2021 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-7281-7744-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/NAS51552.2021.9605445

Characterizing Al Model Inference Applications
Running in the SGX Environment

Shixiong Jing*, Qinkun Bao*, Pei Wang?, Xulong Tang’, and Dinghao Wu*
*The Pennsylvania State University
TUniverSity of Pittsburgh
!Independent

Abstract—Intel Software Guard Extensions (SGX) is a set of
extensions built into Intel CPUs for the trusted computation. It
creates a hardware-assisted secure container, within which pro-
grams are protected from data leakage and data manipulations
by privileged software and hypervisors. With the trend that more
and more machine learning based programs are moving to cloud
computing, SGX can be used in cloud-based Machine Learning
applications to protect user data from malicious privileged
programs.

However, applications running in SGX suffer from several
overheads, including frequent context switching, memory page
encryption/decryption, and memory page swapping, which signif-
icantly degrade the execution efficiency. In this paper, we aim to i)
comprehensively explore the execution of general Al applications
running on SGX, ii) systematically characterize the data reuses at
both page granularity and cacheline granularity, and iii) provide
optimization insights for efficient deployment of machine learning
based applications on SGX. To the best of our knowledge, our
work is the first to study machine learning applications on SGX
and explore the potential of data reuses to reduce the runtime
overheads in SGX.

Index Terms—Cloud Security, Intel SGX, Performance Eval-
uation, Machine Learning

I. INTRODUCTION

Intel Software Guard Extensions (SGX) is a trusted comput-
ing design to solve the secure remote computation problem.
SGX provides integrity and confidentiality protection against
privileged software (kernel, hypervisor, etc.) by adding addi-
tional protection mechanisms in the CPU while maintaining
a secure memory region called enclaves. However, the confi-
dentiality and integrity guarantee come at a price. Significant
overheads severely degrade some applications’ performances.
Those overheads include: (i) context switch for OS when EPC
misses, (i) encryption and decryption when pages are moved
across EPC and non-EPC, (iii) The updates of integrity tree
when EPC hits, etc. According to Meysam’s evaluation, the
encryption and decryption can lead to a slowdown of more
than 20 times than baseline non-secure program on page faults,
and context switch will cause a slowdown of about 15 times
than non-secure program on page faults [1].

In this research, we aim to explore the performance of
various machine learning algorithms inside SGX, analyze
the memory access patterns of different machine learning
modes, and discuss the possibility to leverage Depp Neural

978-1-7281-7744-1/21/$31.00 ©2021 IEEE

Networks (DNNs) execution characteristics and alleviate the
performance degradation.

Our Contributions. 1) We characterize the data reuse dis-
tance distribution in common deep learning models and some
other machine learning models. 2) We discuss the relationship
between model structures and memory reuse patterns. 3) We
provide insights for future optimizations for DNNs to run
inside SGX enclaves with better performance.

II. BACKGROUND
A. Intel SGX

Intel SGX is an instruction set extension that offers protec-
tion for the application and its data. SGX leverages trusted
hardware to establish secure containers called enclaves. Com-
putations can be performed inside SGX enclaves while code
and data inside the enclaves are isolated and protected from
the outside environment. SGX has the potential to be applied
in many different services, and researchers are creating new
designs in more and more fields to take advantage of this
architecture. Such exploration is happening in secure cloud
microservices, private web searches, credential protection for
synchronization applications, and enclave-based databases [2].

Although SGX is powerful in protecting the integrity and
confidentiality of the program, it suffers from efficiency over-
head due to the structure of enclaves. Arnautov’s work showed
that there is a large gap between EPC (Enclave Page Cache) hit
and miss latencies, 200 cycles vs. 40,000 cycles [3]. Various
other researches, such as Zhao’s work [4] and Gjerdrum’s work
[5], have also corroborated the conclusion that limited memory
space inside the enclave causes great performance drop when
the number of page swap, amount of memory accessed, or
frequency of memory access increases.

B. SGX Memory Management

Intel SGX-enable CPUs reserve a special memory area
called Processor Reserved Memory (PRM) during system
boot. This region of memory is a subset of DRAM (Dynamic
Random Access Memory), but it is protected from other
software including the program running in the kernel space [6].
Enclave Page Cache (EPC) is a subset of PRM where SGX
Enclave data is stored. The EPC is divided into 4KB pages and
a variant of Merkle tree called SGX integrity tree is applied
to ensure the integrity of EPC pages. The maximum size of
PRM is set in the BIOS settings, with the maximum size of

128 MB in most cases. In those 128 MB, the available size
of EPC for enclave programs is around 92 MB.

Although current SGX provides protection for pages in
EPC, it still relies on the untrusted operating system to manage
the memory pages. Intel SGX Driver for Linux uses the Least
Recently Used (LRU) policy for EPC page swapping, though
the real implementation is not strictly following the LRU
manner. The program inside the enclave still shares the same
cache with the outside program to fill the access gap between
the processors and the DRAM.

In this paper, we study the performance in terms of memory
reuse distance. Memory reuse distance is defined by the
number of distinct references that have happened between
two references to the same memory location. In particular,
a page reuse distance between two accesses of the same page
determines whether this page has been swapped out of EPC
due to LRU policy, while cacheline reuse distances can reflect
the performance of cache and determine whether EPC will be
visited.

100%
90%
80% Pairwise Ranking
70% Multi-Softprob
60%

50%
40%
30%
20%
10%
0% | | — — - — —

NYx B o) (D o N A
L SIS P

M Logistic Regression

PERCENTAGE

3
Na

© D o @ 0 A
SIC A SR N S
S & F N0 9 S

R P A

PAGE REUSE DISTANCE

Figure 1: Page reuse distance frequency of GBDT with X-axis
showing page reuses with reuse distance x categorized by the
value of |log, x|, and Y-axis showing the percentage among
all page reuses.

III. CHARACTERIZATION AND OBSERVATION

We run 4 machine learning algorithms to evaluate the paging
performance and cacheline reuse characteristics for different
families of machine learning tools. The models we tested are
NIN (A micro-neural network) [7] , Resnet50 (residual net-
work with 50 layers), R-CNN (CNN-based network for object
detection and semantic segmentation), and GBDT (gradient
boosting decision trees).

These models cover many types of widely applied neural
networks. The results from these experiments can reflect other
neural networks with similar structures.

A. Experiment Setup

To characterize and quantify the data reuse and reuse
distance, we first gather the memory access trace of machine
learning algorithms on SGX. we use the simulation mode in
SGX to collect the trace because SGX is implemented with
protection against all outside software including all dynamic
analysis tools. We use Pin toolset to collect the memory trace.
It is important to note that, the memory trace is not collected
for the whole program, because the overall size of the trace
will be too large (1I00GB for NIN, and over 200 GB for

Resnet50). Instead, our Pin tool neglects the memory access
trace for early library loading and model preparation.

The experiments were conducted on an Intel Core (TM) i7-
7700T CPU at 2.90GHz frequency with 32KB L1 D-cache,
32KB L1 I-cache, 256 KB L2 cache, and 8192 KB L3 cache.
We used the Anakin framework and gbdt-rs framework for
machine learning applications since they are two of the few
frameworks that support SGX.

Anakin is a cross-platform inference engine for neural
network architectures. It supports models originally built for
Caffe and Tensorflow. Gbdt-rs is a lightweight implementation
of the gradient boosting decision tree (GBDT) algorithm.
Gbdt-rs is written in Rust and has been optimized to be
SGX friendly [8]. In the memory trace collection, Anakin
models (Resnet50, NIN, R-CNN) are run with input data filled
with constant values for 3 rounds with batch size 50; GBDT
with logistic regression is tested with agaricus testing dataset;
GBDT with multi-softprob is tested with default dermatology
testing data set; GBDT pairwise ranking with the mq2008
testing data set [9].

B. Data Collection

We build a simulator for EPC, simulating the paging be-
havior under the LRU policy when memory is accessed in
the order of the recorded memory trace. We assume that the
machine learning application will be the only program that
requires EPC memory, thus there will be only one enclave
alive throughout the experiments. After the memory page is
loaded into the EPC, the CPU accesses the required data to
the cache at the cacheline granularity.

In order to take cache influence into consideration, we build
a cache simulator on top of the EPC memory simulator. The
CPU cache simulator is based on intel-i7-7700 architecture (3-
level cache with LRU write-back replacement policy). In the
experiments, the simulation of EPC is based on the assumption
that about only 96MB of the EPC memory is actually available
to the user program, which has been corroborated by various
research [10].

%

D

L L
N ‘v L ®

Figure 2: Page reuse distance frequency of NIN, Resnet50,
and R-CNN on Anakin with X-axis showing page reuses with
reuse distance x categorized by the value of |log, x|, and Y-
axis showing the percentage among all page reuses.

~
=]
R

NIN

@
Q
X

M Resnet50

@
Q
X

B R-CNN

PERCENTAGE
Noow
S &8 8
X R R

=
Q
R

Q

© N F R o N > D P g > @ 0 A
R L C AN VPR MRS LA RN N M. M A\ LS M
A S A

PAGE REUSE DISTANCE

C. Observations and Analysis I: Page Reuse Distance

We first study the reuse distances at the page granularity.
Our goal is to investigate whether the limited EPC capacity

is able to capture the massive page reuses without incurring
substantial page swapping. The result is shown in terms of
frequencies of different range of reuse distance. In figure 1
and 2, page reuses with reuse distance x will be categorized
by the value of |log, x].

We make the following observations on the result of page
reuse distance frequency:

1) Observation 1: Both NIN and Resnet have the second
most frequent reuse distance between 2! and 22. The top 5
frequent page reuse distance categories of NIN and Resnet50
are the same.

2) Analysis 1: Benchmarks with similar structures tend to
end up with similar memory access patterns. Both NIN and
Resnet are neural networks designed for image classification,
and both of them involve the general structure with many
convolutional layers at the bottom for feature extraction and
some fully connected layers (NIN uses MLPconv layers, which
are composed of several small fully connected layers) for
scoring. We also observe that the rest of the reuse mainly
gathered around 2% to 2!!. These page reuse would be the
reuse of weights of the neurons each time a new piece of
data is fed in. The fact that those reuses are skewed to larger
reuse distances for Resnet50 than for NIN also corroborates
this explanation, because Resnet50 has more layers with more
parameters, which naturally leads to a larger reuse distance due
to more memory access between the reuse of weights when
each time a new piece of data is loaded.

This answers question #3 that similar networks do end up
with similar memory access patterns.

3) Observation 2: For all neural networks, page access with
extremely low reuse distance (less or equals to 1) occupied
over 40% of the page reuse. In terms of portions occupied by
low page reuse distance, R-CNN is higher than Resnet, Resnet
is higher than NIN.

4) Analysis 2: Convolution layers would lead to high
frequencies of low page reuse distance, especially when the
channel number is low. Consider the size of one EPC page
(4K Byte), for the extreme case of a convolution layer with
3x3 filters on 3 channels, input data used for more than 100
columns in the im2col operation can be on the same page.
Besides, the weights of the filters are also going to be reused
as many times as the size of input approximately.

As for fully connected layers, theoretically, the input data
will be used in computation for as many time as the number
of output neurons during the matrix multiplication (unless the
matrix is very sparse such that the math kernel library skip
some computation). However, the weights will be used for
computation only once during a single pass. Therefore, the
reuse distance for weights is more likely to be large. The
size of weights is proportional to the number of input neurons
times the number of output neurons, and fully connected layers
usually have more than 1000 neurons. As a result, the weight
of fully connected layers would contribute a considerable
amount of page reuse with large reuse distances.

NIN uses MLPConv layer, which indeed includes several
smaller fully connected layers inside the convolution layer;

while Resnet uses mostly convolution layers. Given the dif-
ference in memory access patterns between convolution layers
and fully connected layers, it is not surprising to see that the
portion of low page reuse distance of Resnet is slightly higher
than NIN.

As for R-CNN, although it does not apply as many convo-
Iution layers as Resnet, it generates more than 1000 regional
proposals for each input image and feeds all of them to
CNN for feature extraction, which leads to a large amount of
convolution layer computation. Therefore it is also reasonable
for it to have a very large portion of low page reuse distance.

This answers Question #2 about how the structure of neural
networks influences memory access patterns.

5) Observation 3: We noticed that for GDBT models, page
accesses with extremely low reuse distance (less or equals to
1) occupy around 90% of all page reuses. Page reuses with
large reuse distances are very rare.

6) Analysis 3: GBDT model inferences turn out to have
very high localities. This might be the effect of computing
patterns of random forests. GBDT prediction is achieved by
combining the results of many weak decision tree models. The
computation of inference can be broken up as multiple rounds
of decision tree computations, which are mostly in a linear
fashion.

7) Takeaway: Page access rarely comes with large reuse
distances, which shows that in most cases, the page processed
a long time ago is not likely to be reused.

Page reuse distance between two access of the same page
will determine whether this page has been swapped out
between the two access. In the case of EPC, it can hold about
25000 pages at the same time, which means that a page must
have been swapped out once between two access if the reuse
distance of the two access is larger than 25000. By counting
the frequencies of all page reuse distances in the memory
trace, we can get some idea about the performance of LRU
mechanism.

In the chart, most page reuses come with small page reuse
distances less than 2'4, therefore they will be kept inside the
enclave page cache between the two visits and would not
cause any page swap. There are few page accesses with reuse
distance between 24 and 215, which map to the situation where
pages were swapped out of the memory right before bringing
them back in. Very few pages reuse with reuse distances larger
than 2> shows that for the given models, there are no frequent
page swaps during the inference.

This answers Question #1 on data reuse of various machine
learning models.

D. Observations and Analysis II: cacheline Reuse Distance

Memory traces for machine learning models were also
analyzed in terms of cacheline reuse distance. We cut out
the cache simulation portion in our simulator to generate the
result. In figure 3, cacheline reuse with reuse distance x will
be categorized by the value of |log, z|.

@
3
X

M Resnet50
NIN

@
=}
R

IS
S
xR

PERCENTAGE
]
R

20%
10% I
0% I I Y | .
N Vv ™ % J 4 > 5 © "z D
K

I S S S Y
P& TS P TP
A N G S S S

CACHELINE REUSE DISTANCE

Figure 3: Cacheline reuse distance frequency of NIN and
Resnet50 on Anakin, with X-axis showing cacheline reuses
with reuse distance x categorized by the value of |log, x|,
and Y-axis showing the percentage among all cacheline reuse.

1) Observation 1: We can see from the graph that at the
cacheline level, there are more reuses with medium to large
reuse distance(2° — 2'%) compared with memory reuse on the
page level. In the previous page reuse distance chart, less than
5% of the reuses occur in any category with reuse distance
larger than 2%, In cacheline reuse distance chart, around 10%
of cacheline reuse in NIN has distance larger than 2'2 and
more than 20% of cacheline reuses in Resnet50 have reuse
distance larger than 2'4.

2) Analysis 1: The difference between cacheline reuse
distance and page reuse distance matches our expectations for
caches. Many of the cacheline visits with short or medium
reuse distance might end up as a cache hit, thus will not
reflect on the page reuse distance analysis. Besides, some of
the cachelines belong to the same page, therefore the distinct
cacheline visit when calculating the cacheline reuse distance
might not correspond to distinct page visits.

As a result of all the factors mentioned above, some cache
blocks visited with medium or large reuse distance will not
enjoy a large page reuse distance because of cache hits.

3) Observation 2: Despite more memory reuse with
medium distances at cacheline level, the overall trend from
page reuse distance chart still exists in the cacheline reuse
distance chart. We still have the largest portion of memory
reuse with reuse distance of 0 and 1, with the second largest
portion of memory reuse around 23 and 2.

4) Analysis 2: One cacheline has 64 bytes, therefore it is
still very likely for several pieces of data accessed sequentially
to reside in the same cacheline. Similar to what we have
mentioned in observation # 1, while cache hits are not counted
in page reuse distance chart, all cacheline reuse will be
calculated in the cacheline reuse distance frequency chart,
therefore low distance reuse of cacheline can still occupy the
largest portion of cacheline reuse.

Matrix multiplication operations also play an important role.
In most math kernel libraries, including libraries like MKL and
OpenBLAS, the matrix multiplication has been optimized for
hardware and cache. In order to reduce the effect of memory
access latency, the library usually reorders the computation to
increase temporal locality.

5) Observation 3: In previous page reuse distance charts,
we observe that there is a short spike at long page reuse
distance for Resnet at 2% and NIN at 2°. In the cacheline
reuse distance chart, the spike still exists, but at a larger reuse
distance and occupying a larger portion.

6) Analysis 3: In the earlier analysis on page reuse distance
of NIN and Resnet, we mentioned that the last short spike
of page reuse with large reuse distance would be the reuse
of model weights when each time a new package of data
passed through. The spike in cacheline reuse distance chart
is likely to be the same case. The difference between page
reuse distance and cacheline reuse distance (4—5 magnitudes
for base 2) also matches the difference between the size of
cachelines (64 Bytes for the machine we are using) and the
size of pages (4k Bytes).

IV. CONCLUSION

In this paper, we have tested the performance of several
machine learning applications inside SGX and explored the
factors that have influenced their behaviors in memory access
patterns. The observations from the page reuse distance and
cacheline reuse distance have shown that the tested machine
learning models have high memory locality in general and the
current paging policy in EPC performs well.

We would conclude that further optimization research on
SGX for machine learning models might want to focus on
caches. Although the performance of those tested networks is
not likely to be boosted by changing EPC paging policy, larger
networks with more frequent large-distance page reuses might
benefit from a customized paging policy.

ACKNOWLEDGEMENT

The authors sincerely thank all the reviewers for their
constructive feedback and suggestions. This work is supported
in part by NSF grant #2011146 and startup funding from the
University of Pittsburgh.

REFERENCES

[1] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
paging overheads in SGX with efficient integrity verification structures,”
in ASPLOS, 2018, pp. 665-678.

[2] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A secure database
using SGX,” in I[EEE S&P, 2018.

[3] S. Arnautov, B. Trach et al., “SCONE: Secure Linux containers with
Intel SGX,” in OSDI, 2016.

[4] C. Zhao, D. Saifuding et al., “On the performance of Intel SGX,” in
WISA. 1EEE, 2016, pp. 184-187.

[51 A. T. Gjerdrum, R. Pettersen et al., “Performance of trusted computing
in cloud infrastructures with Intel SGX,” in CLOSER 2017 - Proceedings
of the 7th International Conference on Cloud Computing and Services
Science, 2017, pp. 668-675.

[6] V. Costan and S. Devadas, “Intel SGX explained,” 2016, IACR Cryptol-
ogy ePrint Archive. [Online]. Available: http://eprint.iacr.org/2016/086

[7] M. Lin, Q. Chen, and S. Yan, “Network in network,” in ICLR, 2014,
pp. 1-10.

[81 T. T. Li, T. T. Li et al., “Poster: gbdt-rs: Fast and trustworthy gradient
boosting decision tree,” in Posters In 2019 IEEE S&P, 2019, pp. 2-3.

[9] J. Schlimmer, “Uci repository of machine learning databases: Agaricus-

lepiota dataset,” 1987. [Online]. Available: http://www.grappa.univ-

lille3.ft/ torre/Recherche/Experiments/Datasets/#agaricus-lepiota

A. Mandal, J. C. Mitchell et al., “Data oblivious genome variants search

on Intel SGX,” in Data Privacy Management, Cryptocurrencies and

Blockchain Technology, 2018, pp. 296-310.

[10]

