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Abstract— We consider the problem of security-aware plan-
ning in an unknown stochastic environment, in the presence
of attacks on control signals (i.e., actuators) of the robot. We
model the attacker as an agent who has the full knowledge of the
controller as well as the employed intrusion-detection system
and who wants to prevent the controller from performing tasks
while staying stealthy. We formulate the problem as a stochastic
game between the attacker and the controller and present an
approach to express the objective of such an agent and the
controller as a combined linear temporal logic (LTL) formula.
We then show that the planning problem, described formally as
the problem of satisfying an LTL formula in a stochastic game,
can be solved via model-free reinforcement learning when the
environment is completely unknown. Finally, we illustrate and
evaluate our methods on two robotic planning case studies.

I. INTRODUCTION

Security is an important concern for robotic systems
working in critical applications. Malicious attacks on these
systems can happen from various sources, exploiting vulner-
abilities in, for instance, system sensing (e.g., GPS [1]-[3] or
automotive speed sensors [4]) or software design [5], [6]. To
prevent such anomalous behaviors, a common approach is to
incorporate an intrusion detection system (IDS) into the over-
all system design. These components monitor in runtime key
parts of the system, raising alarms when unexpected changes
or behaviours, potentially caused by attacks, are observed.

Although the use of IDS has significantly enhanced se-
curity guarantees in robotics, by limiting available attack
vectors, sophisticatedly crafted attacks that are stealthy to
IDS (i.e., undetected by the IDS) can still have significant
impact on system performance. Stealthy attacks for control
systems have been extensively studied. Using knowledge of
the system models, various kinds of stealthy attacks have
been designed, such as replay attacks (e.g., [7]), covert
attacks (e.g., [8]), zero dynamic attacks (e.g., [9]), as well
as attacks for specific types of IDSs (e.g., [10]-[12]). Also,
without knowledge of the system models (i.e., black/grey-
box attacks), machine learning-based methods have been
recently used to design stealthy attacks [13]-[15].

In this work, we focus on defending against stealthy
actuation attacks (i.e., on control signals) in robotic plan-
ning, where the dynamics are typically captured by finite-
state probabilistic models. Specifically, we provide a rein-
forcement learning (RL)-based framework for security-aware
design of control strategies that maximizes resilience of
the robotic task to adversarial actions. To achieve this, we
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adopt a game-theoretic approach and capture the interaction
between the (high-level) system controller and the attacks as
turn-based stochastic games [16], which is an extension of
Markov decision processes (MDPs) with two players.

The objectives for robotic planning tasks with temporal
properties are commonly expressed by formulas in linear
temporal logic (LTL) (e.g., [17], [18]). The fulfillment of
an LTL objective may not only depend on the current state
(e.g., safety) but also on the whole system execution (e.g.,
visiting a state infinitely often for surveillance). Hence,
our security-aware planning focuses on design of control
strategies that maximize the worst-case (due to the attacker
actions) probability that the given LTL task specification
Prask 18 satisfied.

For the security measure, we consider a very general
class of logic-based IDSs that monitor the system execution
and trigger alarm if a given LTL formula s is satisfied.
This includes the common window-based IDSs that trigger
alarm when there are several unexpected system transitions
within a time window or all past moves in general [19]—
[22]. Following this problem setup, we consider the defense
against two types of stealthy attacks with an increasing level
of aggressiveness. In Case I, the attacker tries to sabotage
the task objective without triggering alarm from the IDS. In
Case II, the attacker can take the risk of being detected by
IDS if the probability of finally sabotaging the initial LTL
objective is maximized. For these types of attacks, we solve
the game between the attacker and controller, and derive the
optimal defense strategies for the controller.

Furthermore, to allow the use of our security-aware
planning methodology for robotic systems with unknown
models, we adopt a model-free RL approach to solve the
game between the attacker and controller. Although solving
stochastic games with temporal logic objectives by model-
based methods is well-studied, there are few works on
model-free methods that do not depend on the knowledge
on the transition probabilities. By exploiting recent results
from [23], to the best of our knowledge, we introduce the
first model-free RL method for stochastic games that are
related to secure planning for LTL objectives. Finally, with
two case studies focused on robotic surveillance and task se-
quencing, we demonstrate applicability of our methodology
for security-aware robotic planning.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Stochastic Games

Stochastic games provide a powerful framework to model
and reason about behavior of multiple self-interested agents
in stochastic environment, capturing both nondeterministic
and stochastic transitions. We focus on a scenarios where



there are only two agents who are strictly competitive (zero-
sum), which means if one agent wins, then the other loses.
The controller (i.e., Player 1) wants to perform a given task,
whereas the attacker (i.e., Player 2) wants to prevent that.

Definition 1 (Stochastic Games): A (labeled turn-based)
two-player stochastic game is a tuple G = (S, (S, Sv, Sp),
A, P, sg,AP, L), where S = S, US, US, is a finite set
of states, with S,, S, and S, being disjoint; S,, and S,
are the sets of states where the controller or the attacker,
respectively, choose actions; .S), is the set of stochastic states;
S0 € S is an initial state; A is a finite set of actions and A(s)
denotes the set of actions that can be taken by the controller
or the attacker if s € S, and s € S, respectively, and denotes
a single dummy action for all s € Sp; P : Sx AxS — [0,1]
is a transition probability function such that P(s,a,s’) €
{0,1} for s € S, US,, and ), g P(s,a,8) = 1 if
a € A(s), and 0 otherwise for all s € S; AP is a finite set of
atomic propositions; and L:S — 24P is a labeling function.

In a stochastic game G, the successor of a state s is chosen
by the controller if s € S, or by the attacker if s € S,; and
if s € Sp, it is randomly chosen according to the probability
distribution P(s, A(s),). A path o = sgs1, ... is the infinite
sequence of the visited states. For simplicity, we denote the
state s; by o[t] and the suffix s;s¢y1... by o[t:].

The strategies of the controller and attacker are captured
by a function that maps a finite prefix, i.e., a history of visited
states, to a probability distribution over the actions that can
be taken in the last state. Here, we focus on pure and finite-
memory strategies as we will show later (in Sec. IV)) that
they suffice for security-aware planning for LTL tasks [24].

Definition 2: A finite-memory strategy for a game G is a
tuple 7 = (M, A, «, mp) where: M is a finite set of modes;
A: MxS— M is a transition function; a: M x S\ S, = A
is a function that maps the current mode m € M and state s
to an action in A(s); and my is an initial mode. A controller
strategy 1 is a finite-memory strategy that only maps states
in S, to actions (i.e., o : M xS, —A). Similarly, an attacker
strategy v is a finite-memory strategy where « : M x.S,— A.

An optimal controller strategy is defined as a strategy
under which the probability that the controller successfully
performs a given task is maximized in the worst-case.

B. Capturing Temporal Specifications

LTL extends the propositional logic with temporal modal-
ities: next () and until (U). LTL formulas are constructed
via a recursive combinations of Boolean operators and tem-
poral modalities using the following syntax [25]:

pi=truelal i Apa | 2@ | Op | ¢1Ups, a € AP, (1)
where AP is a set of atomic propositions.

LTL formulas specify properties of infinite paths of games.
In addition to the satisfaction of the standard logical oper-
ations, the fulfillment of an LTL formula ¢ on a path o of
game G, denoted by o=, is recursively defined as: o sat-
isfies an atomic proposition a, if a€L(c[0]); o satisfies Qg
if o[1:] satisfies ¢; and finally, ol=p1Ups, if Ji. ofi]Eps
and Vj<i. o[j] E ¢1. Also, we write (eventually) O for
true U ¢, (always) Oy for —(O—¢), and

0%Fp=0pvOOeV---VOO-OQp. @
_—

k times

Deterministic Rabin automata (DRAs) offers a systematic
way for LTL model checking. An LTL formula can be
represented by a DRA that accepts a path if and only if the
path satisfies the LTL formula; the acceptance conditions of
DRAs are defined for infinite paths [25].

Definition 3: A DRA is a tuple A = (Q, %, 9, qo, Acc)
where () is a finite set of states; X is a finite alphabet; ¢ :
Q x X — @ is the transition function; go € @ is an initial
state; Acc is a set of k accepting pairs {(C;, B;)}*_, such
that C;, B; C @ such that an infinite path o is accepted if

Ji: inf(o)NC; =@ A inf(o) N B; # o, 3)
where inf(c) is the set of states visited infinitely often during
the execution induced by the labels of .

A pair (u,v) of a controller strategy p and an attacker
strategy v in a game G induces a Markov chain (MC),
denoted by G,, .. The probability that a path ¢ sampled from
an MC G, , satisfies the LTL formula ¢ is defined as:

Pru(G @) = Pro~g, {0 |0 ¢}. )
The objective in to find a controller strategy s, such that
e = argmax, min, Pr, (G = ¢) (5)

where p and v denote any finite-memory controller and
attacker strategies, respectively. Note that y, might not be
unique; in that case, slightly abusing the notation, we let j,
to denote the set of all such controller strategies.

C. Problem Statement: Security-Aware Planning

This work is motivated by the reported susceptibility of
autonomous systems to attacks [1], [3], [26]. Several methods
are proposed to deal with attacks on system sensing, both
for low-level control (e.g., [27]-[29]), and path planning
(e.g., [30], [31]). However, to the best of our knowledge, no
methods exist to design controller strategies for uncertain en-
vironments, such that the derived controllers are maximally
resilient to actuation attacks — this is the focus of this work.

Specifically, we consider scenarios where a smart attacker
can modify control actions with the goal of preventing the
robot from performing the given task, captured by an LTL
objective prask. We assume that the system has an Intrusion
Detection System (IDS) used to detect system anomalies;
thus, the attacker’s objective is also to remain stealthy. This
can be effectively achieved by injecting non-aggressive and
incremental control perturbations that exploit probabilistic
uncertainties in robot motion (captured by the system model).

Consequently, in this work, we address the problem of
synthesizing security-aware controller strategies that max-
imize the worst-case (i.e., even for the most damaging
attacker actions) probability of satisfying the LTL mission
objectives @rask. In addition, we assume that the controller
does not know model of the system. Hence, the problem
is formulated as a stochastic game G where the transition
probabilities and the topology of the game are unknown,
and our goal is to design a model-free reinforcement learning
(RL)-based framework for synthesis of such security-aware
controller strategies. Note that since no attacks on sensing are
considered in this work, both the controller and the attacker
have the knowledge of the current state of the robot.

In the rest of the paper, we first show how to ‘combine’ the
attacker’s stealthiness constraint with the control objective



(Sec. III); this enables us to formulate this problem as a
control synthesis problem from such combined LTL formulas
for stochastic games. Then, we show how model-free RL can
be used to derive such maximally resilient (i.e., security-
aware) controller strategies (Sec. IV), by exploiting suitably
crafted rewards and discounting based on the LTL formula.

III. LTL SPECIFICATION OF SECURITY-AWARE
CONTROLLER OBJECTIVES

In this section, we show how the IDS’ triggering condition
can be captured by a winning LTL specification for the game.

A. Controller Objective as Winning Condition

The controller’s main objective is to successfully perform
a given task prasx. As with previous works e.g., [32],
[33], we capture the task ¢rasx by LTL; this includes
common planning tasks such as avoidance (J—unsafe),
liveness/recurrence (O ¢), persistence (O0safe), coverage
of other tasks (01 AQ@Pa A~ - - AQdy,) or sequencing of other
tasks (O(p1 A QO(d2 A==+ AQgn)...)).

In addition, we assume that after the attack is detected,
the attacker is no longer capable of attacking, and thus
additional requirement for the controller can be stated as
attack detection ;ps — we discuss in detail how to construct
LTL formula ¢ps in Sec. III-B. Therefore, the winning
condition for the controller can be captured in LTL as:

Pwin = Pips V Prask- (6)
There are several important implications of g in (6).
First, if the controller can always satisfy @5k regardless
of being under an attack, then the controller does not need
to use an IDS. Similarly, if ¢ps can never be satisfied, the
IDS mechanism does not help the controller at all. Second,
(s should be satisfied only if there is an actual attack;
otherwise, with the above winning condition, the controller
has an incentive to look for situations where a false alarm can
be raised, in order to win the game. Third, detecting an attack
should not be enough to win the game as the controller still
needs to be able to perform the task. In addition, the attacker
might risk being detected for an attack that may cause the
controller to end up in a state from which the task cannot
be satisfied. Hence, ¢ps needs to be extended to also cover
these cases, as done in the rest of the section.

B. Intrusion Detection in Stochastic Environments

An IDS monitors system evolution, continuously evaluat-
ing if the observed behavior deviates from the expected ones.
Analysis of several IDS is recently performed in the context
of security-aware control (e.g., [10]-[12]). When execut-
ing in uncertain environments (e.g., modeled as stochastic
games), such IDS commonly provide probabilistic guaran-
tees, and can potentially cause (e.g., fixed-rate) false alarms.

For example, consider a planning scenario where a robot
may not move in the intended direction with a probability
of at most p.. In practice, effectively monitoring such prob-
abilistic behaviors is mapped into counting the number of
unintended moves in a pre-specified time-window or in all
past moves in general [19]-[22]. Consider e.g., that for every
four-time-step window, an alarm should be raised if the count
is larger than 1; in this case, even without an attacker, when

pe = 0.1, the likelihood of a false alarm is 0.0523 and the
expected number of steps before an alarm is 47.

For any p.>0, any such window-based IDS eventually
raises alarm, even without attacker. Thus, when considering
large-enough (i.e., infinite) paths, if a false alarm is consid-
ered as an attacker being detected, then the controller wins
the game by satisfying ¢;ps and thereby (ywy, even when the
attacker is inactive. On the other hand, to deal with the false
alarms in practice, the system would perform a thorough
inspection on the next steps (with a significant overhead)
such that any attacks are detected based on the employed
attack vectors (i.e., actual attack surfaces [34], [35]). If the
IDS does not detect any attack for a pre-determined number
of time steps during the close inspection, the system goes
back to its default execution mode.

Consequently, following [19]-[22], we provide an LTL
formulation that can capture a large class of IDSs that sat-
isfy the aforementioned constraints. Consider the following
window-based IDS described by the LTL formula:

WOALARM — <><anomaly A Oogmanomaly) @)
where anomaly is the label of unexpected executions. The
alarm formula ¢, sz can be interpreted as: raise an alarm
if an anomaly occurs and after that another one occurs
within the next m + 1 time steps. Such formula can be
easily extended to count/allow for more anomalies within a
different window size, by adding nested Q(}Smf, as in e.g.,
(pALARMQZQ(anomaly/\OOSml (anomaly/\oogm2anomaly))
We can also count consecutive anomalies by setting some m;
to zeros. Many IDS mechanisms can be inherently described
as a reachability property, which can be specified by the
logical operators and temporal modalities (), ¢ and O=F.

After an alarm occurs, the system switches to a high-alert
mode and can detect any new attacks. This is captured by

PpETECT = anattack, (3)
where attack is the label of any transition considered as
an attack by the IDS. The detection formula @pgrper simply
means that any attack within n+1 time steps will be detected.

We can integrate a detection formula into an alarm formula
to obtain a combined IDS formula. This is achieved by
adding A O @pgrecr next to the last anomaly in the alarm
formula that triggers the alarm. For example, if we integrate
wpereer 11 (8) t0 YaLarm 1N (7), We obtain:

Qs = O(anomaly AN Oogm(anomaly A\ Oognattack)).

Note that the negation of (s nicely reflects the behavior of a
stealthy attacker. An attacker with the objective —pps Wants
to stay undetected at all costs and is reluctant to frequently
take actions to avoid triggering alarm, so that the attacks are
‘hidden’ within the stochastic behavior of the environment.

One problem with this formulation is that it does not
express the cost of carrying out the close system inspection.
This, unfortunately, gives an incentive for the controller to
trigger a false alarm. For example, the controller may try to
move to the states that exhibit a high degree of randomness
to increase its chance to switch to the high-alert mode, after
which it can continue to perform its task without the fear
of being under attack for the predefined number of steps.
We discuss a strategy to overcome this problem in Sec. IV.
Furthermore, even if the attacker is detected, the robot still



needs to perform its task; we address this as follows.

C. Performing Tasks After Attack Detection

The attacker’s goal is to prevent satisfaction of the control
task. Thus, it may be beneficial for the attacker to launch
an attack even during the high-alert mode (i.e., at the cost
of being detected and eliminated), if the controller could no
longer fulfill its task after the attack.

This can be embedded into the previously described LTL
formula @55 by replacing attack in ¢pps with attack A

(O¥attack. For example, the previous (;ps becomes
<n

PIps :<> (anomaly/\OOSm (anomaly/\O(}* (attack/\OOattack))) .
Although this might seem as giving a second chance to the
attacker after being detected, (s)he cannot attack for a second
time because that would result in the attacker immediately
losing the game. Another concern with this formulation is
that the IDS must be in the high-alert mode all the time after
the first attack to be able to observe a second attack; however,
this is not necessary because the second attack cannot happen
in practice based on the assumption that the attacker is
eliminated after the first attack. Hence, this IDS formulation
allows the scenarios where the attacker is detected but might
still win the game if the controller fails to perform its task.

IV. MODEL-FREE LEARNING FROM THE WINNING LTL
SPECIFICATIONS

In this section, we use model-free reinforcement learning
to find optimal controller strategies that maximize the (worst-
case) probability of satisfying the @y from (6) — i.e.,

iy = ATgmax , min,, Pr, (G = pwn). 9)
Our method requires no knowledge of the transition prob-
abilities or the topology of the game G, which models the
interaction between the controller and the attacker.

A. From LTL to Discounted Rewards for Model-Free RL

Model-free RL provides an efficient way to search for
optimal strategies without reconstructing the explicit model
(e.g., the transition probabilities) of the stochastic game from
samples. However, existing model-free RL methods can only
be used for cumulative rewards associated with the states (or
transitions) and cannot be directly used for LTL objectives
on stochastic games. Thus, we convert the LTL formula ¢
into a cumulative discounted reward below.

Let G(o) denote the return, the sum of discounted rewards
of a path o of G, defined as:

Glo) =", <H§Zlo F(aun) - R(oli]);

here, R: S — [0,1) and I" : S — (0, 1) are the state-based
reward and discount functions. We make the convention that

j—o ‘= 1. The goal of model-free RL is to find a controller
strategy that maximizes the expected return in the worst case:
L ming, Eog, [G(0)]. (11)
Our goal, now, becomes to design the functions R and a I
in such a way that u, and p,,, from (9) become equal.
Recently, there has been an increasing interest in develop-
ing of such model-free RL methods [23], [36]-[38]. Here,
we adopt the method introduced in [23], which takes a turn-
based stochastic game G where P is fully unknown, an

(10)

[y = argmax

Algorithm 1: Model-free RL for security-aware control syn-
thesis from LTL specifications.

Input: LTL formula (pw, stochastic game G

Translate ¢win to a DRA Ay,

Construct the product G* of G and A,

Learn the optimal state-action values Q. for G* using minimaxQ

Obtain a greedy strategy py from Q.

return a finite-memory controller strategy . derived from )

LTL specification of the winning condition pwy, a discount
factor v, and learns the controller strategy fi,,,,. For the
discount factors sufficiently close to 1, if the LTL formula
can be translated into a DRA with one accepting pair, the RL
algorithm is guaranteed to converge to an optimal controller
strategy, otherwise it converges to a controller strategy with
a satisfaction probability above an established lower bound.
The idea is to augment the state space such that it is
sufficient to consider only the pure and memoryless strategies
so that a state-based R and I' can be defined. Specifically,
using the method from [23], we construct a product game
from the original game G and the DRA A, obtained from
the LTL formula ¢y, thus reducing the winning criteria to
the satisfaction of the Rabin acceptance condition from (3).
Definition 4 (Product Games): A  product game of
G = (S,(Su,Sv,Sp), A, P,so, AP, L), a labeled turn-based
stochastic game, and a DRA A = (Q, 24,5, qo, Acc), is the
tuple G* = (S, (S, 9, 8)), A, P*, 55, Acc™) where:
e 5% = 8 x (@ is the set of augmented states, and the
initial state sg is (so,qo);
. Slf = 8§, x @ is the set of augmented controller states;
e S =15, xQ is the set of augmented attacker states;
. SpX =5, x Q is the set of augmented stochastic states;
o AX = A is the set of actions where A*((s,q)) = A(s)
for all s € S,q € Q;
o P*: 5% xA* xS5* —[0,1] is the transition function:

P*((s.q),a,(s',q))= {P(S,aﬁ’) if ¢'=6(q, L(s))

0 otherwise
e Acc” is a set of k accepting pairs {(C), B])}k_,
where C = C; x Q and B = B; x Q.

When there is only a single pair Rabin in the acceptance
condition (i.e., Acc = {(C, B)}), there is always a pure and
memoryless optimal strategies for both the controller and the
attacker. This allows to construct simple R and I' functions
in (10). For example, a small positive reward can be received
whenever a state in B visited since some states in B need
to be visited infinitely often to win the game. Similarly, to
discourage visiting the states in C' infinitely many times,
future rewards can be heavily discounted. Consequently,
Algorithm 1 summarizes the steps of our approach.

Proposition 1: Consider a stochastic game G and an LTL
formula @y that can be translated to a DRA with a single
accepting pair. There exists 7' such that for all v € (7/,1),
Algorithm 1 converges and returns a pure finite-memory
controller strategy satisfying (9), if the reward 2, and the
discount I', functions are defined as:

1_73(7)7 SX € BX

vB(7), s € B®
X
R’Y(S )::{07 5% ¢ BX

’70(’7)7 SX € CX
v, otherwise

L(s¥) =



where vp and 7¢ are functions of ~ satisfying

hm 7~ gim L2000 o g
v=1-1—=9p(y)  y=1-1—1cly

Proof: The proof immediately follows from the proof of
Theorem 1 in [23], showing that under a strategy pair, as v —
17, the expected return of a path goes to the probability that
the path satisfies the Rabin acceptance condition. Finally, the
obtained strategy in the product game satisfying (11), induces
a finite-memory controller strategy (in the initial game G)
satisfying (9), where the the modes are the states of the DRA
Ay, with the same transition function. [ |
Algorithm 1 can be generalized to situations where the
DRA A, has multiple Rabin pairs, using the approach
from [23]; this results in controller strategies with a lower
bound on the satisfaction probabilities (see [23] for details).

B. Efficiency of Learning Controller Strategies

The size of the DRA A, . may be double-exponential in
the length of ¢wy. This cannot be prevented in the worst case
if @rask 1S any arbitrary LTL formula. To overcome this, we
can restrict the controller tasks to a fragment of LTL, such
as Generalized Rabin(1) [39], which can describe most com-
monly used robotic tasks, as well as be efficiently translated
into a polynomial-size DRA with a single accepting pair.

Fortunately, any valid IDS mechanism can be expressed
as a reachability property, which means if a path satisfies the
property, then there must be a prefix of the path such that
all the paths having the same prefix also satisfy the property.
Consider a path o, an infinite execution of the game, for
which the IDS triggers the alarm - i.e., o = @ps. If a finite
prefix of o is not enough for the IDS to decide, then even if
it can be inferred that adversarial actions have occurred, the
IDS could not trigger the alarm in a finite number of steps.

The reachability properties form only a small fragment
of LTL for which efficient translation to a deterministic
finite automata is usually possible [40]. We can think of
such a DFA as a DRA with one accepting state where
all the outgoing transitions are self-loops. Therefore, the
disjunction of g With sk in (6) only linearly increases
the state space of the product game in the length of A, .
Additionally, we can utilize the fact that all the incoming
transitions to the accept state in the DRA of g are triggered
by an action of the attacker. Thus, during the learning phase,
whenever a state having a transition to the accepting state is
reached, the attacker turn can be skipped.

Finally, we discuss the effect of choosing different dis-
count factors. As the discount factor v goes to 1, the
convergence rate as well as the stability of the RL algorithms
decrease. Hence, we start with a smaller v and increase
it slowly until the RL algorithm converges to a desired
controller strategy. Using smaller « also discourages the
controller to wait for a false alarm to be triggered, and thus
mitigates the problem discussed in Sec. III-B.

V. CASE STUDIES
For the case studies, we use the CSRL tool [41] based
on [23]. CSRL takes a 2-D labeled grid as a representation of
the stochastic game with an LTL formula, and returns a finite-
memory controller strategy obtained using the minimax-Q
[42] method that follows e-greedy strategies while learning.

A. System Models

We initialized the values of € (the parameter for e-greedy
strategy) and « (the learning rate) to 0.5, and slowly de-
creased them to 0.05 during learning. We set the discount
factor for each case study to be v=0.999, and obtained the
controller strategies after 512K episodes, each starting from
a random state and stopping after 1K time steps. We used
the IDS formula specified in Sec. III-C with m=0 and n=1:

(pl(ggzo(anomaly/\o (anomaly/\()@S 1(attack/\()(}attack)))

We used (7 x 9) grid worlds for our planning case studies.
A robot can move from a cell to an adjacent cell using the
controller actions: North, South, East and West. However, the
attacker can observe any action chosen by the controller and
replace it with another action. The actions of the controller
and attacker are depicted as black and red arrows in the
figures, respectively. Due the stochastic environment, the
robot moves in the intended direction with probability of 0.8,
and sideways with probability of 0.2 (0.1 for each side). The
robot stays in the cell, when it tries to move beyond the grid.

A grid cell corresponds to a controller state in the stochas-
tic game. The label of a controller state is displayed in a
small circle, in the lower part of the corresponding cell in the
figures. After the controller takes an action, the game moves
to an attacker state. The attacker observes this transition
and either takes the same action or another one, and then
the game moves to a stochastic state. For every cell, the
controller and attacker actions, we have a different stochastic
state in the game. Thus, every stochastic state has a unique
parent attacker state and a unique grandparent control state.

A stochastic state is labeled with attack if and only if the
transition from its grandparent state to its parent state, and the
one from its parent to itself, are triggered by different actions,
i.e., the attacker modifies the controller action. Even if the
attack labels are visible to the controller, it acts as if they
do not exist unless an alarm is triggered; due to the structure
of the IDS formula 55 from Sec. III-B, the DRA of ¢pg
changes its state by an attack label only after an alarm.

In a stochastic state, a random transition is made according
to the described transition model, to a dummy state first, then
to the controller state of the reached cell. The dummy state is
labeled with anomaly if the controller state it is connected
to is not expected to be reached after the action taken in
the great-grandparent controller state. For example, if the
controller takes North and the robot moves east, the dummy
state visited is labeled with anomaly. We did not explicitly
represent the dummy states to keep the learning completely
model-free; it is enough to make the corresponding DRA
transition as if an anomaly label is consumed whenever such
stochastic transitions occurs during learning.

B. Case Study I: Surveillance
In this study, the robot tries to repeatedly cover the cells
labeled with b and c. In addition, after a certain point in time,
the robot aims to stay in the safe region labeled with d, i.e.,
PV = 00b A O0c A 0. (13)
The learned strategies are shown Fig. 1. For simplicity,
we consider only the part of the task where the robot needs
to go from b to ¢, but similar results were also obtained
for travelling from c to b. Although there is a very short
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strategies from b to ¢ before any anomaly occurs; (c) The controller and attacker strategies from b to ¢ after one anomaly.
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scenario (frorri left to rightj: (a) The controller Stratégy from d to e and the cell labels; (bj The controller and

attacker strategies from d to e right after an anomaly occurs; (c) The controller and attacker strategies from d to e right after an alarm.

path from b to ¢, the learned controller strategy prefers a
quite long path. There is only one cell between b and ¢, and
this cell and all the surrounding cells are in the safe region;
however, this is not enough to make the path passing through
it secure, because once this cell is visited, the attacker can
take two consecutive East actions to make the robot visit an
unsafe cell with a probability of 0.64. Thus, the robot would
be out of the safe region once in a while, violating @rsk-

Fig. 1b and 1c show the attacker strategies before an
anomaly happens and right after the alarm. In three out of the
first four cells on the most likely path, the attacker chooses
to do nothing (Fig. 1b). The reason is that the attacker does
not want to create an unnecessary anomaly in the early part
of the path, ‘saving’, in some sense, for the future the ability
to create two consecutive anomalies without raising alarm.
The attacker strategy in the other parts of the grid forces the
robot outside the safe region and prevents it from reaching c.
C. Case Study II: Sequence of Tasks

In this scenario, we plan for a sequence of tasks repre-
sented by the labels b, ¢, d, e, to be performed in order.
There is a danger zone labeled with a, to be avoided — i.e.,

P = O(bAO(EAOWA00)) ATma.  (14)

Here, we present the results and the strategies for perform-
ing only the last task e, i.e., visiting the cell e; however,
similar conclusions can be drawn for the other tasks. Fig. 2a
shows the estimated satisfaction probabilities when the IDS
has not detected any anomalies. As expected, the probabili-
ties near the danger zone are very low and the probabilities
are usually getting lower as the distance to e is increasing.

The satisfaction probabilities in the right part of the grid
are significantly lower than the left part. The reason is that
while moving from the right part to the left, the minimum
number of cells between the robot and a can be at most

two, e.g., at (6,4), which allows the attacker to take three
consecutive actions, e.g., 3xNorth from (6,4), to drag the
robot into the danger zone with a probability larger than 0.5.
If all the attacks are successful, i.e., the robot moves in the
direction the attacker desired, after the first two actions the
IDS raises an alarm. After the alarm, although the attacker
knows (s)he will be detected, (s)he attacks again if the robot
is next to a, as there is a high probability (0.8) that the robot
moves into the danger zone, making the attacker the winner.
Fig. 2b shows the controller and attacker strategies after
an anomaly occurs. Again, the attacker is more passive in the
upper right part of the grid, as (s)he does not want to trigger
an alarm when the controller is far from reaching e. Fig. 2c
shows the strategies when the IDS is in the high-alert mode,
in which any attack is immediately detected. The attacker
takes an action only in five cells. In the cell at the bottom-left
corner, (s)he makes one last attempt to prevent the controller
from reaching e because even if (s)he is detected, if (s)he
does nothing the controller wins the game with a probability
slightly lower than 1. The other cells are the ones next to the
danger zone, where the attacker sacrifices stealthiness for the
high probability that the robot ends up in the danger zone.

VI. CONCLUSION

We studied planning for temporal logic tasks in an un-
known stochastic environment in the presence of actuation
attacks. We formulated the interaction between the controller
and stealthy attacker as a stochastic game, where the attacker,
knowing the intrusion detection systems (IDS), the task, and
the controller; aims to undermine the task while remaining
stealthy. We then show this planning problem can be solved
using model-free reinforcement learning without knowledge
of the environment model. Our case studies showed the appli-
cability of our method for security-aware robotic planning.
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