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ABSTRACT
In system analysis, conformance indicates that two systems simul-

taneously satisfy the same set of specifications of interest; thus, the

results from analyzing one system automatically transfer to the

other, or one system can safely replace the other in practice. In this

work, we study the probabilistic conformance of cyber-physical

systems (CPS). We propose a notion of (approximate) probabilistic

conformance for sets of complex specifications expressed by the

Signal Temporal Logic (STL). Based on a novel statistical test, we

develop the first statistical verification methods for the probabilistic

conformance of a wide class of CPS. Using this method, we verify

the conformance of the startup time of the widely-used full and

simplified model of Toyota powertrain systems, the settling time

of model-predictive-control-based and neural-network-based au-

tomotive lane-keeping controllers, as well as the maximal voltage

deviation of full and simplified power grid systems.

CCS CONCEPTS
•Mathematics of computing→Hypothesis testing and con-
fidence interval computation; • Computer systems organi-
zation → Embedded and cyber-physical systems; • Security
and privacy → Logic and verification.

KEYWORDS
statistical verification, signal temporal logic, hypothesis testing,

Kolmogorov-Smirnov test, Toyota powertrain, lane-keeping assis-

tant, photovoltaic array
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1 INTRODUCTION
Conformance is an important concept in the analysis of cyber-

physical systems (CPS) [13, 18, 21, 23, 32, 34]. It indicates that two

systems satisfy the same set of given specifications (e.g., reacha-

bility or input-output relation). Thus the analysis results for one

system can transfer to the other system, or one system can safely

replace the other in practice. The term “conformance” may also

refer to the consistency between a system and a design specification

(e.g., [14, 22]); this is out of the scope of this work.

For CPS, complex specifications for their dynamics aremathemat-

ically expressible by temporal logics, such as the Signal Temporal

Logic (STL) [24]. Following the line of work [1, 9], we focus on

the conformance of CPS for temporal logics specifications. This

notion of conformance generalizes the conformance for reachabil-

ity [21, 32], since reachability is expressible by temporal logic.

Conformance can be used for two different models derived from

the same system under two conditions, implying that the system

executes in the same way under the conditions (e.g., two inputs). A

well-known example of nonconformity is the Volkswagen emissions

scandal [4], where the emission control software deliberately per-

forms differently in the lab testing and driving conditions to bypass

the emission test without actually reducing the pollution generated

from the cars while driving. Similar undesirable nonconformity

exists in printers [5], where the software drivers deliberately work

differently in favor of certain cartridge brands. To prevent such soft-
ware doping [31], one needs to verify the conformance of a system

under different conditions/settings.

The conformance also applies to two models derived from two

systems operating under the same conditions, implying that they

are interchangeable for the application. For instance, there has been

recently significant interest in replacing precise but computation-

ally expensive controllers based on model predictive control (MPC)

with ones based on neural network (NN) for applications such as

lane-keeping systems in autonomous vehicles [29]. To migrate from

an MPC controller to an NN controller without significantly chang-

ing the responsiveness, we need to check the conformance of the

closed-loop system under the two controllers for their settling time,

especially considering the fragility of AI-based controllers. While

we focus on the conformance of two different systems operating

under the same conditions in our case studies, our approach also

applies to a system’s conformance under two conditions.

Since CPS, such as autonomous vehicles, are frequently subject to

randomness (e.g., system/network/environment noise), we propose

https://doi.org/10.1145/3450267.3450534
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Figure 1: Overview of our statistical conformance test.

a probabilistic notion of conformance for these systems. We use

the definition of probabilistic uncertain systems (PUSs) from [40]

to capture CPS dynamics. Roughly speaking, they are grey-box
probabilistic dynamical systems with unknown dynamics in known

state space. The PUSs capture the system nondeterminism as the

input and probabilism as the parameters. The input and parameters

can be time functions of general types, including real, integer, or

categorical/Boolean. Given the input and parameters’ value, a time-

dependent sample path of general types can be generated. The PUSs

subsume commonly used dynamical models such as continuous-

timeMarkov chains and hybrid I/O automata [15] with probabilistic

parameters (used to capture the Toyota Powertrain [33]).

We define the notion of conformance through a parameterized

signal temporal logic (STL) formula [3] as illustrated in Figure 1.

Specifically, we require that the satisfaction probabilities are approx-

imately equal for all values of the STL parameters. For example, for

the probabilistic conformance of two modelsM1 andM2 of reach-

ing the same set D, one can consider the parameterized formula

✸[0,𝑡 ]D and require that for a given 𝑐 > 0, it holds that

∀𝑡 ∈ [0,∞) .
��Pr𝜎1∼M1

(𝜎1 |= ✸[0,𝑡 ]D)
− Pr𝜎2∼M2

(𝜎2 |= ✸[0,𝑡 ]D)
�� < 𝑐;

here, 𝜎1 and 𝜎2 are two random signals from the modelsM1 and

M2, respectively, as illustrated in Figure 2. This implies that both

systemsM1 andM2 reachD with approximately equal probability

for any time horizon. Our notion of conformance only requires these

probabilities to be approximately equal instead of exactly equal,

since the former is usually sufficient in practice (more examples

are provided in Section 6).

Since the PUSs may have complex or even unknown dynam-

ics, we adopt a statistical verification approach, as it scales better

than model-based verification approaches and can handle unknown

dynamics [2, 19]. From the conformance definition, we need to

simultaneously handle the approximately equal satisfaction prob-

ability of infinitely many STL specifications since the parameters

of the parameterized STL formula can take infinitely many values;

this is very challenging since existing statistical verification meth-

ods can only handle a single (non-parametrized) temporal logic

formula [2, 20] or a hyper temporal logic formula [38, 40].

We show that statistically verifying conformance is feasible when

the STL formula is monotonically parameterized, i.e., the formula’s

satisfaction probability changes monotonically with the parameters.

Such a property holds for many cases as discussed in detail in

Section 3 and the case studies in Section 6. To the best of our

𝑡

Pr𝜎1∼M1
(𝜎1 |= ✸[0,𝑡 ]D)

Pr𝜎2∼M2
(𝜎2 |= ✸[0,𝑡 ]D)

1

Figure 2: Reachability probabilities for some set D v.s. time
horizon 𝑡 . The two models conform (for reachability) if the
black line stays within the blue tube.

knowledge, this work is the first to enable statistical verification

for infinitely many formulas.

Due to monotonicity, the satisfaction probabilities over the val-

ues of its parameters on the two PUSs form two probability distri-

butions. Accordingly, the conformance of two PUSs requires the

two distributions to be approximately equal. To this end, we de-

velop a new statistical test to check the approximate equality of two
distributions with provable confidence levels. Our test is based on

the classic Kolmogorov-Smirnov (KS) test [10] and its multivariate

generalization [30] for checking the exact equality of two distribu-

tions. Based on this, we develop a statistical verification method

for the probabilistic (non)conformance of two PUSs for any desired

confidence level (lower than 1).

We apply the proposed statistical verification method to check

the probabilistic conformance for three case studies to show its

applicability. First, we study the probabilistic conformance of the

widely used full and simplified models of the Toyota powertrain

system [16, 33] for the startup time for their air to fuel ratio to

reach a working region. Our results show the nonconformity of

the two models, suggesting the simplified model may not capture

certain important aspects of the system. Second, we check the

probabilistic conformance of the settling time of anMPC-based lane-

keeping controller and several NN-based lane-keeping controllers

of different sizes for an autonomous car [26]. We show that NN-

based controllers conform to the MPC-based controller, as their size

increases; however, a small NN design may result in nonconformity.

It suggests that an MPC-based controller can be replaced with a

sufficiently-large NN-based controller to satisfyingly control the

settling time. Finally, we check the probabilistic conformance of

the maximal deviation of DC voltage between the full model and

a simplified model of a power grid system [27]. Our results show

that the two models do not probabilistically conform – i.e., the

simplified model again may not capture certain important aspects

of the system.

This paper is organized as follows. After preliminaries in Sec-

tion 2, in Section 3 we formalize the problem and our definition

of probabilistic conformance for a parameterized STL formula. We

present a new statistical test in Section 4 and the verificationmethod

for the probabilistic conformance in Section 5. In Section 6, we ap-

ply our method to three real-world case-studies, before discussing

related work in Section 7, and concluding in Section 8.

Notation. We denote the sets of natural, real, and non-negative

real numbers by N, R, and R≥0, respectively. We define R∞ =
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X𝑋 (𝑡)
𝑡 ∈ R≥0

X
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Input

𝐼 (𝑡) ∈ I

Figure 3: Probabilistic Uncertain System (PUS).

R ∪ {−∞,∞}, and [𝑛] = {1, . . . , 𝑛}, for 𝑛 ∈ N. The cardinality and

the power set of a set 𝑆 are denoted by |𝑆 | and 2
𝑆
.

2 PROBLEM FORMULATION
We use a general systemmodel for CPS called probabilistic uncertain
systems (PUSs) [40]. They capture continuous-time probabilistic

dynamics on a hybrid state-space of discrete and continuous val-

ues, as well as generalize common probabilistic models such as

continuous-time Markov chains (CTMC) and probabilistic hybrid

I/O automata [40]. Since we adopt a statistical approach, we mainly

view a PUS as a grey-box that generates random samples (Figure 3).

Definition 1. A probabilistic uncertain system (PUS) is a tuple
M = (X, 𝑋init,I,D, {𝐷 (𝑡)}𝑡 ∈R≥0 ,T), where
• X = X1 × . . .×X𝑛 is the state space with each X𝑖 being either
R or a discrete set [𝑛X𝑖 ];
• 𝑋init ∈ X is the initial state;
• I = I1 × . . . × I𝑚 is the range of inputs with each I𝑖 being
either R or a discrete set [𝑛I𝑖 ];
• D = D1 × . . . × D𝑙 is the range of parameters with each D𝑖
being either R or a discrete set [𝑛D𝑖 ];
• {𝐷 (𝑡)}𝑡 ∈R≥0 is a random process on D (for a properly de-
fined probability space), defining the random change of the
parameter over time;
• T : (R≥0 → I) × (R≥0 → D) → (R≥0 → X) defines
the transition of the system – i.e., given the (time-dependent)
value of the input and parameter, the system deterministically
generates a path.

Given the value of the (time-dependent) input 𝐼 : R≥0 → I, the
PUS can generate a random signal 𝜎 (𝑡) = T (𝐼 (𝑡), 𝐷 (𝑡)), where the
randomness comes from the parameter𝐷 (𝑡). We denote by 𝜎 ∼ M𝐼

when the signal 𝜎 is randomly generated from the systemM for

the given input 𝐼 . We also write 𝜎 ∼ M if 𝐼 is clear from the context.

There is no assumption on the dynamics of a PUS, such as

Markovian, causal, etc. Common probabilistic models such as the

discrete-time or continuous-time Markov chains [36], and proba-

bilistic hybrid I/O automata [35, 42] are subsumed by the notion of

PUS (see [40] for details).

Example 1. A simple example of PUS is a bouncing ball with
random gravitational acceleration, as shown in Figure 4. Its state is the
height and velocity (𝑥, 𝑣). For 𝑥 > 0, the state evolves by ¤𝑥 = 𝑣, ¤𝑣 = 𝑔;
for 𝑥 = 0, it jumps by 𝑥 ↦→ 𝑥, 𝑣 ↦→ −𝑣 . The parameter 𝑔 is randomly
drawn from a normal distribution 𝑁 (𝑔0, 𝜎2) for some 𝑔0, 𝜎 > 0. The
initial state is (𝑥0, 0). The input set is empty.

Figure 4: Stochastic bouncing ball.

Finally, note that although by Definition 1, a PUS has a unique

initial state, it allows for defining conformance of paths from dif-

ferent initial states 𝑋1 and 𝑋2 of the PUS. This is done by adding a

new initial state 𝑋0 to the PUS, and model the transition from 𝑋0
to 𝑋1 and 𝑋2 as part of the input.

Signal Temporal Logic. We use the signal temporal logic (STL) [24]
to capture the temporal specifications of interest for the random

signals of the PUS. STL can be viewed as the counterpart of lin-

ear temporal logic (LTL) in the real-time domain with real-valued

constraints. An STL formula is defined inductively by the syntax

𝜑 F 𝑓 > 0 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 U[𝑡1,𝑡2 ] 𝜑, (1)

where 𝑓 : R𝑛 → R is a given function. To simplify further discus-

sion, we let 𝑡1, 𝑡2 ∈ R∞, instead of taking values in nonnegative

rational numbers. We call 𝑓 > 0 an atomic proposition andU[𝑡1,𝑡2 ]
the “until” operator. Other temporal and logic operators are defined

as usual; for example,

• (false/true) F = 𝜑 ∧ (¬𝜑) and T = ¬F,
• (finally) ✸[𝑡1,𝑡2 ]𝜑 = T U[𝑡1,𝑡2 ] 𝜑 , and
• (always) ✷[𝑡1,𝑡2 ]𝜑 = ¬(✸[𝑡1,𝑡2 ]¬𝜑).

For a concrete signal 𝜎 : R≥0 → R𝑛 of the PUS, the satisfaction

relation for STL formulas is defined recursively by the semantics

𝜎 |= 𝑓 > 0 iff 𝑓 (𝜎 (0)) > 0

𝜎 |= ¬𝜑 iff 𝜎 ̸ |= 𝜑
𝜎 |= 𝜑1 ∧ 𝜑2 iff 𝜎 |= 𝜑1 and 𝜎 |= 𝜑2
𝜎 |= 𝜑1 U[𝑡1,𝑡2 ] 𝜑2 iff there exists 𝑡 ∈ [𝑡1, 𝑡2] such that

𝜎 (𝑡 ) |= 𝜑2 and for any 0 ≤ 𝑡 ′ < 𝑡,
it holds that 𝜎 (𝑡

′) |= 𝜑1;

here, 𝜎 (𝑡 ) denotes the 𝑡-shift of the signal, defined by 𝜎 (𝑡 ) (𝑡 ′) =
𝜎 (𝑡 + 𝑡 ′) for any 𝑡 ′ ∈ R≥0.

We make the convention that a formula 𝜑1U[𝑡1,𝑡2 ] 𝜑2 is equiv-
alent to F, if 𝑡2 < 𝑡1, 𝑡1 < 0, or 𝑡2 < 0.

Example 2. The following STL formula requires that if |𝑥 | > 0.5,
then within 0.6 time units |𝑥 | settles under the value 0.5 for the 1.5-
long time interval

𝜑 = ✷

(
|𝑥 | > 0.5⇒ ✸[0,.6] (✷[0,1.5] |𝑥 | < 0.5)

)
.

3 PROBABILISTIC CONFORMANCE
We focus on a class of conformance properties for CPS for an (in-
finite) set of STL formulas. Mathematically, we say that two PUSs

probabilistically conform if for any STL formula from the set, the

satisfaction probabilities are approximately equal for two random

signals drawn respectively from the two PUSs. This can be viewed

as a probabilistic generalization of [1, 9].
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Definition 2 (Conformance). Let Φ be an infinite set of STL
formulas. For two PUSsM1 andM2, and a given 𝑐 > 0, we say that
M1 andM2 𝑐-approximately probabilistically conform for Φ (for the
same given input), if for any STL formula 𝜙 ∈ Φ, it holds that��Pr𝜎1∼M1

(𝜎1 |= 𝜙) − Pr𝜎2∼M2
(𝜎2 |= 𝜙)

�� < 𝑐,
where 𝜎𝑖 ∼ M𝑖 is a random path from the PUSM𝑖 , for 𝑖 ∈ {1, 2}.

In Definition 2, we only require the satisfaction probabilities to

be approximately equal for the STL formulas of interest instead of

exactly equal; the latter is usually unnecessary in applications (see

e.g. the case studies presented in Section 6). Besides, the confor-

mance from Definition 2 cannot be expressed by single formulas in

any common temporal logic since a parameterized formula effec-

tively captures an infinite number of STL formulas. For any fixed

values of the employed parameters, the property can be expressed

in HyperPSTL [40].

Depending on the choice of the class (i.e., set) of temporal proper-

ties Φ, different notions for the conformance of PUS are derived, in-

cluding probabilistic reach-set conformance and probabilistic trace

conformance. Commonly, an STL formula set Φ can be derived by

parametrizing a single STL formula 𝜙 by [3]

Φ = {𝜙𝑑 : 𝑑 ∈ R𝐾 }. (2)

Effectively, 𝜙𝑑 represents infinitely many STL formulas, as the

parameter 𝑑 can take infinitely many values.

For example, the STL formula set

Φ1 = {✸[0,1] (𝜎 > 𝑎) : 𝑎 ∈ R} (3)

is derived by parametrizing the threshold 𝑎. It contains an infinite

set of reachability specifications for the parametrized threshold 𝑎

within the fixed time-interval [0, 1]. The conformance of the two

PUSsM1 andM2 for the set Φ1 means that, for any threshold 𝑎

the probability of reaching the threshold should be approximately

equal for two random signals respectively fromM1 andM2.

Similarly, the STL formula set

Φ2 = {✸[0,𝑡 ] (𝜎 > 0) : 𝑡 ∈ R} (4)

is derived by parametrizing the time horizon 𝑡 . It contains an infinite

set of reachability specifications for the fixed threshold 0, within

a parameterized time interval [0, 𝑡]. The conformance of the two

PUSs M1 and M2 for the set Φ2 means that the probability of

reaching the threshold 0 (i.e., > 0) within any time interval [0, 𝑡]
should be approximately equal for two random signals respectively

fromM1 andM2.

Considering that the PUSs can have complex dynamics that may

be even unknown in practice, in this work we propose to statis-

tically verify the conformance of PUSs from Definition 2; such

method exhibits better scalability than the exhaustive approaches

and can handle unknown dynamics [2, 19]. There are infinitely

many STL formulas of interest in (2), so the proposed statistical

verification method should be able to handle an infinite set of STL

specifications. This is very challenging since all existing statistical

verification techniques can only handle single STL specifications

[2, 20]. To solve this, we focus on the conformance for monoton-
ically parameterized STL formulas, which are commonly used in

system analysis [3].

Generally, the parametrized formula 𝜙𝑑 (where 𝑑 captures the

vector of parameters) is monotone if the satisfaction probability

on a model is preserved for the order of the parameters – i.e., the

satisfaction probability changes monotonically with the parame-

ter. While statistically verifying the probabilistic conformance for

an arbitrary STL formula set is very difficult, handling a mono-

tonically parameterized formula set can be done by exploiting the

formula’s monotonicity.

Definition 3 (Monotonically Parameterized Formula). A
parameterized formula 𝜙𝑑 with 𝑑 ∈ R𝐾 is monotone for a PUSM if
for any given path 𝜎 fromM and 𝑖 ∈ [𝐾], and
• for any 𝑑, 𝑑 ′ such that 𝑑 ⪯𝑖 𝑑 ′, it holds that 𝜎 |= 𝜙𝑑 implies
𝜎 |= 𝜙𝑑′ , OR
• for any 𝑑, 𝑑 ′ such that 𝑑 ⪯𝑖 𝑑 ′, it holds that 𝜎 |= 𝜙𝑑′ implies
𝜎 |= 𝜙𝑑 ;

here, 𝑑 ⪯𝑖 𝑑 ′ denotes that the entries of 𝑑 and 𝑑 ′ are equal except for
𝑑𝑖 ≤ 𝑑 ′𝑖 .

Following Definition 3, the parameter alternation preserves the

parametrized STL formula’s monotonicity.

Definition 4 (Alternation). The function 𝜋 (𝑑) = 𝑑 ′ is called
an alternation, if for all 𝑖 ∈ [𝐾], 𝑑 ′

𝑖
= 𝑑𝑖 or 𝑑 ′𝑖 = −𝑑𝑖 . The set of all

𝐾-dimensional alternations in R𝐾 is denoted by Π𝐾 .

From the previous definitions, the following directly holds.

Lemma 1. If 𝜙𝑑 is a monotonically parameterized STL formula,
then so is 𝜙𝜋 (𝑑) , where 𝜋 is an alternation.1

4 STATISTICAL TEST FOR APPROXIMATE
EQUALITY OF DISTRIBUTIONS

Before introducing a statistical verification algorithm for probabilis-

tic conformance, we propose a new statistical test for the equiv-

alence of two (unknown) probability distributions, based on the

classic Kolmogorov-Smirnov test [10, 30]. We start from the scalar

case and then extend to the multidimensional case.

Consider two 𝐾-dimensional random vectors 𝑋 = (𝑋1, . . . , 𝑋𝐾 )
and 𝑌 = (𝑌1, . . . , 𝑌𝐾 ). For each 𝐾-dimensional alternation 𝜋 ∈ Π𝐾 ,
we define

𝐹𝜋 (𝑎) = Pr𝑋
(
𝜋 (𝑋 )1 ≤ 𝜋 (𝑎)1, . . . , 𝜋 (𝑋 )𝐾 ≤ 𝜋 (𝑎)𝐾

)
,

𝐺𝜋 (𝑎) = Pr𝑌
(
𝜋 (𝑌 )1 ≤ 𝜋 (𝑎)1, . . . , 𝜋 (𝑌 )𝐾 ≤ 𝜋 (𝑎)𝐾

)
,

(5)

where 𝜋 (𝑋 )𝑖 is the 𝑖𝑡ℎ entry of 𝜋 (𝑋 ), and the probabilities Pr𝑋 and

Pr𝑌 are taken for the random vectors 𝑋 and 𝑌 , respectively. If 𝜋 is

the identity map, then 𝐹𝜋 and 𝐺𝜋 are respectively the cumulative

distribution functions (CDFs) of 𝑋 and 𝑌 , which we denote by

𝐹 and 𝐺 to simplify our notation. Otherwise, 𝐹𝜋 and 𝐺𝜋 are the

complimentary CDFs of 𝑋 and 𝑌 .

To measure the difference between the probability distributions

of 𝑋 and 𝑌 , let

𝛾𝑋,𝑌 = max

𝜋 ∈Π𝐾
∥𝐹𝜋 −𝐺𝜋 ∥∞, (6)

1
The alternation of time horizon parameters in U (and other temporal operators)

follows the aforementioned convention that𝜑1U[𝑡
1
,𝑡
2
]𝜑2 is equivalent to F, if 𝑡2 < 𝑡1 ,

𝑡1 < 0, or 𝑡2 < 0.
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with ∥ · ∥∞ standing for the 𝐿∞ function norm. If 𝛾𝑋,𝑌 = 0, then 𝑋

and 𝑌 have the same probability distributions.

The approximate equality of the probability distributions of 𝑋

and 𝑌 is formulated as the hypothesis testing problem

H0 : 𝛾𝑋,𝑌 < 𝑐 H1 : 𝛾𝑋,𝑌 > 𝑐, (7)

where 𝑐 > 0 is the given parameter for approximate equality. The al-

ternation 𝜋 in (6) is necessary since two different multidimensional

probability distributions may have the same CDFs but different

complimentary CDFs.

Assumption 1. Similar to previous work on statistical verifica-
tion [40, 41], we assume𝛾𝑋,𝑌 ≠ 𝑐 , which ensures that as the number of
samples increases, the samples will increasingly concentrate to support
eitherH0 orH1 by the central limit theorem. Therefore, a statistical
analysis based on the majority of the samples has increasing accuracy.
This assumption is weaker than the “indifference region” adopted in
other works on statistical verification [2, 20].

Remark 1. The hypothesis testing problem (7) cannot be handled
by the classic Kolmogorov-Smirnov (KS) test [10] and its multivariate
generalization [30], since they can only check for the exact equality
of two probability distributions, i.e., the hypothesis testing problem

H ′
0
: 𝛾𝑋,𝑌 = 0 H ′

1
: 𝛾𝑋,𝑌 > 0. (8)

To solve problem (7), we build on the KS test and introduce a

new statistical test for any given confidence level 𝛼 (i.e., the lowest

probability that the test’s assertion agrees with the truth in all

cases).
2
To facilitate presentation, we start from the scalar case and

then move to the vector case.

4.1 Scalar Random Variables
If𝑋 and 𝑌 are scalar,

3
then from (7), we have that 𝛾𝑋,𝑌 = ∥𝐹 −𝐺 ∥∞,

where 𝐹 and 𝐺 are the CDFs of 𝑋 and 𝑌 , respectively.4 Given two

sets of independent and identically distributed (i.i.d.) samples

𝑋 [𝑛] = (𝑋 (1) , . . . , 𝑋 (𝑛) ), 𝑌 [𝑚] = (𝑌 (1) , . . . , 𝑌 (𝑚) ),
drawn respectively from 𝑋 and 𝑌 , the ECDFs of the samples are

𝐹𝑋 [𝑛] (𝑥) =
1

𝑛

∑𝑛

𝑖=1
I(𝑋 (𝑖) ≤ 𝑥),

𝐺𝑌 [𝑚] (𝑦) =
1

𝑚

∑𝑚

𝑖=1
I(𝑌 (𝑖) ≤ 𝑦),

(9)

where I(·) is the indicator function. Intuitively, the different 𝛾𝑋,𝑌
can be statistically estimated by (as illustrated in Figure 5)

𝛿𝑋 [𝑛] ,𝑌 [𝑚] = ∥𝐹𝑋 [𝑛] −𝐺𝑌 [𝑚] ∥∞ . (10)

When the numbers of samples 𝑛,𝑚 → ∞, the ECDFs converges
to the CDFs: 𝐹𝑋 [𝑛] → 𝐹 and 𝐺𝑌 [𝑚] → 𝐺 ,5 and thus, 𝛿𝑋 [𝑛] ,𝑌 [𝑚] →
𝛾𝑋,𝑌 by Glivenko-Cantelli theorem [37]. Therefore, for the hypoth-

esis testing problem (7), we propose the statistics assertion

A(𝑋 [𝑛] , 𝑌 [𝑚] ) =
{
H0, if 𝛿𝑋 [𝑛] ,𝑌 [𝑚] < 𝑐,

H1, if 𝛿𝑋 [𝑛] ,𝑌 [𝑚] > 𝑐.
(11)

2
The confidence level𝛼 is minimum of the p-values of the two hypothesis. Accordingly,

we refer to 1 − 𝛼 as the significance level, which is the maximal of the false positive

and the false negative rates.

3
For this scalar case, to simplify our notation, we denote 𝑋 and 𝑌 as 𝑋 and 𝑌 .

4
This does not hold in general for multidimensional random variables.

5
More precisely, this is convergence in distribution.

1

𝐹𝑋 [𝑛] (𝑥)
𝐺𝑌 [𝑚] (𝑥)

𝛿
𝑋 [𝑛] ,𝑌 [𝑚]

Figure 5: Illustration of the statistics 𝛿𝑋 [𝑛] ,𝑌 [𝑚] .

For random samples 𝑋 [𝑛] and 𝑌 [𝑚] , the probability 𝛼 that the

assertion (11) agrees with the correct answer to the hypothesis

testing problem (7) is called the confidence level. It depends on the

discrepancy between 𝛾𝑋,𝑌 and 𝛿𝑋 [𝑛] ,𝑌 [𝑚] , which is bounded by

𝑑𝑋 [𝑛] ,𝑌 [𝑚] = ∥(𝐹𝑋 [𝑛] − 𝐹 ) − (𝐺𝑌 [𝑚] −𝐺)∥∞ (12)

due to the triangle inequality��𝛿𝑋 [𝑛] ,𝑌 [𝑚] − 𝛾𝑋,𝑌 �� ≤ 𝑑𝑋 [𝑛] ,𝑌 [𝑚] . (13)

When the numbers of samples𝑛,𝑚 →∞, the discrepancy𝑑𝑋 [𝑛] ,𝑌 [𝑚]
→ 0with probability 1. However, the probability distribution of the

rescaled discrepancy 𝑑𝑋 [𝑛] ,𝑌 [𝑚]
√
𝑚𝑛/(𝑚 + 𝑛) (for random samples

𝑋 [𝑛] , 𝑌 [𝑚] ) is asymptotically invariant of 𝑛,𝑚 and is independent

of the CDFs 𝐹 and 𝐺 , as formally stated below.

Lemma 2 (Section 7.9 of [10]). The CDF 𝐻 (𝑥) of the 𝑑𝑋 [𝑛] ,𝑌 [𝑚]√
𝑚𝑛/(𝑚 + 𝑛) from (12) obeys the Kolmogorov-Smirnov distribution

𝐻 (𝑥) = 1 − 2
∞∑
𝑖=1

(−1)𝑖−1𝑒−2𝑖
2𝑥2 ≈ 1 − 2𝑒−2𝑥

2

. (14)

Now, we derive the significance level (i.e., 1 − 𝛼 , where 𝛼 is the

confidence level ) of the assertion (11) when observing a value of

the test statistics 𝛿𝑋 [𝑛] ,𝑌 [𝑚] to be 𝜆. If 𝜆 < 𝑐 , the significance level

of (11) is the probability of observing a value of 𝛿𝑋 [𝑛] ,𝑌 [𝑚] (in any

other test) that is lower than 𝜆 (i.e., more in favor of the hypothesis

H0) under the likely-false hypothesisH1. It holds that
6

1 − 𝛼 = Pr𝑋 [𝑛] ,𝑌 [𝑚]
(
𝛿𝑋 [𝑛] ,𝑌 [𝑚] < 𝜆 | H1

)
= Pr𝑋 [𝑛] ,𝑌 [𝑚]

(
𝛾𝑋,𝑌 − 𝛿𝑋 [𝑛] ,𝑌 [𝑚] > 𝛾𝑋,𝑌 − 𝜆 | H1

)
≤ Pr𝑋 [𝑛] ,𝑌 [𝑚]

(
𝑑𝑋 [𝑛] ,𝑌 [𝑚] > 𝛾𝑋,𝑌 − 𝜆 | H1

)
(15)

≤ Pr𝑋 [𝑛] ,𝑌 [𝑚]
(
𝑑𝑋 [𝑛] ,𝑌 [𝑚] > 𝑐 − 𝜆

)
(16)

= 1 − 𝐻
(
(𝑐 − 𝜆)

√
𝑚𝑛/(𝑚 + 𝑛)

)
(17)

where (15) follows from (13); (16) holds since 𝛾𝑋,𝑌 > 𝑐 underH1;

and (17) follows from Lemma 2. Similarly, if 𝜆 > 𝑐 , the significance

level of (11) satisfies

1 − 𝛼 ≤ 1 − 𝐻
(
(𝜆 − 𝑐)

√
𝑚𝑛/(𝑚 + 𝑛)

)
. (18)

Finally, combining (17) and (18), the confidence level of (11) satisfies

𝛼 ≥ 𝐻
(
|𝜆 − 𝑐 |

√
𝑚𝑛/(𝑚 + 𝑛)

)
. (19)

Based on (19), for any desired confidence level 𝛼𝑑 < 1, our sta-

tistical test is deployed sequentially. It can return an assertion with

an actual confidence level of at least 𝛼𝑑 . Iteratively, the algorithm

6
To simplify our notation, we also use 𝛿

𝑋 [𝑛] ,𝑌 [𝑚] to denote a random value of the

test statistics in any other test in computing the significance level.



ICCPS ’21, May 19–21, 2021, Nashville, TN, USA Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpoor, and Miroslav Pajic

Algorithm 1 Proposed statistical test.

Require: Desired confidence 𝛼𝑑 > 0, 𝑐 ∈ (0, 1), 𝑘1, 𝑘2 ∈ N.
1: Sample sizes 𝑛,𝑚 ← 0, 𝛼 ← 0.

2: while 𝛼 < 𝛼𝑑 do
3: Draw 𝑘1, 𝑘2 new samples from 𝑋 , 𝑌 , respectively.

4: 𝑛 ← 𝑛 + 𝑘1,𝑚 ←𝑚 + 𝑘2
5: Update 𝛿𝑋 [𝑛] ,𝑌 [𝑚] by (10).

6: Update 𝛼 by (19).

7: end while
8: return A by (11).

Algorithm 2 Statistical verification for conformance.

Require: Desired confidence level 𝛼𝑑 , threshold 𝑐 > 0

1: Sample sizes 𝑛,𝑚 ← 0, 𝛼 ← 0

2: while 𝛼 < 𝛼𝑑 do
3: Draw new samples fromM1,M2 and update 𝑛,𝑚.

4: Update 𝐹𝜋𝑛 ,𝐺
𝜋
𝑚 by (23) and compute 𝛿𝑛,𝑚 by (24).

5: Update 𝛼 by [11, 30].

6: end while
7: return A by (11).

draws 𝑘1 and 𝑘2 new samples from the two CDFs 𝐹 and 𝐺 , respec-

tively, and then computes the actual confidence level 𝛼 from (19).

It terminates when 𝛼 > 𝛼𝑑 , and then returns the assertion by (11).

This is formally captured in Algorithm 1.

Theorem 1. Algorithm 1 terminates with probability 1 and has
the confidence level 𝛼𝑑 .

Proof. Termination: As 𝑛,𝑚 → ∞, we have 𝛿𝑋 [𝑛] ,𝑌 [𝑚] →
𝛾𝑋,𝑌 ≠ 𝑐 , – i.e., 𝛿𝑋 [𝑛] ,𝑌 [𝑚] converges to some value that is not 𝑐

with probability 1, so eitherH0 orH1 holds. Therefore, Algorithm 1

terminates with probability 1.

Correctness: Let 𝜏 be the step Algorithm 1 terminates and 𝐴 be

“the assertionA from (11) is correct”, then Pr(𝐴) = ∑
𝑖∈N Pr(𝐴| 𝜏 =

𝑖)Pr(𝜏 = 𝑖). From (19), for any 𝑖 ∈ N, we have that Pr(𝐴 | 𝜏 = 𝑖) >
𝛼𝑑 . In addition, by Termination, we have that

∑
𝑖∈N Pr(𝜏 = 𝑖) = 1,

Therefore, it holds that Pr(𝐴) ≥ 𝛼𝑑 . □

Remark 2. Although the test statistics 𝛿𝑋 [𝑛] ,𝑌 [𝑚] from (10) is also
used in the standard KS test [10], the implementation and thresholding
on 𝛿𝑋 [𝑛] ,𝑌 [𝑚] in (11) in our method fundamentally differs from the
KS test. Specifically, our statistical test increasingly draws samples
until reaching the desired confidence level (< 1) and the thresholding
on 𝛿𝑋 [𝑛] ,𝑌 [𝑚] in (11) represents the similarity of the probability distri-
butions as given in (7). On the other hand, the KS test employs a fixed
number of samples and the thresholding on 𝛿𝑋 [𝑛] ,𝑌 [𝑚] is related to
the confidence level. Consequently, our method guarantees confidence
levels for bothH0 andH1 in (7), while the KS test only guarantees
confidence level forH ′

0
, and notH ′

1
, in (8).

4.2 Multidimensional Random Variables
Similarly to the scalar case, for random vectors 𝑋 and 𝑌 , let 𝑋 [𝑛] =
(𝑋 (1) , ..., 𝑋 (𝑛) ) and 𝑌 [𝑚] = (𝑌 (1) , ..., 𝑌 (𝑚) ) be two sets of i.i.d.

samples from 𝑋 and 𝑌 , respectively. Then, we can define the ECDF

and the complimentary ECDFs from 𝑋 [𝑛] by

𝐹𝜋
𝑋 [𝑛]
(𝑎) = 1

𝑛

𝑛∑
𝑖=1

I
(
𝜋 (𝑋 (𝑖) )1 ≤ 𝜋 (𝑎)1, . . . , 𝜋 (𝑋 (𝑖) )𝐾 ≤ 𝜋 (𝑎)𝐾

)
,

for each 𝐾-dimensional alternation 𝜋 ∈ Π𝐾 (given by Definition 4).

Similarly, we can define 𝐺𝜋
𝑌 [𝑚]
(𝑎) from 𝑌 [𝑚] .

Following [11, 30], we note that generally ∥𝐹𝜋
𝑋 [𝑛]
−𝐺𝜋

𝑌 [𝑚]
∥∞ are

not equal for all 𝜋 ∈ Π𝐾 . Thus, defining the test statistics by only

using the CDFs 𝐹𝜋
𝑋 [𝑛]

and𝐺𝜋
𝑌 [𝑚]

by 𝛿𝑋 [𝑛] ,𝑌 [𝑚] = ∥𝐹𝑋 [𝑛] −𝐺𝑌 [𝑚] ∥∞,
as in (10) is not enough. Instead, the test statistics should take all

the CDFs and complimentary CDFs by

𝛿𝑋 [𝑛] ,𝑌 [𝑚] = max

𝜋 ∈Π𝐾
∥𝐹𝜋
𝑋 [𝑛]
−𝐺𝜋

𝑌 [𝑚]
∥∞ . (20)

By [11, 30], the test statistics 𝛿𝑋 [𝑛] ,𝑌 [𝑚] satisfies Lemma 2 and

asymptotically obeys the Kolmogorov-Smirnov distribution (14).

Therefore, the statistical test (11) extends to the multidimensional

case by using 𝛿𝑋 [𝑛] ,𝑌 [𝑚] from (20). For 𝐾 ≤ 3, the confidence level

for (20) can be derived directly from the results of [11, 30]. For

𝐾 > 3, it can be computed by extending the method of [11, 30].

5 STATISTICAL VERIFICATION OF
PROBABILISTIC CONFORMANCE

Based on the statistical test introduced in Section 4, we now pro-

pose a statistical verification algorithm to check the probabilistic

conformance of two PUSs for a monotonically parametrized STL

formula (as formulated in Section 3). For a lucid presentation and

as with most other works (e.g., [2, 19]), we focus on bounded-time

properties; handling unbounded-time properties is more involving

and is an avenue for future work.

Following Definition 2, for a monotonically parametrized STL

formula 𝜙𝑑 with 𝑑 ∈ R𝐾 and for each 𝐾-dimensional alternation

𝜋 ∈ Π𝐾 (from Definition 4), let

𝐹𝜋 (𝑑) = Pr𝜎1∼M1
(𝜎1 |= 𝜙𝜋 (𝑑) ),

𝐺𝜋 (𝑑) = Pr𝜎2∼M2
(𝜎2 |= 𝜙𝜋 (𝑑) ) . (21)

By the monotonicity of 𝜙𝑑 from Definition 3, for each for 𝜋 ∈ Π𝐾 ,
the multivariate functions 𝐹𝜋 is the CDF or a complementary CDF

of the satisfaction probability of𝜙𝑑 for the parameter𝑑 . The equality

in (21) is almost everywhere in Lebesguemeasure, since distribution

functions 𝐹𝜋 (𝑑) and 𝐺𝜋 (𝑑) need to be right-continuous. The same

holds for 𝐺𝜋 .

From Definition 2, the PUSsM1 andM2 conform with respect

to the monotonically parametrized formula𝜙𝑑 , if the CDFs and com-

plementary CDFs 𝐹𝜋 (𝑑) and 𝐺𝜋 (𝑑) are approximately equal; i.e.,��Pr𝜎1∼M1
(𝜎1 |= 𝜙) − Pr𝜎2∼M2

(𝜎2 |= 𝜙)
�� < 𝑐

if and only if

𝛾𝑋,𝑌 = max

𝜋 ∈Π𝐾
∥𝐹𝜋 −𝐺𝜋 ∥∞ < 𝑐. (22)

On the other hand, this can be solved by our statistical test intro-

duced in Section 4.



Probabilistic Conformance for Cyber-Physical Systems ICCPS ’21, May 19–21, 2021, Nashville, TN, USA

Specifically, for two sets of sample paths 𝜎
[𝑛]
1

= (𝜎 (1)
1
, ..., 𝜎

(𝑛)
1
)

and 𝜎
[𝑚]
2

= (𝜎 (1)
2
, ..., 𝜎

(𝑚)
2
) from the PUSsM1 andM2, respec-

tively, we define the empirical approximations of 𝐹 (𝑑) and𝐺 (𝑑) by

𝐹𝜋𝑛 (𝑑) =
1

𝑛

∑𝑛

𝑖=1
I(𝜎 (𝑖)

1
|= 𝜙𝜋 (𝑑) ),

𝐺𝜋𝑚 (𝑑) =
1

𝑚

∑𝑚

𝑖=1
I(𝜎 (𝑖)

2
|= 𝜙𝜋 (𝑑) ), (23)

where 𝜋 ∈ Π𝐾 and I(·) is the indicator function.7 Similarly to (20),

the test statistics

𝛿𝑛,𝑚 = max

𝜋 ∈Π𝐾
∥𝐹𝜋𝑛 −𝐺𝜋𝑚 ∥∞, (24)

where 𝛿𝑛,𝑚 is the 𝐿∞ norm, satisfies Lemma 2 and obeys the KS dis-

tribution from (14) (asymptotically for 𝐾 ≥ 2); hence, the statistical

test (11) applies. Since 𝐹𝜋𝑛 and𝐺𝜋𝑚 are knownmultidimensional step

functions from the samples, ∥𝐹𝜋𝑛 −𝐺𝜋𝑚 ∥∞ is directly computable.

Algorithm 2 for checking probabilistic conformance terminates

with probability 1 and can achieve any desired confidence level

𝛼𝑑 < 1. The proof follows from that of Theorem 1.

6 CASE STUDIES AND EVALUATION
To demonstrate the applicability of our statistical verification al-

gorithms, we evaluated them on three CPS benchmarks with com-

plex dynamics from a wide range of application domains: (1) Toy-

ota Powertrain, (2) Lane-Keeping Assistant (LKA) Controllers, and

(3) 100𝑘𝑊 Grid-Connected Photovoltaic (PV) Array (due to space

constraints the results of the 3
𝑟𝑑

case study are presented in the Ap-

pendix). We find the case study in Section 6.2 particularly important

since (LKA controllers), to the best of our knowledge, previously

there are few comparative studies between NN-based and conven-

tional techniques in cyber-physical and embedded systems.

The Toyota powertrain model is derived from [16]. The LKA is

implemented in MATLAB using the MPC, Deep Learning, and Rein-

forcement Learning Toolboxes [25]. The PV Array is implemented

using the Simscape Power Systems toolbox [28]. All implementa-

tions are available at [6].

Evaluations are performed on a laptop with Intel Xeon E-2176M

CPU @ 2.7GHz and 16 GB RAM. For each case study, we run Al-

gorithm 2 with different indifference parameter 𝑐 and desired con-

fidence level 𝛼𝑑 (i.e., the probability for Algorithm 2 to return the

correct assertion is at least 𝛼𝑑 ). We report the test statistics 𝛿𝑛,𝑚 ,

the number of samples, total algorithm execution time, and the

assertion A when the algorithm terminates.

6.1 Toyota Powertrain
We use the Simulink models for the Toyota Powertrain with a

four-mode embedded controller and 15 state variables from [16]. It

is challenging to show that complex embedded/CPS with hybrid

dynamics, such as the powertrain, satisfy strict performance re-

quirements. On the one hand, the available benchmark model must

capture a reasonable portion of behaviors of the real powertrain to

enable us to assess, evaluate, and verify the designs against require-

ments. On the other hand, the simulation time for a simpler model

that sufficiently conforms with the real system is significantly lower.

7
In the rest of this paper, we use simplified notation with subscripts ( )𝑛 and ( )𝑚
utilized to indicate the sets of sample paths 𝜎

[𝑛]
1

and 𝜎
[𝑚]
2

.

Figure 6: Sample paths from the complex (solid blue) and
abstracted (dashed red) models for the A/F ratio deviation
percentage. The paths remain inside the desired working re-
gion (in green)with a significantly higher probability for the
abstracted model, illustrating that the distribution of the ar-
rival times to the desired working region is very different
for these two models.

In [16], two models of the Toyota Powertrain are presented. A

detailed but complex model contains the air-to-fuel (A/F) ratio con-

troller and an average model of the engine dynamics, such as the

throttle and intake manifold air dynamics. Due to the complex-

ity of this detailed model and limitations of existing verification

tools, in [16], a simpler abstract model as a hybrid I/O automaton

is also introduced to facilitate system analysis, including formal

verification.

Conformance. For the Toyota powertrain, the A/F ratio control
problem is of key interest. Hence, we study the conformance for the

A/F deviations 𝑒𝐴/𝐹 for the detailed and abstract models for an RPM

of 1600 (the system input). When the nominal input RPM is subject

to Gaussian system noiseN(0, 182), (samples of) the change of 𝑒𝐴/𝐹
over time for the twomodels are given in Figure 6. The conformance

requires that, under this system noise, the A/F deviations 𝑒𝐴/𝐹 of

the detailed and abstract models enter some desired working region

(|𝑒𝐴/𝐹 | < 0.05) in any time interval [0.22, 𝜏] with approximately the

same probability; i.e., the STL specification✸[0.22,𝜏 ] ( |𝑒𝐴/𝐹 | < 0.05)
holds with approximately the same probability for any 𝜏 between

the two models, as formally captured below
8

∀𝜏 ≥ 0. Pr𝜎𝑎∼M𝑎

(
𝜎𝑎 |= ✸[0.22,𝜏 ] ( |𝑒𝐴/𝐹 | < 0.05)

)
≈𝑐 Pr𝜎𝑓 ∼M𝑓

(
𝜎𝑓 |= ✸[0.22,𝜏 ] ( |𝑒𝐴/𝐹 | < 0.05)

)
.

(25)

Here, the constant 𝑐 > 0, the approximate equality ≈𝑐 means the

difference is less than 𝑐 , the subscripts 𝑓 and 𝑎 stand for the com-

plex and abstracted models, respectively, 𝑒𝐴/𝐹 is the percentage

deviation of A/F ratio, and 𝜏 is the time-bound.

8
More precisely, for any 𝜏 ≥ 0.22 from (25). Otherwise, the satisfaction probability is

trivially 0.
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Result Analysis. We analyzed (25) using Algorithm 2 with the

confidence level 𝛼 ∈ {0.95, 0.99} and the conformance parameter

𝑐 ∈ {0.2, 0.15, 0.10, 0.05} (see Table 1). The results are derived with

relatively small numbers of samples for all confidence and indif-

ference parameters. The results indicate that the two employed

models do not conform for the requirement (25), although it is

claimed in [16] that the abstract model is a representative of the

detailed model. Starting from the same initial RPM values, the A/F

ratio in the complex model would take more time to reach the de-

sired working region than in most cases in the abstracted model.

This also agrees with Figure 6, as the A/F ratio of the abstracted

model would remain inside the desired area, while in the complex

model, this value exceeds the desired region in most of the cases.

Furthermore, from Table 1, the value of the test statistics 𝛿𝑛,𝑚 is

almost 1 in all the cases, when Algorithm 2 terminates. This implies

that for the detailed and abstracted models, the distribution of the

startup time for their A/F ratio to reach the working region are

very different — this agrees with the algorithm assertion.

6.2 Replacing MPC with NN-based Controllers
The controller of the LKA system is commonly based on model

predictive control (MPC) or more recently neural networks (NN).

The conventional MPC-based controllers solve a constrained qua-

dratic programming optimization problem from the observed state

of a plant in an open-loop fashion. This approach is usually com-

putationally ineffective in realtime. Recently, NN-based controllers

are employed to imitate the control rules of the MPC-based con-

troller from samples to improve realtime computation efficiency.

In this case study, we check the conformance of an NN-based con-

troller and an MPC-based controller for the LKA system in MAT-

LAB/Simulink [25].

In the LKA system, the sensors measure the lateral deviation,

relative yaw angle between the center-line of a lane and the vehicle,

current lane curvature, and its derivative. The objective of the

controller is to keep the lateral error and relative yaw angle close

to zero. To dynamics of the vehicle is given by the three Degrees-

of-Freedom (DoF) bicycle model [12] as[ ¤𝑉𝑦
¥𝜓

]
=


− 2𝐶𝑓 +2𝐶𝑟

𝑚𝑉𝑥
−𝑉𝑥 −

2𝐶𝑓 𝑙𝑓 −2𝐶𝑟 𝑙𝑟
𝑚𝑉𝑥

− 2𝐶𝑓 𝑙𝑓 −2𝐶𝑟 𝑙𝑟
𝐼𝑧𝑉𝑥

−
2𝐶𝑓 𝑙

2

𝑓
+2𝐶𝑟 𝑙2𝑟

𝐼𝑧𝑉𝑥


[
𝑉𝑦
¤𝜓

]
+ 2

[
𝐶𝑓
𝑚
𝐶𝑓 𝑙𝑓
𝐼𝑧

]
𝑢

𝑦 =
[
𝑉𝑦 ¤𝜓

]
T

.

Here, 𝑉𝑥 is the longitudinal velocity,𝑚 is the total vehicle mass,

𝐼𝑧 is the yaw moment of inertia of the vehicle, 𝑙𝑓 and 𝑙𝑟 are the

longitudinal distance from the center of gravity to the front and

real tires, and 𝐶𝑓 and 𝐶𝑟 are the cornering stiffness of the front

and rear tires, respectively. The system state consist of the lateral

velocity 𝑉𝑦 and yaw angle rate
¤𝜓 , and the front steering angle 𝑢 (𝑡)

is the system input.

MPC. The MPC-based controller is derived from the MPC tool-

box in MATLAB. The values of the variables are set as follows:

𝑉𝑥 = 15 𝑚/𝑠 , 𝑚 = 1575 𝑘𝑔, 𝐼𝑧 = 2875 𝑚 · 𝑁 · 𝑠2, 𝑙𝑓 = 1.2 𝑚,

𝑙𝑟 = 1.6 𝑚, 𝐶𝑓 = 19000 𝑁 /rad, and 𝐶𝑟 = 33000 𝑁 /rad. The con-
troller output is confined within the interval [−𝜋/3, 𝜋/3] rad. The
predictive time horizon and control time horizon are set to ℎ𝑝 = 20

and ℎ𝑐 = 20.

𝑐 𝛼𝑑 𝛿𝑛,𝑚 Samples Time (sec.) A
0.40 0.99 1.00 3.9e+01 1.8e-02 F
0.40 0.95 1.00 1.9e+01 4.4e-03 F
0.25 0.99 1.00 2.5e+01 4.6e-03 F
0.25 0.95 1.00 1.3e+01 2.2e-03 F
0.10 0.99 1.00 1.8e+01 3.6e-03 F
0.10 0.95 1.00 9.0e+00 1.6e-03 F
0.05 0.99 1.00 1.6e+01 2.8e-03 F
0.05 0.95 1.00 8.0e+00 1.3e-03 F

Table 1: Statistical verification results of the conformance
property (25) and the test statistics 𝛿𝑛,𝑚 upon Algorithm 2
termination for different values of conformance parameter
𝑐 and desired confidence level 𝛼𝑑 .

DNN Replacement. We train a NN controller to replace the MPC

controller, by sampling from theMPC based controller for randomly

generated states, last control action, and measured disturbances.

The samples are divided into the train and validation testing data,

and are used to train several NNs with similar structure, but dif-

ferent numbers of neurons per layer (30, 45, 60, and 300 neurons

per layer). All middle layers are fully connected with ReLU activa-

tion functions and the output layer is a fully-connected layer with

tanh activation function and a scalar layer. The maximal number

of epoch to stop the training is set to 30. The structure of the NNs

is shown in Figure 7.

Conformance. For the input of the same reference path of the

vehicle (given by the Matlab Toolbox), we expect that using the

NN controller the lateral deviation of the vehicle under random

values of the initial states should be similar to the output of the

MPC-based closed-loop system. Thus, we assign an upper bound

to the error of the lateral deviation and check when the designed

controller reaches this boundary. With fixed values of initial states,

we run the closed-loop systemwith twoNNs and the referenceMPC.

Then, we compare the time that the absolute value of the lateral

deviation falls below the desired value for the NN controller and

the MPC controller; this is formally captured by the STL formula

✸[0,𝜏 ] ( |𝑒𝑦 | < 𝛾) monotonically parametrized by 𝜏 . Accordingly,

the conformance between the MPC-controlled and NN-controlled

LKA systems for this parametrized specification is

∀𝜏 ≥ 0. Pr𝜎1∼MNN (𝜎1 |= ✸[0,𝜏 ] ( |𝑒NN𝑦 | < 𝛾))

≈𝑐 Pr𝜎2∼MMPC (𝜎2 |= ✸[0,𝜏 ] ( |𝑒MPC
𝑦 | < 𝛾)),

(26)

where the constants 𝑐,𝛾 > 0, the approximate equality ≈𝑐 means

the difference is less than 𝑐 , and 𝑒𝑦 is the lateral deviation of the

intended controller. The random signals 𝜎1 and 𝜎2 are derived as fol-

lows. The initial conditions of the system such as the lateral velocity

𝑉𝑦 , yaw angle rate
¤𝜓 , lateral deviation 𝑒1, relative yaw angle 𝑒2, last

steering angle 𝑢, and the measured road yaw rate 𝑉𝑥𝜌 are drawn

randomly using the uniform distribution from intervals [−2, 2]𝑚/𝑠 ,
[−𝜋/3, 𝜋/3] rad/𝑠 , [−1, 1]𝑚, [−𝜋/4, 𝜋/4] rad, [−𝜋/3, 𝜋/3] rad, and
[−0.01, 0.01], respectively. The minimum road reduce is 100𝑚.

Result Analysis. The results for applying Algorithm 2 with pa-

rameters 𝛼 ∈ {0.95, 0.99}, and 𝑐 ∈ {0.40, 0.25, 0.10, 0.05} are shown
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Figure 7: The employed structure for the NN controllers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
C

D
F

0.5 1 1.5 2 2.5 3

Settling Time (s.)

Figure 8: The ECDFs of the settling time for the MPC and
NN-based controllers with with 30, 45, 60, and 3000 neurons
per layer (NN30, NN45, NN60, and NN300) from 200 samples.
The conformance is visually demonstrated by the closeness
of the ECDFs.

in Table 2 for NN controllers with 30 and 45 neurons per layer. As

can be seen, the NN controllers with 45 neurons per layer conforms

much better with the MPC controller than the NN controllers with

30 neurons per layer for the requirement (26). The results for 60

and 300 neurons per layer are similar to 45 neurons per layer (as

confirmed by Figure 8), so they are omitted due to the space limit.

All these results are achieved with relatively few samples (at most

a few thousand samples for each setup).

The results of Table 2 imply that increasing the size of the NN-

based controllers improves the conformance with the MPC con-

troller. To check this observation and confirm the results of Table 2,

we show in Figure 8 the ECDFs of the settling time for the MPC

controller and the NN controllers with 30, 45, 60, and 300 neu-

rons per layer; the conformance for the requirement (26) is visually

demonstrated by the closeness of the ECDFs. To derive the same

conclusion, each ECDF uses 200 samples, which is significantly

more than the samples required by Algorithm 2, as shown in Ta-

ble 2. As shown in Figure 8, increasing the number of neurons

beyond 45 does not lead to considerable change in the CDF of the

settling times for NN based controllers. Comparing to NN300, the

NN60 controller has better conformance with the MPC. The latter

implies that NN300 controller has the over-fitting problem. For the

NN-based controllers of different sizes, the test statistics upon algo-

rithm termination is 𝛿
NN30

𝑛,𝑚 = 0.98, 𝛿
NN45

𝑛,𝑚 = 0.31, 𝛿
NN60

𝑛,𝑚 = 0.31, and

𝛿
NN300

𝑛,𝑚 = 0.35.

7 RELATEDWORK
Conformance of CPS for different types of specifications of interest

is studied in [13, 18, 21, 23, 32, 34]. As in [1, 9], in this work, we focus

on a class of conformance properties for CPS that are specified by

temporal logic formulas. Our notion of conformance can be viewed

as the probabilistic extension of [1, 9], that is needed to allow for

capturing the conformance between a wide class of probabilistic

CPS (which we model as PUSs). Since reachability properties can

be in general captured by temporal logic formulas, our notion of

conformance is more general than the conformance for reachability

from [21, 32].

Existing works on conformance for temporal logic specifications

mainly focus on non-probabilistic models [1, 9, 13, 18, 21]. On the

other hand, in this work, we focus on a probabilistic notion of

conformance – the satisfaction probability of the specifications

of interest should be approximately equal. In [1, 9], conformance

builds a relation between two models such that if any STL formula

holds on one model, then the corresponding formula should au-

tomatically hold on the other model. Conceptually, our notion of

conformance is less stringent, as it only involves a given set of STL

formulas of interest. Furthermore, our notion of conformance is

conceptually more general than [21, 32], where the conformance is

only for reachability. Our notion of conformance can specify the

conformance of probabilistic reachability for two models.

Conformance is different from the simulation/bisimulation [7]

in two aspects. Conceptually, conformance focuses on the level of

functionality, and only captures the similarity between two models

for a set of specifications of interest. That is, the behavior of the two

models may be very different for other specifications (not of inter-

est). On the other hand, the simulation/bisimulation focuses on the

level of executions, and requires an execution-wise correspondence

between the two models. Also, the two concepts have slightly dif-

ferent domains of applications [1, 9, 18]. Conformance is commonly

only used for cyber-physical and embedded control systems, while

simulation/bisimulation may be used for both discrete models [7]

as well as cyber-physical and embedded control systems [17, 39].

To the best of our knowledge, this is the first work on statisti-

cally verifying the probabilistic conformance of CPS with complex

dynamics (formally captured as probabilistic uncertain systems

from Definition 1), while providing provable confidence levels (i.e.,

false positive/negative ratios). Existing model-based methods for

conformance, such as [1, 9, 18, 21] cannot directly handle such

systems with complex or even unknown dynamics in practice. On

the other hand, existing conformance testing methods for temporal
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NN (30 Neurons per Layer) NN (45 Neurons per Layer)

𝑐 𝛼𝑑 𝛿𝑛,𝑚 Samples 𝑇 (𝑠) A 𝛿𝑛,𝑚 Samples 𝑇 (𝑠) A
0.40 0.99 0.98 4.3e+01 7.4e-03 F 0.36 1.0e+04 9.6e+00 T
0.40 0.95 1.00 1.9e+01 3.1e-03 F 0.36 3.6e+03 2.0e+00 T
0.25 0.99 1.00 2.5e+01 4.1e-03 F 0.37 9.5e+02 3.2e-01 F
0.25 0.95 1.00 1.3e+01 2.1e-03 F 0.42 2.5e+02 5.9e-02 F
0.10 0.99 1.00 1.8e+01 3.0e-03 F 0.36 2.1e+02 4.2e-02 F
0.10 0.95 1.00 9.0e+00 1.6e-03 F 0.35 1.2e+02 2.2e-02 F
0.05 0.99 1.00 1.6e+01 2.7e-03 F 0.38 1.3e+02 2.5e-02 F
0.05 0.95 1.00 8.0e+00 1.2e-03 F 0.36 7.3e+01 1.4e-02 F

Table 2: Statistical verification results for the conformance property (26) and the test statistics 𝛿𝑛,𝑚 upon Algorithm 2 termina-
tion for different values of the conformance parameter 𝑐 and desired confidence level 𝛼𝑑 .

logic specifications [13, 32] or other specifications [23, 34] cannot

provide probabilistic guarantees like the presented method. There-

fore, those methods are not directly comparable with ours for the

case studies presented in Section 6.

8 CONCLUSION
In this paper, we proposed a new concept of probabilistic confor-
mance for CPS. This notion is based on approximately equal sat-

isfaction probabilities for a given (infinite) set of signal temporal

logic formulas. We introduced a verification algorithm for the prob-

abilistic conformance of grey-box CPS, modeled by probabilistic

uncertain systems. Our statistical verification algorithm is based on

a new statistical test that can check if two probability distributions

are equal for any desired confidence level (lower than 1). Finally,

we used our approach to verify (1) the nonconformity in the startup

time of the full and simplified models of the Toyota powertrain

system, (2) the approximate conformity in the settling time of the

model predictive control (MPC) based lane-keeping controller and

neural network (NN) based lane-keeping controllers of sufficient

sizes, and (3) the nonconformity in the maximal DC voltage de-

viation of the full and simplified model of a power grid system.

An avenue for future work is to support conformance verification

of systems for security/privacy policies that are hyperproperties.
Besides, there is a need to go beyond verification and develop tech-

niques to identify system behaviors that result in nonconformity.
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A APPENDIX
A.1 Power Plant Case-Study
In the final case-study, we compare the detailed and average models

of a 100𝑘𝑊 array connected to a 25𝑘𝑉 grid via a DC-DC boost con-

verter and a three-phase three-level Voltage Source Converter (VSC),

from the MATLAB Simscape Electrical Toolbox [27]. Both mod-

els include a Photovoltaic (PV) Array that delivers the maximum

power of 100 𝑘𝑊 at 1000𝑊 /𝑚2
sun irradiance, a DC-DC boost con-

verter, 3-level 3-phase VSC, capacitor bank, three-phase coupling

transformer, and a given utility grid. The models use the Simulink

model of a boost converter to implement the Maximum Power Point

Tracking (MPPT). The MPPT optimizes the match between the solar

array (PV panels) and the utility grid. The models have differences

such as employed technique to implement MPPT, DC-DC, and VSC

converters’ structure [8].

The VSC converts the 500𝑉 DC link voltage to 260𝑉 AC and

keeps unity power factor. To this end, two control loops are em-

ployed: one control loop regulates DC link voltage to ±250𝑉 (ex-

ternal controller) and the other control loop regulates active and

reactive grid currents (internal controller). The active current refer-

ence is the output of the DC voltage external controller. The latter

Figure 9: The ECDFs for the maximum deviation of 𝑉𝑑𝑐 in
the detailed and average models for 100 samples. The two
distributions of the maximum errors for the models are no-
ticeably different.

𝑐 𝛼𝑑 𝛿𝑛,𝑚 Samples Time (sec.) A
0.40 0.99 1.00 3.9e+01 1.0e-02 F
0.40 0.95 1.00 1.9e+01 6.9e-03 F
0.25 0.99 1.00 2.5e+01 5.3e-03 F
0.25 0.95 1.00 1.3e+01 3.3e-03 F
0.10 0.99 1.00 1.8e+01 3.8e-03 F
0.10 0.95 1.00 9.0e+00 1.8e-03 F
0.05 0.99 0.94 1.8e+01 3.2e-03 F
0.05 0.95 1.00 8.0e+00 1.3e-03 F

Table 3: Statistical verification results of the conformance
property (27) and the test statistics 𝛿𝑛,𝑚 upon Algorithm 2
termination, for different conformance parameter 𝑐 and de-
sired confidence level 𝛼𝑑 .

controller is a PI (proportional–integral) controller whose input is

the error of the DC voltage.

Conformance. We consider the deviation of the DC voltage 𝑒𝑣𝑑𝑐 ,

when the sun irradiance and environment temperature are subject

to changes. For an arbitrary threshold 𝛾 , we use the STL specifi-

cation ✷[0.5,2] ( |𝑒𝑣𝑑𝑐 | < 𝛾), which is monotonically parametrized

by 𝛾 , to capture that 𝑒𝑣𝑑𝑐 is always below 𝛾 within the time inter-

val [0.5, 2] of interest. Accordingly, the conformance between the

detailed and average models for this parametrized specification is

captured by

∀𝛾 ≥ 0. Pr𝜎𝑑∼M𝑑
(𝜎𝑑 |= ✷[0.5,2] ( |𝑒𝑣𝑑𝑐𝑑 | < 𝛾))

≈𝑐 Pr𝜎𝑎∼M𝑎
(𝜎𝑎 |= ✷[0.5,2] ( |𝑒𝑣𝑑𝑐𝑎 | < 𝛾)),

(27)

where the constant 𝑐 > 0, the approximate equality ≈𝑐 means the

difference is less than 𝑐 , and the detailed and average models are

denoted by 𝑑 and 𝑎, respectively.

We applied Algorithm 2 with parameters 𝛼 ∈ {0.95, 0.99} and
𝑐 ∈ {0.001, 0.005, 0.01, 0.05}. For both the models, we consider the

standard test conditions (initial temperature and irradiance are 25
◦

and 1000𝑊 /𝑚2
, respectively) with the following scenario (i.e., the

input to the models):

(1) At 𝑡 = 0.3𝑠 MPPT starts to regulate PV voltage.

https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/physmod/sps/index.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/physmod/sps/index.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/physmod/sps/examples/250-kw-grid-connected-pv-array.html
https://www.mathworks.com/help/physmod/sps/examples/250-kw-grid-connected-pv-array.html
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(2) In time interval [0.6, 1.1]𝑠 , the sun irradiance linearly is

ramped to a minimum value. Also, the environment temper-

ature start increasing to a maximum value, simultaneously.

(3) In time interval [1.1, 1.2]𝑠 , the sun irradiance and environ-

ment temperature stay constant. The minimum value of the

irradiance is drawn randomly from a distributionN𝑖𝑟 (650, 102)
and the maximum temperature is 20 − 0.02 × N𝑖𝑟 (650, 102).

(4) In time interval [1.2, 1.7]𝑠 , the sun irradiance and tempera-

ture are linearly restored back to 1000𝑊 /𝑚2
and 25

◦
, respec-

tively; from then onward, remain constant.

Result Analysis. Table 3 summarizes the results that demonstrate

the nonconformance of the detailed and average models for the

requirement (27), although it is commonly believed that the aver-

age model is generally a good approximation of the detailed model

[27]. This result is achieved with a relatively small number of sam-

ples (at most a few dozen samples for each setup). The results for

the considered specification reveals that two models do not have

conformance for any value of 𝑐 .

Finally, to confirm the results of Table 3, Figure 9 presents the

ECDFs of the maximum deviation |𝑒𝑉𝑑𝑐 | of the detailed and average
models; the discrepancy of the two ECDFs demonstrates the non-

conformance of two models for the requirement (27). Each ECDF

uses 100 samples, which is significantly more than the samples

required by Algorithm 2, as shown by Table 3.
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