
0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 1

PackerGrind: An Adaptive Unpacking System
for Android Apps

Lei Xue, Hao Zhou, Xiapu Luo, Le Yu, Dinghao Wu, Yajin Zhou, Xiaobo Ma

Abstract—App developers are increasingly using packing services (or packers) to protect their code against being reverse engineered or
modified. However, such packing techniques are also leveraged by the malicious developers to prevent the malware from being analyzed
and detected by the static malware analysis and detection systems. Though there are already studies on unpacking packed Android apps,
they usually leverage the manual reverse engineered packing behaviors to unpack apps packed by the specific packers and cannot be
appified to the evolved and new packers. In this paper, we propose a novel unpacking approach with the capacity of adaptively unpacking
the evolved and newly encountered packers. Also, we develop a new system, named PackerGrind, based on this adaptive approach for
unpacking Android packers. The evaluation with real packed apps demonstrates that PackerGrind can successfully reveal packers’
protection mechanisms, effectively handle their evolution and recover Dex files with low overhead.

F

1 INTRODUCTION

Android has become the most popular system and there are
already 3.6 million apps available in the largest app store
Google Play in March 2018 [17]. Meanwhile, Android apps
have been the largest malware target [2], [42] and many
malicious apps were constructed by injecting malicious code
into normal Android apps and then repackaging them into
new apps [28], [33], [58], [80]. Specifically, the adversaries
usually leverage repacking techniques to embed malicious
code into the legitimate apps through repacking. Note that,
since the apps are not well protected,, such as packing or
obfuscation, the adversaries can straightforwardly reverse
engineer such apps and modify, which is already one of the
OWASP mobile top ten risks [3].

Consequently, various packing services are provided
for app authors with the purpose of preventing legitimate
apps from being reverse engineered and repackaged [34].
However, not only the legitimate app authors leverage
these packing services to protect their own apps but the
adversaries also employ such services to hide the contents
of the malicious apps and prevent the malicious apps from
being analyzed and detected statically [21], [44], [75], [78],
[81]. Even worse, with the increasing popularity of packing
services, the percentage of packed malicious apps has also
increased from 10% to 25% according to the report of
Symantec [18]. To address this issue, multiple tools have
been proposed to expose the hidden payload in the packed
Android apps [31], [50], [75], [78].

With the evolving of the packing techniques, such tools
cannot be applied to unpacking the apps packed by the
latest and evolved packers, because these tools do not
adaptively unpack the packed apps through dynamically

• Lei Xue, Hao Zhou, Xiapu Luo, and Le Yu are with Department of
Computing at the Hong Kong Polytechnic University;

• Dinghao Wu is with College of Information Sciences and Technology, The
Pennsylvania State University;

• Yajin Zhou is with College of Computer Science and Technology, Zhejiang
University;

• Xiaobo Ma is with Department of Computer Science and Technology, Xi’an
Jiaotong University

tracking packing behaviors. Hence, with the purpose of
unpacking Android apps through adaptively monitoring
the packing behaviors, we propose a novel approach to
adaptively unpacking packed apps. Also, we design and
implement the unpacking system PackerGrind to facilitate
such unpacking procedure.

Given a new encountered packed Android app, our
adaptive unpacking approach unpacks it through three major
phases, including dynamic monitoring, Dex recovery, and
static analysis. First, we leverage dynamic monitoring to track
the packing behaviors of the packed apps, especially the
information about the release of the hidden content, the
execution of the content in memory, and the location of
the released content. All the monitored information will be
stored in the log file, and then we can determine Dex data
collection points through analyzing the log files. Second,
we dynamically dump the Dex data in the memory at the
determined Dex data collection points and then recover the
dumped Dex data into a valid Dex file finally. Third, we
also determine whether the recovered Dex file contains all
required Dex data through statically analyzing the Dex file
and the log files. If more Dex data are required, we repeat
the above unpacking phases to determine the data collection
points for the new data and finally recover a new Dex file
based on the collected Dex data. Note that, for each packer,
we store the required Dex collection points in a configuration
file and thus we can directly unpack and recover the Dex file
at the corresponding points if the packer is already analyzed
before.

Because of various challenges, it is nontrivial to leverage
the adaptive unpack approach to unpack the packed apps
automatically. C1: It is challenging to monitor the cross-
layer packing behaviors of Android packers on the real
smartphone. C2: It is challenging to unpack and recover the
protected Dex files with high efficiency. C3: Recognizing the
packers that are already analyzed is also challenging.

We need to perform behavior tracking in multiple layers
because the Android system consists of multiple layers
and adopts two types of runtime, DVM (Dalvik Virtual
Machine) and ART Android runtime, which are used before

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 2

and from Android 5.0 by default, respectively. In addition,
since the existing analysis and unpacking tools usually
conducts dynamic analysis based on Android emulator
(i.e., Qemu) [31], [63], [73] or debugging techniques (e.g.,
ptrace()) [74], [79], the sophisticated Android packers can
detect emulator and debugging environment to prevent
them from being detected and analyzed. Hence, to address
challenge C1, we propose a novel cross-layer (i.e., framework
layer, runtime layer, and system layer) tracking mechanism
to monitor the packing behaviors of Android packers on
the real smartphone by leveraging the DBI (dynamic binary
instrumentation) framework Valgrind [48].

In addition, since the existing unpacking tools leverage
the one-process strategy to unpack packed Android apps,
they cannot fully address challenge C2. To address this issue,
we propose an approach to collect the Dex data at the points
determined according to the packing behaviors because
different packers adopt various protection mechanisms to
protect the Dex data whereas they all need to dynamically
release the protected data into memory. PackerGrind dy-
namically monitors the details about the packing behaviors,
especially those related to the Dex data releasing and
modification, and then determines the Dex data collection
points through carefully analyzing the packing behaviors
stored in the log files according to our suggested criteria.
Finally, PackerGrind disassembles the collected Dex data into
a new Dex file.

Given a packed app, if its packer can be identified and the
samples protected by the same packer have been analyzed
before, the unpacking process for the previous samples
can be applied to the new packed app for speeding up
the unpacking. Although DexHunter also tries to identify
packers by searching specific files in the file system or special
strings in memory, the packers can easily change the file
names and strings to impede the unpacking. To address
challenge C3, PackerGrind recognizes packers according
to their initialization behaviors that will not be changed
frequently.

In summary, the main contributions of this paper in-
clude:
• We propose a novel approach to adaptively unpack the

Android apps through tracking the packers’ dynamic
packing behaviors and determining the Dex data collection
points, and thus this approach can also be applied to the
new encountered or evolved Android packers.
• To facilitate such adaptive unpacking procedure, we

also design and implement the unpacking system
PackerGrind1, which runs in the real smartphone and
dynamically tracks the packing behaviors in multiple
layers. Also, it can recognize the analyzed packers and
thus it just needs to track the packing behaviors once for
each Android packer.
• We evaluate PackerGrind leveraging apps packed by

various commercial packers and compare it with the
existing unpackers. The evaluation results show that
PackerGrind successfully unpacks all packed apps and
outperforms the other popular unpackers.
This paper is an extension of [71] and the rest of it is

1. https://github.com/rewhy/adaptiveunpacker

organized as follows. We first introduce the background
as well as a motivating example in Section 2, and then
describe the basic Dex data collection points in Section 4.
The design and implementation of PackerGrind are detailed
in Section 5 and the evaluation results are presented in
Section 6. Afterwards, Section 7 presents our discussion
about the limitations of PackerGrind as well as the future
work. Then, after presenting the related work in Section 8,
we conclude our work in Section 9.

2 BACKGROUND

In this section, we will introduce the necessary background
information about the Dex file, Oat file, Android runtime,
and the packing techniques.

2.1 Dex File

All data in Dex file are organized following specific Dex
file format and the Dex file consists of two separate major
portions, the Dex header portion storing the metadata and the
body portion containing the majority of the data. Particularly,
the metadata stored in the Dex header includes the Dex
file magic, file checksum, SHA1 signature, file size, header
size, endian constant, as well as the sizes and locations of
the data structures that hold the identifiers for the methods,
strings, and other items in the Dex file. Whereas, the data
portion contains the data related to the implementations of
the classes, methods, and the bytecode, such as the identifiers
pointing to various structures and the structures storing the
bytecode of each method. Consequently, the static analysis
is always carried out through disassembling the Dex files
contained in the app. Hence, the purpose of this paper is to
expose the hidden implementations of the packed apps and
then reassemble them into a valid Dex file so as to facilitate
other static analysis tools.

2.2 Oat File

For the ART runtime, different from the Dex file contained in
the Android app, the Oat file is generated when the bytecode
in the Dex file is compiled into native code by the runtime
tool dex2oat and all the generated native code as well as
the original bytecode is stored in the Oat file. The Oat file is
actually an extended ELF file [65] and consists of multiple
data sections, which stores various types of data, such as the
original Dex files, the native code, and the metadata. Note
that, for each compiled method, both its native code and
bytecode are stored in different data structures in the Oat file
but the ART runtime also has the capacity of interpreting the
methods that contain no native code.

2.3 Android Runtime

For existing Android systems, there are two types of
runtimes, the Dalvik virtual machine (DVM) and the new
Android runtime (ART), running on different system versions.
Before Android 4.4, DVM is the runtime for executing the
Dalvik bytecode in the Dex file. In Android 4.4, the system is
equipped with both types of runtimes, DVM and ART, and
the default runtime is DVM. From Android 5.0 released in
2015, the runtime of Android systems become ART. Fig. 1

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 3

Jun. 14
Oct. 1

4
Feb. 15

Oct. 1
5
May 16

Sep. 16
May 17

Sep. 17
May 18

Sep. 18
May 19

0 %

20 %

40 %

60 %

80 %

100 %
M

ak
et

Sh
ar

e

ART
DVM

Fig. 1: The worldwide Android runtime share from Jun. 2014
to May 2019.

shows the worldwide Android runtime share from Jun. 2014
to May 2019. From this figure, we can find there are already
around 90% Android devices running ART runtime in 2019.

2.3.1 The Dalvik Virtual Machine (DVM)
The DVM runtime adopts Just-In-Time (JIT) strategy to
execute the Dalvik bytecode in the Dex files. The entire
process from loading Dex files to the execution of bytecode
can be divided into four major phases, including loading
the Dex file, resolving the classes in the Dex file, resolving
the methods in the Dex file, and executing the code of the
methods. Specifically, when an Android app starts to run, the
DVM runtime first loads its Dex files into the memory and
stores the relevant information in the instances of DexFile
structure. Thus each Dex file in the memory is referred
by a corresponding DexFile instance. Afterward, the DVM
runtime continues to resolve the classes as well as the meth-
ods implemented in the Dex file, and the resolving results
are stored in the instances of ClassObject and DexMethod

structures, respectively. Consequently, if a resolved method
is invoked, its code will be executed by the DVM runtime.
Note that, we also determine the basic Dex data collection
points in DVM runtime according to this process and the
details are presented in Section 4.1.

2.3.2 The New Android Runtime (ART)
By default, the ART uses the Ahead-Of-Time (AOT) approach
to run the Android apps. Specifically, during the installation
of an app, the ART runtime first compiles the Dalvik bytecode
in its Dex files into native instructions by leveraging the tool
dex2oat and then stores the compiling results as well as the
original Dex files in a Oat file. In addition, if the Android
system is upgraded, the Dex files of the apps need to be
recompiled to the corresponding Oat files when the system
upgrade finishes or the first time the device boots [56]. If
an app contains no Oat file, the ART runtime also invokes
dex2oat to generate the Oat file when it starts to run.

The ART runtime is also equipped with an interpreter for
interpreting the Dalvik bytecode. Thus the ART runtime can
execute a method in either the native mode or interpreter
mode. In precise, by default, ART runs in native mode and
executes compiled native code because this mode has better
performance. However, if the method has no native code,
ART interprets its Dalvik bytecode in the interpreter mode.

There are five major phases required for the ART runtime
to execute the code of the methods, including loading the Oat

file, parsing the Dex file, resolving the classes, resolving the
methods, and executing the code of the methods. Precisely,
when the target app starts, the ART runtime first loads its
Oat file into the memory and uses an OatFile object to
store the relevant information. Then the Dex file contained
in the loaded Oat file is parsed by the runtime and the
parsing results are stored in a DexFile object. Afterward,
both the class and method information are resolved and
the results are stored in the Class and ArtMethod objects.
Thus the ART runtime can efficiently locate the code of a
method and then execute it when the method is invoked.
Such processing procedure can also help us to determine
the basic Dex data collection points in ART runtime and the
details are in Section 4.2.

2.4 Android App Packing
Intuitively, the Android packers usually protect the apps
from three aspects, including hiding the Dex files, preventing
Dex files from being dumped from memory, and improving
the bar of static analysis.

2.4.1 Hiding Dex files
The original Dex files of the packed apps are usually
hidden through dynamic releasing, dynamic modification,
and reimplementing with native code. The major protection
functionalities of the Android packers are implemented by
native code, which protects the original Dex files in the
packed apps through three major methodologies.

First, the protected Dex data is usually encrypted and
stored in special files, and then the packers dynamically
release them into the memory for execution during the
running of the apps. Thus these protected Dex data cannot be
statically obtained. It is worth noting that, for ART runtime,
the unpackers can straightforwardly obtain the hidden Dex
files if the protected Dex files are compiled by dex2oat.
Consequently, to prevent the hidden Dex files from being
obtained through such way, the packers usually dynamically
releases the hidden Dex data and they leverage ART runtime
to interpret the released bytecode.

Second, the packers also dynamically modify the Dex
data in the memory to protect the completed protected Dex
data being dumped from memory, and thus there may be
specific Dex data missed in the dumped Dex data if the Dex
data is not dumped at the correct Dex data collection points.

Third, we also find the sophisticated Android packers
reimplement the functionalities of specific methods using
native code. Hence there is no bytecode released for such
protected methods throughout the running of the apps. Note
that, although PackerGrind does not aim to convert the native
code into bytecode, it still has the capacity of recovering the
invoked framework APIs.

2.4.2 Preventing Dex Files from Being Dumped
The Android packers usually protect the Dex files from being
dumped from memory directly from the following three
major aspects.

First, the packers detect their running environments to
prevent the packed apps from running on the emulator
(i.e., Qemu) because much Android analysis and unpacking
tools leverage Android emulator to carry out dynamic

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 4 
 

1 private void initialize(void) { 
2   if(Packer.getRunningEnv() == EMULATOR) // Check running environment 
3      exit();            // Exit if running on an emulator 
4   Packer.antiMemDump(); // Prohibit memory dumping operations 
5   Packer.antiDebug();   // Prohibit debugging Java or Native code 
6   ...;                  // More initialization operations 
7 } 

 

(a) The initialization method
 
 

1 private void protectMethod(Bundle savedInstanceState) { 
2 }  
3 public void methodA(Bundle bundle) {// Protected methods 
4   Int mthIndex = 0x89ab;            // The index of current protected method 
5   Packer.releaseBytecode(mthIndex); // Release bytecode   
6   protectMethod(bundle);          // The method containing original bytecode 
7   Packer.destroyBytecode(mthIndex); // Destroy bytecode 
8 }                                      

 
 (b) The method after being protected

Fig. 2: A motivating Android packer.

analysis [31], [72], [73]. If the packers detect they are
running on the emulator, they will exit. To address this
issue, PackerGrind runs on the real smartphone and carries
out dynamic analysis by leveraging DBI (Dynamic Binary
Instrumentation) framework [48].

Second, there are also multiple tools that reverse engineer
and unpack Android apps using the debugging techniques
(i.e., ptrace()) but the process can just be attached once for
debugging. Hence, to prevent the packed apps from being
debugged by the unpacking or analysis tools, the packers
usually attach to the packed app with specific threads for
anti-debugging. Note that PackerGrind does not rely on such
techniques.

Third, the runtime unpackers usually dump the Dex
data in memory through invoking the library functions
of the Android system and thus the packers hook such
functions to detect and prevent the invocations of these
methods. Whereas, PackerGrind does not leverage these
library functions to dump Dex data in memory.

2.4.3 Impeding Static Analysis
There are already various existing techniques widely used to
protect Android apps statically, such as obfuscation [30]. The
packers also leverage such techniques to impede the packed
Dex file from being tampered straightforwardly when it
is dumped by the unpackers. More precisely, the packers
usually first obfuscate the code in the original Dex file and
then pack the obfuscated Dex file during packing. When
the packed app runs, the packers dynamically release the
obfuscated code into memory for execution. As a result,
after using unpackers to recover the obfuscated Dex file,
the analysts need to further deobfuscate the bytecode in the
recovered Dex file for the ease of comprehending the app. In
particular, the obfuscation methodology aims to protect the
target app by making it obscure to avoid tampering. Conse-
quently, deobfuscation focuses on recovering the information
from the obfuscated apps, such as implicit data and logics.
Deobfuscation is out of the scope of this paper.

3 MOTIVATING EXAMPLE

Existing Android unpackers are implemented based on
the knowledge through reverse engineering the Android
packers, and perform a one-pass process to unpack the
packed apps. Such unpackers can be easily circumvented

by leveraging new or evolved packers because they are
not adaptive to the changes of the packers. Consequently,
the adaptive unpacking capacity is an active demand for
Android unpackers.

We use the code snippets in Fig. 2 as a motivating
example, which includes the initialization (i.e., Fig. 2a)
implemented in the embedded packing Dex file that contains
the packer’s customized code, and a protected method (i.e.,
Fig. 2b) in the hidden/protected Dex file. As shown in
Fig. 2a, when the packed app starts, the packer first checks
its running environment, and it will exit if the emulator is
detected (Line 2-3). Since some unpackers modify Android
system to dump the Dex data in memory to storage or ADB
(Android Debug Bridge) log. In Line 4 of Fig. 2a, the packer
hooks the library functions related to data access and ADB

log to prohibit dumping memory data. Moreover, it uses the
anti-debugging techniques (Line 5) to prevent the bytecode
and native code of the packed app from being debugged.

Fig. 2b shows the code of methodA() after it is packed.
The original implementation of methodA() is replaced with
the code between Line 4 and 7, as well as a method
index (i.e., 0x89ab) is assigned to it. Moreover, the callee
protectMethod() is empty and invoked between two JNI
functions (i.e., Packer.releaseBytecode() and Packer.destroyBytecode())
(Line 6). Packer.releaseBytecode() releases the original bytecode
of methodA() to the code area of protectMethod() according to its
parameter (i.e., the method index), and Packer.destroyBytecode()
removes the bytecode of protectMethod(). Consequently, the
original bytecode of MethodA() will be released to the code
memory of protectMethod() by Packer.releaseBytecode() for execu-
tion, and then removed by Packer.destroyBytecode() after execu-
tion. Consequently, protectMethod() is released with various
bytecode when it is invoked in different methods.

The existing unpackers, such as DexLego [50], DroidUn-
packer [31], and TIRO [69], cannot effectively obtain the
bytecode in protectMethod() (i.e., the original bytecode of
methodA()). More precisely, DexLego and TIRO rely on the
modified Android runtime and dump the Dex data in the
memory. Since this packer prohibits memory dumping by
hooking the related library functions (Line 4 in Fig. 2a), these
two packers cannot handle this packer. DroidUnpacker runs
on the emulator Qemu, and thus the packer will detect it
and exit (Line 2-3 in Fig. 2a). In addition, existing unpackers
usually collect Dalvik bytecode of a method once [71], [75],
[78] but the packer can release different bytecode for a
method at different call sites, and thus such unpackers cannot
collect all the bytecode of these methods effectively.

PackerGrind can handle this packer because it runs on
the real Android devices, iteratively monitors the packer’s
behaviors, and dumps memory data to files at multiple points
(i.e., the invocations of Java methods, runtime functions, and
library functions) leveraging the APIs of Valgrind [48] instead
of library functions. Moreover, in addition to collecting the
bytecode at special runtime functions, PackerGrind also gath-
ers the bytecode when the Java method (i.e., protectMethod()
in Fig. 2b) is invoked. Thus, it can collect all the bytecode
released for protectMethod() when it is invoked at different call
sites, and then reassembles all collected Dex data into a Dex
file.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 5

4 BASIC DEX DATA COLLECTION POINTS

PackerGrind collects the Dex data at the basic data collection
points by default, and will add more data collection points
if more Dex data is needed after analyzing the behaviors
of the target apps. Since all Dex data needs to be resolved
by the runtime (i.e., DVM or ART) before being executed, we
choose the basic Dex data collection points according to the
entire process from loading a Dex file into memory to the
execution of the bytecode in it. Such a process can be divided
into multiple phases, including loading Oat files (only for
ART), parsing Dex files, loading classes, resolving methods,
and interpreting methods.

4.1 Basic Data Collection Points in DVM
In DVM runtime, the process from reading Dex file to
executing the method can be divided into four major phases,
including loading Dex file, loading classes, resolving meth-
ods, and executing methods, and thus we define four basic
collection points to collect the dynamically released Dex data
during unpacking.

4.1.1 Dex File Loading Point
During loading the Dex file of the app to run, the DVM
runtime needs to parse the structures (i.e., the Dex file header)
of target Dex file and thus we can collect the structure
relevant information in the memory. Specifically, when
loading a Dex file, the runtime uses method dexFileParse() to
parse it and then store the parsing results in an instance of
of structure DexFile. Then the DexFile instance is used
to represent this Dex file in memory. Since DexFile is
initialized according to the Dex file header in runtime method
dexFileParse(), we locate the memory addresses of the loaded
Dex file as well as the corresponding DexFile instance when
dexFileParse() is invoked. Afterward, we can parse the Dex
file in memory with the help of the corresponding DexFile

instance to determine the addresses of specific Dex structures
or items. Note that, we also reassemble the collected Dex data
into valid Dex file based on the Dex structures represented
by the DexFile instance.

4.1.2 Class Resolving Point
Since the packers can just release the class relevant informa-
tion into memory before the classes are resolved, we collect
Dex data when the classes are resolved by the runtime by
default. During class resolving, the DVM runtime calls
the method dvmDefineClass() to resolve the target class and
stores the resolving result in a ClassObject instance, which
contains the implementation details of the class, such as its
properties, filed, and methods. Hence, we use the runtime
method dvmDefineClass() as a basic Dex data collection point
and collect the class relevant Dex data when the classes are
resolved by the runtime.

4.1.3 Method Resolving Point
We also collect the Dex data when the methods in the Dex
file are resolved by the DVM runtime because the packers can
release the method relevant information only when they are
used by the runtime for method resolving. More precisely, in
memory, the DVM runtime represents each method using the
DexMethod and the Method instances, which are initialized

by the runtime methods dexCompareNameDexcriptorAndMethod()
and dexGetCode() based on the method relevant information.
The former is leveraged to check whether the method is
a finalize one and the later is invoked to read the code
related information from the Dex file. However, the method
dexGetCode() is an inline function and not exported. Conse-
quently, we specify dexCompareNameDexDescriptorAndMethod() as
a basic point for locating the memory addresses of DexMethod
as well as Method instances, and then collecting the method
relevant information.

4.1.4 Method Execution Point
Since the bytecode of a method is just required when this
method is interpreted by the DVM runtime concretely, the
packers can release the bytecode only when the method
is executed to prevent its code from being dumped. To
address this issue, we choose to collect the bytecode of the
methods when they are executed. Note that, the dynamically
released methods can be invoked through two ways, JNI
reflection or Java reflection through the runtime functions
like dvmInvokeMethod(), dvmCallMethodA(), and dvmCallMethodV().
Since these runtime functions call dvmInterpret() for both fast-
interpreter and portable-interpreter, we select it as the basic
point to collect the bytecode of the methods when they are
to be executed.

4.2 Basic Data Collection Points in ART
Similar to the processing phases in the DVM runtime, the
ART runtime needs to interpret the dynamically released
Dalvik bytecode through five phases, including loading Oat
file, parsing Dex file, resolving classes, resolving methods,
and executing methods. Hence we also specify the basic Dex
data collection points in ART runtime according to these five
phases.

4.2.1 Oat File Loading Point
Since the Dex file can be stored in the Oat file as a specific
portion, the ART runtime first loads the Oat file into memory
and then determines the memory region containing the Dex
data through parsing the Oat file. Hence, we first locate the
Dex file relevant information in the mapped Oat file when the
Oat file is loaded into memory by the ART runtime. When
an app starts to run, the runtime function OatFile::Open() is
invoked to load and parse the target file (i.e., an Oat file).
Also, a OatFile object is created to store the parsing result
in the runtime function OatFile::Setup(). Hence, we locate the
OatFile object in the memory as well as determine the
memory addresses of the loaded Oat files when these two
functions are invoked.

4.2.2 Dex File Parsing Point
Afterward, the ART runtime further parses the Dex files that
are already mapped into the memory and hence we can
collect the Dex file structure related information when the
Dex files are parsed. In precise, the ART runtime invokes the
methods OatFile::OatDexFile::OpenDexFile() and DexFile::OpenFile()
to load the Dex files contained in the Oat file and stored
in the storage into memory, respectively. Then each file in
memory is referred by a DexFile object. Consequently, we
leverage these two methods as the basic Dex data collection

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 6

points to locate the Dex files and DexFile objects in the
memory. Such information will be used to collect the more
Dex items in memory, such as String_ids and Type_ids,
and reassemble the collected Dex data into valid Dex file.

4.2.3 Class Resolving Point
We collect the dynamically released class relevant Dex data
(e.g., class_def_item) when the ART runtime resolves
the classes in the Dex file. In ART runtime, each class is
represented by a Class object that is created through loading
and parsing the class related data in the Dex file by invoking
the method DefineClass() of class ClassLinker. Consequently,
we specify this function as a basic point for collecting the
Class related Dex data in the Dex files as well as determining
the Class objects in memory.

4.2.4 Method Resolving Point
We collect the Dex data related to the methods when
the ART runtime resolves the method information (e.g.,
registers_size and insns_size) in the Dex file. The
ART runtime uses the ArtMethod object to represent a method
in the memory, which is initialized in the method LoadMethod()
through parsing the method information. Then the initialized
ArtMethod object is linked in the method LinkCode(). Hence we
leverage these two methods to locate the ArtMethod objects
and collect the corresponding implementation information.

4.2.5 Method Execution Point
We collect the code of the methods when they are in-
terpreted by the ART runtime because the code is only
actually used when the methods are executed. Specifically,
ExecuteSwitchImpl() and ExecuteGotoImpl() are the entries of the
two types of interpreters in ART runtime (i.e., the goto-based
and switch-based interpreters). Thus we collect the bytecode
stored in the CodeItem objects when the ART runtime starts
to interpret the methods through both functions.

5 PACKERGRIND

In this section, we first present the overview of PackerGrind
and then describe the details about the unpacking approach
of PackerGrind including dynamic monitoring, Dex file
recovery, as well as packing behavior analysis.

5.1 Overview
To be adaptive to various Android packers, PackerGrind

adopts the learning-based unpacking process shown in Fig. 3
to recover Dex files. It includes two major phases: analyzing
Android packers and unpacking apps.

5.1.1 Analysis of Android Packers
When a new packer is encountered, PackerGrind first lever-
ages dynamic instrumentation mechanism (Section 5.2) to
monitor the packers’ behaviors in three layers (i.e., the
runtime, system, and instruction layers) and generates a
tracking report storing the execution trace of the packer.
Meanwhile, PackerGrind dynamically collects Dex data at
the specified points and then reassembles the collected data
into a valid Dex file when the dynamic monitoring finishes
(Section 5.3). Also, PackerGrind performs static analysis on

Unpacking apps

Packer 
recognition

Dex 
File

Data Collection 
Points

Signatures 
of Packers

Analysis of Android Packers

 AnalysisRecovery

Tracking 
report

Collection 
points 

Packed 
app 

Dex files

Monitoring

Recovery

Fig. 3: The unpacking process realized by PackerGrind.

the Dex file to check whether the bytecode of all executed
methods has been collected. If it is not true, more Dex data
collection points are chosen through analyzing the tracking
report and the Dex file (Section 5.4), and PackerGrind will re-
run the apps to track more packing behaviors and collect Dex
data at more collection points. Otherwise, a configuration
file is generated to specify the Dex data collection points
for PackerGrind to unpack the apps packed by this packer
afterward.

Moreover, during the analysis phase, PackerGrind also
generates the signatures of packers according to their ini-
tialization information. More precisely, the packers have
different implementations and various protection code are
added to target apps during packing. Thus we leverage three
types of information as the packers’ signatures, including the
native libraries, classes, and methods, which are embedded
into the packed apps by the packers to protect the original
implementations (more details in Section 5.5.1). Note that,
the signatures will be used to recognize the packers that pack
the target apps during unpacking, which can speed up the
unpacking process.

5.1.2 Unpacking Apps
Given an app to be unpacked, PackerGrind first determines
its packer signature and then compares it with the signatures
of the packers that have been analyzed (Section 5.5). If a
new packer is encountered, PackerGrind will leverage the
aforementioned adaptive mechanism to analyze this packer
and determine the Dex data collection points. Otherwise,
PackerGrind will directly collect the Dex data at the Dex
data collection points determined for this packer and then
reassemble the collected data into a valid Dex file.
Unpacking workflow: PackerGrind leverages an iterative
process to unpacking a packed app through running it multi-
ple times. Specifically, during the first running, PackerGrind
runs the packed apps for a specified duration, during which
PackerGrind first tries to trigger all the activities and services
implemented in the app through generating various events.
Meanwhile, PackerGrind collects the Dex data at the basic
Dex data collection points (Section 4) and assembles them
into a Dex file after the app stops. Note that, we identify
the activities and services implemented in the app through
decompiling the app and then parsing its manifest file. Also,
we generate events by leveraging monkeyrunner [12] to
trigger these activities and services.

Afterward, PackerGrind checks whether all methods
implemented in the assembled Dex file contain bytecode. If
so, the unpacking process finishes. Otherwise, more Dex data
collection points are chosen through analyzing the tracking
report and the assembled Dex file. Also, we determine which

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 7

events are required to trigger the invocations of the target
methods and then instruct monkeyrunner to generate these
events during the next running. Subsequently, PackerGrind
runs the target app again. Such iterative unpacking process
lasts until all methods in the assembled Dex file have
bytecode or the number of successfully recovered methods
does not increase. Note that, we regard the methods in the
assembled Dex file with valid Dalvik bytecode as being
recovered successfully because the packers can fill special
methods with invalid data or dynamically released their
valid bytecode during the running of the packed app. For
example, when PackerGrind unpacks the app packed by the
Qihoo packer, the iterative unpacking process terminates
when the number of successfully recovered methods does
not increase. Since Qihoo reimplements special methods
with native code, the original contents of these methods are
removed and never released. As a result, the contents of such
reimplemented methods cannot be recovered even though
the iterative process continues.

5.2 Monitoring

During dynamic monitoring, PackerGrind mainly focuses on
tracking the Dex data protect relevant behaviors in multiple
layers and collecting the Dex data at the default Dex data
collection points.

5.2.1 Runtime Layer Monitoring
To track the dynamic releasing, modification and execution
of the Dex data in ART runtime, we wrap 17 crucial ART
runtime functions closely related to the protected Dex data
(in Table 1). Then, PackerGrind can locate the memory of the
Dex data according to parameters of the wrapped functions
when they are invoked, and monitors the modification of the
Dex data in memory. These functions can also be used as the
data collection points to collect the dynamically released Dex
data.
¬ Dex Data Parsing and Loading. As introduced in Section 4.2,
when an app starts, the ART runtime invokes OatFile::Open()
and OatFile::Setup() to open its Oat file and create a OatFile

instance/object storing the basic information about this Oat
file, such as the memory map of the Oat file and the Dex files
contained in the Oat file. Then OatFile::OatDexFile::OpenDexFile()
is utilized to parse the Dex files in the Oat file, which
is already mapped into memory. Also, if the Dex file is
dynamically loaded by the packer from the file directly,
DexFile::OpenFile() is used to load the Dex file into memory.
Both functions invoke DexFile::OpenMemory() to parse the Dex
data in memory and represent each Dex file with a DexFile

instance/object.
When the Oat file and Dex files are loaded

and parsed, the ART runtime further employs
ClassLinker::DefineClass() to resolve and link the loaded
classes. Then, ClassLinker::LoadMethod() is utilized to load the
methods, each of which will be represented as an ArtMethod

instance/object, and then the code of the ArtMethods are
linked in ArtMethod::LinkCode().

Hence, by wrapping these functions, PackerGrind can
identify the memory addresses of the target Oat and Dex data
when these functions are invoked, such as the native code
and bytecode of the methods represented by ArtMethods.

TABLE 1: The wrapped ART runtime functions and their
corresponding target events.

Category Wrapped Functions Monitored Events

Dex Data

parsing

and

loading

OatFile::Open()

OatFile::Setup()
OatFile creation and setup

OatFile::OatDexFile::OpenDexFile()

DexFile::OpenFile()

DexFile::DexFile()

DexFile::OpenMemory()

Dex file’s parsing and loading

ClassLinker::DefineClass() Class defining

ArtMethod::LoadMethod()

ClassLinker::LinkCode()
Method loading and linking

Method

Execution

InvokeWithVarArgs()

InvokeWithJValues()

InvokeVirtualOrInterfaceWithJValues()

InvokeVirtualOrInterfaceWithVarArgs()

JNI reflect invocation

ExecuteGotoImpl()

ExecuteSwitchImpl()
Method interpretation

Native Code
JavaVMExt::LoadNativeLibrary() Native code loading

ArtMethod::RegisterNative() Native code reregistration

TABLE 2: Wrappers for tracking Dex and DVM related events.

Category Wrapped Functions Monitored Events

Dex Data

dexFileParse() Dex file loading and parsing

dvmClassDefine() Class loading and defining

dexCompareNameDescriptorAndMethod() Method resolution

Method

Invocation

dvmInvokeMethod() Java reflection invocation

dvmCallMethodV()

dvmCallMethodA()
JNI reflection invocation

Native Code dvmLoadNativeCode() Native code loading

­ Method Execution. Since the packer usually dynamically
invokes the target methods through JNI reflection,
PackerGrind monitors such behaviors through
wrapping four JNI related functions, InvokeWithVarArgs(),
InvokeWithJValues(), InvokVirtualOrInterfaceWithJValues(), and
InvokeVirtualOrInterfaceWithVarArgs(), which are utilized to
invoke methods according to the types of arguments.
PackerGrind monitors the executions of Dalvik bytecode
because the packer could release the protected bytecode just
before execution and then erase them after execution. In
ART runtime, two types of interpreters are implemented,
the goto-based interpreter and the switch-based interpreter.
Correspondingly, the functions ExecuteGotoImpl() and
ExecuteSwitchImpl() are used to call the specific interpreter,
respectively. Hence, PackerGrind wraps these two functions
to monitor the interpretation of methods’ bytecode. These
two functions are also used to track the methods with only
bytecode in Section 5.2.4.
® Native Code Loading and Registration. The Android pack-
ers usually implement their major protection mechanisms
in native code and provide JNI method for invoking
the native code. Thus, when a packed app starts, the
runtime first loads the native library of the Android
packer in JavaVMExt::LoadNativeLibrary(), and then registers the
ArtMethods of JNI methods with their corresponding native
code in ArtMethod::RegisterNative(). Consequently, PackerGrind
wraps JavaVMExt::LoadNativeLibrary() to locate the native code
of the packers and ArtMethod::RegisterNative() to locate the na-

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 8

tive code of every JNI ArtMethods for tracking the behaviors
of the packers.

5.2.2 System Layer
To protect the protected Dex data (e.g., the original Dex file
or a specific Dex item) from being dumped, the packers
usually invoke system library functions to dynamically
release and modify the Dex data in memory and such
functionalities are implemented in their native modules.
Hence, to track such behaviors, PackerGrind monitors the
invocations of the corresponding library functions through
wrapping them in the system layer. Currently, PackerGrind
supports various types of functions, including memory
management functions (e.g., alloc() and free()), file operations
(e.g., read(), write(), and open(), and data movement func-
tions (e.g., memcpy() and strcpy()). Additionally, PackerGrind
also tracks the invocations of specific system calls (e.g.,
sys protect(), sys map(), and sys unmap()) which are usually lever-
aged by the packers to dynamically release and modify the
hidden Dex data, such as allocating memory regions and
the modifying memory access permissions. Thus, through
monitoring these system calls, PackerGrind can determine
the memory regions storing the Dex data and then monitor
the modifications of these Dex data.

Moreover, PackerGrind can also be leveraged to perform
other special actions through wrapping the corresponding
functions. For instance, to detect whether the packed apps
are being analyzed, there are packers checking the time
consumed by special operations (e.g., iterative loop), such as
the Ijiami packer. Hence, to avoid being detected, we specify
PackerGrind to change the results of sys gettimeofday() through
wrapping this function because it is invoked to obtain the
timestamps for time checking.

5.2.3 Instruction layer
Besides invoking the data copy and move functions (e.g.,
memcpy() strcpy()), the packers can also modify the Dex
data in memory leveraging their customized code and
hence PackerGrind dynamic tracks the Store instructions
for monitor Dex data operations. Since PackerGrind has
identified the memory locations of both the packing libraries
and the system libraries, it can determine whether the Store
instructions belong to the packer’s libraries according to their
addresses.

Specifically, PackerGrind dynamically inserts track-
ing statements before each Store (i.e., Ist_StoreG and
Ist_Store) statement when the native code is translated
into IR statements and then the tracking statements will be
invoked just before the Store statements. Since PackerGrind

maintains all the memory regions storing the released Dex
data, it first checks whether the Dex data is modified accord-
ing to the target addresses of the tracked Store statements. If
so, the information about the statement addresses, the target
addresses, and the data to be stored are all logged into the
tracking reports for further Dex file reassembling and new
Dex data collection point determination.

5.2.4 Java Method Invocation Tracking
To collect the dynamically released Dalvik bytecode at the
method level, PackerGrind also tracks the invocations of the

Java methods. Consequently, even if different implementa-
tions/bytecode are released to the same Java method under
protection at different call sites, PackerGrind can collect all
the released bytecode when they are invoked. Generally,
the methods to be tracked by PackerGrind can be divided
into three major types, the compiled methods with both
Dalvik bytecode and native code, the JNI methods that have
native code in customized libraries without Dalvik bytecode,
and the protected methods containing dynamically released
bytecode and no native code. They are tracked using different
mechanisms.
¬ The Compiled Methods. PackerGrind first parses the OAT
files, which are generated from the embedded packing Dex
files by dex2oat, to obtain the entry points of the compiled
methods according to the beginning addresses of their native
instructions. When the native instructions resulted from the
Dalvik bytecode are translated to IR blocks by valgrind,
PackerGrind dynamically inserts additions statements (i.e.,
the callback function getCallee()) at the method entry points.
Note that an IR block is a collection of IR statements with
one entry and multiple exit points. Consequently, if the
entry point of an IR block is also the entry point of a
method, PackerGrind inserts an additional IR statement to
call getCallee() to identify the invoked method and parse its
parameters.

However, it is not straightforward to monitor the exiting
of the compiled methods, because a method usually contains
multiple exit points and returns to different addresses in its
different call sites. PackerGrind leverages the method call
convention of ARM architecture to overcome this challenge.
Precisely, we design a customized method call stack structure
mthStack in PackerGrind. Thus, in getCallee(), PackerGrind

reads the return address of the method to be invoked from
the link register lr and pushes it into mthStack. PackerGrind
inserts additional IR statement before each branch (i.e.,
Ist_Exit and Ist_Next) statement to call the callback func-
tion isMthRet() for checking whether the current method is
returning. In isMthRet(), PackerGrind compares the target
address of the branch statement with the top address in
mthStack. If they are equal, the current function will return,
and the PackerGrind pops the top address from mthStack.
Also, PackerGrind parses the method result in isMthRet() if
the method returns the result.
­ The JNI Methods. We adopt a similar mechanism to track
the JNI methods. However, the native code of the JNI
methods are implemented in the customized native libraries,
which are also protected by the packers. Moreover, the
native code is dynamically registered to the ArtMethod

objects. Note that, in ART runtime, each method is repre-
sented by an ArtMethod object, which stores its general
information (e.g., the offset of its Dalvik code item and
the method index in the Dex file). Hence it is unable to
identify the memory addresses of their native code through
parsing the ArtMethods or decompiling the native libraries
in advance. To address this issue, PackerGrind wraps the
runtime function ArtMethod::RegisterNative() because it is used
to register the native code to the corresponding ArtMethod

object. Thus PackerGrind obtains the memory addresses of
the JNI methods when this function in invoked.
® The Interpreted Methods. To protect special Dalvik bytecode
against being unpacked when they are compiled into native

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 9

instructions by dex2oat, the packers usually release the
protected bytecode into memory during execution, and then
these bytecode will be interpreted by the ART runtime. Note
that, the packers may release different implementations for
the same method at different call sites. Hence, we need
to track the interpreted methods for collecting all their
dynamically released bytecode.

We choose to monitor the interpreter of ART runtime
for tracking the invocations of the methods without native
code. Precisely, for executing the Dalvik bytecode, there
are two types of interpreters implemented in ART runtime:
the goto-based interpreter and the switch-based interpreter,
which dispatches the Dalvik bytecode instructions through
goto and switch, respectively. They provide the functions
ExecuteGotoImpl() and ExecuteGotoImpl() for the runtime to
interpret a method, respectively. Note that, one parameter of
these two functions is the address of the bytecode.

Consequently, to track the interpreted methods,
PackerGrind identifies the memory of these methods’ byte-
code when they are linked by the runtime function
ClassLinker::LinkCode(). Note that, PackerGrind only obtains
the memory addresses of the methods’ bytecode instead of
the bytecode, and the packer could dynamically release the
valid bytecode just before the methods being interpreted.
Hence, PackerGrind wraps ExecuteGotoImpl() and ExecuteGo-
toImpl() to identify the memory address of the bytecode to be
interpreted, and determines the invoked methods according
to these addresses.

5.3 Recovery
To recover valid Dex files from the packed apps, PackerGrind
first collects the dynamically released Dex data in the
memory and then reassembles them into Dex files, which
can be directly decompiled by the existing static analysis
tools [6], [8]–[11].

5.3.1 Dex data collection
When the packed app is launched, PackerGrind first locates
the DexFile object representing the Dex file in the memory,
and then starts to collect the Dex data through parsing
this object. When PackerGrind finds a new DexFile object,
it will initialize a shadow DexFile to store the collected
Dex data because the Dex data represented by the original
DexFile object may be dynamically modified by the packer.
Afterwards, when a new Dex data item is collected at the
Dex data collection points, PackerGrind first checks whether
the data item is already in the memory represented by
the shadow DexFile. If so, PackerGrind directly copies the
collected data to the target memory. Otherwise, PackerGrind
first creates a new memory structure and then copies the
data to this memory structure. Also, PackerGrind set the
corresponding offsets of the shadow DexFile and then this
new collected data item can be located through parsing
DexFile object.

5.3.2 Dex file assembling
Since the packer usually releases the hidden Dex data into
discontinuous memory regions to prevent the Dex data from
being directly dumped, the collected Dex data in the shadow
memory are not continuous and we need to reassemble

 
 

1 private void methodA_protectMethod_1(Bundle savedInstanceState) { 
2   ...; // Code recovered from the packed app during runing 
3 }  
4 public void methodA(Bundle bundle) {  
5   Int mthIndex = 0x89ab;              
6   Packer.releaseBytecode(mthIndex);     
7   methodA_protectMethod_1(bundle);  // Replaced with the new unapcked method         
8   Packer.destroyBytecode(mthIndex);   
9 }                                      

 

Fig. 4: The unpacking results of the motivating example.
 

 

 

 1 public void onCreate(Bundle savedInstanceState) { 

 2   super.onCreate(savedInstanceState); 

 3   setContentView(C0000R.layout.main); 

 4   this.display = ((WindowManager) getSystemService("window")).getDefaultDisplay(); 

 5   this.mLibrary = GestureLibraries.fromRawResource(this, C0000R.raw.gestures); 

 6   if (!this.mLibrary.load()) { 

 7       finish(); 

 8   } 

 9   findViewById(C0000R.id.gestures)).addOnGesturePerformedListener(this); 

10 } 

 
 (a) The original onCreate().
 
 
 

 1 public void onCreate(Bundle savedInstanceState) { 
 2   A.V(0, this, new Object[]{savedInstanceState}); 
 3 } 

 

(b) The onCreate() in an packed app.

 

 

 
 
 

 1 Invoke:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 
 2    JNI_Reflection: Landroid/app/Activity; onCreate(VL) 
 3    JNI_Reflection: Landroid/app/Activity; setContentView(VI) 
 4    JNI_Reflection: Landroid/app/Activity; getSystemService(LL) 
 5    JNI_Reflection: Landroid/view/WindowManagerImpl; getDefaultDisplay(L) 
 6    JNI_Reflection: Landroid/gesture/GestureLibraries; fromRawResource(LLI) 
 7    JNI_Reflection: Landroid/gesture/GestureLibraries$ResourceGestureLibrary; load(Z) 
 8    JNI_Reflection: Landroid/app/Activity; findViewById(LI) 
 9    JNI_Reflection: Landroid/gesture/GestureOverlayView; addOnGesturePerformedListener(VL) 
10 Return:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 

 
 
 

(c) Tracking report of A.V().

Fig. 5: The method onCreate() invoked before and after
packing and tracked information about A.V().

them into a valid Dex file just before exiting. Consequently,
PackerGrind achieves this purpose through two major steps.
First, PackerGrind puts the collected Dex data items of the
same type together because the data structures storing the
same type of data are stored in the continuous memory
regions in the Dex file. Second, PackerGrind allocates a
continuous memory region for storing the new Dex file
and then copies all reconstructed Dex data structures to
it. Meanwhile, PackerGrind sets the size and offset fields
of these structures as well as other metadata. Finally, the
structured and linkable data in the continuous memory
region is dumped to the storage as the reassembled Dex
file.

Recovering method with various implementations: Such
as the motivating example in Section 3, different implementa-
tions could be dynamically released to the same method
at different call sites. To address this issue, PackerGrind

collects different bytecode released to a method at different
call sites, and adds a new method containing the newly
collected bytecode to replace the original method at this
call site. For example, Fig. 4 shows the unpacking results
of the motivating example (i.e., Fig. 2b) and the method
protectMethod() is replaced with the newly added method
methodA protectMethod 1() that contains the bytecode collected
at the call site in Line 7 of Fig. 4.

Native methods inspection: The bytecode of the specific
Java methods in the apps can be re-implemented leveraging
native code during being packed, and such methods are then
invoked through JNI during the running of the packed apps.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 10

Although PackerGrind is not designed to convert the native
code into bytecode, it can provide useful information related
to the invocations of the native methods because of its cross-
layer monitoring capability. More precisely, packed apps
have to use JNI reflection to invoke Android framework APIs
in Java. Since PackerGrind tracks both the app’s customized
Java methods and the Android framework methods, it can
provide rich information about the interactions between the
native code and the Java code.

For example, Fig. 5 shows the method onCreate() in the
original app (Fig. 5a) and that in the app packed by Baidu
(Fig. 5b). After being packed, the functionalities of onCreate()
have been re-implemented in the native code of JNI method
A.V() and it leverages JNI reflection to call the original
Android framework APIs. From the tracked callees of A.V()
shown in Fig. 5c, we can infer the original implementation
and functionalities of onCreate(). Take the method onCreate() of
class android/app/Activity invoked at Line 2 of Fig. 5c as an
example, it corresponds to the method invocation at Line 2 of
Fig. 5a. Also, according to the API addOnGesturePerformedLis-
tener() invoked at Line 9 in Fig. 5a, we can infer that one
functionality of method onCreate is to add a gesture listener
to the activity [20]. Consequently, the tracked callees can
also assist the framework API based static analysis tools (e.g.,
PScout [22] and DroidSafe [35]). Note that, other unpackers
(e.g., [50], [69], [75], [78]) cannot profile such behavior.

5.4 Analysis

After the dynamic monitoring of a new packer, a tracking
report is generated containing the information about the
invoked customized Java methods, the Android framework
APIs, the specified runtime functions, the system functions,
and the modifications of special memory (i.e., the Dex data
related regions). PackerGrind identifies the behaviors of the
packer through analyzing the tracking report, and then
generates the packer’s signature and determines the Dex
data collection points according to its behaviors.

During dynamic monitoring, PackerGrind focuses on
three types of information, which are also stored in the
tracking report for further analysis.

l Dex data related items. If a DexFile object that represents
a new Dex file in the memory is found, PackerGrind will
obtain the information related to the metadata, classes,
methods and bytecode in the Dex file and then output them
to the tracking report. Moreover, the object ArtMethod is
leveraged to represent a Java method in the runtime, and
hence PackerGrind also logs the information related tho
ArtMethod to the tracking report for analyzing the invoked
methods.

l Memory modification. PackerGrind maintains a Dex file
list containing the memory ranges of all Dex related data in
the runtime, such as DexFile objects and ArtMethod objects.
When functions or instructions are used to modify the
data in these memory, PackerGrind writes the modification
information into the tracking report. Note that, the packers
can release the data into memory through two ways. One
is to release the valid data into the memory of the Dex file
directly, and the other is to modify the corresponding pointer
to the memory addresses that contain the valid bytecode. The
system layer information is related to the invoked functions,

target addresses, the Dex data structures containing the target
address (e.g., Dex header field), and data written to the target
addresses. Additionally, the instruction layer information
is related to the instruction addresses, instruction types
(i.e., Ist_StoreG and Ist_Store), target addresses, and the
stored value.

l Method invocation. PackerGrind monitors both the invo-
cations and the returns of the wrapped methods as well as
their parameters and results in the runtime layer and the
system layer. Note that, the monitored functions include both
JNI/compiled functions and the Java methods and all the
monitored information are logged into the tracking reports.

The behaviors of Android packers can be roughly divided
into two types, including the initialization behaviors and
the dynamic Dex data releasing behaviors, which will be
leveraged to recognize the packers and determine Dex data
collection points, respectively.

5.4.1 The Initialization Behaviors
The code of a packed app includes both the code of the
Android packer (i.e., the bytecode of the embedded packing
Dex file) and the original protected code (i.e., the bytecode
of the original Dex files). The embedded packing code first
execute to load the native code and initialize the execution
environment before releasing the protected Dex files. Since
the initialization behaviors are completely performed by the
packers, they are packer-specific and we recognize packers
based on such behaviors (details in Section 5.5).

5.4.2 Dex Data Releasing Behaviors
PackerGrind analyzes the Dex data releasing behaviors with
the purpose to identify the points when the valid Dex
data are released into the memory by the packers. During
analyzing the Dex data releasing behaviors, PackerGrind

focuses on the memory data modifications of both the data
items in the Dex file and the data objects that are used to
represent the Dex data in runtime, such as the DexFile and
ArtMethod objects, because the packers need to guarantee
that the Dex data is valid when it is executed or interpreted
by the runtime.

By exploiting the insight that a tracked portion (i.e., an
item in the Dex file or a Dex related object) should be valid
right before being used, we summarize four major types
of protection patterns: (1) it is always valid (T); (2) it is
changed to valid value before its first use and not modified
afterward (FmT); (3) it is valid until its last use and then
modified to invalid value (TmF); (4) it is altered to valid
value before being used and turned to invalid after the
use (FmTmF); Although the basic protection patterns are by
no means comprehensive, they cover all packed samples
available to us. Note that PackerGrind also supports users to
define customized patterns through analyzing the tracking
report.

PackerGrind identifies the protection pattern of each
Dex data item and object (i.e., P ) through analyzing the
modification on it and its use in the tracking report. Note
that PackerGrind determines the use of P according to the
invoked runtime functions and Java methods. For example,
when a class is defined in DefineClass(), the corresponding
class data item in the Dex file is valid. Similarly, the bytecode
of a method is valid when the method is interpreted in

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 11

ExecuteSwitchImpl() or ExecuteGotoImpl(). After the analysis of
the Dex data releasing behaviors, PackerGrind outputs the
modifications of each Dex data item P as well as its status
(i.e., valid or invalid) according to the corresponding invoked
methods, and this information will be used to determine the
Dex data collection points in Section 5.4.3.

5.4.3 Dex Data Collection Point Determining

PackerGrind can specify the invocations or returns of the
special methods as data collection points and it determines
such points according to the packing behaviors of the
packers. For the Dex data items protected through T and
TmF, PackerGrind collects the valid data when they are
first encountered in the memory. If the Dex data items are
protected using FmT and FmTmF, PackerGrind collects their
data when they are changed to valid values.

Furthermore, PackerGrind compares all the bytecode
collected for a Java method to determine whether the method
has various implementations. If it is true, PackerGrind will
perform method granularity bytecode collection for this
method, namely, PackerGrind will track the invocations of
this method and collect its bytecode every time it is invoked.

For a newly encountered packers, since no packing be-
haviors tracked, PackerGrind leverages the default Dex data
collection points to dump the Dex data in memory during the
first run, and thus the recovered Dex file may contain invalid
data. For such packers, new Dex data collection points will
be determined during the analysis phase and then we run
PackerGrind again to collect the valid Dex data at points.

5.4.4 Static Bytecode Analysis

Since the dynamic Dex data releasing and modification
functionalities of the packers are always implemented in
the native code of special JNI protection methods, it is a
challenge to trigger these methods to release the protected
Dex data.

Currently, we leverage IntelliDroid [68] to determine
how to trigger these JNI methods through extracting the call
graphs from the Dex data that is already dumped. Precisely,
given a set of targeted behaviors (e.g., specific framework
APIs), IntelliDroid traverses the app’s call graph to find
paths to these behaviors. Meanwhile, it also extracts path
constraints, which are used to determine the input values that
can trigger these paths. Then, IntelliDroid takes extracted
paths/constraints and injects the generated input values
to the Android device to trigger the targeted behaviors.
Consequently, we first determine the JNI methods in the
Dex file that is already unpacked from the target app, and
then leverage IntelliDroid to identify the execution paths to
these functions. Afterwards, we trigger the app to execute
the identified paths and invoke these JNI methods to release
the target protected bytecode for collection. Such as the
motivating code shown in Fig. 2b, the real bytecode of
method protectMethod is just released into memory when
the JNI protection method Packer.releaseBytecode is invoked.
Consequently, the method protectMethod dumped before
invoking Packer.releaseBytecode contain no bytecode, and
thus we further collect its bytecode through triggering
Packer.releaseBytecode by applying IntelliDroid to identifying
the execution path to it.

 

���¼��¯�GD¯����£�
���½�����¯>G<UU¯����¡�
���¾�������¯�>JH�<GD�HJ=DN@>@IC<I>@��OP=�KKGD><ODJI�¯�
���¿�����¢�� �
���À�����¯GD=M<MT¯����¡�
���Á�������¯GD=HJ=DN@>�NJ¯����
���Â�������¯GD=HJ=DN@>S�NJ¯����
���Ã�������¯GD=HJ=DN@>T�NJ¯����
���Ä�������¯GD=HJ=DN@>U�NJ¯����
��¼»�������¯GD=HJ=DN@>U¼�NJ¯����
��¼¼�������¯GD=HJ=DN@>T¼�NJ¯�
��¼½�����¢�� �
��¼¾�����¯H@OCJ?¯����¡�
��¼¿�������¯<OO<>C�<N@�JIO@SO��¯�
��¼À�����¢�� �
��¼Á�����¯NDU@¯����Ã�
��¼Â��¤ 

 
Fig. 6: The signature of Ali packer.

5.5 Packer Recognition
To recognize the packers that pack the target apps, we
generate the signatures of the known packers through
extracting the packing features of apps packed by them
previously (Section 5.5.2). Thus, during unpacking phase,
we also extract the packing features of the target packed
apps (Section 5.5.1) and then recognize the packers through
comparing the extracted features with the signatures of
known packers (Section 5.5.3).

5.5.1 Extracting Packing Features of Apps
Although the apps have various implementations, similar
code will be embedded to protect the original bytecode,
such as detecting running environment and releasing pro-
tected bytecode, when they are packed by the same packer.
Hence, we extract three types of embedded information
from each packed app as its packing features, including
the native libraries (flib), classes (fcla), and method (fmth)
embedded by the packer. In particular, the classes and
methods are usually used to detect and initialize the running
environment. The code in the native libraries usually focus
on the functionalities that cannot be realized by bytecode,
such as dynamically releasing and protecting the original
Dex data during the running of the app, because bytecode
cannot directly operate memory and system (e.g., allocating
memory, hooking functions, and injecting processes). Given a
packed app a, PackerGrind first extracts its packing features
before collecting the protected Dex data and we use Fa to
denote the packing features of the packed app a, namely
Fa = falib ∪ facla ∪ famth.

5.5.2 Building Signatures of Packers
Since a packer usually has various versions but perform
similar packing behaviors, we combine the packing features
extracted from all the known apps packed by the packer P
(details in Section 5.5.1) as the signature (SP) of this packer. In
this paper, we use P to represent a packer that has multiple
versions and SP to denote its signature. The SP contains
three types of information, including the native libraries
sPlib, classes sPcla, and methods sPmth embedded into the apps
packed by the packer of various versions. In addition, the
signatures of the packers are updated during unpacking

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 12

apps. More specifically, if an app a′ packed by the unknown
packer P′ is encountered, we identify P′ manually and then
add the packing features (i.e., fa

′

lib, fa
′

cla, and fa
′

mth) of a′ to
the signature of P′ (i.e., sP

′

lib, sP
′

clz, and sP
′

mth).
For example, Fig. 6 shows the signatures built for Ali

packer, which includes 8 items, namely one native library,
six classes, and one method, and this signature is generated
based on the apps packed by three different versions of
Ali packer. It is worth noting that, to guarantee that the
signatures of different packers just contain the unique
items, we remove the items from signatures if they exist
in the signatures of multiple packers. Consequently, the
signatures of various packers do not share same item, namely
SP′ ∩ SP = ∅ if P′ is not P.

5.5.3 Recognizing Packers
We also recognize the packer of a newly encountered
packed app according to its packing features Fa extracted
in Section 5.5.1. Specifically, we calculate the similarity (i.e,
Similarity(a, P)) between the packing features Fa of a and
the signature SP of each known packer P as follows:

Similarity(a, P) =
|Fa ∩ SP|
|Fa|

(1)

We regard the target app a as being packed by the packer P
if the similarity between Fa and SP is larger than zero. Note
that, since SP just contains the unique items that are not
shared by various packers (Section 5.5.2), Fa and SP share
same item only when the app a is packed by SP, namely
Similarity(a, P) > 0. If the similarities between Fa and the
signatures of all know packers are zero, we regard a as being
packed an unknown packer, and then leverage the approach
described in Section 5.3 to unpack it. Otherwise, we start to
unpack the target app through collecting the Dex data at the
points that are already determined for this packer.

6 EVALUATION

We have re-implemented PackerGrind with a focus on ART
runtime (Android 6.0) as well as the enhanced and new
functionalities are described in this paper. Specifically, the
current version of PackerGrind is implemented with 13453
and 12894 lines of C/C++ code for the DVM and the
ART, respectively. Also, we implement Python scripts to
automatically unlock phones and run the target apps with
1896 lines of code. The dynamical tracking and unpacking
subsystem of PackerGrind leverages Valgrind, the dynamic
binary instrumentation framework [48], to generate the track-
ing reports and collect Dex data. We implement the tracking
report analysis subsystem in Python for generating the
packers’ signatures and determining the Dex data collection
points through analyzing the tracking reports.

In this section, we will evaluate the capacity and per-
formance of PackerGrind through answering the following
questions.
• RQ1: Can PackerGrind identify the protection mechanisms

of the packers and determine the Dex data collection
points?
• RQ2: Can PackerGrind correctly recognize the packer and

recover the Dex files?

• RQ3: Can PackerGrind outperform other available unpack-
ers?
• RQ4: Can PackerGrind facilitate the static malware detec-

tion tools?
• RQ5: Is overhead of PackerGrind acceptable?

6.1 Data Set

In this section, two sets of samples that are packed by
multiple popular commercial packers are leveraged to eval-
uate PackerGrind. The first set has 680 packed apps with
ground truth. More precisely, we randomly downloaded
open-source apps from F-Droid [5] and then upload them
to six online commercial packing services (i.e., Qihoo [54],
Ali [19], Bangcle [25], Tencent [64], Baidu [24], Ijiami [37])
in Mar. 2015 (denoted as DB-15), Mar. 2016 (denoted as
DB-16), and Oct. 2018 (denoted as DB-18). Correspondingly,
680 packed apps are downloaded from these packing services.
Note that, since Ali packer did not provide online packing
services in Oct. 2018, DB-18 does not contain any app packed
by Ali.

The second set consists of 399 packed malware sam-
ples from Palo Alto Networks [51], of which 389 samples
were packed by 12 known packers, including Ali [19],
APKProtect [1], Baidu [24], Bangcle [25], Ijiami [37], Naga [47],
Qihoo [54], Tencent [64], LIAPP [60], Netqin [49], Payegis [52],
and NetEase [38], and the remaining malware are packed by
unknown packers.

We conduct the experiments for both Android 4.4 (i.e.,
AOSP build KTU84M) and Android 6.0 (i.e., AOSP build
MMB29V) running with DVM and ART runtime, respectively,
and all the experiments are carried out on the Nexus 5
smartphone. For each packer, we first leverage PackerGrind

to identify its protection patterns and then recover the
protected Dex files in its packed apps.

6.2 Analysis of Android Packers

We first leverage PackerGrind to reveal the protection mech-
anisms adopted by the six packers, each of which has three
versions for DB-15, DB-16, and DB-18 (except Ali), respectively.
As shown in Table 3, the packers have evolved with new
techniques and hence unpackers should be adaptive to the
evolution. Except for the methods re-implemented using na-
tive code, PackerGrind can unpack all the bytecode protected
by various mechanisms in the packed apps.

6.2.1 Protection Mechanisms

As shown in Table 3, except the apps packed by Tencent in
DB-15, the Dex files in other packed apps are all dynamically
released into memory during running. Also, for the packed
apps in DB-16, all packers but Baidu dynamically modify
specific Dex data structures in memory to prevent the
protected Dex file from being directly dumped. Such as
the Ali packer, it dynamically fills the class_data_item

structures with valid data just before the corresponding
classes are defined. Similarly, for the apps packed by Ijiami
packer, the Dex headers in their Dex files are filled with valid
data when dexFileParse() is invoked to parse the header and
then set with invalid values when dexFileParse() exits.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 13

TABLE 3: Protection mechanisms adopted by six packers
in DB-15, DB-16 and DB-18. The symbol before (or after) “—”
denotes whether a packer in DB-15, DB-16, or DB-18 uses the
mechanism or not.

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami

Dynamically
Release Dex 3—3—3 3—3—Na 3—3—3 7—3—3 3—3—3 3—3—3

Dynamically
Modify Dex 7—3—7 7—3—Na 7—3—7 7—3—7 3—7—7 3—3—3

Customized
Dex Parsing 7—3—7 7—7—Na 7—7—7 7—7—7 7—7—7 7—3—7

Re-implement
Method 7—7—3 7—7—Na 7—7—7 7—7—7 7—3—3 7—7—7

Anti-Debug
(e.g., ptrace) 7—7—7 7—7—Na 3—3—3 7—7—7 7—7—7 7—3—7

In DB-16, there are also packers invoking their customized
code to parsing special Dex data structures instead of calling
the runtime functions, such as Qihoo and Ijiami. Specif-
ically, Qihoo re-implements the class define functionality
in its native library libjiagu.so and thus these code are
dynamically invoked to define the classes in the Dex files
instead of dvmDefineClass(). Ijiami also implements special
method parsing functionalities in its native library libexec.so
for re-parsing methods of the loaded classes with valid
instruction offsets before the classes are defined. In addition,
there are also packers re-implementing special methods
in the protected Dex files with native code. For example,
in DB-16, the onCreate() methods of the apps packed by
Baidu are re-implemented using native code and then the
original bytecode of these methods are never released into
memory during the entire running process. In addition, to
prevent the packed apps from being analyzed by ptrace-
based debugging tools, Bangcle attaches the app process by
itself through invoking ptrace(). Moreover, Ijiami periodically
detects the ZjDroid framework through searching the string
“@com.android.reverse-” in memory [14].

In either DB-15 or DB-16, only Baidu re-implements the
specified methods (e.g., onCreate()) in the native library using
C/C++ code. In addition, Qihoo also adopts this mechanism
to protect the important Java methods in DB-18. However,
both packers only re-implement special methods in the native
code. One possible reason may be that re-implementing
bytecode in native code could introduce additional overhead
(e.g., the overhead due to context switch).

6.2.2 Dex Data Collection Points.
We use the latest packers in DB-18 to evaluate PackerGrind in
terms of determining Dex data collection points. Qihoo and
Baidu re-implement the special methods using native node,
but other items in the Dex files are dynamically released to
memory with valid values before the invocation of the run-
time function DexFile::OpenMemory(). Therefore, PackerGrind
collects the valid Dex data of the apps packed by these
two packers when DexFile::OpenMemory() is invoked. Similarly,
Bangcle and Tencent release all Dex items with valid values
before invoking DexFile::OpenMemory() and thus PackerGrind

collects the valid Dex data when DexFile::OpenMemory()
is invoked. However, Ijiami first releases the Dex data
with invalid CodeItem before invoking DexFile::OpenMemory()
and then changes the CodeItems to valid values dur-
ing invocations of ArtMethod::LoadMethod(). Therefore, when

0.
57

3

0.
61

2

0.
85

6

0.
54

7 0.
70

5 0.
87

6

Ali Baidu Bangcle Ijiami Qihoo Tencent
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
m

ila
rit

y

Fig. 7: The similarities between each packer’s signature
and the packing features of the app packed by its different
versions.

DexFile::OpenMemory() is invoked, PackerGrind collects the Dex
data items except CodeItems, and then collects the valid
CodeItems when ArtMethod::LoadMethod() returns.

Answer to RQ1: PackerGrind can successfully identify the
protection mechanisms of the packers and determine the
Dex data collection points for unpacking.

6.3 Recovering Dex Files

In this experiment, we will evaluate whether PackerGrind can
effectively recognize the packers of the packed apps and then
correctly recoverer the protected Dex files of these packed
apps by leveraging the apps packed by various commercial
packers.

6.3.1 Packer recognition
In this experiment, we select an app from the apps packed
by each packer in the three datasets for generating packer
signatures, and then using the remaining packed apps
together for recognition. More precisely, in the analysis phase,
we generate the signatures of all these packers using the
mechanism introduced in Section 5.4, and then recognize
the packers that harden these apps in the unpacking phase.
The experimental results show that PackerGrind correctly
recognizes all these six packers. Moreover, the similarities
between the packers’ signature and the app’s packing
features are presented in Fig. 7. For all these packers, the
similarities are larger than 0.5. In addition, since the packer
signatures just contain the unique feature of each packer,
the similarities between the signature of a packer and the
packing features of the apps packed by different packers are
all zero.

6.3.2 Correctness of recovered Dex files
The correctness of the Dex files recovered from the packed
app are examined from three major aspects. First, we apply
five popular static analysis tools, including Baksmali [6],
Dexdump [9], Dex2jar [8], Jadx [11] and IDA Pro [10], to
disassemble the recovered Dex files because these tools
adopt different verification strategies to check Dex files.
From the results, we find almost all the recovered Dex
files are successfully disassembled, and the only samples
packed by Tencent in DB-15 are disassembled by Dex2Jar

with exceptions because of their optimized Dex bytecode.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 14

TABLE 4: Difference between the code in the Dex file of the
original app and the Dex file recovered from the corresponding
packed app (⊕, 	 and � represent the recovered Dex file that
has additional code, less code, and the same code compared
with the original Dex file, respectively).

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami

DB-15 � ⊕ ⊕ ⊕ ⊕ �
DB-16 � � ⊕ � ⊕	 ⊕
DB-18 	 Na � ⊕ ⊕	 	

After we replace these optimized Dex bytecode with the cor-
responding Dex bytecode, all the examples are disassembled
by Dex2Jar successfully.

Second, we compare the difference between the original
Dex files and the recovered Dex files of 170 randomly selected
samples. First, for each sample, we implement a Python
script, which first disassembles both the recovered Dex file
and the original file, and then parses the classes, methods,
and the Dalvik instructions from them. Afterwards, the
differences between the classes, methods, and instructions
in the original file and the corresponding recovered Dex file
are compared. If differences are found, we further decompile
both Dex files into Java code by leveraging the Dex to
Java decompiler jadx [11] and then check the details of
these differences through comparing the decompiled Java
code manually. The details of the comparison results are
summarized in Table 4.

The Dex files recovered from the apps packed by Qihoo
and Ijiami in DB-15 as well as Ali and Tencent in DB-16 are the
same as their original ones. Whereas, Ali adds two classes to
the Dex files of the packed apps in DB-15 and each class has
one field and three empty methods. Also, at the beginning of
each Java method, an invocation of “Exit.b(Exit.a())” is inserted.
Note that, false is always returned in Exit.a() and the function
Exit.b() is empty. Moreover, in the apps packed by Tencent
(i.e., DB-15), two addresses are added, and the apps packed
by Ijiami (i.e., DB-16) have five additional classes.

For the apps packed by Bangcle, there are six and
twelve additional classes inserted in DB-15 and DB-16, re-
spectively. The Bangcle packer inserts a new method named
com sec plugin action APP STARTED() at the beginning of the
onCreate() methods, which is first invoked when the packed
apps start. However there are differences between the apps
in DB-15 and DB-16. Specifically, in DB-15, an intent named
com.secneo.plugin.action.APP STARTED is created and broadcast
in this new method, whereas a new monitoring thread is
created in the packed apps of DB-16.

Except for inserting additional class to the packed apps,
Baidu also re-implements the onCreate() methods using native
code in the apps of DB-16 and DB-18 by default. Hence,
although Baidu adds additional code to the packed apps, the
original bytecode of the onCreate() methods in the apps of
DB-16 and DB-18 are replaced with native code and cannot
be recovered. Qihoo also protects the bytecode of specific
methods through re-implementing the using native code in
the packeds apps of DB-18. Since PackerGrind does not focus
on converting the native code to bytecode, it cannot recover
original bytecode of such protected methods. However,
PackerGrind tracks the invocations of the framework APIs

TABLE 5: Comparison among Android-unpacker, An-
droid unpacker, DexHunter and PackerGrind (S and F mean
unpacking successfully and unsuccessfully, respectively).

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami

Android-unpacker [15] F F F F S F

Android unpacker [16] S∗ F S F S∗ F

DexHunter [78] F S S S F F

PackerGrind S∗ S S S S∗ S

∗
The packers Baidu and Qihoo reimplement specific methods in the packed apps using

native code. Accordingly, the original Dalvik bytecode of these methods are removed and
never released (details in Section 5.3.2). As a result, the unpackers cannot recover the
bytecode of these methods from the packed apps.

and thus the information about the invoked APIs can also
further facilitate the static analysis tools.

In the packed apps of DB-18, Ijiami only releases the class
related Dex data into memory just before the corresponding
classes are defined to protect the Dex data in memory. Since
PackerGrind collects the Dex data when they are used, it can
collect the valid class related Dex data of all defined classes.

Answer to RQ2: PackerGrind can correctly recognize the
packers used for protecting apps, and recover all Dex
code that has not been removed by packers as well as
the additional classes/methods inserted by packers. Even
for the methods that are re-implemented in native code,
PackerGrind can still recover useful semantic information.

6.4 Comparison

We compare PackerGrind with three open-sourced unpacking
tools, Android-unpacker [15], Android unpacker [16], and
DexHunter [78], which are from various research and indus-
try communities. In this experiment, the correctness of the
Dex files recovered from the apps packed by various packers
are validated by a two-step checking way. First, we leverage
Baksmali [6] to disassemble both the Dex files recovered from
the packed apps and the Dex files from the original apps into
smali code. Second, we compare the results of the recovered
Dex files and that of the corresponding original Dex files.
The failure in any step will lead to F in Table 5 indicating
unsuccessfully unpacking.

As the unpacking results shown in Table 5, Android-
unpacker leverages the debugging technique (e.g., ptrace)
to inject into the process of the target packed app and
then dump the Dex file in memory. Thus, it cannot be
applied to the packed apps with anti-debugging capacity.
Also, Android-unpacker determines the memory address of
the target Dex file according to the signatures (i.e., specific
string) of the packers. Specifically, Android-unpacker v1.2
supports four types of packers, including Bangcle, APKPro-
tect, LIAPP, and Qihoo. For example, it determines Qihoo
packer according to string “/libprotectClass” in the memory.
However, since Android-unpacker cannot find the packers’
signatures in the packed apps of DB-15, DB-16 and DB-18, it
fails to unpack all the packed apps. Moreover, the latest
version 2 of Android-unpacker is extended to support the
packer Jaigu [15], but it still fails to unpack the packed apps.

2. Commit ID is 968ed234217edd16212738473f6493515e3d585b

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 15

Android unpacker 3 is implemented through modifying
Android 6.0. More precisely, it inserts unpacking code in the
runtime methods DexFile::DexFile() and OpenAndReadMagic()
in dex_file.cc to dump the Dex files to storage when the
released Dex files are resolved by the ART runtime. Also,
this unpacker focuses on dumping the Dex files that are
dynamically released to the directory /data/data and then
loaded by the runtime. Since Ali packer does not release
any Dex file to this directory, Android unpacker unpacks
the apps packed by Ali unsuccessfully. Because Tencent
packer dynamically releases the protected Dex data and
only an empty Dex file is loaded by the runtime when
Android unpacker dumps the Dex file from memory, it
just outputs an empty Dex file from the apps packed by
Tencent. Moreover, the Ijiami packer does not use these two
methods (i.e., DexFile::DexFile() and OpenAndReadMagic())
to resolve the dynamically released Dex file and so that
Android unpacker cannot unpack the apps packed by Ijiami
successfully. It is also worth noting that, since the packers Ali,
Baidu, Ijiami, and Qihoo of DB-15 do not support Android
6.0, the apps packed by these packers in DB-15 cannot run on
Android unpacker.

DexHunter 4 fails to unpack the apps packed by Qihoo,
Baidu and Ijiami because it just inserts unpacking code to
the special runtime functions through directly modifying the
Android runtime. More precisely, since Qihoo leverages its
customized code to load the class information in the Dex files
instead of invoking runtime functions, the Dex files recovered
by DexHunter contain no valid Dex data in the original Dex
files. Moreover, Baidu fills the Dex header of the Dex files
in the packed apps with invalid data and hence Dex files
recovered from its packed samples cannot be disassembled
by the exiting tool correctly. DexHunter does not adapt to
the apps packed by Ijiami because Ijiami detects analysis and
unpacking tools through time checking. Particularly, Ijiami
checks the time consumed by the customized special task.
If the consumed time exceeds the threshold, it regards it as
being analyzed and exits. Since DexHunter needs to stop
and search for the target content in the memory, which is a
time-consuming task, it can be detected by the packer and
does not adapt to the apps packed by Ijiami.

From the unpacking result, we can find the apps packed
by all six packers are successfully unpacked by PackerGrind.
Note that, specific methods in the apps packed by Qihoo
and Baidu are re-implemented with native code (details
in Section 5.3.2). Although PackerGrind does not focus on
analyzing such native code, it tracks the framework APIs
invoked by the native code, which can also facilitate further
static analysis.

Answer to RQ3: PackerGrind can be applied to more
sophisticated packers and achieve better unpacking re-
sults than other available unpacking tools (i.e., Android-
unpacker, Android unpacker and DexHunter).

6.5 Unpacking Malware
We apply PackerGrind to 399 packed malware samples
including 389 samples packed by twelve popular known

3. Commit ID is 971b30e005240020383891c52148463801e1f6d8
4. Commit ID is 9d829a9f6f608ebad26923f29a294ae9c68d0441

31
22

6

21
08

0

25
13

8

26
05

22
66

24
01

25
81

20
36

22
54

17
73

11
44

13
95

28
4

15
27

78
1

Java Native Overall

100

1k

10k

100k

Sc
or

e

Normal
Valgrind
PackerGrind (Unpacking)
PackerGrind (Tracing)
Emulator

Fig. 8: CF-Bench results (high score means high performance).

packers and 10 samples packed by unknown/other packers.
Moreover, there are 200 samples collected before 2017 and
199 samples found in 2017 and 2018. PackerGrind can
successfully recover the Dex files from all of them. After
vetting both the recovered and original Dex files , we find
the packers are usually leveraged to hide the payload of the
malware, especially the invoked sensitive framework APIs as
well as the required permissions. Consequently, to evaluate
the assistance introduced to the existing static analysis tools
by PackerGrind, we compared the sensitive APIs as well as
permissions in recovered Dex files and original Dex files.
Specifically, given a Dex file, we first search all sensitive APIs
in it and then count the numbers of the invoked sensitive APIs
and the permissions following the mechanism of PScout [22].
Note that various static analysis tools are already proposed
to analyze and detect malware based on sensitive APIs and
permissions [23], [62], [70], [76], [77].

In this experiment, we leverage Pp/Ap and Pr/Ar to rep-
resent the number of the detected sensitive permissions/APIs
in the Dex files of the packed apps and the recovered Dex
files, respectively. For the apps packed by twelve various
packers, the average values of Pp, Ap, Pr , and Ar are shown
in Table 6, which intuitively shows the recovered Dex files
expose more sensitive permissions and APIs than the Dex
files in the packed apps. Consequently, after being unpacked
by PackerGrind, more sensitive behaviors are exposed to the
static malware analysis and detection tools. Take the apps
packed by Ali as examples, there are 44.76 sensitive APIs
exposed in the recovered Dex files but no sensitive APIs are
detected in the Dex files of the packed apps.

Answer to RQ4: PackerGrind can efficiently expose the hid-
den behaviors of the packed malware through unpacking
and the unpacking results effectively facilitate the existing
malware detection and analysis mechanisms.

6.6 Overhead
To evaluate the overhead introduced by PackerGrind, we
run CF-Bench [7] on Nexus 5 without instrumentation, with
only Valgrind, with dynamic tracing, and with unpacking
as well as on the Android emulator Qemu, respectively. We
first leverage the scores achieved by CF-Benchmark without
the Valgrind framework running on the smartphone as the
baseline. Then we run CF-Benchmark on the smartphone with
only Valgrind framework and PackerGrind (including both

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 16

TABLE 6: Permissions and sensitive API calls in malware samples before and after unpacking by PackerGrind.

Packer Ali Apkprotect Baidu Bangcle Ijiami Naga Qihoo Tencent LIAPP Netqin Payegis Netease Others

Number of samples 29 24 109 34 68 12 62 9 2 18 11 11 10

Average value of Pp 0.00 2.65 1.32 0.24 0.03 0.00 0.94 7.22 0.00 4.28 0.82 8.18 2.60

Average value of Pr 4.83 3.65 8.34 7.56 3.41 3.00 10.08 7.78 0.50 10.33 10.36 17.36 3.90

Average value of Ap 0.00 5.62 1.45 0.88 0.04 0.00 2.81 40.67 0.00 19.56 2.64 12.27 4.70

Average value of Ar 44.76 9.38 34.46 50.18 18.24 14.33 54.76 58.00 4.50 90.94 33.45 43.27 7.00

tracking and unpacking) to evaluate the additional overhead
incurred by them. Since there are multiple dynamic analysis
tools or unpackers that are implemented on the Android
emulator, such as DroidUnpacker [31], DroidScope [73],
NDroid [72], and Android unpacker [16], which are all
implemented based on the Android emulator Qemu but
for different versions of Android systems. To avoid the
bias introduced by the differences of Android systems, we
evaluate the performance of the Android emulator Qemu
running Android 6.0, which is the same as the system
running in Nexus 5 smartphone. Meanwhile, the host runs
Ubuntu 16.04 system and is equipped with Intel(R) Xeon(R)
CPU E5-2620 and 32 GB memory.

As shown in Fig. 8, three types of scores (i.e., overall, Java,
and native) are compared under five various configurations.
For the overall scores, PackerGrind introduces 11 and 18
times slowdown to the target app during tracing and un-
packing, respectively, and there is already 10 times slowdown
incurred when only Valgrind framework runs without any
tracing and unpacking actions. Hence, compared with the
DBI framework Valgrind, the tracing and unpacking tasks of
PackerGrind just incur 1.07 and 1.72 more times slowdown to
the analyzed apps. Compared with the Nexus 5 smartphone,
the emulator incurs more than 32 times overall slowdown to
the target apps. Note that, emulator-based analysis tool also
incurs much additional slowdown to the emulator when they
are leveraged to carry out the dynamic analysis or unpacking
tasks [31], [73]. In addition, for the sample of new Android
packer, PackerGrind only needs to analyzing it once, and
then all apps packed by the same packer can be quickly
unpacked by PackerGrind according to the identified data
collection points.

Answer to RQ5: PackerGrind introduces reasonable addi-
tional overhead during either tracking or unpacking.

7 DISCUSSION

PackerGrind can only recover the Dex data after they are
dynamically loaded into the memory. Although the majority
of existing packers dynamically release all protected Dex
Data at the beginning, there are also packers that release the
bytecode of a method just before the method is invoked.
Currently, we have adopted IntelliDroid [68] to trigger
the execution of such methods and we will leverage more
advanced input generators for Android [29], [46] to enhance
PackerGrind in future work.

Since PackerGrind is based on Valgrind, which also have
hinted in memory, such as starting command, and thus the

packers may detect the presence of PackerGrind and then
stop releasing the real code. However, to protect the DBI
framework Valgrind from being detected, we can hook the
system library functions related to string matching (e.g.,
strcmp()) to change their results. Also, we can force the app
to release the code through inserting IR statements to change
the conditions of the conditional branches.

The advanced packers may adopt virtual-machine-based
(i.e., VM-based) techniques to translate the Dalvik bytecode
into another type of instructions and provide a customized
VM to execute them. PackerGrind currently cannot be applied
to recover the Dalvik bytecode protected by VM-based
techniques because it mainly focuses on recovering the
Dalvik bytecode that are released in memory. However,
PackerGrind can still track the Java methods invoked by
the VM through JNI reflection. In future work, we will enable
PackerGrind to recover more semantics of the protected
Dalvik bytecode according to the behaviors of VM.

8 RELATED WORK

In this section, we present the related work on unpacking
native programs and Android apps.

8.1 Unpacking Native Programs

Many packing/unpacking related studies have been con-
ducted but they usually focus on the native programs [27],
[36], [57], [66]. Although both the native unpackers and
Android unpackers unpack the target programs based
on dynamic tracking mechanisms, the native unpacking
techniques cannot be applied to unpacking Android apps
directly because both their unpacking targets and unpacking
results are different. More precisely, since native unpackers
aim to dump the protected native instructions, they focus
on tracking the executions of instructions and monitoring
memory modifications in the native layer. For example, the
unpacker presented in [66] leverages TEMU [59] , a dynamic
analysis tool based on the emulator Qemu [26], to monitor the
execution of the target processes. Renovo [41] also monitors
the instructions and tracks memory operations depending
TEMU. Saffron [55] builds a unpacking tool based on Intel’s
PIN and it unpacks native programs through dynamically
monitoring the control transfers or modifications of memory.

In contrast, the Android unpackers aim to unpack the
protected Dalvik bytecode and other Dex items, such as
class_data_item, and then assemble them into valid
Dex files as the outputs. Since these protected bytecode are
released by the packer in native layer and then parsed and
executed by the Android runtime, PackerGrind needs to track

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 17

the packing behaviors in multiple layers. Moreover, besides
tracking the behaviors related to the bytecode, PackerGrind
also needs to monitor the behaviors related to other Dex
items, which will be used to assemble the valid Dex files.

Many packing/unpacking related studies have been
conducted but they usually focus on the x86 architectures [27],
[36], [57], [66], and thus these techniques do not adapt to
the packed Android apps [75], [78]. Except the difference
between the formats of the Android apps and the x86
desktop programs, they also have different architectures
and execution models [75], [78]. For example, the Android
packers should consider both the bytecode and the native
code if any in the apps, and but the traditional packers just
need to take into account the native code [27], [36], [57], [66].

8.2 Unpacking Android Apps

Since the malicious Android developers start to adopt
packers to hide the malicious content of malware, a few
studies have been carried out on the Android packers by
both academia [31], [43], [50], [69], [75], [78] and industry [4],
[15], [16]. Specifically, DWroidDump collects Dex data when
dvmDexFileOpenFromFd() is invoked because this function is
used to map the Dex file to memory [43]. DexHunter
inserts code in defineClassNative() to extract Dex files from
memory [78]. Similarly, the Android unpacker is imple-
mented through inserting Dex data dumping code in runtime
functions DexFile:DexFile() and OpenAndReadMagic() [16], which
are used to resolve the Dex file in memory or from stor-
age, respectively. Moreover, DexLego modifies the Dalvik
interpreter to dump the interpreted Dalvik instructions into
storage [50] depending on the system library functions, such
as open() and write() of libc.so. Tiro [69], CrackDex [39],
and DexX [61] are also implemented through modifying the
Android runtime (i.e., DVM or ART) and then dump the Dex
data when the Dex files are resolved. Android-unpacker
needs to inject itself into the target process leveraging
debugging mechanism (i.e., ptrace) and then determines the
memory region of the Dex data through looking up specific
strings [15]. Also, the GDB built for ARM is leveraged to
unpack the apps packed by DexProtect and Bangcle in [45].
DumpAPK leverages Xposed [13] to hook runtime functions
openDex() and defineClass() to collect the Dex data when
the Dex files are resolved using these two functions [4]. In
addition, except unpacking packed apps, DroidUnpack can
also track the behaviors of Android packers by leveraging
the virtual machine instrumentation techniques and it is
implemented based on the Android emulator Qemu [31].

However, the existing unpackers have various limitations
when they are applied to unpacking the apps packed by
modern packers in practice. First, since most of them adopt
the one-pass strategy to dump the Dex data at fixed pre-
defined points, such as DexHunter, Android unpacker and
DumpAPK, the packers can evolve the packing behaviors
and then evade these unpacking tools straightforwardly.
Second, the unpackers (e.g., Dexhunter, Android unpacker,
DexLego) that need to modify Android systems and dump
the Dex data in memory to storage depending on the system
library functions (e.g., open() and write()). However, there
are multiple packers that hook these functions to prevent
the Dex data from being dumped, and thus these unpackers

cannot handle the apps packed by the packers with the
anti-dump capacity. For example, since Bangcle hooks the
system library functions (e.g., open(), write(), and close()) to
protect the Dex data from being dumped, these unpackers
cannot be applied to the apps packed by Bangcle. Third,
some sophisticated packers (e.g., Ijiami) check whether the
packed apps run in an emulator or debugging environment
before releasing the protected Dex data. If so, the packers
exit immediately. As a result, the debugger or emulator-
based unpackers (e.g., DumpAPK and DroidUnpack) cannot
process the apps packed by these packers with anti-emulator
or anti-debug capacities.

PackerGrind leverages an adaptive approach to unpack
the packed apps through tracking the packing behaviors in
multiple layers and thus it can be applied to the apps packed
by new and evolved packers. In addition, it runs on real
devices and leverages the methods provided by Valgrind
to dump the memory data. Hence, although the packers
with the capacity of anti memory dumping, debugging and
emulator, PackerGrind can still handle their packed apps.
Also, PackerGrind supports both DVM and ART runtime, as
well as the evaluation results show it outperforms the other
unpackers.

Dynamic Tracking Tools: Existing cross-layer monitoring
tools [32], [53], [67], [73] for Android can neither collect
all necessary information nor fulfill the requirement for
handling packed apps because of various limitations. Such
as ProfileDroid [67] that relies on apktool to conduct static
analysis, and thus it does not adapt to the packed apps.
TaintDroid [32] just works in the runtime layer of DVM
and does not support ART. Since both DroidScope [73] and
NDroid [72] are implemented based on the Android emulator
(i.e., Qemu) and hence they can be detected by packers [40].

This paper is an extension of the conference paper [71]
with many improvements to our unpacking system. First,
the packers are becoming more sophisticated and ART has
already been the default runtime from Android 5.0 (released
in June 2014) and shared more than 90% Android market by
2019. Hence, we improve the capacity of PackerGrind for ART
runtime, such as collecting Dex data and tracking packing
behaviors, which involve loading Oat files, parsing Dex
data, executing methods, loading native code loading, and
registering native code in Section 5.2.1. Second, we extend
PackerGrind with the capacity to generate the signatures
for packers by exploiting their unique packing/protection
information. Consequently, given a target app, PackerGrind
first checks whether it is hardened by the packers whose
samples have been analyzed before. If so, PackerGrind

unpacks the app using the recorded data collection points for
this packer, thus speeding up the unpacking process. Third,
in [71], PackerGrind collects the Dex data once but advanced
packers may release different parts of a method’ bytecode
at different call sites. We enhance PackerGrind to tackle this
issue by tracking all invoked Java methods so that it can
collect all valid bytecode of the Java methods when they
are invoked. Last but not least, we use much more samples
packed by the evolving commercial Android packers and the
newly collected packed malware for evaluating PackerGrind

in Section 6

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 18

9 CONCLUSION

After studying the mechanisms leveraged by the existing
Android unpacking tools, we find they adopt the one-pass
strategy to unpack Android apps but the Android packers
evolve quickly, and thus such unpacking tools cannot be
applied to the apps packed by the evolved and new packers.
To address this issue, we propose a novel adaptive way to
unpack the Android apps according to the packing behaviors.
Specifically, we adopt an iterative way to track the packing
behaviors used by the packers and obtain the hidden Dex
data according to the concrete packing behaviors instead of
dumping Dex data at fixed points. Hence our unpacking ap-
proach also adapts to the evolved and new packers. We also
implemented the unpacking tool named PackerGrind based
on this unpacking approach and evaluated its effectiveness
and efficiency with both open sourced Android apps and
real malware.

REFERENCES

[1] “Apk protect,” https://sourceforge.net/projects/apkprotect.
[2] “Cisco 2014 annual security report,” https://goo.gl/7524ER, 2014.
[3] “OWASP mobile top 10 risks,” https://goo.gl/DC8nvN, 2014.
[4] “Dumpapk,” https://github.com/CvvT/DumpApk, 2015.
[5] “F-Droid,” https://f-droid.org/, 2015.
[6] “Baksmali,” https://github.com/JesusFreke/smali, 2016.
[7] “CF-Bench,” http://http://bench.chainfire.eu/, 2016.
[8] “Dex2jar,” https://github.com/pxb1988/dex2jar, 2016.
[9] “Dexdump,” https://goo.gl/eDpDzi, 2016.
[10] “IDA Pro,” https://www.hex-rays.com/products/ida/, 2016.
[11] “Jadx,” https://github.com/skylot/jadx, 2016.
[12] “monkeyrunner,” https://developer.android.com/studio/test/

monkeyrunner/index.html, 2016.
[13] “Xposed module repository,” http://repo.xposed.info, 2016.
[14] “ZjDroid,” https://github.com/halfkiss/ZjDroid, 2016.
[15] “Android-unpacker,” https://github.com/strazzere/android-

unpacker, 2019.
[16] “Android unpacker,” https://github.com/CheckPointSW/

android unpacker, 2019.
[17] “Statistics and facts about Android,” https://goo.gl/eLubgk, 2019.
[18] S. Aimoto, “Five ways Android malware is becoming more

resilient,” https://goo.gl/cdN2Vi, 2016.
[19] Alibaba Inc., http://jaq.alibaba.com/.
[20] Android, “Gestureoverlayview,” https://developer.android.com/

reference/android/gesture/GestureOverlayView.html, 2019.
[21] A. Apvrille and R. Nigam, “Obfuscation in Android malware, and

how to fight back,” Virus Bulletin, July 2014.
[22] K. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the

Android permission specification,” in Proc. ACM CCS, 2012.
[23] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,

and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proc. ACM/IEEE ICSE, 2015.

[24] Baidu Inc., http://app.baidu.com.
[25] Bangcle Inc., http://www.bangcle.com/.
[26] F. Bellard et al., “Qemu open source processor emulator,” http:

//www.qemu.org, 2017.
[27] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and

A. Thierry, “CoDisasm: Medium scale concatic disassembly of self-
modifying binaries with overlapping instructions,” in Proc. ACM
CCS, 2015.

[28] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting
for new threats at the Google-Play scale,” in Proc. USENIX Security,
2015.

[29] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?” in Proc. IEEE/ACM ASE,
2015.

[30] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley,
2009.

[31] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang,
and X. Wang, “Things you may not know about android (un)
packers: A systematic study based on whole-system emulation.” in
NDSS, 2018.

[32] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid: an
information-flow tracking system for realtime privacy monitoring
on smartphones,” ACM Transactions on Computer Systems, vol. 32,
no. 2, 2014.

[33] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, “Frequent subgraph based familial classification of
android malware,” in Proc. ISSRE, 2016.

[34] Gartner, Inc., “Debunking six myths of app wrapping,” https:
//goo.gl/zEzJn6, 2015.

[35] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applications
in droidsafe,” in Proc. NDSS, 2015.

[36] F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem
and its solutions,” in Proc. RAID, 2008.

[37] Ijiami Inc., http://www.ijiami.cn/.
[38] N. Inc., https://dun.163.com/product/android-reinforce.
[39] Z. Jiang, A. Zhou, L. Liu, P. Jia, L. Liu, and Z. Zuo, “Crackdex:

universal and automatic dex extraction method,” in Proc. IEEE
ICEIEC, 2017.

[40] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, “Morpheus: automatically
generating heuristics to detect Android emulators,” in Proc. ACSAC,
2014.

[41] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code
extractor for packed executables,” in Proc. ACM WORM, 2007.

[42] G. Kelly, “97% of mobile malware is on Android. this is the easy
way you stay safe,” https://goo.gl/z121Sq, 2014.

[43] D. Kim, J. Kwak, and J. Ryou, “Dwroiddump: Executable code
extraction from android applications for malware analysis,” Inter-
national Journal of Distributed Sensor Networks, vol. 11, no. 9, 2015.

[44] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA:
Detecting inter-component privacy leaks in Android apps,” in
Proc. ACM/IEEE ICSE, 2015.

[45] J. Lim and J. H. Yi, “Structural analysis of packing schemes for
extracting hidden codes in mobile malware,” EURASIP Journal on
Wireless Communications and Networking, vol. 2016, no. 1, 2016.

[46] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek,
“Reducing combinatorics in gui testing of Android applications,” in
Proc. ACM/IEEE ICSE, 2016.

[47] NAGA IN Inc., http://www.nagain.com/.
[48] N. Nethercote and J. Seward, “Valgrind: a framework for heavy-

weight dynamic binary instrumentation,” in Proc. ACM PLDI, 2007.
[49] Netqin Inc., https://www.netqin.com.
[50] Z. Ning and F. Zhang, “Dexlego: Reassembleable bytecode extrac-

tion for aiding static analysis,” in Proc. DSN, 2018.
[51] Palo Alto Networks, “Wildfire cloud-based threat analysis service,”

https://goo.gl/2SJSRi, 2016.
[52] PayEgis Inc., http://www.payegis.com/.
[53] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking information

flows through jni in android applications,” in Proc. IEEE DSN, 2014.
[54] Qihoo360 Inc., http://dev.360.cn/.
[55] D. Quist, “Valsmith. covert debugging: Circumventing software

armoring,” in Proc. of BlackHat, 2007.
[56] P. Sabanal, “Hiding behind art,” Blackhat, 2015.
[57] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and

E. Weippl, “Protecting software through obfuscation: Can it keep
pace with progress in code analysis?” ACM Computing Surveys,
2016.

[58] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scal-
able resource-driven approach for detecting repackaged android
applications,” in Proc. ACSAC, 2014.

[59] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze:
A new approach to computer security via binary analysis,” in
International Conference on Information Systems Security. Springer,
2008, pp. 1–25.

[60] T. Strazzere and J. Sawyer, “Android hacker protection level 0,”
DEFCON, 2014.

[61] C. Sun, H. Zhang, S. Qin, N. He, J. Qin, and H. Pan, “Dexx: a double
layer unpacking framework for android,” IEEE Access, vol. 6, 2018.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 

https://sourceforge.net/projects/apkprotect
https://goo.gl/7524ER
https://goo.gl/DC8nvN
https://github.com/CvvT/DumpApk
https://f-droid.org/
https://github.com/JesusFreke/smali
http://http://bench.chainfire.eu/
https://github.com/pxb1988/dex2jar
https://goo.gl/eDpDzi
https://www.hex-rays.com/products/ida/
https://github.com/skylot/jadx
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/CheckPointSW/android_unpacker
https://github.com/CheckPointSW/android_unpacker
https://goo.gl/eLubgk
https://goo.gl/cdN2Vi
http://jaq.alibaba.com/
https://developer.android.com/reference/android/gesture/GestureOverlayView.html
https://developer.android.com/reference/android/gesture/GestureOverlayView.html
http://app.baidu.com
http://www.bangcle.com/
http://www.qemu.org
http://www.qemu.org
https://goo.gl/zEzJn6
https://goo.gl/zEzJn6
http://www.ijiami.cn/
https://dun.163.com/product/android-reinforce
https://goo.gl/z121Sq
http://www.nagain.com/
https://www.netqin.com
https://goo.gl/2SJSRi
http://www.payegis.com/
http://dev.360.cn/


0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2996433, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XX XXXX 19

[62] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,”
ACM Computing Surveys, vol. 49, no. 4, 2017.

[63] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of Android malware behaviors.” in Proc.
NDSS, 2015.

[64] Tencent Inc., https://www.qcloud.com/product/cr.
[65] TIS, “Tool interface standard (tis) executable and linking format

(elf) specification version 1.2,” TIS Committee, 1995.
[66] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:

Deep packer inspection: A longitudinal study of the complexity of
run-time packers,” in Proc. IEEE S&P, 2015.

[67] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid:
multi-layer profiling of android applications,” in Proc. Mobicom,
2012.

[68] M. Y. Wong and D. Lie, “IntelliDroid: A targeted input generator
for the dynamic analysis of Android malware,” in Proc. NDSS,
2016.

[69] ——, “Tackling runtime-based obfuscation in android with
{TIRO},” in Proc. USENIX Security, 2018.

[70] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng, R. Duan,
Y. Jang, B. Lee, C. Qian, S. Lee, and T. Kim, “Toward engineering a
secure android ecosystem: A survey of existing techniques,” ACM
Computing Surveys, vol. 49, no. 2, 2016.

[71] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking
of android apps,” in Proc. IEEE/ACM ICSE, 2017.

[72] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and A. T.
Chan, “Ndroid: Toward tracking information flows across multiple
android contexts,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 3, pp. 814–828, 2019.

[73] L.-K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing OS
and Dalvik semantic views for dynamic Android malware analysis,”
in Proc. USENIX Security, 2012.

[74] C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu,
“Using provenance patterns to vet sensitive behaviors in Android
apps,” in Proc. SecureComm, 2015.

[75] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu, “AppSpear:
Bytecode decrypting and DEX reassembling for packed Android
malware,” in Proc. RAID, 2015.

[76] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy
policies of android apps?” in Proc. IEEE DSN, 2016.

[77] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android
malware classification using weighted contextual api dependency
graphs,” in Proc. ACM CCS, 2014.

[78] Y. Zhang, X. Luo, and H. Yin, “DexHunter: toward extracting
hidden code from packed Android applications,” in Proc. ESORICS,
2015.

[79] M. Zheng, M. Sun, and J. C. Lui, “DroidTrace: a ptrace based An-
droid dynamic analysis system with forward execution capability,”
in Proc. WCMC, 2014.

[80] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-
tion and evolution,” in Proc. IEEE S&P, 2012.

[81] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile
apps with selective symbolic execution,” in Proceedings of the 26th
International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 867–876.

Authorized licensed use limited to: Penn State University. Downloaded on June 15,2020 at 19:25:24 UTC from IEEE Xplore.  Restrictions apply. 

https://www.qcloud.com/product/cr

