
Parema: An Unpacking Framework for Demystifying VM-Based
Android Packers

Lei Xue
The Hong Kong Polytechnic University,
The Hong Kong Polytechnic University
Shenzhen Research Institute, China

leixue@comp.polyu.edu.hk

Yuxiao Yan
Xi’an Jiaotong Univerisity,

The Hong Kong Polytechnic University,
China

yanxibei@stu.xjtu.edu.cn

Luyi Yan
Muhui Jiang

The Hong Kong Polytechnic University,
China

{cslyan,csmjiang}@comp.polyu.edu.hk

Xiapu Luo∗
The Hong Kong Polytechnic University,

China
csxluo@comp.polyu.edu.hk

Dinghao Wu
Pennsylvania State University,

USA
dwu@ist.psu.edu

Yajin Zhou
Zhejiang University, Engineering
Laboratory of Mobile Security of

Zhejiang Province, China
yajin_zhou@zju.edu.cn

ABSTRACT
Android packers have been widely adopted by developers to pro-
tect apps from being plagiarized. Meanwhile, various unpacking
tools unpack the apps through direct memory dumping. To de-
fend against these off-the-shelf unpacking tools, packers start to
adopt virtual machine (VM) based protection techniques, which
replace the original Dalvik bytecode (DCode) with customized byte-
code (PCode) in memory. This defeats the unpackers using memory
dumping mechanisms. However, little is known about whether such
packers can provide enough protection to Android apps. In this
paper, we aim to shed light on these questions and take the first step
towards demystifying the protections provided to the apps by the
VM-based packers. We proposed novel program analysis techniques
to investigate existing commercial VM-based packers including a
learning phase and a deobfuscation phase.We aim at deobfuscating
the VM-protected DCode in three scenarios, recovering original
DCode or its semantics with training apps, and restoring the se-
mantics without training apps. We also develop a prototype named
Parema to automate much work of the deobfuscation procedure. By
applying it to the online VM-based Android packers, we reveal that
all evaluated packers do not provide adequate protection and could
be compromised.

CCS CONCEPTS
• Security and privacy → Software security engineering.

KEYWORDS
App Protection, Obfuscation, Code Similarity

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464839

ACM Reference Format:
Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu,
and Yajin Zhou. 2021. Parema: An Unpacking Framework for Demysti-
fying VM-Based Android Packers. In Proceedings of the 30th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA ’21),
July 11–17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3460319.3464839

1 INTRODUCTION
App packing services or packers are used to protect Android apps
from being plagiarized and repackaged [20, 51]. Recent studies show
that the apps packed by traditional protection mechanisms could
be easily unpacked through dumping Dalvik bytecode (DCode)
from memory [43, 47, 50], because the traditional app packing
mechanisms follow a “write-then-execute” rule to release DCode
in memory and then execute it by the virtual machine of Android
system, denoted by A-VM.

To enhance protection capabilities, the latest Android packers
adopt the VM-based protections that never release the DCode [52].
As shown in Fig. 1, during packing, the VM-based packer translates
DCode to another customized type of bytecode, denoted by PCode,
and embeds a customized virtual machine (P-VM) to interpret them
when the packed/VM-protected app runs on device. The P-VM is
typically implemented in a dynamically loadable native library and
uses Java Native Interface (JNI) to interact with Android frame-
work and runtime. When the VM-protected app runs on device, the
PCode is dynamically released into memory, and the P-VM typically
involves a decoding phase to parse the PCode and a dispatching
phase to invoke the corresponding instruction handler, denoted as
PH, to interpret the PCode. Since the corresponding original DCode
of PCode are not required and removed from the packed apps, ex-
isting unpackers cannot find the original DCode in the memory,
thus failing to unpack VM-protected apps. Therefore, the VM-based
protection raises the bar of reverse-engineering packed apps, but
little is known about whether such packers can be compromised
and whether the apps protected by them can be unpacked.

Although there are some studies on VM-protected desktop pro-
grams [17, 19, 27, 33, 35, 41, 46], they cannot be applied to VM-based
Android packers because they are not designed to recover bytecode

152

https://doi.org/10.1145/3460319.3464839
https://doi.org/10.1145/3460319.3464839

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

DCode

A-VM A-VM

DCode PCode

P-VM
APK APKOnline Packing

Service
DHs PHsDHs

Figure 1: Overview of VM-based packing (DCode is the
Dalvik bytecode interpreted by the DHs of A-VM; PCode is cus-
tomized bytecode interpreted by the PHs of embedded P-VM).

or its semantics from the VM-protected apps. More precisely, exist-
ing studies aim at simplifying CFG (Control Flow Graph) [19, 46]
or synthesizing the semantics of native code of the VM-protected
programs [17, 27, 41]. However, the original code of VM-protected
apps is bytecode, which is interpreted by A-VM with close interac-
tions with other components (e.g., Android framework, libraries,
etc.). Note that existing studies consider neither the semantics of
bytecode nor cross-layer interactions.

In this paper, we aim to demystify the newly emerging VM-
based Android packers. Since a packer can design and implement
its PCode and P-VM in fully customized ways, there comes a major
challenge: there is no information about PCode and its interpretation
procedures. To address this challenge, we propose a progressive
solution to demystify the VM-based packers under three different
scenarios. Since almost all existing commercial packing services are
publicly accessible, we first investigate whether the VM-protected
code (i.e., DCode) can be recovered with the help of the training
apps, which are packed by the same version of packers as the target
apps (D-1). Moreover, we investigate whether the semantics of the
VM-protected DCode can be recovered with the assumption that
the training apps and the target apps are packed by the different
versions of packers(D-2). Furthermore, we investigate whether the
semantics of the VM-protected DCode can be recovered if we cannot
access any packer to build the training apps (D-3).

For D-1, we try to reverse-engineer the translation rules from
DCode to PCode by learning the required information from the
training apps. If the translation rules are reversible, the VM-protected
DCode can be recovered through the learnt translation rules. For
D-2, we construct the semantic features of all the PHs, which are
represented by symbolic expressions, through analyzing the train-
ing apps. Then, we leverage them to recover the semantics of the
PCode interpreted by the PHs of the packed apps for unpacking. For
D-3, we construct the semantic features of all the DCode handlers
(denoted by DHs) provided by the open-sourced A-VMs, and then
recover the semantics of the PCode interpreted by the PHs through
leveraging the semantic similarity between PHs and DHs.

To facilitate the investigation, we propose various novel unpack-
ing techniques for VM-based Android packers and develop a proto-
type, named Parema, after addressing the challenges presented in
§3. Applying Parema to the accessible VM-based packers, we reveal
that these VM-based Android packers could still be compromised.
In summary, this paper makes the following contributions:
•We make a first step towards demystifying the newly emerging
VM-based Android packers from three aspects (D-1/2/3) progres-
sively. Our investigation on the accessible VM-based packers sheds
light on their internals and capabilities of protecting Android apps.

Decode

Dispatch

Main loop

Instruction handlers

Decode

Dispatch

…

…

Instruction handlers

Dispatch

…

Decode

Main loop

Instruction handlers

…

Decode

Dispatch

Main loop

Dispatch

Main loop2

…

Decode

Main loop1

L

Instruction handlers

…

Decode

Dispatch

Main loop

L1

L2

L

Instruction handlersInstruction handlers

L1: #contained instruction
L2: #executed instructionL: #executed instruction L: #contained instruction

Decode

Dispatch

Main loop

…

Instruction handlers

(a) Decode-dispatch

Decode

Dispatch

Main loop

Instruction handlers

Decode

Dispatch

…

…

Instruction handlers

Dispatch

…
Decode

Main loop

Instruction handlers

…

Decode

Dispatch

Main loop

Dispatch

Main loop2

…

Decode

Main loop1

L

Instruction handlers

…

Decode

Dispatch

Main loop

L1

L2

L

Instruction handlersInstruction handlers

L1: #contained instruction
L2: #executed instructionL: #executed instruction L: #contained instruction

Decode

Dispatch

Main loop

…

Instruction handlers

(b) Indirect-threaded

Decode

Dispatch

Main loop

Instruction handlers

Decode

Dispatch

…

…

Instruction handlers

Dispatch

…

Decode

Main loop

Instruction handlers

…

Decode

Dispatch

Main loop

Dispatch

Main loop2
…

Decode

Main loop1

L

Instruction handlers

…

Decode

Dispatch

Main loop

L1

L2

L

Instruction handlersInstruction handlers

L1: #contained instruction
L2: #executed instructionL: #executed instruction L: #contained instruction

Decode

Dispatch

Main loop

…

Instruction handlers

(c) Pre-decoding

Decode

Dispatch

Main loop

Instruction handlers

Decode

Dispatch

…

…

Instruction handlers

Dispatch

…

Decode

Main loop

Instruction handlers

…

Decode

Dispatch

Main loop

Dispatch

Main loop2

…

Decode

Main loop1

L

Instruction handlers

…
Decode

Dispatch

Main loop

L1

L2

L

Instruction handlersInstruction handlers

L1: #contained instruction
L2: #executed instructionL: #executed instruction L: #contained instruction

Decode

Dispatch

Main loop

…

Instruction handlers

(d) Direct-threaded

Figure 2: The four generalized interpretation models, and
the yellow, blue, and grey notes represent the decode, dis-
patch, and handler (i.e., PH) implementations, respectively.

• To assist the investigation, we propose a semantics-based solu-
tion to unpack VM-protected apps in three scenarios, and develop a
prototype, named Parema, after tackling several challenging issues.
Note that Parema can also recover the DCode protected by tradi-
tionalmethods andwill be released at https://github.com/rewhy/parema.

• After applying Parema to 14 versions of 7 accessible popular
commercial packers that claimed to adopt VM-based protections,
we find that only four versions of two vendors actually adopted
VM-based techniques. Moreover, the internals of their VM-based
protections are reverse-engineered by Parema. Note that Parema
also successfully unpacked other packers.

2 BACKGROUND
This section presents the necessary background knowledge of byte-
code interpretation and a PoC (Proof-of-Concept) P-VM.

2.1 Interpretation of PCode
When a VM-protected app runs, the P-VM interprets each PCode
instruction through three major steps, including fetching it from
memory, decoding it, and dispatching proper handler (i.e., PH) to
execute it. Although the packer providers can implement P-VM in an
arbitrary manner, in practice, they typically realize P-VM following
classic patterns considering the performance, development cost, and
time to market [35, 37]. As shown in Fig. 2, they include decode-
dispatch interpreter, indirect-threaded interpreter, pre-decoding
interpreter, and direct-threaded interpreter.

The decode-dispatch interpreter (Fig. 2(a)) has a main loop where
it interprets each instruction through three steps, namely decode,
dispatch and execution. The indirect-threaded interpreter (Fig. 2(b))
addresses this issue by appending the decode-dispatch implemen-
tation to the end of each instruction handler. The pre-decoding
interpreter (Fig. 2(c)) pre-decodes each instruction before dispatch-
ing and stores the decoding results (i.e., opcode and operands) in
a structure. Consequently, the same instruction just needs to be
decoded once, and the interpreter reuses the decoding results after
the same instruction is interpreted. The direct-threaded interpreter
(Fig. 2(d)) replaces the opcode with address of the corresponding in-
struction handler in the pre-decoding phase so that the interpreter
can jump to the handler of next instruction at the end of current
instruction handler.

153

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 DCode PCode Comments
1 ... | ... | ...
2 1300 0014 | c208 081c | const/16 v0 , #int 20
3 1301 0019 | c209 0811 | const/16 v1 , #int 25
4 9002 0001 | 8b0a 0809 | add‑int v2 , v0 , v1
5 ... | ... | ...

1 void vmpFunc (...) {
2 int a = 20 , b = 25 ;
3 int s = a + b ;
4 ...
5 } Original implementation

1 native void vmpFunc (int m_id);

 After VM­based obfuscation

 DCode
Intermediate

code

App­specific

factor
PCode Comments

1 13 00 0014 ca 00 0014

^ 0x0808

c2 08 081c const/16 v0 , #int 20
2 13 01 0019 ca 01 0019 c2 09 0811 const/16 v1 , #int 25
3 90 02 0001 83 02 0001 8b 0a 0809 add‑int v2 , v0 , v1

Figure 3: The Java code disassembled from the DCode of a
method before and after VM-protection.

In spite of the various implementations, each interpreter has an
iterative procedure of decoding PCode and then dispatching PHs ac-
cording to the decoding results. We regard this iterative procedure
as the decode/dispatch procedure. Note that, since each PH of the
indirect-threaded interpreter implements a decode/dispatch pro-
cedure (e.g., Fig. 2(b)), these iterative decode/dispatch procedures
are represented by different nodes and have no loop pattern in the
control flow even though they are implemented by the same code.

2.2 A PoC P-VM of VM-Based Packer
To illustrate the basic idea of VM-based protection, we design and
implement a PoC P-VM following the basic packing mechanism of
the VM-based packer in [51]. Fig. 3 presents a Java method vmp-
Func() before and after being packed by this packer. The packing
process consists of two steps: 1) turning the DCode to the intermedi-
ate bytecode by changing the opcodes following fixed rules, but the
operands are unaltered; 2) converting the intermediate bytecode
to PCode by XORing each of them with an app-specific parameter.
Since the second step introduces the app-specific parameter, the
mapping rules between PCode and DCode of different apps are
variant. Moreover, the original method vmpFunc() is replaced by
a native method that serves for context switch between P-VM and
Android runtime. That is, the execution context goes into P-VM for
interpreting the PCode when this VM-protected method is invoked,
and returns to Android runtime from P-VM when it returns.

Meanwhile, we implement a P-VM (i.e., an indirect-threaded inter-
preter) to interpret the PCode. Fig. 4 shows its entry (i.e., execute())
and one PH (i.e., PH_Const16()) for demonstration. When the execu-
tion context switches to P-VM (Line 25), the interpreter first locates
the PCode of the target VM-protected method according to the
parameter m_id storing the method index. Precisely, the function
lookup_pcode() (Line 29) is invoked to locate the memory region
storing the PCode of the target method. After the virtual registers
vRegs are initialized at Line 30, the app-specific parameter pwd is ini-
tialized by function init_decoding_factor() (e.g., 0x8080) at Line 31.
In Line 34, the virtual program register vpc points to the first PCode,
which is decoded by XORing it with pwd, and then the proper PH is
dispatched to interpret this PCode instructions according to the de-
coded opcode (Line 37). Afterward, the other PCode are iteratively
decoded and interpreted in the similar way (i.e., Line 14 and 17).

To explain how PCode is executed by this P-VM (i.e., interpreter
in Fig. 4), we take the first PCode instruction <c208 081c> of the
VM-protected vmpFunc() in Fig. 3 (i.e., “const/16 v0, #int 20”) as
a concrete instance to illustrate the interpretation procedure. First,
the bytecode <c208> is translated to the intermediate code <ca00>
through XORing with pwd (Line 34 in Fig. 4), which is <0x0808>
in this instance. Then, since the first byte <ca> is the opcode and

 ​1​ ​int​ vRegs​[]; ​// The virtual register array
 ​2​ ​int​ ​PHs​[]; ​// The handler table
 ​3​ ​int​ ​pwd​ ​Ó​ ​0​;​ ​// The additional (app-specific) decoding factor
 ​4​ ​void​ ​PH_Const16​(​int​ vpc​,​ ​int16_t​ ​PCode​[])​ {
 ​5​ ​int16_t​ bytecode1 ​Ó​ ​PCode​[​vpc​] ​̂ ​pwd​;
 ​6​ ​int16_t​ bytecode2 ​Ó​ ​PCode​[​vpc​Ï​1​] ​̂ ​pwd​;
 ​Â​ ​// Parse the operands
 ​Ã​ ​intÃ_t​ vR ​Ó​ ​(​bytecode1 ​&​ ​0xff00​)​ ​ÕÕ​ ​Ã;
 ​Ä​ ​int16_t​ value ​Ó​ bytecode2;
 ​10​ ​// Execute the semantics
 ​11​ vRegs​[​vR​]​ ​Ó​ value;
 ​12​ vpc ​ÏÓ​ ​2​;​ ​// Point the next instruction
 ​13​ ​// Decode the next instruction
 ​14​ ​intÃ_t​ next_opcode ​Ó​ ​(​PCode​[​vpc​]​ ​ ​̂ ​pwd​)​ ​&​ ​0xff;
 ​15​ ​// Dispatch handler for the next instruction
 ​16​ ​void​ ​(*​pPH​)(​int​,​ ​int16_t​*);
 ​1Â​ pPH ​Ó​ ​(​void​(*)(​int​,​ ​int16_t​*))​PHs​[​next_opcode​];
 ​1Ã​ ​if​ ​(​pPH ​!Ó​ NULL​):
 ​1Ä​ pPH​(​vpc​,​ ​PCode​);​ ​// Invoke the target handler
 ​20​ ​return;
 ​21​ ​}
 ​22​ ...; ​// Other handlers
 ​23​ ​// Argument is the ID of the vm-protected method
 ​24​ ​// Argument is the ID of the target vm-protected method
 ​25​ ​void​ execute​(​int16_t​ m_id​)​ {
 ​26​ ​// Initialize the virtual PC, registers and the handler table
 ​2Â​ ​int​ vpc ​Ó​ ​0;
 ​2Ã​ ​// Lookup the PCode of the target method according to m_id
 ​2Ä​ ​int16_t​ ​*​PCode​ ​Ó​ lookup_pcode​(​m_id​);
 ​30​ init_virtual_registers​(​vRegs​);
 ​31​ init_decoding_factor​(&​pwd​);​ ​// pwdÓ0x0Ã0Ã in this example
 ​32​ init_PCode_handlers​(​PHandlers​);
 ​33​ ​// Decode the first instruction
 ​34​ ​intÃ_t​ opcode ​Ó​ ​(​PCode​[​vpc​]​ ​ ​̂ pwd ​&​ ​0xff00​)​ ​ÕÕ​ ​0xÃ;
 ​35​ ​// Dispatch PHandler for the first instruction
 ​36​ ​void​ ​(*​pHandler​)(​int​,​ ​int16_t​*);
 ​3Â​ pHandler ​Ó​ ​(​void​(*)(​int​,​ ​int16_t​*))​PHandlers​[​opcode​];
 ​3Ã​ ​if​ ​(​pHandler ​!Ó​ NULL​):
 ​3Ä​ pHandler​(​vpc​,​ ​PCode​);​ ​// Invoke the target PHandler
 ​40​ ​return;
 ​41​ }

 PCRde ASS-VSecific
facWRU

IQWeUmediaWe
cRde PHaQdleU OSeUaQdV

1 c2​0Ã​ ​0Ã1c

^ 0x0Ã0Ã

ca​00​ ​0014 PH_Const16 0x00, 0x0014
2 c2​0Ä​ ​0Ã11 ca​01​ ​001Ä PH_Const16 0x01, 0x001Ä
3 Ãb​0a​ ​0Ã0Ä Ã3​02​ ​0001 PH_AddInt 0x02, 0x00, 0x01

 1​ PH​ ​Ô-​ ​Load(​PH_base ​Ï​ ​((​s0 ​^ ​PWD​)​ ​&​ ​0xff​))
 2​ ​Store(​vR_base ​Ï​ ​(((​s0 ​ ​̂ PWD​)​ ​&​ ​0xff00​)​ ​ÕÕ​ ​Ã​)​ ​*​ ​4​)​ ​Ô-​ ​(​s1 ​^ ​PWD)

 3​ PH​ ​Ô-​ ​Load(​PH_base ​Ï​ ​((​s2 ​^ ​PWD​)​ ​&​ ​0xff​))
 4​ ​Store(​vR_base ​Ï​ ​(((​s2 ​ ​̂ PWD​)​ ​&​ ​0xff00​)​ ​ÕÕ​ ​Ã​)​ ​*​ ​4​)​ ​Ô-​ ​(​s3 ​^ ​PWD)

 5 ​PH​ ​Ô-​ ​Load(​PH_base ​Ï​ ​((​s4 ​^ ​PWD​)​ ​&​ ​0xff​))
 6 ​Store(​vR_base ​Ï​ ​(((​s4 ​ ​̂ PWD​)​ ​&​ ​0xff00​)​ ​ÕÕ​ ​Ã​)) Ô-
 ​Load(​vR​Ï​ ​((​s5 ​^ ​PWD​)​ ​&​ ​0xff​))​ ​Ï​ ​Load(​vR ​Ï​ ​(((​s5 ​^ ​PWD​)​ ​&​ ​0xff00​)​ ​ÕÕ​ ​Ã​))

Figure 4: Code snippets of an indirect-threaded inter-
preter, including its entrance (i.e., execute()) and a PH (i.e.,
PH_Const16()).

indicates it is a const16 instruction, the PH PH_Const16 is dispatched
and invoked to interpret this instruction in Line 34-39.

In PH_Const16, the operands are further decoded with pwd fol-
lowing the syntax of const16 instruction at Line 5-9. In Line 11, the
semantics of this instruction is interpreted with the two operands
stored in the variables vReg and value. Afterward, the next instruc-
tion is decoded in Line 14, and a PH is dispatched and invoked
to interpret it by the left code of PH_Const16 (Line 16-20). Note
that such interpretation procedures are iteratively executed until a
return instruction is interpreted.
CFG/SCFG: As shown in Fig. 4, since the PHs implements the same
decode/dispatch procedures (e.g., Line 12-19 and Line 33-39) repeat-
edly, they are represented by different nodes in CFG. Consequently,
there is no loop pattern in the CFG although their implementations
are same. Since the loop patterns of decode/dispatch procedures
are usually used to handle desktop VM-based obfuscation [35], we
propose a novel data structure SCFG (Symbolic Control Flow Graph,
in §4.1.2) to represent the code for the sake of identifying the afore-
mentioned loop patterns. SCFG uses one node to represent all the
code blocks implementing the same semantics/logic, and it is differ-
ent from CFG, of which each node is one actual code block stored
in a concrete memory region. Hence, the iterative decode/dispatch
procedures implemented with the same code in different PHs are
represented by the same nodes in SCFG and have the loop pattern.

154

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

Table 1: Notations of the major information and transfer
rules leveraged during investigation.

Name Representations

DCode The Dalvik bytecode in the Android apps before being packed.

PCode The customized bytecode tranlated from Dalvik bytecode during
being packed.

A-VM The Android VM for executing DCode.

P-VM The customized VM for interpreting PCode in the packed apps.

DH The instruction handlers of A-VM for interpreting DCode.

PH The instruction handlers of P-VM for interpreting PCode.

PAM
PCode addressing mechanism. It is used by P-VM to locate the
PCode of the VM-protected method.

P2PH The mapping from PCode to PHandler.

PH2D The mapping from PHandlers to DCode instructions.

SCFG The symbolic control flow graph, containing more semantic infor-
mation and more robust compared to CFG.

𝑂𝑝ℎ/𝑆𝑝ℎ The offset/semantics features of PHs.

𝑂𝑑ℎ/𝑆𝑑ℎ The offset/semantics features of DHs.

Table 1 summarizes the major abbreviations used in this paper
as well as their corresponding representations.

3 OVERVIEW
As shown in Fig. 5, our unpacking solution consists of a learning
phase and a deobfuscation phase represented by white and gray
rectangles, respectively. The two white rectangles mean that we
can learn the information from either customized training apps or
the AOSPs (Android Open Source Projects) for deobfuscation.

In learning phase, we learn the necessary information through
two ways. L1) We use customized apps (i.e., training apps) to ex-
plore the VM-based packers for collecting necessary information
(i.e., reversible DCode/PCode translation rules and semantic fea-
tures of the PHs) of P-VMs directly (§4.1); L2)We learn the semantic
features of DCode interpretation procedures (i.e., DHs) of the A-VMs
(i.e., AOSPs), and then infer the semantics of interpreted PCode
through the semantic similarity analysis between DHs and PHs for
deobfuscation (§4.2).

The deobfuscation phase aims at recovering the original DCode
or their semantics of a VM-protected app by leveraging the infor-
mation obtained in learning phase.
Scope and Assumptions: It is difficult, if not impossible, to un-
pack apps protected by an arbitrary VM-based packer without any
information due to both the freely defined PCode and implemented
P-VM. In this first study towards demystifying VM-based Android
packers, we focus on the publicly available packers (e.g., online
providers [14–16, 26, 32, 38]), which have already been widely used
by both benign and malicious apps [21].

We demystify VM-based packers in three different scenarios (i.e.,
D-1, D-2, and D-3). For D-1 and D-2, we assume that the packers are
accessible. This assumption is rational for Android apps because
the publicly available packers (e.g., online providers) have been
widely used by many apps. With this assumption, we can restore

Training
Apps

PCode to DCode Rules

Features of PHs

 Dynamic
Tracking

T1: Static
Analysis

T2:

Target
Apps

VM-protected DCode

VM-protected Semantics

 Dynamic
Tracking

U1: Similarity
Analysis

U2:

AOSPs A-VM Features of DHs
 Build A1: Static

Analysis
A2:

P-VM

Trace
D/PCode

P-VM

Trace
D/PCode

L1

L2

D

Figure 5: An overview of our solution. The training phases
(i.e., white rectangles) take in the training apps or theAOSPs.
The deobfuscation phase (i.e., grey rectangle) recovers the
VM-protected DCode or their semantics by leveraging the
learnt information.

the VM-protected DCode in D-1 and recover the semantics of VM-
protected DCode in D-2. More importantly, we are the first to reveal
that such widely-used packers cannot provide sufficient protection.

For D-3, since AOSPs are open-source, we do not assume the
packers are accessible, and our approach can still recover the se-
mantics of VM-protected DCode and restore the DCode protected
by traditional methods. It is worth noting that we conduct the first
study on VM-based packers for Android apps and existing studies
on deobfuscating VM-based desktop programs cannot recover the
detailed semantics of VM-protected code like ours.

We assume that the P-VM is implemented with a register-based
interpreter and follows one of the four interpretation models in
Fig. 2. Moreover, one type of DCode instruction is translated to
a fixed number of PCode instructions. These assumptions are ra-
tional because they are the common practices for implementing
interpreter [36], and the online packers follow them for the consid-
eration of performance, development cost, and time to market. For
instance, the A-VMs of all AOSPs adopt the register-based architec-
ture, and all VM-based packers examined in this study meet these
assumptions. As another example, Sharif et al. [35] found that the in-
terpreters of VM-based desktop packers follow the decode-dispatch
interpretation model (Fig. 2(a)).
Challenges: As show in Fig. 5, to examine VM-based packers, we
need to first locate the PCode and PHs of the packed apps as well as
reverse-engineer DCode/PCode translation rules. Then, we identify
the PHs’ semantic features in learning phase (i.e., L1) and recover
the VM-protected DCode or their semantics in deobfuscation phase.
However, even if P-VMs follow certain interpretation patterns, they
are close-sourced and diverse, thus introducing three challenges.

C-1) Locating PCode and PHs: Since packers dynamically release
PCode to memory along with a mass of other data, it is challeng-
ing to locate the PCode. Also, as shown in Fig. 2, the PHs can be
dispatched with different implementations, making it difficult to
locate the PHs. To address these issues, we propose the novel SCFG
to uniformize the various decode/dispatch models in §4.1.2.

C-2) Determining the decode/dispatch rules of PHs: Besides the di-
verse decode/dispatch implementations, the P-VM can also involve
app-specific factors to increase the strength of obfuscation. To
address this issue, we conduct differential symbolic expression anal-
ysis to reverse-engineer the decode/dispatch procedure in §4.1.2.

155

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

C-3) Recognizing semantics of VM-protected DCode: Since the
PCode are freely defined by the packer providers and the apps are
packed online, we have no pre-knowledge of PCode. To overcome
this issue, we propose to learn the semantic features of PHs from
training apps or that of DHs from AOSPs, and then use them to infer
the semantics of VM-protected DCode in §4.3.2 and §4.3.3.
Investigation Flow: As shown in Fig. 5, we investigate D-1/D-2
with the information learnt from training apps and D-3 using the
information learnt from A-VMs. The results are used to demystify
the packers claiming to adopting VM-based protections.

D-1: Due to security considerations, the packers usually adopt
irreversible rules to convert DCode to PCode when the apps are
packed online. Hence, we explore the VM-based packers by reverse-
engineering the PAM (PCode addressmechanism), P2PH (decode/dis-
patch procedure), and then build PH2D (i.d., the mapping relation-
ship from PHs to DCode) by analyzing the training apps in learning
phase. In deobfuscation phase, we investigate D-1 through locating
PCode, determining PHs for interpreting the PCode, and recovering
DCode from PHs by leveraging the learnt knowledge.

D-2: Since the recovery of DCode depends on the learnt PAM,
P2PH, and PH2D, the training apps and the target apps need to be
packed by the same version of a packer. However, packers are up-
dated frequently, and thus we also explore whether the semantics
of the interpreted PCode can be recovered with the knowledge
learnt from the training apps packed by the different versions of a
packer. We generate the semantic features of the PHs by conducting
symbolic analysis of the training apps, and then apply semantic sim-
ilarity analysis to recognize the semantics of the PCode interpreted
in the target apps during deobfuscation.

D-3: We further explore whether the semantics of interpreted
PCode can be recovered if we cannot create training apps by pack-
ing customized apps with the VM-based packers. Specifically, we
generate the semantic features of the DHs by conducting symbolic
analysis of the A-VMs from various AOSPs, and then recognize the
semantics of the interpreted PCode in the target apps through se-
mantic similarity analysis in deobfuscation phase.

4 INVESTIGATION
This section details our methodology for investigating the VM-
based Android packers involving learning and deobfuscation phases.
In learning phase, we first prepare training apps by letting their
functions to be protected contain all possible DCode instructions
and then upload them to online VM-based packers. As shown in
Fig. 5, after retrieving the VM-protected ones, we conduct dynamic
app tracking (Step T1) to collect their execution traces and other
information (i.e., P-VM and PCode) for profiling the P-VM (Step T2)
in §4.1. We also build various AOSPs (Step A1) and carry out sym-
bolic analysis of their A-VMs (i.e., libart.so and libdvm.so) to extract
semantic features from DHs (StepA2) in §4.2. In deobfuscation phase,
for each packed app, we first locate its P-VM and PCode, and log the
execution trace during dynamic tracking (Step U1). Then, we lever-
age the knowledge learnt from the training apps or the A-VMs to
recover the VM-protected DCode or the executed semantics, which
represents the semantic information of executed PCode (Step U2)
in §4.3.1 and §4.3.2 respectively.

To automate the most tedious analysis work in our methodol-
ogy, we implement the framework Parema based on the dynamic
binary instrumentation framework Valgrind [9] and the symbolic
analysis engine Angr [10], both of which use the VEX IR as in-
termediate representations. Although we focus on deobfuscating
the VM-protected DCode in this paper, Parema also unpacks the
traditionally protected DCode during our investigation.

4.1 Learning with Training Apps
We analyze training apps to learn the necessary information of PAM,
P2PH, PH2D, and the semantic features of PHs for deobfuscation.

4.1.1 Dynamic Tracking (T1). We first run the training apps on a
real device and record the executed VEX IR with concrete data as
well as the invoked Android framework APIs and library (libart.so
and libc.so) functions in trace files. Meanwhile, we dump the cus-
tomized native code and data, including the implementation of
P-VM and PCode, respectively, for further static analysis.

Since the native code requires executable permission, we locate
the customized native code through looking for the memory data
that have executable permission and is not loaded from system
libraries. Due to security consideration, the packer dynamically
decrypts and releases both DCode protected by traditional methods
and the PCode related data into memory, which are then inter-
preted by A-VM and P-VM, respectively. Therefore, we dump the
data dynamically written into memory by customized native code
(i.e., native code of packer) as the potential DCode and PCode for
further analysis. Note that, without packing, the DCode related
data is stored in the Dex files, which are loaded into memory when
the app starts and then interpreted by A-VM.

4.1.2 Static Analysis (T2). Since P-VM continuously fetches and
executes each PCode instruction, such behavior will result in an
iterative procedure in the execution trace. As shown in Fig. 2, the
iterative procedures have various pattens (e.g., loop) in CFGs due to
different implementations. Hence, it is non-trivial to identify such
iterative procedures from the execution trace.

To address this issue, we propose a novel structure named SCFG
to characterize the iterative procedures of different interpretation
implementations (i.e., Fig. 2) in a uniform format, and then locate
the PCode and their corresponding PHs by analyzing SCFG. In CFG,
each node represents a basic code block at a specific memory region,
and hence even if two code blocks have the same implementation,
they are denoted by two different nodes. To build SCFG, we convert
each code block into a set of symbolic expressions through sym-
bolic execution, and then the blocks producing similar symbolic
expressions are represented by the same node in SCFG. Thus, the
code blocks represented by the same node in SCFG have the same
functionality although they are implemented separately and lo-
cated at different memory regions. Therefore, the decode/dispatch
procedures of the P-VM still have iterative/loop patterns in SCFGs.

The CFG and SCFG shown in Fig. 6 illustrate how the VM-based
packers (i.e., Qihoo and Baidu) interpret the same VM-protected
method by contrast. We can find the SCFG is much conciser than
the CFG and the iterative decode/dispatch procedure has obvious
loop pattern starting from red node in the SCFG, which is not found
in the CFG.

156

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

0

1

2

239

240

119

268

269

270

163

151

31

271

166

167 258

168

259

169 188

78

79

80

251

77

49

50

51

73

74373

75 244 335

305

374

63

64

65 205

185

186

187

308294 86

88

81362252

253

219

66

56

57

58

195

255

249

59

67

131209 333

242

357

60

68

132210

334

243

358

55

196

286 197

198

4

5

6

61310296 130

199

117

126118

36

10

340

11

62311297

200

201

202

69

70

71

72

37

344

38

345

39 46

356

365292

34

15235 101212

153 102213

76 245 336

32

142

138

139

154

346

158

159

160

40 47

120

121

122

203

347

147

96

97

155 164

348

156

3

107

254

165

108

354

355

148

149

95

385

7

277

278

279

157

8

9

204263

250

390

391

392

280

393

189170

19

20

206

207

208

190

191260

22

23

24

246

247

342284

248

343

285

30

27

28

193

194

262

184

52

53

183

54116

372

171

114

115

172

349

307

173

287 174

100

359

360

42

177

178

41

180

288

43

272

353

329

221341

176

103

181

182

233

267 234

235

175

112

113

84

85

48

104

378

379

105

94

381

382

383

124

125

386389

241

380

384

106

289

290

309

387

312

111

281

369

282

370

283

371

318

319

320

90

388

91

321

322

44

45

339

394

395

323324

325

350 326

331

332

351 327

261

352

17

18

21

328

337

338

29

303

304

293

236

237

238

295

87

83

375 361306

291

376

298

299

300

301

89

302

92

93

25682

257

129

179

133

134

136

137

141143

144

127

25

26

145

135

12

230

231

232

13

16

146 377

215

98

314

99

150

315

140

273

330

222

313

316

317

128

363

364

109

110

274

211

214

192

216

217

218

223

224

225

15

226

227

33

228

229

264

265

266

123

366

275

367

368

276

14

220

161

162

(a) CFG (Qihoo)

11

79

12

34

17

22 5

115

26

3

1 12

22

1

7

3

21

3

0

1

6

(b) SCFG (Qihoo)

0

1

2

195

196

197 752

221

222

223

43

44

45

364

365

366

112

113

114

367

616

617

618

168

169

170

64

65

66

274

275

276

370

371

372

30

31

32

529

530

531

94

95

96

67

552

553

554

609

742610

743

611

344

345

346

115

373

374

224

745

746

747

431

15

469

16 432

375

785805 376

496

760

761

762

793

794

795

744

608

33

34

377

378

379

144

124

125

126

390

602 441 391540

392

380

381

672

318

319

320

335

324 361

116

92

93

449

450

382

289

46

47

35

418

152

153

521

82

83

119 84

145

796

419

420 566675590

421 567

676

591 451

452

453

171

117

29

172

485

486

487

173

225

226

36

302

303

304

174

512

513

522 514

612

613

614

615454

48640

641

482

455

74

245

246

247

298

628

299

629642

456

599

600

601

227

228

37

38

272

273

643

707

708

709

734

735

146

75

120

121

122

422

423

229

393

710

603

398

399

604

605

606

491

492

493

230

748

749

714

715

716

556

557571

558

572

750

751

175

123

203

204756

205757

717

446

447633

448634

523

524

525

254 231

287

147

59

60

61

424

425

426

333

334 338

316

339

758

673

786

787

619

76

77

78

719

721

720

729

722

288

290

759

232

49

50

51

515

516

517

801

802

803

41

42

233

270

271

297

494

52

53

103

104

105

214

215

216

730

4

5

6

310

311

630

312

323

723

804

190

191

192

234

644

592

593

594

458

427

428

637

638

464

127

313

87

88

89

97

98

724

314

235

725

726

727

728

437

128

300

301

11879

80

483

484

351

352

353

731

718

650

651

652

526

286

732

54

55

806

807

129

733

343

656

573

429

430

255236

256237

257238

489

490

321

322

132

133

134

130

500

501

502

626

627

739

740

741

664

665

666

689

690

691

503

495

239

646

667 647 683

669

362

363

315

317

668

465

394

395

396

148

149

436354

736

150574 597

670

671

56

57

58

154

155

462737 620 156 578

442 397 541

291

292

293

497

498

527

499

90

39

294

407

562 408

563 409

325

326

327

240

241

332

284

285

336

434

435

674

564

368

369

62

295

528

645

91

328

337329

140

141

142

692

242

355 296

565

417

40

157

158 184 412193

698

550

636

159 185 413194 551

143

648

649

217

218

457

459

555

688

460

410

506

330

331

306

307

308

461

416

504 356

537 545

438

607 575

206

243

536505

357 383

509 463

659

660

411

538695 546

507

532

623

624

655

625

358 384

108

109

110

186

244

534

535

439

187

653

508

342

576

347

340

21

22

23

440

386

387

309

635

699

654

815

816

817

631

632

341

99

100

472

639

473

474

414

415

797

443

700

444

701

445

348

131

162

163

164

702

704

705

706

703

818

819

820

266

267

268

305

248

249

250

277

278

279

259

260

261

821

822

568

569

533

686

359

360

511

481

269

662

663

823

466

63

467

468

251

252

824

7

8

9

349

350

253

167

825

544

73

764

765

766

135

136

10

826

814

68

207

208

827

281

282

283

137

24

25

684

28

470

808

809

828

11

12

798

767

209

598

471

738

768772

69

70

138

829

13

210

570

85

258

579

580

581

139

211

711

830

831

582

583

165

166

71

72

3

188

212

584

585

586

81

14

176

177

178

539

693

694

587

400

401

402

713

475

403

213

542 404

17

18

543 405

101

102

189

588

589

776

777

778

160

161

476

661

19

20

547

548

549

771

198 753

388

763

262

263

264

779

832

477

510 478

179

180

106

479

780

265

712

677

480

181

678

433

621

622

595

781

782

596

518

559 519

520

799

800

810

811

107

769

770

812

679

773

774

775

680

681

682

199

182

685

151

183

200

783

784

219

220

201

696

697

754

86

755

280

406

202

657

577

658

833

834

560

385

561

788

389

488

792

789

687

790

26

111

791

27

813

(c) CFG (Baidu)

4

4

4

1

33

9 473 1 4

32

0

1

1

5

5

4

4

46

32

15 5 12

8

8

13

2

2

14

2

1

1

3

4

5

1 12

8

8

4

14

1

0

7 2

4

4

4

(d) SCFG (Baidu)

Figure 6: The CFG and the corresponding SCFG produced
by the interpreter of the P-VM from two VM-based pack-
ers, Qihoo and Baidu, which adopt decode-dispatch and
indirect-threaded interpreters, respectively. The red node in
the SCFG is the entry of each decode/dispatch procedure.
The blue and black nodes are the entry and exit nodes of
the interpreter, respectively.

Locating PCode and PHs: Since the decode/dispatch procedure
involves PCode and PHs as input and output respectively, we identify
the routines that implement this procedure by exploiting the loop
pattern in SCFG through the following five steps:
I) Determining Candidate PCode: We selects the data loaded from
memory as the candidate PCode because PCode is fetched by P-VM
from the memory. The IR operation Load is used to load data from
memory in execution trace and its input is the source address.
II) Generating Symbolic Expressions: We leverage symbolic expres-
sions to characterize the relationship between each candidate PCode
and the related IR statements. In particular, we represent each can-
didate PCode as a symbolic input and perform symbolic execution
on traced IR statements with the other concrete inputs. Then every
variable related to the candidate PCode is represented by a symbolic
expression containing the symbolic inputs.

During symbolic expression generation, a symbolic expression
is emitted when any of the following scenarios occur.

• S-①: A store statement (IR_Store/IR_StoreG) is executed and
its target address can be represented by a symbolic expression
containing a candidate PCode. In this scenario, the target address
has a potential relationship with the PCode.

• S-②: The JNI reflection functions are invoked and the parame-
ters can be represented by symbolic expressions. The JNI reflection
functions refer to the functions provided by Android runtime (in
libart.so), and P-VM needs to call these functions for invoking the
target methods when interpreting method invocation instructions.

• S-③: Either a conditional branch (i.e., IR_Exit) or an indirect
branch (i.e., IR_Goto) is executed, and meanwhile the condition or
the target address can be represented by a symbolic expression.
In this scenario, P-VM dispatches the proper PHs according to the
PCode’s opcode (i.e., the symbolic variable).

62 4

1
3 5

SCFG

Figure 7: The symbolic expressions and SCFG generated
by three PCode instructions (i.e., “const/16”, “const/16” and
“add-int”), and grey node is the entry of iterative decode/dis-
patch procedure.

III) We use SCFG to represent the control flow of the interpreter
for the ease of recognizing the decode/dispatch loop as well as its
input and outcome, which correspond to the PCode and PHs. Note
that SCFG has three major advantages over CFG, a) all its nodes
have a potential relationship with the PCode since the symbolic
expressions of its nodes are generated from the candidate PCode;
b) it has more semantic information than CFG since each node in
SCFG is one or more symbolic expressions representing a process
on the candidate PCode; c) the structure does not change due to the
repeated implementations of the same functionalities/logic (i.e., the
decode/dispatch procedure) because the nodes of SCFG are created
according to the symbolic expressions instead of memory addresses
of the code blocks.
IV) To identify the iterative decode/dispatch procedure, we use
the loop detection approach proposed in [13] to find the loops
in SCFG and employ one heuristic to filter out irrelevant ones.
Since a decode/dispatch loop starts from fetching a PCode from the
memory, each instance of the entry node of the loop should contain
a symbolic input corresponding to a new PCode. Moreover, since
the outputs (i.e., PHs) of decode/dispatch procedure depend on the
input (i.e., PCode), the branch targets of the exit blocks depend on
the symbolic input. In this step, manual effort may be involved to
determine the actual decode/dispatch procedure if multiple loops
are found. Such effect is just required once for each packer.
V) After identifying the decode/dispatch procedure as well as its
entry and exit nodes in SCFG, we determine the opcodes of the
PCode that are fetched by the decode/dispatch procedure. Since
P-VM interprets each PCode instruction by fetching the opcode that
actually determines the PH, the entry node of decode/dispatch loop
loads the PCode opcode. Thus, we first identify the PCode opcode
according to the symbolic inputs initialized by the entry node of
the decode/dispatch loop, such as the symbolic variables s0, s2
and s4 in the entry node of the SCFG shown in Fig. 7. Afterwards,
since these PCode opcodes are in the real PCode region, we regard
the continuous memory regions that store these PCode opcodes
as the PCode regions. All PCode, including opcodes and operands,
is usually stored in the PCode regions. Consequently, the branch
targets of the decode/dispatch loop are the starting addresses of
the PHs that handle the PCode.
Abstracting Decode/dispatch Procedure (P2PH): The decode/dis-
patch procedure may involve app-specific parameters for increasing
protection strength. For instance, in two apps packed by the same
VM-based packer, the PCode instructions could be decoded and
dispatched in a different manner due to the involved app-specific

157

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

parameters. Hence, to comprehensively understand the decode/dis-
patch procedure, we further abstract this procedure by identifying
such app-specific parameters using differential symbolic analysis.

We achieve this goal by examining the symbolic expressions
generated by the decode/dispatch procedures of different training
apps. Specifically, we compare the concrete values of the symbolic
expressions generated by the decode/dispatch procedures of differ-
ent VM-protected apps, and regard the concrete values that are not
fixed as the app-specific parameters.

Since the decode/dispatch procedures in different apps hardened
by the same packer are usually same but involve some variants due
to app-specific parameters, the P2PH learnt from training apps is
represented by one or more symbolic expressions that take in the
PCode and app-specific parameters and then output the target PHs.
These symbolic expressions can be applied to other apps protected
by the same packer. We emphasize that such analysis only needs to
be conducted once for a VM-based packer.
Identifying Deobfuscation Rules (PH2D): To recover the VM-
protected DCode or the executed semantics, we design two kinds
of features, namely offset and symbolic/semantic features, denoted
by 𝑂𝑝ℎ and 𝑆𝑝ℎ , for recovering DCode and semantics, separately.
𝑂𝑝ℎ refers to the offset address of each PH, and 𝑆𝑝ℎ includes the
symbolic expressions produced by each PH with PCode as sym-
bolic inputs/variables. For instance, when interpreting a method
invocation instruction (i.e., invoke-∗), the corresponding PH needs
to invoke the target methods through JNI reflection functions [8]
according to the index of the target method. Hence, the symbolic
feature also includes such JNI reflection functions.

After building the semantic feature of each PH, we determine
the mapping rules (i.e., PH2D) from the 𝑂𝑝ℎ and 𝑆𝑝ℎ of PHs to
the DCode instructions and the executed semantics, respectively.
Moreover, when interpreting an instruction, the VM dispatches
the target handler according to its opcode and then the handler
executes specific semantics with its operands, and hence we also
identify both the opcode and the operands that comprise each
PCode instruction by symbolic analysis of the whole interpretation
trace of it. Since the purpose of 𝑂𝑝ℎ is to recover the complete
original DCode including both opcodes and operands, we build the
PH2D from 𝑂𝑝ℎ to DCode, which includes the recovery rules from
the PCode operands executed by PHs to the DCode operands.

Consequently, in deobfuscation phase, we can recover the DCode
opcode according to the dispatched PH aswell as theDCode operands
from the PCode opcodes used by the PH. When 𝑆𝑝ℎ is used, we focus
on recovering the executed semantics instead of the original DCode.
We emphasize that, in the deobfuscation phase, if we aim to recover
all VM-protected DCode using𝑂𝑝ℎ , P2PH, and PH2D, the target app
and the training apps need to be packed by the packer of the same
version, whereas recovering the executed semantics using 𝑆𝑝ℎ has
no such requirement.

4.2 Learning with Android VMs
We further investigate whether the semantics of the interpreted
PCode can be recovered without training apps (i.e., D-3). Since
DCode is translated to PCode during packing, they have the same
semantics and are interpreted by the PHs and DHs, respectively. Thus,

in learning phase (i.e., Fig. 5), we learn the semantic features of DHs
(i.e., 𝑆𝑑ℎ) by the analysis of various A-VMs.

4.2.1 Building A-VMs (A1). Although the A-VMs of all Android sys-
tems interpret the same DCode/semantics, their implementations
are diverse in different Android systems (i.e., AOSPs). Hence, to let
𝑆𝑑ℎ contain only the crucial semantic features, we build the AOSPs
of seven Android systems (4.4-10.0) for further analysis.

4.2.2 Static Analysis (A2). Wegenerate 𝑆𝑑ℎ by analyzing the A-VMs
of various versions and use 𝑆𝑑ℎ [𝑑] to denotes the DH interpreting
the DCode instruction 𝑑 , such as invoke, move, compare, and if.
Currently, Parema supports 22 types of semantics belonging to
8 categories and all DCode instructions. Note that, the handlers
executing the same type of semantics have similar implementations
and functionalities because their target PCode/DCode instructions
stand for the same operations with only different operand types
(e.g., int16 and int32).

To extract the semantic features of DHs (i.e., 𝑆𝑑ℎ), we carry out
similar symbolic analysis on A-VM as that on P-VM. More specifically,
we first identify the binary instructions of each DH by analyzing the
library libart.so and symbolically execute it by specifying the input
DCode as symbolic inputs. Then, we obtain all symbolic expressions
related to the DCode. Since we build 𝑆𝑑ℎ through analyzing various
A-VMs, for each DH, we get multiple sets of symbolic expressions and
each set contains the semantic expressions generated by the DH of a
specific version of A-VM. To further simplify the semantic features,
we further purify each 𝑆𝑑ℎ by removing the symbolic expressions
shared by the minority (less than half) expression sets of this DH.
We also simplify all symbolic expressions using Z3 solver [12].

4.3 Deobfuscating VM-Protected Apps
This section will detail how we deobfuscate the VM-protected
DCode based on the knowledge learnt from training apps or AOSPs
in three scenarios. As shown in Fig. 5, in deobfuscation phase, we first
dynamically trace the target app to locate and dump the native im-
plementation of the P-VM, the memory data containing DCode and
PCode, as well as the execution trace (Step U1) through the same
way described in §4.1.1, and then analyze these traces (Step U2) to
achieve the deobfuscation purposes.

4.3.1 D-1: Recovering DCode. To recover the VM-protected DCode,
we use the learnt P2PH and PH2D to determine the PH for inter-
preting every PCode instruction, and recover the original DCode
instruction from each identified PH, respectively. When recovering
DCode, we use the offset features 𝑂𝑝ℎ to represent the PHs. If the
recovered DCode is same as the original one, the VM-protected
DCode can be recovered with training apps (i.e., D-1).

4.3.2 D-2: Recovering Semantics with Training Apps. To recover the
semantics executed by P-VM, we first use the learnt 𝑆𝑝ℎ (§4.1) to
recover the semantics of the interpreted PCode by analyzing both
the native code of P-VM and the execution trace (Step U2). More
precisely, we first extract the semantic features 𝑆𝑝ℎ of the PHs in
the P-VM of target app through symbolic analysis (i.e., 𝑆𝑝ℎ denotes
the features of PHs to be recognized). For every 𝑆𝑝ℎ [𝑖] of the PH
indexed by 𝑖 (i.e., 𝑝ℎ𝑖), we calculate the similarities between it and
all 𝑆𝑝ℎ [𝑑], where 𝑑 represent a specific type of supported semantics.

158

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

We regard the semantics executed by 𝑝ℎ𝑖 as the same as that of
the 𝑆𝑝ℎ [𝑑] with the largest similarity to 𝑆𝑝ℎ [𝑖]. Currently, Parema
calculates the semantics similarity between 𝑆𝑝ℎ [𝑖] and 𝑆𝑝ℎ [𝑑] us-
ing the Jaccard similarity coefficient [31] as 𝑆𝑖𝑚 (𝑆𝑝ℎ [𝑖], 𝑆𝑝ℎ [𝑑]) =
𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑆𝑝ℎ [𝑖], 𝑆𝑝ℎ [𝑑]) .

After recognizing the semantics of all PHs, we continue to de-
termine the executed semantics according to the invoked PHs in
the execution trace. During dynamic tracking (Step U1), we also
track the invoked library (i.e., libart.so and libc.so) functions and
the framework APIs implemented in boot.oat , thus the methods
invoked by the invoke instructions are further identified according
to the execution trace. Finally, we investigate D-2 by comparing
the recovered semantics and the semantics of original DCode. If
they are same, D-2 has a positive answer, otherwise a negative one.

4.3.3 D-3: Recovering Semantics with DH features. We further ex-
plore recovering the semantics executed by P-VM based on the learnt
𝑆𝑑ℎ (in §4.2) for D-3. More precisely, we use the same way described
in §4.3.2 but with 𝑆𝑑ℎ learnt from A-VMs instead of 𝑆𝑝ℎ to recover
the semantics of interpreted PCode by analyzing the native code of
P-VM and the execution trace (Step U2). If the recovered semantics
are same as that of the corresponding original DCode, the seman-
tics of VM-protected DCode (i.e., PCode) can be recovered without
training apps (i.e., D-3).

5 EVALUATION
We implement the investigation framework Parema composed of a
dynamic tracking module and a static analysis module with around
11.5k lines of C/C++ code and 6.8k lines of Python script. Parema
also adopts the mechanism similar to PackerGrind [43] to dynami-
cally collect the DCode protected by traditional methods in memory.
We evaluate Parema and investigate the VM-based Android packers
by answering the following research questions (Q1-3).
• RQ1: Can Parema effectively locate the PCode, P-VM/PHs, and
learn the required knowledge (i.e., P2PH, PH2D, and 𝑂𝑝ℎ) from
training apps for recovering the DCode of VM-protected apps?
• RQ2: Can Parema extract the semantic features of the PHs and
DHs (i.e., 𝑆𝑝ℎ and 𝑆𝑑ℎ), which are implemented in the VM-based
packers and the AOSPs, respectively, to recover the semantics of
the interpreted PCode of the target VM-protected apps?
• RQ3: What are the results of using Parema to investigate the
existing VM-based packers for Android apps?

5.1 Android Packers and Data Sets
Packers:We investigate seven public accessible commercial packer
providers, including Ijiami [26], Bangcle [16], Baidu [15], Qihoo [32],
Ali [14], Tencent [38], and APKProtect [6], and use them to pack
our customized apps. If the protected DCode of all invoked meth-
ods is interpreted by A-VM, the packer does not conduct VM-based
protection. Although all these packers except APKProtect claim to
adopt VM-based protection, we find only Baidu and Qihoo actu-
ally adopt VM-based protection after checking. They employ the
hybrid protection that protects critical methods using VM-based
mechanism and other methods with traditional mechanisms.
Data sets:We prepare three data sets, i.e., TSetA, VSetA, and VSetB
for investigation. TSetA contains 70 customized apps that cover

Table 2: The comparison between CFG and SCFG generated
during interpreting the onCreate methods of MainActivitys
on #node|#edge.

App
#PCode

instruction
Qihoo Baidu

CFG SCFG CFG SCFG

dowhile 1712 407|533 26| 43 970|1139 68| 98
enumeration 95 538|699 25| 42 926|1127 69|105

regex3 65 485|635 26| 42 986|1203 65| 90
floatmod 26 411|535 31| 49 820| 955 35| 46

createwidget4 13 348|439 18| 29 700| 784 32| 41

as many DCode instructions as possible and it is used for training.
VSetA and VSetB are two testing app sets, and they are generated
by packing 30 apps, which are randomly downloaded from the
open-source app repository F-Droid [2], with different versions of
packers. Specifically, the apps in VSetA and TSetA are packed using
the same version of packers, whereas apps in VSetB are packed with
updated packers (i.e., different versions of the packers). All data sets
and an illustrative/motivating example are available at [11].

Consequently, for D-1, we unpack the apps in VSetA using the
information learned from TSetA. For D-2, we unpack the apps
in VSetB with the help of TSetA. For D-3, we unpack VSetA and
VSetB without using training apps. It is worth noting that the pack-
ers of two different versions usually adopt similar VM-protection
technologies but different code translation rules. For example, we
found that both versions of Baidu packers were implemented using
the indirect-threaded interpreter (Fig. 2(b)), and the two versions
of Qihoo packers adopted decode-dispatch interpreter (Fig. 2(a)).
Moreover, the two versions of both Baidu and Qihoo packers used
different code translation rules for packing.

5.2 RQ1: DCode Recovery
To locate the PCode and the PHs of P-VM, we dynamically track the
training apps and statically analyze their execution traces.

5.2.1 Constructing SCFG. We first construct the SCFGs of the
packed apps using the approach presented in §4.1.2. Table 2 sum-
marizes the CFG and SCFG information of five randomly selected
apps. It shows that the SCFGs include much fewer nodes and edges
than the CFGs, and thus they ease the identification of the routines
that implement the decode/dispatch procedure and the localization
of the PCode and PHs.

5.2.2 Locating Real PCode. After identifying the entry nodes in
the SCFGs using the approach described in §4.1.2, we first identify
the entry nodes that are represented by the symbolic expressions
“cons=(((((0x9090∧p)≪0x18)≫0x18)-0x1)⩾0xfe)” and “dest=(load(((0x6ce2e60
+((0xff & p)≪0x2))+0x4)) |0x1)” in the training apps packed by Qihoo
and Baidu, respectively. Then, we determine the actual PCode op-
codes (i.e., the concrete inputs of the symbolic variable 𝑝 in the
expressions). Afterwards, we locate the PCode regions of the VM-
protected methods according to the locations of these opcodes.

5.2.3 Generalizing Decode/Dispatch Procedure. We identify the
decode/dispatch procedures by analyzing the symbolic expressions
in the SCFGs of all training apps packed by the same packer. For

159

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: The symbolic expressions of entry nodes generated by various apps.

App Qihoo Baidu
Symbolic Expression Factor (i.e., 𝑓𝑞𝑖ℎ𝑜𝑜) Symbolic Expression Factor (i.e., 𝑓𝑏𝑎𝑖𝑑𝑢)

com.uberspot.a2048 (((((0xe6e6∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 0xe6e6 (load(((0x6c84958+((p&0xff)≪0x2))+0x4)) |0x1) 0x6c84958
fr.asterope (((((0x1010∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 0x1010 (load(((0x6ccdd98+((p&0xff)≪0x2))+0x4)) |0x1) 0x6ccdd98

net.mathdoku.holoken (((((0x0a0a∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 0x0a0a (load(((0x6ccfe58+((p&0xff)≪0x2))+0x4)) |0x1) 0x6ccfe58
net.tevp.postcode (((((0x0c0c∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 0x0c0c (load(((0x6ccdd28+((p&0xff)≪0x2))+0x4)) |0x1) 0x6ccdd28
org.ligi.passandroid (((((0xeaea∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 0xeaea (load(((0x6cd0b68+((p&0xff)≪0x2))+0x4)) |0x1) 0x6cd0b68

Summary (((((𝑓𝑞𝑖ℎ𝑜𝑜∧p)≪0x18)≫0x18)-0x1)⩾0xfe) 𝑓𝑞𝑖ℎ𝑜𝑜 (load(((𝑓𝑏𝑎𝑖𝑑𝑢+((p&0xff)≪0x2))+0x4)) |0x1) 𝑓𝑏𝑎𝑖𝑑𝑢

Table 4: Comparison between Parema and existing tools (✓
represents “applicable” and ✗ means “not applicable”).

Unpacker
Qihoo Baidu

Partial
Dex File

VM-protected
DCode

Partial
Dex File

VM-protected
DCode

Android-unpacker [1] ✗ ✗ ✗ ✗

drizzleDumper [7] ✓ ✗ ✗ ✗

DexHunter [50] ✓ ✗ ✗ ✗

PackerGrind [43] ✓ ✗ ✓ ✗

Parema ✓ ✓ ✓ ✓

instance, Table 3 lists the symbolic expressions of the entry points
in five training samples, and 𝑓𝑞𝑖ℎ𝑜𝑜 and 𝑓𝑏𝑎𝑖𝑑𝑢 are the variational
parameters involved in the decode/dispatch procedures. For Qihoo,
𝑓𝑞𝑖ℎ𝑜𝑜 is an integer involved in decoding the PCode and it is not
fixed in different packed apps. For Baidu, 𝑓𝑏𝑎𝑖𝑑𝑢 is the base address
of a jump table, which changes in different runs. Hence we treat
𝑓𝑞𝑖ℎ𝑜𝑜 and 𝑓𝑏𝑎𝑖𝑑𝑢 as the app-specific parameters.

Afterwards, we recognize the opcode of PCode by analyzing the
symbolic expressions. As shown in Table 3, since the subexpres-
sion “(((𝑓𝑞𝑖ℎ𝑜𝑜∧p)≪0x18)≫0x18)” within the symbolic expression of
Qihoo is to obtain the low 8 bits of the PCode (i.e., the result of
“𝑓𝑞𝑖ℎ𝑜𝑜∧p”), such 8 bits refer to the opcode. Similarly, for Baidu, since
the subexpression “(𝑓𝑏𝑎𝑖𝑑𝑢 & 0xff)” is used to obtain the low 8 bits of
the PCode, the opcode is in the low 8 bits. In summary, the Qihoo
and Baidu packers decode the opcode 𝑜𝑝 from the input PCode
𝑝 according to the changed concrete values in the expressions
“op=(((𝑓𝑞𝑖ℎ𝑜𝑜∧p)≪0x18)≫0x18)” and “op=(𝑓𝑏𝑎𝑖𝑑𝑢 & 0xff)”, respectively.

We further identify the dispatching processes of the P-VMs of
Qihoo and Baidu according to their symbolic expressions, namely
“((load((j+((op-0x1)≪0x2)))+j) |0x1)” and “(load(((j+(op≪0x2))+0x4)) |0x1)”,
which represent the addresses of the invoked PHs. The variable op is
the PCode opcode and j is the base address of the jump table, whose
concrete value is identified from execution trace in both learning
and deobfuscation phases. Thus we get the complete information
about the decode/dispatch procedure (P2PH) and the routines that
realize this procedure by combining the decoding and dispatching
processes. These information will be leveraged to determine the
PHs according to the PCode (i.e., 𝑝) and the concrete values of the
app-specific parameters (i.e., 𝑓𝑞𝑖ℎ𝑜𝑜 , 𝑓𝑏𝑎𝑖𝑑𝑢). After that, the offset
addresses of PHs (i.e., 𝑂𝑝ℎ) is identified and used to recover the
DCode for deobfuscation.

5.2.4 DCode Recovery. We run Parema to recover both VM-protected
DCode and DCode protected by traditional methods of the packed

apps in VSetA using the knowledge learnt from TSetA. To com-
pare Parema with the off-the-shelf unpackers, we also use three
popular off-the-shelf unpackers listed in the first column of Ta-
ble 4 to unpack the same apps. Table 4 also shows the unpacking
results, where “Partial Dex File” means that the unpacking results
contain only the traditionally protected DCode and “VM-protected
Method” denotes that the VM-protected DCode is also recovered.
Moreover, “applicable” in Table 4 means that the semantics or the
corresponding original DCode of the PCode in the VM-protected
apps are correctly recovered, and we determine the correctness by
comparing the recovered semantics with the corresponding DCode
before being VM-protected. It shows that only Parema can recover
the VM-protected DCode.

Both Android-unpacker and drizzleDumper need to attach to
the process of the target app through ptrace() but Baidu adopts
anti-debugging technique to protect the packed apps from being
attached through ptrace(). Thus, they cannot be applied to the apps
packed by Baidu. For the apps packed by Qihoo, Android-unpacker
outputs errors during unpacking and drizzleDumper dumps Dex
files without VM-protected DCode.

DexHunter modifies the Android runtime and dumps Dex files
using the system functions. Since Baidu hooks special system func-
tions to protect the Dex data from being dumped, DexHunter can-
not unpack apps packed by Baidu. For the apps packed by Qihoo,
DexHunter only dumps the methods that are not VM-protected.
PackerGrind also just recovers the DCode of methods that are not
VM-protected in the apps packed by both packers.

Answer to RQ1: Parema can effectively locate PCode and PHs
as well as learn the required information from training apps.
Moreover, it can correctly recover both the DCode protected
by traditional methods and VM-protected DCode of target apps,
outperforming the off-the-shelf unpackers.

5.3 RQ2: Semantics Recovery
RQ2 evaluates whether Parema can recover the semantics of PHs
in the VM-protected apps. If the semantics of PHs are correctly
determined, we can recover the semantics executed by the P-VM
according to the invoked PHs in the execution trace. To achieve
this purpose, we first build the semantic features 𝑆𝑝ℎ and 𝑆𝑑ℎ by
analyzing training apps and AOSPs, respectively, and then use them
to recover the semantics of the PHs in the target VM-protected apps.

5.3.1 Semantic Features from PHs. After determining the PHs in
§5.2.3, we run Parema to generate 𝑆𝑝ℎ through symbolic analysis
using the approach described in §4.1. In learning phase, we just

160

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

Table 5: Semantics recovery result of four different VM-
based packers (✓ represents “applicable” and ✗ means “not
applicable”).

Qihoo Baidu
VSetA VSetB VSetA VSetB

Parema ✓ ✓ ✓ ✓

Table 6: The cross validation of semantics recovery with
the existing popular code similarity analysis tools (i.e.,
Genius [22], Gemini [42], Safe [28], and Parema). •, •, and ◦
stand for the supports of complete, partial, and failed recov-
ery, respectively.

Semantics Genius Gemini Safe Parema

move∗ except
move-exception/result∗ ◦ ◦ • •

move-result∗
move-exception ◦ ◦ ◦ •

const∗ except, const-method-∗
const-class/string∗) ◦ ◦ • •

goto∗ ◦ ◦ ◦ •
if-∗ ◦ ◦ ◦ •

∗switch ◦ ◦ ◦ •
throw ◦ ◦ ◦ •
return∗ ◦ ◦ ◦ •
cmp-∗ ◦ ◦ ◦ •

∗sh∗-int∗
∗sh∗-long∗ ◦ ◦ ◦ •

neg-int, neg-long ◦ ◦ • •
not-int, not-long ◦ ◦ • •

∗-int∗, ∗-long∗ (except
those on above) ◦ ◦ ◦ •

∗-float∗
∗-double∗ ◦ ◦ ◦ •

neg-float, neg-double ◦ ◦ • •
∗-to-∗ ◦ ◦ ◦ •

∗new-array∗ ◦ ◦ ◦ •
fill-array-data, aget∗, aput∗ ◦ ◦ ◦ •

invoke-∗ ◦ ◦ ◦ •
iget∗, iput∗ ◦ ◦ ◦ •
sget∗, sput∗ ◦ ◦ ◦ •
monitor-∗, etc. ◦ ◦ ◦ •

study training apps (i.e., TSetA) to obtain the required information.
Then, for evaluation, we leverage the learnt 𝑆𝑝ℎ to recover the
semantics of the PHs in the target apps (i.e., VSetA and VSetB).
More precisely, we first obtain the binary code of the PH through
dynamic tracking (U1 in Fig. 5) and build their semantic features
(i.e., 𝑆𝑝ℎ). Then, we recognize the semantics of all PHs according
to the semantics similarities between 𝑆𝑝ℎ and 𝑆𝑝ℎ . We check the
correctness of the recognized semantics by comparing the invoked
PHs in the execution trace and the corresponding DCode of the
original apps manually. The results listed in Table 5 show that the
semantics of each PH can be correctly recovered.

5.3.2 Semantic Features from DHs. To evaluate the semantics re-
covery approach based on 𝑆𝑑ℎ , we first build seven AOSPs (i.e.,
Android 4.4-10) and extract the DHs from their libraries libart.so
(i.e., A-VMs). Then, we build 𝑆𝑑ℎ using Parema through symbolic
analysis of these DHs from all A-VMs collaboratively (approach in

§4.2). All 22 supported types of semantic features are built. Instead
of using 𝑆𝑝ℎ in the evaluation of 𝑆𝑝ℎ-based solution (§5.3.1), we
leverage 𝑆𝑑ℎ to recover the semantics of PHs, which are used for
interpreting the PCode in the target apps. Specifically, we first
build the semantic features of PHs (i.e., 𝑆𝑝ℎ), and then recognize the
semantics represented by 𝑆𝑝ℎ according to their semantic similar-
ities to 𝑆𝑑ℎ (approach details in §4.3.3). The results are shown in
the right column of Table 6, where the symbol “•” indicates that
Parema correctly recognizes the semantics of PHs in all apps packed
by Baidu and Qihoo (i.e., VSetA and VSetB) statically and the sym-
bol “•” stands for that the recovery of semantics also requires the
information of the dynamically invoked runtime functions, which
are already logged in the execution trace. Hence, for all these 22
types of semantics, Parema can recover them correctly.

For comparison, we also run three popular code similarity analy-
sis tools (i.e., Genius [22], Gemini [42], and Safe [28]) to recognize
the semantics of PHs based on the analysis of the code similari-
ties between the implements of DHs and PHs. The results are also
shown in Table 6, where the symbols “◦” and “•” indicate that the
corresponding tool can recognize the semantics of no and partial
PHs, respectively. The comparison results show that Genius and
Gemini cannot recognize the semantics of any PHs, and Safe just
recognizes the semantics of several PHs. All these three tools aim to
analyze the similarity between the binary code compiled from same
source code with different configurations. Genius and Gemini focus
on the analysis of the CFGs of binary code. Since there are many
differences in the CFGs of PHs and DHs, both tools fail to identify
the code similarities between PHs and DHs. Event though the CFGs
of the PHs extracted from the AOSPs of different versions, they
are different. Consequently, both Genius and Gemini fail to detect
the similarities between the PHs of different AOSPs. Safe detects
code similarities through first transforming the binary code into
embeddings and then calculating the similarities of the embeddings.
Since the embeddings of a few PHs and DHs are still similar, Safe
detects the similarities successfully.

Answer to RQ2: Parema can effectively extract the semantic
features of both PHs in training apps and DHs in AOSPs, and
further leverage them to correctly detect the semantic similarities
between different handlers for recovering the semantics of PHs
(i.e., the PCode) in the target apps.

5.4 RQ3: Investigation of VM-Based Packers
We investigate existing Android packers in three scenarios (i.e.,
D-1/2/3) using Parema. We first study the packers of seven publicly
accessible Android packer providers, all of which claim to use VM-
based protections, and find that only Baidu and Qihoo packers
actually adopt VM-based protections. Hence, we focus on inves-
tigating the apps in VSetA and VSetB packed by two versions of
Qihoo and Baidu packers.
D-1: RecoveringOriginalDCode of VM-protected apps: In §5.3.1,
in learning phase, we learn the symbolic expressions representing
the decode/dispatch procedures (i.e., P2PH) of P-VMs from the train-
ing apps (i.e., TSetA) and the app-specific parameters 𝑓𝑞𝑖ℎ𝑜𝑜 and
𝑓𝑏𝑎𝑖𝑑𝑢 . Then, during deobfuscation, we found their concrete values
from the execution trace, and locate the PCode regions with help
of the reverse-engineered PAM. Afterward, we calculate the address

161

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 7: The number of the recovered instructions from the
VM-protected onCreate methods of MainActivity. The first
column shows the names of demonstrated apps and the sec-
ond column represents he actual numbers of the DCode in-
structions. The left columns show the numbers of DCode in-
structions recovered from the apps packed by different ver-
sions (i.e., VSetA/VSetB) of the two VM-based packers (i.e., Qi-
hoo and Baidu).

Packed apps #Original
instruction

Qihoo Baidu
VSetA/VSetB VSetA/VSetB

com.uberspot.a2048 93 93/93 93/93
fr.asterope 150 150/150 150/150

net.mathdoku.holoken 373 373/373 373/373
net.tevp.postcode 29 29 /29 29/29
org.ligi.passandroid 109 109/109 109/109

of the PH for each PCode instruction by feeding the PCode into
P2PH, construct the offset features/address (i.g.,𝑂𝑝ℎ) of this PH, and
further recover the VM-protected DCode with the learnt PH2D. By
manually comparing the DCode recovered from the VM-protected
target apps with their corresponding original DCode, we find that
the VM-protected DCode of all target apps in VSetA are correctly
recovered, whereas the VM-protected DCode of the apps in VSetB
are not recovered because the packers packing the apps in VSetA
are of the same version as those packing TSetA but the packers
packing the apps of VSetB are of different versions.

For VSetA, we further reassemble the Dex files using the recov-
ered DCode and reconstruct the app files. All these apps can be
installed and run normally.
D-2: Semantics Recovery with Training Apps: We utilize the
apps in VSetA and VSetB to study whether the semantics of the
VM-protected DCode can be recovered with the knowledge (i.e.,
𝑆𝑝ℎ) learnt from training apps (TSetA). The evaluation results in Ta-
ble 5 (§5.3.1) show that the executed semantics of the VM-protected
code in the packed apps can be correctly recovered with 𝑆𝑝ℎ . Table 7
shows the summarized recovery information of the VM-protected
methods from five different VM-protected apps. As all these meth-
ods contain no branches, all their PCode instructions are executed
during dynamic tracking. Meanwhile, their semantics are correctly
recovered.
D-3: Semantics Recovery without Training Apps: For this in-
vestigation, we choose the knowledge (i.e., 𝑆𝑑ℎ) learnt from AOSPs
to recover the executed semantics of the packed apps in VSetA
and VSetB, and the details are described in §5.3.2 (Table 6). From
the results, we find the semantics of the executed code can still be
correctly recovered without training apps.
Answer to RQ3: With training apps packed by the packers of
the same version, all VM-protected DCode of the packed apps can
be recovered (D-1); If the training apps are packed by the packers
of different versions, the semantics of the executed code can still
be recovered (D-2); Without any training apps, the semantics
of the executed code can still be recovered with the knowledge
learnt from the AOSPs (D-3). Overall, the investigating results de-
mystify that existing VM-based packers do not provide adequate
protection though they significantly raise the bar for unpacking,

5.5 Threat to Validity
External validity: One threat to the external validity is the re-
quirement of training apps, which are needed by the techniques for
D-1/D-2. However, almost all existing popular commercial pack-
ing services are publicly accessible, such as Baidu, Qihoo, Ijiami,
and Bangcle. To mitigate such potential threat, we propose new
semantics-based unpacking techniques for D-3, which learn the
required semantic information from the DHs of AOSPs. Since AOSPs
are open-sourced, these techniques do not need to access the VM-
protected packers for building training apps, and they can be applied
and generalized to investigating other VM-protected programs.

Another threat is although we studied 7 commercial packers,
only two packers actually adopt VM-protections and the others
just provide VM-based protection in their paid services, charging
around USD 10,000 for packing each app. Due to the limited budget,
we cannot conduct experiments on such paid packing services, but
we believe Parema can be used to reveal their internals because they
adopt similar VM-based techniques according to their introductions
as well as our communications with the packing services providers.
Internal validity: The major threat to internal validity is the in-
herent code coverage limitation of dynamic analysis. Due to the
heavy additional overhead introduced by interpreting PCode, only
specific methods (e.g., onCreate) are VM-protected in the packed
apps, and thus we mitigate such threat by triggering all these meth-
ods. We can also conduct static analysis on the recovered Dex file
(e.g., looking for JNI invocations) to trigger the execution of unex-
plored code interactively until all VM-protected code are recovered.
Xue et al. [43] showed that such an adaptive unpacking procedure
is useful to handle the traditional Android packers.

6 LIMITATION AND SUGGESTION
Unpacking apps protected by arbitrary VM-based protection with-
out any information is still an open problem. As the first study on
unpacking VM-protected apps, we discuss the limitations of our
solution and possible solutions as follows. We also suggest methods
to enhance the existing VM-based packers, which shed light on the
future research on this topic.

First, we assume that one type of DCode instruction is translated
into a fixed number of PCode instructions, and each PCode instruc-
tion is interpreted by a register-based interpreter, but the advanced
packers can adopt a much more complex translation policy and im-
plement a sophisticated interpreter. However, the packing services
do not change the semantics of the code and thus all PCode in the
VM-protected apps are semantically equivalent to original DCode.
Therefore our semantics-based investigation techniques could still
recover the semantics of the VM-protected code. Moreover, we can
enhance our techniques to reverse-engineer the P-VM as long as we
can get the VM-protected apps.

Second, although Parema has automated the majority of steps for
unpacking the VM-protected Android apps, some manual efforts
are still required, such as determining the actual decode/dispatch
procedures and identifying the syntax of the PCode instructions.
However, such analysis just needs to be conducted once for one
packer or instruction. Also, in future work, we will explore machine
learning based approaches to fully automate the analysis.

162

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Yajin Zhou

Third, we assume that the packer is known during investigation.
This assumption is rational because the packers usually have ob-
vious fingerprints in their packed apps, e.g., embedded libraries,
methods, classes, and shell code, etc. We can also use the packer
recognition approaches proposed in [44] to identify the packers.
Also, the fingerprints of the same packer do not change much in
different versions. According to our analysis results, the packers
of two different versions usually have similar VM-protection tech-
nologies and implementation patterns but different code translation
rules. In this paper, we do not focus on packer recognition. In fu-
ture work, we will explore machine learning based approaches to
recognize the packers with high robustness.
Enhancing VM-based Protection: By analyzing the latest publi-
cally available VM-based Android packers, we find that although
they increase the bar of unpacking, the packed apps can still be
unpacked potentially. These VM-based Android packers adopt one-
to-one mapping between the DCode instructions and the PCode
instructions, and the PCode instructions adopt similar syntax as
the DCode instructions. Although they add app-specific parameters
to the decoding and dispatching processes, the factors can be first
recognized by comparing the decoding and dispatching processes
of the different training apps and then identified from the execution
trace of the target apps during recovering. Other techniques can
be used by these packers to enhance their protection capability.
For example, they can translate one DCode instruction into diverse
PCode instructions that have completely different syntaxes from
the PCodee instruction. They can also add the instruction-specific
factors instead of the app-specific parameters. Moreover, applying
the app-specific P-VM to the packed apps can also make the packers
more sophisticated.

7 RELATEDWORK
Android (Un)PackingTechniques:Various Android packers have
been developed to protect apps from being analyzed and repack-
aged [6, 14–16, 26, 29, 32, 38, 48]. The majority of them follow the
write-and-then-execute rule. That is, they will encrypt/hide the Dex
data statically and then dynamically release the Dex data into the
memory during the execution. Hence, the protected Dex data cannot
be found by reverse-engineering the apps statically. Exploiting this
observation, existing unpacking approaches [21, 30, 40, 43, 47, 50]
look for and dump the Dex data in the memory. However, they
cannot unpack VM-protected apps because the original Dalvik
bytecode is never released into the memory.
PC (Un)packers: The PC programs are implemented in native in-
structions (e.g., x86/ARM instructions) [18, 24, 34, 39]. They are
translated into bytecode during VM-based packing. In contrast, An-
droid apps are implemented in Dalvik bytecode, which is translated
into customized types of bytecode (PCode) during VM-based pack-
ing. Although semantic information is considered in [35], it just
refers to the control flow of the bytecode in packed native programs.
In this paper, the semantics mainly represents the functionalities
of the original Dalvik bytecode (i.e., DCode). Since Android has
a multiple-layer architecture (e.g., Linux kernel, HAL, runtime,
framework, and apps) [45], the cross-layer behaviors (e.g., JNI in-
vocations) are commonly used by Android packers for protection,
but the packers for desktop programs have no such behaviors.

UnpackingVM-Protected Binaries:VM-protection techniquewas
first employed to protect desktop programs [3–5, 23]. Several ap-
proaches have been proposed to facilitate the analysis of VM-
protected binaries [17, 19, 27, 33, 35, 46]. They can be generally
divided into three categories. First, some approaches aim at reverse-
engineering the VM, either manually [33] or automatically [35]. Sec-
ond, somemethods target on reconstructing the CFGs of the original
programs by simplifying away obfuscation code through equational
reasoning or semantics-preserving program transformations[19,
46]. Third, some systems try to generate the easy-to-read pseudo-
code instructions of the translated PCode. For example, the VMAt-
tack [27] maps complex bytecode sequences of the VM to easy-
to-read pseudo-code instructions. Blazytko et al. [17] leverages
program synthesis techniques to generate code that approximates
the semantics of the original program protected by VM. However,
these approaches cannot handle complex, non-linear expressions,
let alone complicated Android apps.
Code Similarity Detection: The code similarity detectionmethods
are already widely used in bug detection, malicious code identifica-
tion, and so on [22, 25, 28, 42, 49]. However, since these approaches
are designed with the purpose of detecting code similarity between
the same or similar binary code, they are not suitable for semantics
similarity detection between the various binaries implemented by
different developers. In this paper, to investigate the VM-based An-
droid packers involving various types of code, we propose Parema
supporting semantic similarity analysis of different types of code.

8 CONCLUSION
In this paper, we took an important step to catch up with packers
because VM-based packing techniques render existing unpackers
ineffective. To this end, we propose a novel investigation approach
to deobfuscate the VM-protected DCode of the apps packed by VM-
based packers with knowledge learnt from training apps or AOSPs
under three different scenarios, including the original DCode recov-
ery with training apps packed by the packers of the same version to
that packing the target apps, the original semantics recovery with
the training apps packed the packers of different versions from that
packing the target apps, and the original semantics recovery with-
out training apps. Moreover, to assist the investigation, we develop
a prototype named Parema after tackling a number of challenging
issues. The evaluation results show that though the existing VM-
based packers provide stronger protection than traditional packers,
the DCode protected by VM and/or traditional methods in their
packed apps can still be unpacked and deobfuscated by Parema.

ACKNOWLEDGMENT
We sincerely thank Dr. Chennian Sun for shepherding our paper
and the anonymous reviewers for their constructive comments. We
thank Prof. Zhiqiang Lin for his assistance during preparing this pa-
per. This work is partly supported by Hong Kong RGC Projects (No.
152223/17E), NSFC Young Scientists Fund (No. 62002306), HKPolyU
Start-up Fund (ZVU7), CCF-Tencent Open Research Fund (ZDCK),
the Fundamental Research Funds for the Central Universities (No.
K20200019), Leading Innovative and Entrepreneur Team Introduc-
tion Program of Zhejiang (No. 2018R01005), and Zhejiang Key R&D
(No. 2019C03133).

163

Parema: An Unpacking Framework for Demystifying VM-Based Android Packers ISSTA ’21, July 11–17, 2021, Virtual, Denmark

REFERENCES
[1] 2014. Android-unpacker. https://github.com/strazzere/android-unpacker.
[2] 2015. F-Droid. https://f-droid.org/.
[3] 2016. ASProtect. http://www.aspack.com/asprotect32.html.
[4] 2016. Code virtualizer. http://www.oreans.com/codevirtualizer.php.
[5] 2016. VMProtect. http://vmpsoft.com.
[6] 2017. APK Protect. https://sourceforge.net/projects/apkprotect.
[7] 2017. drizzleDumper. https://github.com/DrizzleRisk/drizzleDumper.
[8] 2018. JNI Tips. https://developer.android.com/training/articles/perf-jni.
[9] 2018. Valgrind. http://valgrind.org/.
[10] 2019. angr. https://github.com/angr/angr.
[11] 2020. The Data Sets. https://www.dropbox.com/sh/sf59dtfsfthlv5i/AAC0wQXo-

J94y_0TiTqz7un0a?dl=0.
[12] 2020. Z3. https://pypi.org/project/z3-solver/.
[13] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: principles,

techniques, and tools. Vol. 2. Addison-wesley Reading.
[14] Alibaba Inc. 2017. http://jaq.alibaba.com/.
[15] Baidu Inc. 2017. http://app.baidu.com.
[16] Bangcle Inc. 2017. http://www.bangcle.com/.
[17] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.

Syntia: Synthesizing the semantics of obfuscated code. In Proceedings of the 26th
USENIX Security Symposium (USENIX Security). 643–659.

[18] Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fabrice
Sabatier, and Aurélien Thierry. 2015. Codisasm: Medium scale concatic disas-
sembly of self-modifying binaries with overlapping instructions. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS). 745–756.

[19] Kevin Coogan, Gen Lu, and SaumyaDebray. 2011. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Proceedings of the ACM
conference on Computer and communications security (CCS). 275–284.

[20] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones:
Detecting cloned applications on android markets. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS). Springer, 37–54.

[21] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, XueqiangWang, and XiaoFengWang. 2018. Things You May Not Know About
Android (Un) Packers: A Systematic Study based on Whole-System Emulation..
In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[22] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security (CCS).
480–491.

[23] Sudeep Ghosh, Jason D Hiser, and Jack W Davidson. 2010. A secure and ro-
bust approach to software tamper resistance. In Proceedings of the International
Workshop on Information Hiding (IH). Springer, 33–47.

[24] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. 2008. A study of the packer prob-
lem and its solutions. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 98–115.

[25] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-architecture
binary semantics understanding via similar code comparison. In Proceedings of the
IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 57–67.

[26] Ijiami Inc. 2017. http://www.ijiami.cn.
[27] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. 2017. VMAttack: deobfus-

cating virtualization-based packed binaries. In Proceedings of the International
Conference on Availability, Reliability and Security (ARES). 1–10.

[28] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and
Leonardo Querzoni. 2019. Safe: Self-attentive function embeddings for binary
similarity. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 309–329.

[29] NAGA IN Inc. 2017. http://www.nagain.com/.
[30] Zhenyu Ning and Fengwei Zhang. 2018. DexLego: Reassembleable bytecode

extraction for aiding static analysis. In Proceedings of the Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN). IEEE, 690–701.

[31] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Su-
pachanun Wanapu. 2013. Using of Jaccard coefficient for keywords similarity.
In Proceedings of the international multiconference of engineers and computer
scientists (IMECS), Vol. 1. 380–384.

[32] Qihoo360 Inc. 2017. http://dev.360.cn/.
[33] Rolf Rolles. 2009. Unpacking virtualization obfuscators. In Proceedings of the

USENIX Workshop on Offensive Technologies.(WOOT).
[34] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar Weippl. 2016. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49,
1 (2016), 1–37.

[35] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
reverse engineering of malware emulators. In Proceedings of IEEE Symposium on
Security and Privacy (S&P). IEEE, 94–109.

[36] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile platforms for systems
and processes. Elsevier.

[37] Jim Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann Publishers Inc.

[38] Tencent Inc. 2017. https://www.qcloud.com/product/cr.
[39] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.

SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In Proceedings of IEEE Symposium on Security and Privacy (S&P). IEEE.

[40] Michelle Y Wong and David Lie. 2018. Tackling runtime-based obfuscation
in Android with TIRO. In Proceedings of USENIX Security Symposium (USENIX
Security). 1247–1262.

[41] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifiable
approach to partially-virtualized binary code simplification. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).
442–458.

[42] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code simi-
larity detection. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). 363–376.

[43] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In Proceedings of the IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 358–369.

[44] Lei Xue, Hao Zhou, Xiapu Luo, Le Yu, Dinghao Wu, Yajin Zhou, and Xiaobo Ma.
2020. PackerGrind: An Adaptive Unpacking System for Android Apps. IEEE
Transactions on Software Engineering (2020).

[45] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for {ART}. In Proceedings of
USENIX Security Symposium (USENIX Security). 289–306.

[46] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
generic approach to automatic deobfuscation of executable code. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P). IEEE, 674–691.

[47] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li, Wenjun Hu,
and Dawu Gu. 2015. Appspear: Bytecode decrypting and dex reassembling for
packed android malware. In Proceedings of the International Symposium on Recent
Advances in Intrusion Detection (RAID). Springer, 359–381.

[48] Rowland Yu. 2014. Android packers: facing the challenges, building solutions. In
Proceedings of the 24th Virus Bulletin International Conference (VB).

[49] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
matters: semantic-aware neural networks for binary code similarity detection.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 34.
1145–1152.

[50] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: toward extract-
ing hidden code from packed android applications. In Proceedings of European
Symposium on Research in Computer Security (ESORICS). Springer, 293–311.

[51] Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. 2014. Divilar: Diversifying
intermediate language for anti-repackaging on android platform. In Proceedings of
the 4th ACM Conference on Data and Application Security and Privacy (CODASPY).
199–210.

[52] Yajin Zhou. 2017. The evolution of Android app packing and unpacking tech-
niques. Hitcon.

164

https://github.com/strazzere/android-unpacker
https://f-droid.org/
http://www.aspack.com/asprotect32.html
http://www.oreans.com/codevirtualizer.php
http://vmpsoft.com
https://sourceforge.net/projects/apkprotect
https://github.com/DrizzleRisk/drizzleDumper
https://developer.android.com/training/articles/perf-jni
https://www.dropbox.com/sh/sf59dtfsfthlv5i/AAC0wQXo-J94y_0TiTqz7un0a?dl=0
https://www.dropbox.com/sh/sf59dtfsfthlv5i/AAC0wQXo-J94y_0TiTqz7un0a?dl=0
http://jaq.alibaba.com/
http://app.baidu.com
http://www.bangcle.com/
http://www.ijiami.cn
http://www.nagain.com/
http://dev.360.cn/
https://www.qcloud.com/product/cr

	Abstract
	1 Introduction
	2 Background
	2.1 Interpretation of PCode
	2.2 A PoC P-VM of VM-Based Packer

	3 Overview
	4 Investigation
	4.1 Learning with Training Apps
	4.2 Learning with Android VMs
	4.3 Deobfuscating VM-Protected Apps

	5 Evaluation
	5.1 Android Packers and Data Sets
	5.2 RQ1: DCode Recovery
	5.3 RQ2: Semantics Recovery
	5.4 RQ3: Investigation of VM-Based Packers
	5.5 Threat to Validity

	6 Limitation and Suggestion
	7 Related Work
	8 Conclusion
	References

