative and Discriminative Loss in Student Task: At
the Block-Bi , the Generative loss LGi and Discriminative loss
LDi are defined as

LGi = −1

2
[EI ′

i ∼PGi
logDi (I ′

i )︸ ︷︷ ︸
unconditional loss

+ EI ′
i ∼PGi

logDi (I ′
i , s)]

︸ ︷︷ ︸
conditional loss

, (9)

where the unconditional loss is trained to generate images
towards the true image distribution to fool the discriminator,
and the conditional loss is trained to generate images to match
text descriptions.

The discriminator Di is trained to classify the input into the
class of real or fake images by minimizing the cross-entropy
loss

LDi = −1

2
[EIi ∼Pdatai

logDi (Ii ) + EI ′
i ∼PGi

log(1 − Di (I ′
i ))︸ ︷︷ ︸

unconditional loss

+EIi ∼Pdatai
logDi (Ii , s) + EI ′

i ∼PGi
log(1 − Di (I ′

i , s)]
︸ ︷︷ ︸

conditional loss

,

(10)

where Ii is from the true image distribution pdata at the i th

scale, and I ′
i is from distribution pGi of the generative images

at the same scale.
To generate realistic images, the final loss function of the

generator and discriminator are defined as

LG =LG +λ3LD AM S M ,LD =
m−1∑

i=0

LDi ,LG =
m−1∑

i=0

LGi . (11)

Here, we utilize the DAMSM loss [35] to make generated
images better conditioned on text descriptions.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings

1) Implementation Details: The resolution of the images
participating in the evaluation are 256 × 256. All hyper-
parameter values are listed in the Appendix-B. We find the
suitable values for these hyper-parameters by a series of
ablation studies in the Appendix-C. In the training stage:
(i) Train I2I task; (ii) Train SDM; (iii) Train T2I task. In the
testing stage: Only input features of sentence and words to the
generator of the Student Network.

2) Datasets: Two widely used datasets are used. The
CUB-Bird dataset [32] contains 11, 788 bird images belonging
to 200 categories, and 10 visual description sentences for each
image. We pre-process and split the images following the same
pipeline in [25], [41]. The MS-COCO dataset [19] contains
80k training images and 40k test images, and each image has
5 text annotations.

3) Evaluation: We compare KT-GAN and other state-of-
the-art algorithms using four measures: (1) Inception Score
(IS) [27]; (2) Fréchet Inception Distance (FID) [12]; (3) We
also compare the Rank-1 score in text-to-image retrieval [5];
(4) Human perceptual test.

IS uses fine-tuned inception models provided by [41] to
compute the KL-divergence between the conditional class
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TABLE I

IS↑, FID ↓ AND RANK-1 ↑ PRODUCED BY COMBINING DIFFERENT COMPONENTS OF THE KT-GAN ON CUB-BIRD

AND MS-COCO TEST SETS. KT-GAN=ATTNGAN+AATM+SDM

distribution and the marginal class distribution. A larger IS
(better) means that a T2I generator can synthesize a higher
diversity of images for all classes, where each image belongs
more clearly to a specific class. FID computes the Fréchet
distance between synthetic and realistic images based on
the extracted features from a pre-trained Inception-V3 net-
work [28]. A lower FID (better) implies a closer distance
between generated image distribution and real-world image
distribution. The Rank-1 score denotes the most relevant
synthesized images for each text sentence in text-to-image
retrieval. A bigger Rank-1 score (better) implies the syn-
thesized image has better consistency with the given text.
The trained retrieval model provided by [5] was used to
calculate the Rank-1. The Human perceptual test aims
to judge whether the generated images are well-conditioned
on the text descriptions from human subjective perception.
In order to conduct the Human perceptual test, we ran-
domly select 1000 text descriptions in the CUB-Bird test set
and 2000 text descriptions in the MS-COCO test set. Given
the same text description, 30 volunteers (not including any
author) are asked to rank the images generated by different
methods. The average ratio ranked as the best by human users
are calculated to evaluate the compared methods. A bigger
score (better) in the Human perceptual test implies the
synthesized image has better consistency with the given text
description.

B. Effectiveness of New Modules

We evaluate the effectiveness of two new components,
AATM and SDM, in terms of three measures. The results are
documented in Table I. (I) We introduce AATM to replace the
attention mechanism in AttnGAN [35], i.e. AttnGAN+AATM.
As shown in Table I, AttnGAN+AATM leads to 8.7% and
10.2% improvement of IS, 24.1% and 10.2% improvement of
FID, and 4.7% and 1.5% improvement of Rank-1, on CUB-
Bird and MS-COCO test datasets respectively. (II) If we
introduce the SDM to AttnGAN (AttnGAN+SDM), we obtain
9.2% and 12.1% improvement over the AttnGAN in IS,
14.9% and 8.3% improvement over the AttnGAN in FID, and
1.5% and 0.8% improvement over the AttnGAN in Rank-1,
on CUB-Bird and MS-COCO datasets respectively. (III) KT-
GAN: If we introduce the SDM and AATM into AttnGAN,
we obtain 11.2% and 22.3% improvement over the AttnGAN
in IS, 27.8% and 15.5% improvement over the AttnGAN in
FID, and 5.0% and 1.6% improvement over the AttnGAN in
Rank-1, on CUB-Bird and MS-COCO datasets respectively.

In all, Table I shows that both components contribute to the
KT-GAN’s performance improvement. The IS of KT-GAN is
4.85 on CUB-Bird and 31.67 on the MS-COCO test dataset.
The FID of KT-GAN is 17.32 on CUB-Bird and 30.73 on the
MS-COCO test dataset. The Rank-1 of KT-GAN is 32.9% on
CUB-Bird and 24.5% on the MS-COCO test dataset.

C. Component Analysis of AATM

We compare IS, FID and Rank-1 of different designs
in the Word Feature Update Module (Eq. 2) on the CUB-
Bird dataset. Due to GPU memory constraints, we did
not try the KT-GAN with more than three blocks. And
AATM is employed over the last two blocks. Thus, AATM
can only be applied to blocks B1 and/or B2, and there
are three possible variants: (I) AATM (B1) indicates that
AATM is only implemented in block B1. As shown
in Table II, compared with AttnGAN, the performance of
AttnGAN+AATM (B1) gains the moderate improvements in
these three measures. (II) AttnGAN+AATM indicates that
AATM is implemented in both blocks B1 and B2 in this paper.
Compared with AttnGAN+AATM (B1), the performance of
AttnGAN+AATM (B1) further gains the moderate improve-
ments in these three measures. It demonstrates that progres-
sively adding the AATM into the block (Bi (i = 1, 2, . . . ,
m − 1)) can effectively improve the performance of genera-
tor. (III) In order to show the effectiveness of the residual
connection, we drop out residual connection in Eq. 2, i.e.
Wi = α · [R̂ � Wi−1]. The performance of “AttnGAN+AATM
w/o Res” is degraded in these three measures. It indi-
cates that the accumulation of word information from pre-
vious blocks also play an important role in synthesizing
process.

Figure 4 compares AttnGAN and AttnGAN+AATM by
visualizing the iterative update on word weights and their
corresponding attention maps. Weights for the top-5 words
are listed. The attention maps are plotted on synthesized
images: each word’s relevant region is brighter. In Figure 4,
the AttnGAN generally can not effectively accumulate impor-
tant word information and improve attention maps. In the
CUB-Bird example (left column), word weights and attention
in Block-B2 are not better than in Block-B1 and remain
incorrect (e.g., “a” “the” “short” and “beak”). Similarly, in the
MS-COCO example (right column), the AttnGAN’s attention
always focuses on certain words and misses important visual
information from some other words, and eventually leads to
bad synthesis. In contrast, our AATM progressively aggregates
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Fig. 4. The top-5 word weights and synthesized images’ attention maps from AttnGAN and AttnGAN+AATM. The red mark indicates that the weight > 0.5.

TABLE II

IS↑, FID ↓ AND RANK-1 ↑ ON CUB-BIRD TESTING DATA ABOUT

VARIANTS OF EQ. 2 IN WORD FEATURE UPDATE MODULE

the weights of important words and enhances the accuracy
of their attention. We can clearly see such improvements
in Block-B2 over Block-B1 (e.g., left column: “beak” and
“short”, right column: “many”, “sheep” and “field”). As for the
update module for the Image Feature, the module from [35] is
already effective and we simply followed that. So no ablation
study on that is discussed here.

D. Component Analysis of SDM

We use ablation study to verify the two designs in our SDM:
(1) I2I can guides T2I to get better text encoder, and (2) I2I
generators are good initial generators in T2I.

For (1), we use the Guided Text Encoder (GTE) trained
by SDL to train AttnGAN+AATM from scratch, i.e.
AttnGAN+AATM+GTE. As shown in Table III, compared
with AttnGAN+AATM without distillation: the IS rises from
4.74 to 4.80 on CUB-Bird dataset, and from 28.54 to
30.03 on MS-COCO dataset; the FID declines from 20.40
to 18.13 on CUB-Bird dataset, and from 32.54 to 31.22
on MS-COCO dataset; the Rank-1 rises from 29.4% to
32.0% on CUB-Bird dataset, and from 23.7% to 24.2% on
MS-COCO dataset. For (2), if we use the trained gener-
ator and discriminator in I2I as the initial generator and
discriminator in T2I, i.e. AttnGAN+AATM∗. As shown
in Table III, compared with AttnGAN+AATM, the per-
formance of AttnGAN+AATM∗ also gains the moderate
improvements on the CUB-bird dataset and MS-COCO datat-

set over three measures respectively. Finally, we incorporate
both designs into the AttnGAN+AATM, i.e. KT-GAN. Com-
pared with AttnGAN+AATM: the IS rises from 4.74 to 4.85
on CUB-Bird dataset, and from 28.54 to 31.67 on MS-COCO
dataset; The FID declines from 20.40 to 17.32 on CUB-Bird,
and from 32.54 to 30.73 on MS-COCO dataset; The Rank-1
rises from 29.4% to 32.9% on CUB-Bird dataset, and from
23.7% to 24.5% on MS-COCO dataset.

Thus, the effectiveness of the two designs can be demon-
strated by these ablation studies. And it indicates that the SDM
can help the T2I task bridge the domain gap.

E. Comparison With State-of-the-Art GAN Models

We compare our KT-GAN with state-of-the-art GAN mod-
els for text-to-image synthesis on CUB-Bird and MS-COCO
test datasets. The IS for our proposed KT-GAN and other
compared methods are listed in Table IV. On the CUB-
Bird dataset, our KT-GAN (4.85) leads to the highest IS
scores. On the MS-COCO dataset, the KT-GAN (31.67)
also performs better than most existing approaches except
for the SD-GAN [10]. However, SD-GAN requires multi-
ple text sentences to train the generator. If the given data-
base only contains images with single sentence description
(which is common in some practical tasks such as Story
Visualization [38] and Text-to-Video [37]), SD-GAN can
not be trained. In contrast, KT-GAN and AttnGAN [35]
only need one sentence per image and they can be trained
normally. Besides, the SD-GAN contains many Siamese
branches, which is much more complex than KT-GAN. Thus,
SD-GAN require much more powerful hardware devices for
training.

In Table V, we compare the different models’ performance
using FID and Rank-1. The KT-GAN greatly improves the
baseline AttnGAN [35] in terms of FID and Rank-1, on
CUB-Bird and MS-COCO dataset respectively. And KT-GAN
achieves the best score in terms of Rank-1 on the two standard
datasets. However, the FID of KT-GAN is lower than that
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TABLE III

IS↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VARIANTS OF SDM ON THE CUB-BIRD AND MS-COCO DATASETS

TABLE IV

IS↑ BY STATE-OF-THE-ART GAN MODELS AND OUR KT-GAN ON

CUB-BIRD AND MS-COCO TEST DATASETS. ATTNGAN IS OUR

BASELINE MODEL. THE FIRST, SECOND AND THIRD SCORES

ARE SHOWN IN RED, GREEN AND BLUE RESPECTIVELY

TABLE V

FID ↓ AND RANK-1 ↑ BY SOME GAN MODELS AND OUR KT-GAN ON

CUB-BIRD AND MS-COCO TEST DATASETS. ATTNGAN IS OUR

BASELINE MODEL. THE FIRST, SECOND AND THIRD SCORES

ARE SHOWN IN RED, GREEN AND BLUE RESPECTIVELY

of DMGAN. Compared with the text descriptions in MS-
COCO dataset, the text descriptions in CUB-Bird datasets is
more detailed and localized. The Dynamic Memory Module
in DMGAN is a kind of local attention mechanism. Our
KT-GAN combines the global knowledge distillation strategy
with the local word attention enhancement strategy. Compared
with our KT-GAN, the DMGAN pays more attention on
the details generation indeed. Besides, the Dynamic Memory
Module in DMGAN contains too many learning parameters.
The good Dynamic Memory Module with more learning
parameters can better drive the generator to learn the real
data distribution. So, in the CUB-Bird dataset, the FID of

TABLE VI

HUMAN PERCEPTUAL TEST RESULTS ↑ OF KT-GAN COMPARING

WITH ATTNGAN [35] AND DM-GAN [22]. THE BOLD IS THE

BEST RESULT

DMGAN is better than that of our KT-GAN. In the seman-
tic consistent aspect, our KT-GAN enhances the semantic
consistent from global and local aspects. Thus, the “Rank-
1” of our KT-GAN are better than that of DMGAN. Besides,
because the Dynamic Memory Module in DMGAN contains
too many learning parameters. So, the DMGAN’s generator
is more complex than our KT-GAN. In all, the results of
FID demonstrates that KT-GAN performs better in capturing
the feature distribution of more complex real images. The
results of Rank-1 demonstrates the KT-GAN leads to better
semantic consistency between synthesized images and its text
description.

In Table VI, we compared our KT-GAN with AttnGAN [35]
and DM-GAN [22] using Human perceptual test. After the
volunteers finished the experiment, we counted the votes for
each method in the two datasets. The results of subjective test
shows that KT-GAN is more effective in terms of semantic
consistency. These results demonstrate the superiority of KT-
GAN for generating visually realistic and semantically consis-
tent images.

Visualization. For qualitative evaluation, Figure 5 shows
text-to-image synthesis examples generated by AttnGAN [35],
SEGAN [13], DM-GAN [22] and KT-GAN (Ours). Observing
the samples generated on the CUB-Bird dataset in the left four
columns of Figure 5, images synthesized by AttnGAN [35]
and SEGAN [13] are prone to semantic structure ambiguity.
The quality of images synthesized by DM-GAN [22] is higher
than that of AttnGAN [35] and SEGAN [13], but not as
good as that of our KT-GAN. In contrast, our KT-GAN
model better highlights the main object with detail, and
its contrast with the background. In terms of multi-subjects
image generation, e.g., the MS-COCO data (see the right
four columns of Figure 5), it is more challenging to gen-
erate photo-realistic images when text descriptions are more
complicated and contain multiple objects. Because KT-GAN
can better bridge the domain gap between text and image,
it can better capture the major objects and arrange contents
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Fig. 5. Images of 256 × 256 resolution are generated by AttnGAN [35], SEGAN [13], DM-GAN [22] and KT-GAN (Ours) conditioned on text descriptions.
Texts in the left four columns are from CUB-Bird [32] test datasets. Texts in the right four columns are from MS-COCO [19] test datasets.

Fig. 6. Examples of KT-GAN on the ability of catching subtle changes
(phrase in red) of the text descriptions on CUB-Bird (top) and MS-COCO
(bottom) test sets.

in a more meaningful way. Eventually, these lead to images
with better global structure. More visualizations are given in
Appendix-D.

Besides, we further evaluate the sensitivity of the proposed
KT-GAN by changing just one word or phrase in the input
sentence. As shown in Figure 6, the synthesized images are
modified according to the changes of the input sentence,
e.g., bird color (“blue” versus “yellow”) and image scene

Fig. 7. Failure Cases are generated by our KT-GAN on the CUB-Bird test
set (top row) and on the MS-COCO test set (bottom row).

(“in a large body of water” versus “on the green field”).
It demonstrates that our KT-GAN has the ability to catch subtle
changes of the text and retains the semantic diversities and
details from text.

V. LIMITATION AND DISCUSSION

Although our proposed KT-GAN shows superiority in
generating visually realistic and semantically consistent
images, some limitations and discussion must be taken into
consideration.

A. In Terms of Model Design

First, I2I task, SDM and T2I task are not jointly optimized
with complete end-to-end training due to limited computa-
tional resources. Second, we use AATM to refine the word
embeddings for generator, which could be further improved.
In the future sudies, we can further use some sentence parser
to extract the informations of objects or details.
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Fig. 8. The Structure of the Teacher Network. The Teacher Network includes three main module: the Image Encoder module, the Generator, and Discriminator.
The right part of this figure is the structure of the perceptual loss in the Teacher Network.

B. In Terms of Image Visualization

We show some failure images synthesized by our KT-GAN
on the CUB-Bird test set (the first row of Figure 7) and the
MS-COCO test set (the second row of Figure 7).

On the CUB-Bird dataset (the first row of Figure 7): in the
first two images, the body parts of the bird are missing; in the
third and the fourth images, the bill of the bird is very strange;
in the fifth image, the background is too noisy; in the sixth
images, our KT-GAN creates the bird with two heads.

On the challenging COCO datasets (the second row of
Figure 7): like all existing approaches, our KT-GAN also
cannot effectively extract correlated structural and semantic
information to support realistic synthesis; in the first two
images, KT-GAN tends to place objects corresponding to
specific features at many locations throughout the image; in
the last four pictures, the big problem of current methods and
our KT-GAN is that objects in the images can not be correctly
synthesized by the generator.

We think the above issues are caused by: (i) The generator’s
generation capacity is not strong enough; so, it is necessary to
design a stronger generator to better synthesize the objects or
details; (ii) A single sentence contains very little semantics;
Based on the limited semantic information, it is difficult for
the generator to synthesize complex images, especially the
complex scenes and objects on the MS-COCO dataset; Thus,
it is necessary to explore more valid semantic information
from more text descriptions to help the generator synthesize
high-quality images.

VI. CONCLUSION

In this paper, we propose a novel Attention-Transfer Mecha-
nism (AATM) and a Semantic Distillation Mechanism (SDM),
and build a Knowledge-Transfer Generative Adversarial Net-
work (KT-GAN) for Text-to-Image (T2I) synthesis. The SDM
uses Image-to-Image synthesis to guide the T2I synthesis
to better encode text feature and synthesize photographic
image. The AATM helps the generator progressively iden-
tify important words and enrich the details of synthesized
image. SDM and AATM successfully bridge the heteroge-
neous gap and help the generator synthesize high quality
images. Extensive experimental results and analysis demon-

strate the effectiveness of KT-GAN and significantly improved
performance compared against previous most state-of-the-art
methods.

APPENDIX A
STRUCTURE OF TEACHER TASK (I2I TASK)

In the Figure 8, the Teacher Network includes three main
module: Image Encoder module, Generator, and Discriminator.
In our paper, we describe that the modification of AttnGAN
mainly includes two operations. (i) Remove the attention
mechanism in the generator, use global image feature v as
the input of the generator. (ii) Introduce the perceptual loss
(Lper ) [4] into the I2I to improve the quality of synthesized
image.

In addition the above two main modifications, compared
with AttnGAN [35], the input feature to the synthesizer is
image features instead of text features. The corresponding
loss functions need to be simply modified. Thus, in the
following, we describe the details of loss function in the
Teacher Network.

Before describing the loss functions, we simply introduce
the pipeline of synthesizer in Figure 8 in order to easily
understand the following definition of the loss functions.

A. Terminologies for Teacher Network Pipeline

In Section III-C, we explain the student network. Here
we elaborate the teacher’s network. They are similar. we use
symbols B ′, G′, and H ′ et al. to represent corresonding B, G,
and H et al. in the student network (T2I task).

The input image is transformed into global image feature
v ∈ R

D by a pre-trained Inception-V3 [28] Image Encoder on
ImageNet [26]. As shown in left part of Figure 8, the teacher
network has m blocks (B ′

0, B ′
1, · · · , B ′

m−1) and the correspond-
ing m generators (G′

0, G′
1, · · · , G′

m−1). The generators take
the hidden states (H ′

0, H ′
1, · · · , H ′

m−1) as input and generate
images of small-to-large scales ( Î0, Î1, · · · , Îm−1):

B ′
0 : H ′

0 = F ′
0(z

′, F ′ca(v));
B ′

i : H ′
i = F ′

i (H ′
i−1 ‖ H ′

i−1), i = 1, 2, · · · , m − 1;
G′

i : Îi = G′
i (H ′

i ). (12)
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Here, z′ ∼ N(0, 1). F ′ca is a conditioning augmentation
module [41] that converts a sentence feature v to a con-
ditioning feature for the generator. F ′ca , F ′

i , and G′
i are

modeled as neural networks. Here, ‖ denotes the concatenation
of two maps along depth axis. In our paper, based on
the modification (i) about AttnGAN [41], we modify the
Hi = Fi (Hi−1||Fattn

i (W0, Hi−1)) in Eq. 1 to H ′
i = F ′

i (H ′
i−1 ‖

H ′
i−1) . In the subsection A-B, we describe the details of the

loss functions in I2I task (Teacher Network).

B. Generative and Discriminative Loss

Combining the above modules together, at the i -th stage of
the teacher network, the Generative loss LG ′

i
and Discrimina-

tive loss LD′
i

are defined as

LG ′
i
= −1

2
E Îi ∼PG′

i

[logD′
i ( Îi )]

︸ ︷︷ ︸
unconditional loss

− 1

2
E Îi ∼PG′

i

[logD′
i ( Îi , v)]

︸ ︷︷ ︸
conditional loss

,

(13)

where the unconditional loss is trained to generate images
towards the true data distribution to fool the discriminator, and
the conditional loss is trained to generate samples to match the
real image feature embedding.

The discriminator D′
i is trained to classify the input into the

class of real or fake images by minimizing the cross-entropy
loss (14), as shown at the bottom of the page, where Ii is from
the realistic image distribution pdata at the i -th scale, and Îi

is from distribution pG ′
i

of the generative images at the same
scale.

The final objective function of the generative network and
discriminative network in the Teacher Network are defined as

LG∗ =
m−1∑

i=0

LG ′
i
+

m−1∑

i=0

ηiLperi ,LD∗ =
m−1∑

i=0

LD′
i
. (15)

Here, we train LG∗ and LD∗ using the entire training dataset.

APPENDIX B
NETWORK/ALGORITHM PARAMETERS

Based on experiments on a held-out validation set, we list
the hyperparameters in Table VII. Due to GPU memory
constraints, we did not try the KT-GAN with more than three
blocks. Thus, we set the parameter m = 3 in this paper.

APPENDIX C
NETWORK/ALGORITHM PARAMETERS DISCUSSION

In this subsection, we mainly find the suitable values for
these hyper-parameters in Table VII by a series of ablation
studies.

TABLE VII

PARAMETER VALUES OF OUR KT-GAN

TABLE VIII

INCEPTION SCORE (IS ↑), FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUES

OF THE HYPER-PARAMETERS α , β ON CUB-BIRD DATASET

A. α, β

The α, β is the important hyper-parameters in the KT-GAN.
The hyper-parameters α and β belong to the AATM module.
We use the AttnGAN+AATM to discuss the sensitivity of
the hyper-parameters α, β. As shown in Table VIII, when
the α = 0.85, β = 0.9 or α = 0.9, β = 0.85, the
AttnGAN+AATM achieves the best performance in the three
measures.

B. γ

In the SDM, we introduce the focal loss into the cross-modal
knowledge distillation stage. We hope the focal loss can better
balance the hard samples and easy samples in the cross-modal
knowledge matching process. Here, the γ is the important
hyper-parameter in the focal loss [18]. In this subsection,
we mainly find the suitable value for γ in the KT-GAN. In
Table IX, when the hyper-parameter γ = 2.0, the KT-GAN
gains the best performance on the CUB-Bird test set over these
three measures.

C. β0

β0 is a factor that determines how much to magnify the
importance of the most relevant word-to-region context pair.
When β0 → ∞, RW (v∗, s) → maxT

i=1 Oi · wi
0. So, in this

subsection, we find the suitable value for the β0. As shown
in Table X, when β0 = 1, 2, 5, the performance of the

LD′
i
= −1

2
EIi ∼Pdatai

[logD′
i (Ii )] − 1

2
E Îi ∼PG′

i

[log(1 − D′
i ( Îi )]

︸ ︷︷ ︸
unconditional loss

+ −1

2
EIi ∼Pdatai

[logD′
i (Ii , v)] − 1

2
E Îi ∼PG′

i

[log(1 − D′
i ( Îi , v)]

︸ ︷︷ ︸
conditional loss

, (14)

Authorized licensed use limited to: Louisiana State University. Downloaded on March 25,2022 at 14:25:34 UTC from IEEE Xplore.  Restrictions apply. 



1286 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 9. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from MS-COCO test datasets.

TABLE IX

IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER γ ON CUB-BIRD DATASET

TABLE X

IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER β0 ON CUB-BIRD DATASET

KT-GAN is stable. When β0 = 2, 5, KT-GAN achieves the
best performance on the CUB-Bird data set over these three
measures.

D. λ3

In the training stage of KT-GAN, we also utilize the
DAMSM loss [35] to make generated images better condi-
tioned on text descriptions. Same as AttnGAN [35], we also
set λ3 = 5 in our KT-GAN. Besides, we further show
the performance of KT-GAN based on different value of
the hyper-parameter λ3 in Table XI. When λ3 = 0, 5, 10, the
performance of KT-GAN is stable.

TABLE XI

IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER λ3 ON CUB-BIRD DATASET

TABLE XII

IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUES OF THE

HYPER-PARAMETERS η0, η1 AND η2 ON CUB-BIRD DATASET

E. η0, η1, η2

η0, η1, η2 is hyper-parameters in the teacher network of
KT-GAN. The η0, η1, η2 balance the learning weights of the
three scale perceptual losses in the teacher network. Table XII
shown the main results on the CUB-Bird test set. As shown
in Table XII, when η0 = 10−3, η1 = 10−2, η2 = 10−1,
KT-GAN achieves the best performance in the CUB-Bird
dataset over three measures.

APPENDIX D
MORE VISUAL COMPARISON RESULTS

In this section, we show more visual comparison results
between our KT-GAN, DM-GAN [22], SEGAN [13], and
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Fig. 10. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from MS-COCO test datasets.

Fig. 11. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from CUB-Bird test datasets.

AttnGAN [35] (baseline) on the CUB-Bird and MS-COCO
dataset in Figure 11, Figure 12, Figure 9, and Figure 10.
These visual comparison results further demonstrate the

generalization ability of the KT-GAN. Besides, we
show more generated results on CUB-Bird dataset and
MS-COCO dataset. As shown in Figure 13, we further
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Fig. 12. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from CUB-Bird test datasets.

Fig. 13. More generated images of our KT-GAN on the CUB-Bird test set and on the MS-COCO test set.

show 400 images for each dataset. Since the limited
size of the Appendix, you can down these figures from
https://pan.baidu.com/s/11QCfAcCfWi41B2DHiWGemA,
password: qqx1, and view more details.
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