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Abstract

Background: Behavioral representations obtained from mobile sensing data could be helpful for the prediction of an oncoming
psychotic relapse in schizophrenia patients and delivery of timely interventions to mitigate such relapse.

Objective: In this work, we aim to develop clustering models to obtain behavioral representations from continuous multimodal
mobile sensing data towards relapse prediction tasks. The identified clusters could represent different routine behavioral trends
related to daily living of patients as well as atypical behavioral trends associated with impending relapse.

Methods: We used the mobile sensing data obtained in the CrossCheck project for our analysis. Continuous data from six
different mobile sensing-based modalities (e.g. ambient light, sound/conversation, acceleration etc.) obtained from a total of 63
schizophrenia patients, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation.
Two clustering models, Gaussian Mixture Model (GMM) and Partition Around Medoids (PAM), were used to obtain behavioral
representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented
by the mobile sensing data and thus provide differing behavioral characterizations. The features obtained from the clustering
models were used to train and evaluate a personalized relapse prediction model using Balanced Random Forest. The
personalization was done by identifying optimal features for a given patient based on a personalization subset consisting of other
patients who are of similar age.

Results: The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as
clusters representing sedentary days, active but with low communications days, etc.). While GMM based models better
characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger
cluster spread likely indicating heterogeneous behavioral characterizations. PAM model based clusters on the other hand had
lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant
changes near the relapse periods were seen in the obtained behavioral representation features from the clustering models. The
clustering model based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of
0.24 for the relapse prediction task in a leave-one-patient-out evaluation setting. This obtained F2 score is significantly higher
than a random classification baseline with an average F2 score of 0.042.

Conclusions: Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile
sensing data may help discover routine as well as atypical behavioral trends. In this work, we used GMM and PAM-based cluster
models to obtain behavioral trends in schizophrenia patients. The features derived from the cluster models were found to be
predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful to enable timely
interventions.
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Abstract

Background

Behavioral representations obtained from mobile sensing data could be helpful for the prediction of
an  oncoming  psychotic  relapse  in  patients  suffering  from schizophrenia  and  delivery  of  timely
interventions to mitigate such relapse. 

Objective

In  this  work,  we  aim  to  develop  clustering  models  to  obtain  behavioral  representations  from
continuous multimodal mobile sensing data towards relapse prediction tasks. The identified clusters
could  represent  different  routine  behavioral  trends  related  to  daily  living  of  patients  as  well  as
atypical behavioral trends associated with impending relapse. 

Methods

We used the mobile sensing data obtained in the CrossCheck project for our analysis. Continuous
data  from six  different  mobile  sensing-based modalities  (e.g.  ambient  light,  sound/conversation,
acceleration etc.) obtained from a total of 63 patients suffering from schizophrenia, each monitored
for  up  to  a  year,  were  used  for  the  clustering  models  and  relapse  prediction  evaluation.  Two
clustering models, Gaussian Mixture Model (GMM) and Partition Around Medoids (PAM), were
used to obtain behavioral representations from the mobile sensing data. These models have different
notions of similarity between behaviors as represented by the mobile sensing data and thus provide
differing behavioral characterizations. The features obtained from the clustering models were used to
train  and evaluate  a  personalized  relapse prediction  model  using Balanced Random Forest.  The
personalization  was  done  by  identifying  optimal  features  for  a  given  patient  based  on  a
personalization subset consisting of other patients who are of similar age.  

Results

The clusters identified using the GMM and PAM models were found to represent different behavioral
patterns (such as clusters representing sedentary days, active but with low communications days,
etc.). While GMM based models better characterized routine behaviors by discovering dense clusters
with low cluster spread, some other identified clusters had a larger cluster spread likely indicating
heterogeneous behavioral characterizations. PAM model based clusters on the other hand had lower
variability  of  cluster  spread,  indicating  more  homogeneous  behavioral  characterization  in  the
obtained clusters. Significant changes near the relapse periods were seen in the obtained behavioral
representation features from the clustering models. The clustering model based features, together
with other features characterizing the mobile sensing data, resulted in an F2 score of 0.23 for the
relapse  prediction  task  in  a  leave-one-patient-out  evaluation  setting.  This  obtained  F2  score  is
significantly higher than a random classification baseline with an average F2 score of 0.042. 

Conclusions

Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the
daily mobile sensing data may help discover routine as well as atypical behavioral trends. In this
work, we used GMM and PAM-based cluster models to obtain behavioral trends in patients suffering
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from schizophrenia. The features derived from the cluster models were found to be predictive for
detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful to enable
timely interventions. 

Introduction

Background

Schizophrenia is the most common psychotic disorder, affecting up to 20 million people worldwide
[1] and accounting for more than 13.4 million years of life lived with a disability  [2]. It can be
caused  by  a  combination  of  genetic,  environmental,  and  psychosocial  factors.  Patients  with
schizophrenia  experience  ranges  of  positive  symptoms  (hallucinations,  delusions,  etc.),  negative
symptoms  (anhedonia,  social  withdrawal,  etc.),  and  cognitive  dysfunctions  (lack  of  attention,
working memory,  executive function,  etc.)  [3,4].  The disorder  is  highly disabling and often  has
consequences such as impairment of education,  employment,  and social  contact  [4]. Adults with
schizophrenia also have an increased risk of premature mortality than the general population  [5].
Proper treatment and management of schizophrenia are therefore important to limit the negative life
impact of the disorder. 

Schizophrenia is usually treated with a combination of antipsychotic medications and psychosocial
treatments. However, patients under treatment can still experience psychotic/symptomatic relapse, an
acute exacerbation of schizophrenia symptoms [6]. A prior study found that the cumulative first and
second relapse  rate  was  81.9% and 78% respectively  within  5 years  of  recovery  from the  first
episode  of  schizophrenia  and  schizoaffective  disorder  [7].  The  risk  of  relapse  is  found  to  be
significantly higher  after  treatment  reduction or discontinuation  [6].  Relapse poses  severe health
risks for the individual and can jeopardize their treatment progression and daily functioning. Each
relapse episode is associated with a risk of self-harm and harm to others [8]. 

To keep track of a patient’s health status and recovery, routine clinic visits for continual assessment
are recommended. Clinical interview and questionnaire tools are used during the visit for assessment
of current health symptoms and timely intervention to prevent relapses [9]. However, relapses may
happen between the visits during which a patient’s health status is not assessed. In addition, patients
may have limited insight during a psychotic relapse and struggle to report it to the treatment team or
a significant other. Therefore, improving treatment adherence and preventing relapses have become a
focus  of  schizophrenia  management.  Towards  the  effort  of  relapse  prevention,  there  has  been
significant interest in mobile sensing-based behavioral monitoring models for automatic relapse risk
prediction.

Prior Work

Smartphone apps and wearable devices have been employed in several previous works to collect
passive sensing data and track daily behaviors, which could then be used to model the relationship
between behaviors and mental well-being. For example, in the Studentlife study, an Android sensing
app collected passive sensing data from 48 college students and the inferred behavioral features from
the collected data were found to be correlated with academic performance and self-reported mental
health conditions [10]. In a study on depression severity, the mobile sensing-based features such as
daily behavioral rhythms, variance of subject’s location, and phone usage were found to be related to
depressive symptom severity  [11]. The use of mobile sensing to collect long-term monitoring data
has also been demonstrated to be feasible and acceptable for patients with schizophrenia disorders
[12–15]. Surveys have found that people with schizophrenia commonly access digital devices for
communication and support related to the disorder, which again shows the applicability of using
mobile sensing as a platform to monitor schizophrenia symptoms [16]. 
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Mobile sensing data has been used to model behaviors and predict psychotic relapses of patients
suffering from schizophrenia. If an oncoming relapse could be detected with high accuracy, then
timely medical interventions could be provided to mitigate the associated risks. Researchers have
found anomalies  in  daily  behavior  assessed  from mobile  sensing  before  relapses  and developed
relapse prediction models with promising accuracy [17–19]. In a pilot study, the Beiwe app collected
mobile sensing data from 15 patients suffering from schizophrenia for 3 months during which 5
patients experienced relapses [17]. The researchers found that the rate of anomalies in mobility and
social  behavior  increased  significantly  closer  to  relapses.  In  the  CrossCheck  project,  a  mobile
sensing app was developed to collect self-reporting EMA (Ecological Momentary Assessment) and
continuous passive sensing data from 75 outpatients with schizophrenia [20]. Based on this dataset,
the authors in [18] compared different machine learning models for relapse prediction, with several
feature extraction windows, and identified the best classifier and prediction settings for detecting an
oncoming relapse. The best performance was obtained using an SVM (with RBF kernel) model and a
feature extraction window of 30 days, leading to an F1 score of 0.27 on the relapse prediction task.
Similarly, the authors in  [21] used an anomaly detection framework based on an encoder-decoder
reconstruction loss to predict psychotic relapse in schizophrenia.

Concerning current mental health status, the extent to which an individual adheres to work, sleep,
social, or mobility routine, i.e. a regular behavioral pattern, largely impacts their mental well-being
and symptom severity of mental disorders [11,22,23]. Behavioral stability features that measure the
adherence to routines have been proposed as relapse predictors in some of the previous studies.
Features computed in our previous work measured behavioral stability by calculating the temporal
evolution of daily templates of features derived from the mobile sensing data (daily templates are
time-series obtained with representative feature values at regular time-intervals in a given day, e.g.
time-series of hourly feature values) [19]. The authors in [24] also showed the effectiveness of using
behavioral rhythm-based features to predict different symptom severity. Stability features such as
deviation of daily templates were found to be significant predictors of schizophrenia symptoms such
as being depressed. The authors in  [25] also proposed a stability metric for behaviors with a fine
temporal resolution by calculating the distance between two cumulative sum functions describing
behaviors in a certain minute of the day. The computed Stability Index had similar predictive power
as the state-of-the-art behavioral features (mean and standard deviation of each behavior) in  [26],
while being complementary. In all of these previous works utilizing behavioral stability to model
relapse prediction, the stability measured was limited to the behaviors observed within a short feature
extraction  window  (e.g.  few  weeks  only).  An  individual’s  routine  behaviors  were  not  fully
represented due to the short time window considerations. A summary of behavioral patterns could
rather be obtained when larger time windows are considered.

In this work, instead of measuring behavioral patterns using the variance of day-to-day behaviors, we
identify the overall cluster of behaviors for an individual using multimodal mobile phone data and
unsupervised machine learning, and derive features based on the distance of behaviors observed in a
day compared to the individual’s most representative routines. The identified behavioral clusters for
an individual could for example be representing their weekday routine, a weekend routine, and a
low-phone-usage routine (no sensor reading), etc. The clusters identified provide a representation of
the long-term behavioral trends across the subjects which are not directly captured by short-term
behavioral rhythm features as used in previous works. Further, clusters obtained from the mobile
sensing data represent quantized behaviors, and features derived from these clusters are robust to the
insignificant variations in behavior compared to the short-term behavioral rhythm change features.
Typical behavioral routines for an individual can be found via the clustering analysis of their daily
behaviors.  Previously,  clustering  has  been  applied  for  identifying  mobility  patterns  using  GPS
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sensing data and evaluating anomalies accordingly [21,26]. However, to the best of our knowledge,
clustering analysis hasn’t been done for characterizing the overall behavioral patterns of patients with
schizophrenia, using multi-modal mobile sensing data, towards relapse prediction tasks.

Goal of This Study

In  this  work,  we  aim  to  (1)  develop  a  method  to  characterize  patients’ daily  behaviors  using
multimodal smartphone sensor data, (2) understand the relationship between behavioral patterns and
psychotic  relapse  events  in  schizophrenia,  and  (3)  evaluate  the  predictive  power  of  identified
behavioral  pattern-based  features  for  relapse  prediction.  We  propose  multivariate  time-series
clustering of daily templates obtained from mobile sensing data to obtain behavioral patterns. The
features derived from clustering are then used in the relapse prediction task. The paper is organized
as follows. In the Methods section, we describe the method used to cluster multi-dimensional daily
templates  from mobile  sensing data,  model  selection  approach for  clustering,  as  well  as  feature
extraction and relapse prediction modeling. In the Results section, we present the results obtained
from the clustering models, association of the obtained clustering-based behavioral features with
relapses,  and  evaluation  of  the  developed  relapse  prediction  model.  The  obtained  results  are
discussed, and future directions are outlined in the Discussions section. 

Methods

Data Preparation

The data used in this study was obtained from the CrossCheck project (Clinical Trial Registration
Number:  NCT01952041  [27]), which was conducted at the Zucker Hillside Hospital in New York
City  [20,24,26,28,29].  The  study  was  approved  by  the  ethical  review  committee  at  Dartmouth
College and the institutional review board at North Shore-Long Island Jewish Health System [20].
Informed consents were obtained from the participants. The inclusion criteria for the participant has
been described in [20]. The CrossCheck app collected mobile sensing data from 75 outpatients with
schizophrenia,  with  a  data  collection  period  of  over  12  months  per  patient.  Sixty-three  patients
completed the data collection (27 male and 36 female, average age of 37.2 +/- 13.7 years, minimum
age 18 years, and maximum age 65 years), and a total of 27 relapse events occurred in 20 patients
during  the  monitoring  period.  Some  patients  had  multiple  incidences  of  relapses  but  as  the
monitoring period was long, each of the incidences was treated as a unique event if separated by a
month. A relapse incident was defined to have occurred under one or more of the following seven
different criteria: psychiatric hospitalization, increased frequency or intensity of services, increased
medications or dosages or over 25% changes in BPRS scores, suicidal ideation, homicidal ideation,
self-injury,  and  violent  behavior  resulting  in  harm  to  self  or  others  [18].  Six  mobile  sensing
modalities  including  physical  activities,  sociability,  and  ambient  environmental  readings  were
obtained using the app. Different features were extracted from these mobile sensing modalities as
presented in [24]. From among these features, a total of 21 passive sensing features were selected for
our  proposed  clustering-based  behavioral  characterization:  acceleration,  distance  traveled,  sleep
duration, ambient sound, ambient light, conversation duration, phone unlock duration, and different
types of call log, sms log, and app usage. All the features were transformed to an hourly resolution,
by averaging the observations within one hour. For features that were obtained with lower resolution
(e.g. every few hours), for example, distance traveled from morning to noon, the feature values were
split to each hour spanned by the time represented by these feature values. With hourly resolution for
each of the 21 features considered, and these hourly feature values considered as separate feature
space, the resulting dataset had a dimension of 504 (21 x 24). A total of 18436 days of observation
are present from the data collected for all the patients. Per-patient feature normalization (min-max
normalization  between  0  to  1)  was  done  to  adjust  for  differences  between  patients.  From  the
normalized dataset, principal components analysis (PCA) on the full dataset (with data from all the
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patients) was done for dimensionality reduction. The first 200 principal components were retained
which explained 96.9% of the total variance.

Clustering Models

We evaluated two different clustering methods: Gaussian Mixture Model (GMM) and Partitioning
Around Medoids (PAM), to cluster the features from the mobile sensing data and obtain behavioral
representations. The two clustering models differ in how the similarity between different points are
assessed, representing different ways in which behaviors across days can be compared to each other,
and therefore produce different cluster outputs. 

Gaussian Mixture Model

Model Introduction

The GMM is a probabilistic model that assumes data is generated from a finite set of Gaussian
distributions. A Gaussian mixture probability density is the weighted sum of k component Gaussian
densities [30]. The GMM model can address correlation between attributes by selecting the optimal
covariance matrix for each cluster and has been employed in previous behavioral clustering problems
[31]. Moreover, it can derive the probability of each sample in its assigned gaussian distribution. In
this study, we used the GMM implementation from the scikit-learn package in Python to obtain a
clustering model for the mobile sensing data [32]. The parameters of the GMM model were obtained
using the expectation-maximization (EM) algorithm [33]. We selected the number of clusters and the
covariance  matrix  type  based  on  Akaike  information  criterion  (AIC)  and  Bayesian  information
criterion (BIC) scores of all the candidate models (See more details in the supplementary document).

Model Output

Three  output  variables  for  each  of  the  data  points  (observations),  offering  GMM  model-based
clustering features for the data points, are generated based on the developed GMM model: cluster
label, assigned cluster likelihood score, and weighted average likelihood score. 

Cluster label is represented by integers from 1 to  k (k: number of clusters selected in the GMM
model).  Cluster  likelihood  scores  derived  from  the  model  measure  how  “irregular”  each  day
(represented  by  a  data  point)  is  by  calculating  its  deviation  from the  Gaussian  mixtures.  If  we
consider the center of each of the Gaussian as a typical routine, then the farther out a point is in this
Gaussian space, then higher the chances that the point represents an anomalous day/behavior are. 

The likelihood of a data point in a multivariate Gaussian distribution can be computed by calculating
the probability of observing a point farther than this given point. In other words, the cumulative
distribution function is evaluated at the given data point, which can be obtained using Mahalanobis
distance metric. Note that the squared Mahalanobis distance from a point to the center of a Gaussian

distribution has been proven to follow a chi-squared distribution with  degrees of freedom, where 

is the number of variables  [34]. Therefore, the likelihood of a point in the Gaussian distribution is
equivalent to the cumulative probability of observing a value larger than the given Mahalanobis

distance in a chi-squared distribution with  degrees of freedom. 

The assigned cluster likelihood score of the data point was obtained as the probability of each point
to its assigned cluster. The weighted average likelihood score was computed as the weighted (with
the cluster’s corresponding weights) sum of the probability of a given point belonging to each of the
Gaussian classes. Intuitively, the assigned cluster likelihood score measures how close a day is to its
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closest routine. The weighted average likelihood score measures how close a day is to all routines.
Since the weighted average likelihood score accounts for cluster weights, a point that is closer to a
more populous cluster will be considered less anomalous. A 2-D illustration of the likelihood scores
is provided in Supplementary Figure 1. 

Partition Around Medoids with Dynamic Time Warping

Model Introduction 

GMM models measure similarity between observations (data points) with point-wise alignment of
different features in the observation. However, the dissimilarity between two observations could be
overestimated due to an outlier (e.g. because of faulty sensor measurements) or when there is a small
time-shift and/or speed difference between observations. For example, two daily templates with a
similar  pattern  but  a  shift  by  one  hour  would  be  expected  to  represent  similar  behavioral
representations but these templates would likely be considered dissimilar from a GMM model. To
allow flexible similarity assessments, we used Dynamic Time Warping (DTW) to find the optimal
alignment of indices of the two time-series that minimizes the distance between the time-series [35].
The DTW distance can be paired with a distance-based clustering method, such as a partition around
medoids  (PAM)  clustering  model  [36].  The  PAM  model  searches  for  k representative  objects
(medoids) from the data and creates clusters so that the total dissimilarity of points within clusters is
minimized. We compared the number of clusters k based on the sum of the squared DTW distance of
every data point to its cluster medoid and the elbow method (See more details in Supplementary
document). 

Model Output

From the fitted PAM model,  similar to the procedure after GMM model fit,  we generated three
output  features  characterizing each data  point:  cluster  label,  assigned cluster  distance score,  and
weighted average distance score. As in the GMM model-based likelihood score computation, the
cluster distance scores evaluate how dissimilar each object is from a representative data point, or
from all representative data points. The assigned cluster distance score is the DTW distance of each
data point (representing a daily template) to its cluster medoid. A lower value means that a day
conforms better to its closest routine. Weighted average distance score is obtained by summing the
DTW distance to all medoids scaled by the corresponding cluster sizes. A lower value means that a
day conforms better to all possible routines. DTW distance from the previous day’s daily template
was also calculated as a potential relapse predictor. 

Analyzing Cluster Results

After  obtaining  output  variables  from  the  cluster  models,  we  evaluated  whether  there  were
significant changes in any of these cluster output variables closer to relapse events. To quantify this
change, we first defined different key periods to focus before a relapse. Similar to a previous work,
we defined NRx as x days near relapse (before the relapse event) and pre-NRx as all days before
relapses that are not in NRx (healthy period)  [21]. We evaluated cluster outputs for NR7, NR14,
NR20, and NR30 periods to test different window sizes. Cliff’s delta was computed to estimate the
size of the change in the likelihood scores (GMM model output) and distance scores (PAM model
output) between the NRx and pre-NRx periods for each patient separately  [37]. Cliff’s delta was
chosen because of the non-normality and variance heterogeneity of our data for which the Cliff’s
delta is a suitable metric. It is calculated as

https://preprints.jmir.org/preprint/31006 [unpublished, peer-reviewed preprint]



JMIR Preprints Zhou et al

where  counts the number of values in group 1 (NRx period) that is larger than a value in

group 2 (pre-NRx period) for all  value pairs, and  and  are the sample sizes.  This effect size

ranges from -1 to 1, where 1 indicates that all values in the NRx period are larger than all values in
the pre-NRx period, and -1 indicates vice-versa. As proposed by Romano et al., the effect can be
considered to be non-negligible if the absolute value is larger than 0.147 [38]. Cliff’s delta is suitable
to compare continuous variable output such as likelihood scores and distance scores. 

Relapse Prediction

Relapse prediction approach 

We framed relapse prediction as a binary classification problem similar to the earlier works [19,39].
Based  on  the  mobile  sensing  features  derived  from  a  feature  extraction  window  (current  and
immediately past observations from a patient), we predicted if the patient is likely to experience a
relapse in an oncoming period (prediction window). Similar to the previous works [19,39], we used a
4-week period as  the  feature  extraction window and a  1-week period as  the  prediction window
(Figure 1). Thus, the mobile sensing observations from the past 4-week period are used in the relapse
prediction model to predict if there is going to be a relapse in the next week.

Figure 1: Sequential relapse prediction approach used in this work. Features are extracted from a
period of 4 weeks in order to predict if there is likely to be a relapse in the coming week.

Features

Mobile sensing data are represented with features to characterize behavioral patterns in the relapse
prediction model. For our work, we evaluated the contribution of the clustering features derived from
the  GMM  and  PAM  models  for  the  psychotic  relapse  prediction  task.  We  briefly  describe  the
baseline features (based on the earlier work [19]) and clustering-based features that are added for the
relapse prediction model.

1. Baseline features:
These  consist  of  all  the  features  as  used  in  [19] along  with  distance-based  and  duration-based
mobility features as well as screen usage-based features. The crosscheck dataset contains information
about when the screen of the subject’s smartphone is active. A single screen-usage modality was
derived that represents the time spent using the phone (phone screen was active). From this modality,
the  mean  and  standard  deviation  of  daily  averages  in  a  given  feature  extraction  window  was
computed as features for the relapse prediction model. Similarly, for mobility-based features, we
computed  four  different  mobility  modalities:  distance  traveled  from  home  (home  information
obtained based on the clustering of the GPS locations), total movement, average time stayed in a
location, and total time spent at home.  Then for each mobility-based modality, we computed the
mean and standard deviation of the daily averages as features characterizing a feature extraction
window.
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2. Clustering-based features:
We extended the baseline feature set  with our proposed clustering-based features for the relapse
prediction task. These features are listed in Table 1. 

Table 1. Features used in relapse prediction models. Baseline features are derived from a previous
work  [19].  We  evaluated  if  the  clustering-based  features  could  improve  relapse  prediction  by
complementing  the  daily  behavioral  rhythm  change  based  features  represented  in  the  baseline
features.

Feature Set Modalities Features

Baseline features Accelerometer magnitude
Ambient light
Distance traveled
Call duration
Sound level
Conversation duration

Mean daily  template  features
(mean,  std,  max,  range,
skewness, kurtosis)
Standard  deviation  template
features  (mean),  Absolute
difference between mean and
maximum  template  (max),
distance  between  normalized
mean  templates,  weighted
distance  between  normalized
mean  templates,  distance
between  normalized
maximum template and mean
template,  daily  averages
(mean, std)

10-item EMAs Mean  and  standard deviation
of  EMA  items  in  feature
extraction window

Screen usage
Distance-based  mobility
features
 - Distance from home
 - Total movement
Duration-based  mobility
features
 - Time in a location
 - Time spent at home

Mean  and  standard deviation
of  daily  averages  in  feature
extraction window

Clustering features GMM features Mean  and  standard deviation
of (GMM  label,  GMM
likelihood scores), number of
cluster transitions,  number of
cluster states
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PAM features Mean  and  standard deviation
of (PAM label, PAM distance
scores, DTW difference from
the previous day), number of
cluster transitions,  number of
cluster states

Demographic features Age, Education years

Classifier 

For our relapse prediction pipeline, we used a Balanced Random Forest (BRF) classifier with a low
overall model complexity (using 11 decision trees). BRF as a classifier is suitable for learning from
an  imbalanced  dataset,  as  is  the  case  in  our  relapse  prediction  task,  and  provides  meaningful
prediction probabilities in different decision fusion schemes (e.g. in situations where only a limited
number of sensor modalities are available for a patient). The number of decision trees to be used was
heuristically chosen so as to limit model size (lower number of trees) while still having a number of
trees  to  maintain  diversity  for  the  generalizability  of  the  ensemble  model.  We  used  the  BRF
implemented in the imbalanced-learn library in Python [40] allowing the default unrestricted depth
of trees and sqrt(number of features)  considered for best split in the trees. Similar to the approach
used in [19], features are quantized into discrete bins before being provided as input to the classifier.
The number of bins is set as a hyperparameter and for the set number of equal-width bins, the count
of feature values in each of the bins are retained as the processed feature values.  The approach of
feature  quantization  was  found  to  be  helpful  in  relapse  prediction,  probably  by  blunting  small
insignificant  changes  while  retaining  larger  feature  variations  representing  significant  behavioral
deviations.  We used  leave-one-patient-out  cross-validation  for  the  evaluation  of  the  model.  The
number of bins to be used is a hyperparameter for the classification model and was set with cross-
validation  within  the  training  set  (nested  cross-validation).  The  number  of  bins  for  feature
quantization considered in hyperparameter tuning were [2,3,4,5,10,15] and the tuning procedure is
further described in the supplementary file.  

Relapse Labels

For our relapse prediction pipeline, as the relapse dates are not a hard label and earlier indications of
an oncoming relapse are also valuable, we regard the entire month preceding the date of indicated
relapse as a relapse period for classification. Thus, any prediction of relapse within a 4-week period
before the relapse is considered as an useful output from the prediction model, as has also been used
in previous work on relapse prediction [21]. A relapse prediction generated upto a month before the
relapse  would  be  observable  and  potentially  actionable  for  interventions  as  behavioral  changes
associated with relapse could manifest up to a month preceding a relapse [18]. 

Personalization 

Human behavior and behavioral change manifestations of relapse could be person-dependent. The
authors in  [19] proposed a method for personalizing a relapse prediction model based on feature
selection adapted to a particular test patient. The adaptation happens using a personalization subset.
This  is  shown in  Figure  2.  For  a  test  subject,  within  the  leave-one-patient-out  cross-validation
approach, the data from subjects closest in age to the given test subject compose the personalization
subset. We included age-based personalization as a first step towards personalized relapse prediction
since behavioral tendencies could be dependent on age, among other factors. Age has been reported
to be a significant factor in univariate regression modeling of relapse behaviors in patients suffering
from schizophrenia  [41] and age dependence of psychosocial functions, substance use behaviors,
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psychotic symptoms, hospitalization risks, etc. have been reported in the context of psychotic relapse
in patients suffering from schizophrenia [42]. We evaluated the gains from age-based personalization
compared to a non-personalized model to establish empirically if age-based personalization could be
helpful  in  behavioral  modeling  and relapse  prediction.  As the  relapse  incidents  are  rare,  all  the
relapse incidents in the training dataset are included as a part of the personalization subset.  For
training  a  classifier  towards  the  test  subject,  the  optimal  features  are  selected  using  the
personalization subset. We employed this approach for training our relapse prediction model and
used the correlation between features and target label as the feature selection criteria. The number of
features to be selected is set as a hyperparameter in our classifier and this dictates the threshold on
correlation value used for feature selection. For example, if the number of features to be selected is 5,
then the threshold on correlation coefficient (absolute value) is selected such that top-5 features with
the highest correlation with the labels are retained. The number of features to be used was selected
from [ 3, 5, 10, 15] features and the size of the personalization subset was selected from [ 50, 75,
100, 125, 150, 200, 300] in the hyperparameter tuning (further described in the supplementary file).

Figure  2:  Personalization  approach  for  the  relapse  prediction  model,  as  proposed  in  [19].  A
personalization subset, consisting of data from subjects who are closest in age to the test subject, is
used to identify the best feature sets using which then a (personalized) relapse prediction model can
be trained.

Evaluation Metric

We  evaluated  relapse  prediction  performance  to  assess  the  contributions  from  clustering-based
features. Any improvement in the relapse prediction performance when clustering-based features are
added to the baseline features would establish the value of clustering-based features to represent
behavioral trends and detect anomalies relevant for relapse prediction. Similar to  [19], we used F2
score for model evaluation to slightly prioritize recall over precision (Detecting a relapse is slightly
prioritized over generating a false positive). F2 score is given as:

 

We also report the obtained precision and recall scores together with the F2 scores.

Results

Clustering Results

We trained GMM and PAM models to obtain cluster centers and identify different behavioral routine
representations. The model selection procedure is explained in the supplementary file, and model
comparison metrics for GMM and PAM are plotted in supplementary figure 2 and 3. For the GMM
model, after evaluating AIC and BIC scores, model selection was narrowed to 8 to 14 clusters with
full covariance matrix. Among the models with equally good AIC and BIC scores, the models with 9
and 13 clusters achieved the best model stability and least overlap between Gaussian classes. The
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final  model  selection  was  9  clusters because  lower  number  of  clusters  allows  for  higher
interpretability. The number of clusters for the PAM model was also selected to be 9 based on the
distance dissimilarity metric and the elbow method.
See supplementary Figures 4 and 5 for the output from the GMM and PAM models including cluster
size, average likelihood scores (for GMM), and distance scores (for PAM) (Figure S4) and kernel
density plots that illustrates the distributions of likelihood scores and distance scores (Figure S5). 

To evaluate how well the days in each cluster conform to one routine - the one represented by the
cluster center - we measured the spread of each cluster using the trace of the covariance matrix of all
cluster samples. Results are illustrated in Figure 3. Clusters with a smaller covariance trace have
lower within-cluster variability. The GMM cluster model resulted in a more extreme distribution of
cluster spread (higher range of covariance trace) because it allows the clusters to overlap (despite our
model selection approach to limit overlaps) while the PAM model creates partitions in the data. 

Figure 3: Trace of the sample covariance matrix for each cluster obtained with GMM and PAM
clustering  approach.  A lower  covariance  matrix  trace  indicates  more  homogeneous  clusters,  i.e.
clusters with lower within-cluster variability. 

By averaging all daily templates (data points) in every cluster, it is possible to observe the cluster
profiles.  For  example,  Figure  4  illustrates  the  average  daily  templates  of  two  example  signal
modalities: acceleration and volume. The GMM model performs better in stratifying daily templates
based on the overall level of activity in these signal modalities. The PAM model has higher variance
in each cluster because it allows for a more lenient dissimilarity measurement. Although the daily
templates in each cluster have different  levels of signal  activity,  they generally follow the same
pattern as a normal circadian rhythm, e.g. the volume signal activity peaking during the day and
being at minimum during the night. 
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Figure 4: Average daily templates of two signal modalities acceleration (top) and volume (bottom) in
the clusters obtained from the GMM and PAM models. Different clusters capture different behavioral
patterns. 

Table 2 summarizes the average profile for each cluster, ordered from the most common to the least
common one.

Table 2. All cluster profiles obtained from the GMM and PAM models in descending cluster size.
Different clusters are associated with peculiar behaviors specific to that cluster as it can be observed
from the typical profile of signal modality in that cluster. 

Cluster size
rank

GMM cluster profile GMM
cluster size

PAM cluster profile PAM  cluster
size

1 No  app  usage;  high
conversation  and  sms;
other  attributes  around
average

5217 Low  acceleration,
conversation,  volume,
sleep  duration;  Very  low
variability  in  sleep  and
volume templates

3318

2 Highest  app  usage  and
phone  calls;  high
acceleration,  conversation,
sms,  distance  moved  and
volume;  early  wake-up
(around 7am) and no sleep
during the day

3993 High  volume  and  sms;
Constantly  low  sleep
template

3300
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3 Almost all  sensor readings
near 0

2580 Conversation  and  volume
sharply increase after 6am;
highest  volume;  low
phone  usage  before  7am;
wake-up  around  7am and
sleep around 9pm

2728

4 Highest  acceleration;  low
phone calls; wake up early
(around 7am) and no sleep
during the day

1883 High app usage, sms, and
distance  moved  around
midnight;  below  average
acceleration

2699

5 High  acceleration  after
midnight; high phone calls
and  sms;  high  overall
volume even at  night;  late
sleep and wake-up

1484 Lowest acceleration (close
to  0)  and  app  usage;
constantly  high  screen
time and sleep duration

2378

6 Below average volume and
distance;  wake-up  after
11am and sleep during the
day

1298 High phone call and sms;
screen  time  sharply
increases after 6am; wake-
up around 9am and sleep
around  11pm;  awake
during the day

1686

7 Activity  level  and  phone
usage  are  highly  active
during the day and inactive
at  night;  short  sleep
duration;  high  number  of
phone  calls;  acceleration
increase after 3pm

1046 Below  average  screen
time;  long  sleep  time
(wake up around noon)

1405

8 No  app  usage;  low
conversation,  sms  and
volume;  long  sleep  even
during the day

523 Low phone call,  sms  and
screen  time;  high  volume
at  night;  constant  long
sleep  (wake  up  in  the
afternoon)

752

9 Accelerometer  readings
close to 0; low app usage,
conversation,  and  volume;
phone screen  is  constantly
on;  long  sleep  duration
even during the day

412 High  app  usage  and
distanced  moved  around
noon;  templates  in  this
cluster  have  high
dissimilarities

170

Association with Relapses

Out of the 27 relapse events in total, clustering features were missing before three events due to
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missing signal modalities. For 11 out of the 24 relapses left, anomalies in clustering features were
observed qualitatively in the time series of these features before and after the relapse. Most of these
anomalies represent a transition to a cluster with inactive sensor readings, for example, GMM cluster
3 and PAM cluster 1 (Figure 5). We hypothesized that these patients for which we see their assigned
cluster labels near relapse period being assigned to the cluster of inactive sensor recordings, most
likely had their phone turned off a few days before the relapse. This transition to an inactive cluster is
associated with an increase in  likelihood scores (GMM model-based feature),  and a  decrease in
distance scores (PAM model-based feature), because these clusters are more compact, and points do
not deviate too much from the cluster centers. 

Figure 5: Time series plots of cluster assignment as obtained from the GMM and PAM models (left
pane), and weighted average likelihood score and distance score of a sample patient (right pane).
Changes in cluster features are seen near to the relapse instance (here shown with the vertical red
line).

Our cluster  analysis  between the  NRx and pre-NRx periods  showed that  on average,  likelihood
scores increase, and distance scores decrease closer to relapses (Figure 6). This trend is robust with
respect  to  different  window sizes  and  the  largest  change  is  observed  with  NR20 window size.
Asterisks indicate that the absolute Cliff’s Delta value between the two periods is above 0.147 (i.e.
effect is non-negligible, Ref: Section Methods – Analyzing Cluster Results). Note that the plots are
made with all patients’ data collectively. Individual patient’s plots would show a larger difference
between the near relapse window and healthy period. Average cliff’s delta values across all relapse
events are presented in Table S1 in Multimedia Appendix 1. 
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Figure 6: Boxplot of the clustering features (likelihood scores from GMM model on top and distance
scores from PAM model on bottom) in different NRx (x days near relapse) and pre-NRx (all days
before relapses not in NRx) periods.  Asterisks indicate that Cliff’s  Delta between two groups is
above 0.147. 

Relapse prediction

We evaluated the relapse prediction pipeline discussed in the Methods - Relapse Prediction section,
with and without the clustering-based features. The highest F2 score of 0.23 is obtained when the
baseline features are complemented with the clustering-based features, significantly higher than the
random classification baseline of 0.042 F2 score and the F2 score of 0.18 obtained using the baseline
features only. 

 Table 3.  Relapse prediction performance with different feature sets.  The baseline features
introduced in the previous work by [19] are complemented with clustering-based features for
evaluation. The performance of both the GMM-based and PAM-based feature sets are also
separately evaluated. 

Method F2 score (precision/recall)

All features 0.23 (0.063/0.662)

Baseline features [19] 0.18 (0.055/0.400)

Clustering features 0.14 (0.035/0.487)
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GMM features 0.16 (0.042/0.487)

PAM features 0.19 (0.042/0.525)

GMM + Baseline features 0.19 (0.052/0.525)

PAM + Baseline features 0.16 (0.045/0.438)

Random  Classification
Baseline

 0.042 +/- 0.020

Significant features

With the best relapse prediction obtained using all features, we identified the most important features
within this feature set based on how often a feature was selected in the leave-one-patient-out cross-
validation. The selection count for a feature was incremented by 1 if it was selected for use in a
particular cross-validation loop for a test patient. It is to be noted that the number of features selected
in each cross-validation loop is different since the number of features is a hyperparameter selected
with nested cross-validation. We then normalized the total selection count of each feature at the end
of the cross-validation by the number of cross-validation loops. The results obtained are given in
Table 4.

Table 4. The top-10 significant features in the relapse prediction pipeline based on the entire feature
set (baseline and clustering-based features). The frequency of selection of a particular feature across
the cross-validation loop is used to assess the most significant features for relapse prediction. It is to
be  noted  that  different  numbers  of  features  are  selected  in  each  cross-validation  loop  since  the
number of features to be used is a hyperparameter tuned with a nested cross-validation loop.

Features Frequency (normalized)

Baseline feature - distance template skewness 0.19

Clustering feature - mean PAM label 0.17

Clustering feature - mean PAM weighted distance 0.14

Baseline feature - conv template skewness 0.14

Clustering feature - Number of transitions 0.12

Clustering feature - Standard deviation GMM label 0.10

Clustering feature: Standard deviation PAM label 0.10
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Clustering feature: Mean GMM label pval  0.10

Baseline feature - Conv. template kurtosis 0.08

Baseline feature - Volume template range 0.08

Discussions

Principal Results

In this work, we used clustering models to obtain behavioral representation from mobile sensing data
which could be useful for relapse prediction. The two clustering models explored in this study, GMM
and PAM, grouped observations using different notions of distance/similarity between data points
and therefore captured different behavioral representations (Table 2, Figure 4). These representations
can be useful in downstream applications such as relapse prediction. 

The GMM model defines distance based on one-to-one matching between the hourly observation of
mobile  sensing data in  the daily template.  The clusters identified from the GMM model  have a
widely varied distribution of cluster spread (Figure 3). With some compact clusters (represented by
low cluster covariance) being identified within the GMM model, the rest of the data points that do
not belong to any of these compact clusters are considered as a large-spread cluster with no typical
cluster profile. These large-spread clusters contain the compact clusters also (cluster overlaps); a
point  belonging to compact  clusters also shows high likelihood of belonging to  the large-spread
cluster.  As we wanted the clusters to capture distinct behavioral trends, we evaluated Bhattacharyya
distances to identify the best clustering model with least overlap between identified clusters. The
PAM model with DTW distance allows a more lenient match of daily templates of behaviors as
represented by the mobile sensing-based features. Such a lenient matching fits the context of this
study  since  DTW is  able  to  discount  spikes,  speed  differences  or  time  shifts  when  evaluating
dissimilarity between two daily  templates  of behaviors.  However,  the clusters obtained from the
PAM model contain more dissimilarity. It is then more difficult to summarize the cluster profiles for
qualitative model interpretation. 

Overall, GMM based modeling is able to identify highly dense/populous clusters with very specific
behavior associated with these clusters and some dispersed clusters that do not have a typical cluster
profile. For example, cluster 3 and cluster 9 identified from the GMM model (Table 2) represent two
types of typical routines. Cluster 3 from the GMM model has almost all sensor readings close to zero
other than sleep, likely representing an inactive/sedentary day, and cluster 9 has the days with the
phone screen always turned on, likely representing a day with high mobile phone usage. The PAM
model  also has  a  cluster  with mostly inactive  days  and constantly  long screen time (cluster  5).
However, this cluster has higher cluster variance. When the average cluster profile of this cluster is
observed (Figure 4), some days that do not strictly follow these patterns of inactive day and long
screen time are also assigned to the cluster. In terms of behavioral features, this implies that clusters
obtained  from a  PAM model  are  likely  to  cluster  together  behaviors  that  do  not  always  show
homogeneity based on qualitative observations. This is because of the flexibility in the PAM model
in allowing unparalleled alignment between behavior time-series. Nonetheless, it might be beneficial
to consider PAM based modeling for previously mentioned features: ability to discount spikes and
speed  differences  or  time  shifts  when  evaluating  dissimilarity  between  two  daily  templates  of
behaviors. Similarity (or dissimilarity) between behaviors might not always be fully represented by
hourly alignment and comparison of mobile sensing data across days. 
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The behavior of a particular day, represented by the mobile sensing data template for that day, was
characterized  in  a  clustering  model  with  different  clustering-based  features  such  as  Gaussian
likelihood and DTW distance to the cluster centers. For days with assigned cluster likelihood scores
close to 1 and assigned cluster distance scores close to 0, they tend to belong to a dense cluster with a
small  spread.  For example,  cluster 3 from the GMM model and cluster 5 from the PAM model
respectively have the highest likelihood and lowest distance to its assigned cluster (Figure S4). They
also have low within-cluster variability as measured by the trace of sample covariance (Figure 3). On
the other hand, days characterized with low likelihood scores and high distance scores tend to be
more dispersed and do not conform well to a specific routine. For example, cluster 5 and cluster 7 in
the GMM model and cluster 9 in the PAM model have such properties. Overall, the GMM clustering
and PAM clustering tend to produce clusters with different behavioral representations in the assigned
clusters and this is reflected in the clustering-based features such as likelihood scores and cluster
distance that are assigned to characterize each day. 
 
In  terms of relapse prediction,  clustering-based features  can capture long-term behavioral  trends
across  the  subjects.  This  representation  can  complement  existing  approaches  to  behavioral
representation for psychotic relapse prediction in schizophrenia, e.g., based on the usage of daily
behavioral rhythm change features as proposed in [19]. We compared the clustering-based features
before and near the relapse periods and saw significant differences in some of the features. This was
also seen qualitatively in a time-series plot of clustering-based features indicating that an upcoming
relapse  for  a  patient  is  associated  with  changes  seen  in  clustering-based  features  (Figure  5).
Clustering-based features were helpful in relapse prediction models (Table 3). When clustering-based
features  were  used  together  with  daily  behavioral  rhythm change features,  a  significant  gain  in
relapse  prediction  performance  was  obtained  (F2 score  improved from 0.18 to  0.23).  These  F2
scores,  and the associated improvements are significant,  considering that a random classification
baseline gives an F2 score of 0.042 on average. A Wilcoxon signed-rank test on performances in
multiple  classifier  initializations  for  classification with and without  clustering  features  yielded a
significant classification score for classification when clustering features were included (p = 0.002).
Clustering-based features were among the top features when significance of features for the relapse
prediction  task  was  evaluated  (Table  4).  Features  such  as  mean  cluster  labels  and  number  of
transitions  of  labels  were  among  the  top  (most  frequently  selected)  features.  Thus,  both  the
information about which behavioral clusters the observations from the current period of monitoring
belong to  (likely  representing  behavioral  clusters  that  are  not  normal  behaviors)  and how often
transitions between different behavioral clusters happen (representing the patient showing frequent
behavioral variations) are likely predictive of an oncoming relapse.Clustering-based features alone
also proved to be valuable for relapse prediction. GMM-based and PAM-based clustering features
only used in the relapse prediction pipeline led to an F2 score of 0.16 and 0.16 for relapse prediction
respectively (Table 3).  Therefore, clustering-based features are found to be a useful approach to
obtain  behavioral  representations  and  can  be  employed  in  clinical  applications  such  as  relapse
prediction.

Comparison to previous work, limitations, and future research

To our  best  knowledge,  this  is  the  first  work  that  used  clustering  analysis  to  group behavioral
patterns of individuals with schizophrenia. Compared to previous works that used the hourly data to
train the  relapse  prediction models,  our  work based on clustering  features  to  represent  different
behavioral  patterns  has  better  model  interpretability.  Clustering  analysis  allows  clinicians  to
understand different types of patient routines, as well as their frequencies. In terms of schizophrenia,
cluster  transitions  observed before  relapses  could  suggest  which  types  of  behavior  are  potential
relapse related behavioral signatures. Intervention strategies to prevent relapses can then be made
accordingly.
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Researchers have studied how missing data is related to relapses and anomalies in mental health
conditions.  In  the  dataset  that  we have  for  evaluation  in  this  work,  some passive  sensing  daily
templates have consecutive hours with missing data from almost all signal modalities. While in an
anomaly detection study, Adler et al. used mean imputation [21], here we filled missing values with
zeros. Filling missing data with mean values might ignore the potential relationship between missing
data and anomalies. In reality, it is highly possible that out-patients may turn off their phone when
they experience relapse symptoms. We observed that indeed there are more days from an inactive
sensor  reading cluster  closer  to  relapses.  The increased  prevalence  of  inactive  days  also caused
likelihood  scores  to  increase  and  distance  scores  to  decrease  before  relapses.  Initially,  we
hypothesized that adhering to any routine or any cluster center might reduce the risk of relapse, but it
turned out that some routines, such as missing sensing data, is actually associated with a higher risk
of relapse.

Although  the  clustering  features  successfully  improved  relapse  prediction  results,  the  only
observable relapse signature is an increase in likelihood score or a decrease in distance score, and a
transition to an inactive cluster. For the relapse events that were not indicated by sensor inactiveness,
we did not find any non-trivial changes in any specific feature prior to the relapse. Similarly, the
relapse  prediction  performance  with  the  best  F2  score  of  0.23  is  relatively  low.  However,
investigations of mobile sensing based relapse prediction in mental health disorders are relatively
new and further improvements in this field could be expected as more dataset become available and
improvements in machine learning models to the specific task of relapse prediction. In [43], relapse
prediction in bipolar disorder was developed using clinical assessment features during patient visits.
A high F score (F1) of upto 0.80 was reported. The relapse rate was quite high (relapse in >60% of
the included patient) in the dataset used by the authors and the relapse prediction was done on a
patient level (instead of a weekly prediction model in free-living conditions as in our case) which
might have led to higher performance. 

In this work, we obtained patient-independent clusters i.e. generalized behavioral clusters by pooling
data from all the patients. We generalized that there are certain types of routines across all outpatients
with  schizophrenia.  Future  studies  can  focus  on  establishing  personalized  cluster  models.  As
suggested in [25], every patient’s relapse signatures and the extent to which they adhere to their daily
routine  are  different.  The  same  study  found  that  individual-level  models  could  achieve  better
performance in predicting symptom severity. Our model also found that participants have different
routines as their frequency of staying in different clusters largely varies. Moreover, although most
patients had higher likelihood scores and lower distance scores closer to relapses, some other patients
demonstrated  the  opposite  trend.  Generalized  behavioral  models  might  not  fully  represent  and
discount the effect of different confounding variables such as job type, gender, current health, etc.
that could impact behavioral trends. Though we used model personalization in relapse prediction,
only the factor of age as a covariate of behavioral trends was considered. Personalized cluster models
that account for different aspects of interpersonal differences would further help mitigate possible
biases in behavioral representations due to confounding variables. Personalized relapse prediction
models  will  also  be  required  to  test  the  effectiveness  of  the  individual-level  clusters.  However,
sufficient data for each new patient is needed to find cluster models specific for the patient and thus
clinical deployment for new patients will be delayed. Cluster adaptation from generalized cluster
models to personalized cluster models as more patient-specific data becomes available needs to be
investigated in future work.

Conclusion

In this work, we proposed a methodology to compute clustering models on 24-hour daily behavior of
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schizophrenia outpatients and showed that information extracted from the cluster model improved
relapse  prediction.  New  features  were  generated  from  the  cluster  models  by  measuring  every
observation’s  deviation  from  the  cluster  centers  representing  typical  behavioral  patterns.  Two
different clustering models were investigated. The GMM model allows for cluster overlap and has a
more extreme cluster dispersion. The PAM model with DTW distance creates partitional clusters that
are more generalized towards new data  but fails  to identify dense clusters.  The clustering-based
features in addition to the baseline features helped to improve relapse prediction model performance.
In future work, we will further investigate personalized clusters and relapse prediction models. 
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Sequential relapse prediction approach used in this work. Features are extracted from a period of 4 weeks in order to predict if
there is likely to be a relapse in the coming week.
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Personalization approach for the relapse prediction model, as proposed in [19]. A personalization subset, consisting of data
from subjects who are closest in age to the test subject, is used to identify the best feature sets using which then a (personalized)
relapse prediction model can be trained.
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Trace of the sample covariance matrix for each cluster obtained with GMM and PAM clustering approach. A lower covariance
matrix trace indicates more homogeneous clusters, i.e. clusters with lower within-cluster variability.
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Average daily templates of two signal modalities acceleration (top) and volume (bottom) in the clusters obtained from the
GMM and PAM models. Different clusters capture different behavioral patterns.
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Time series plots of cluster assignment as obtained from the GMM and PAM models (left pane), and weighted average
likelihood score and distance score of a sample patient (right pane). Changes in cluster features are seen near to the relapse
instance (here shown with the vertical red line).
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Boxplot of the clustering features (likelihood scores from GMM model on top and distance scores from PAM model on bottom)
in different NRx (x days near relapse) and pre-NRx (all days before relapses not in NRx) periods. Asterisks indicate that Cliff’s
Delta between two groups is above 0.147.
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Additional information, figures and tables of clustering model selection, relapse prediction model selection, and clustering/relapse
prediction results.
URL: http://asset.jmir.pub/assets/2908a2f1d10dc01d4b4d454733682be6.pdf
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