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ABSTRACT

In system analysis, conformance indicates that two systems simul-
taneously satisfy the same set of specifications of interest; thus, the
results from analyzing one system automatically transfer to the
other, or one system can safely replace the other in practice. In this
work, we study the probabilistic conformance of cyber-physical
systems (CPS). We propose a notion of (approximate) probabilistic
conformance for sets of complex specifications expressed by the
Signal Temporal Logic (STL). Based on a novel statistical test, we
develop the first statistical verification methods for the probabilistic
conformance of a wide class of CPS. Using this method, we verify
the conformance of the startup time of the widely-used full and
simplified model of Toyota powertrain systems, the settling time
of model-predictive-control-based and neural-network-based au-
tomotive lane-keeping controllers, as well as the maximal voltage
deviation of full and simplified power grid systems.

CCS CONCEPTS

» Mathematics of computing — Hypothesis testing and con-
fidence interval computation; - Computer systems organi-
zation — Embedded and cyber-physical systems; « Security
and privacy — Logic and verification.
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1 INTRODUCTION

Conformance is an important concept in the analysis of cyber-
physical systems (CPS) [13, 18, 21, 23, 32, 34]. It indicates that two
systems satisfy the same set of given specifications (e.g., reacha-
bility or input-output relation). Thus the analysis results for one
system can transfer to the other system, or one system can safely
replace the other in practice. The term “conformance” may also
refer to the consistency between a system and a design specification
(e.g., [14, 22]); this is out of the scope of this work.

For CPS, complex specifications for their dynamics are mathemat-
ically expressible by temporal logics, such as the Signal Temporal
Logic (STL) [24]. Following the line of work [1, 9], we focus on
the conformance of CPS for temporal logics specifications. This
notion of conformance generalizes the conformance for reachabil-
ity [21, 32], since reachability is expressible by temporal logic.

Conformance can be used for two different models derived from
the same system under two conditions, implying that the system
executes in the same way under the conditions (e.g., two inputs). A
well-known example of nonconformity is the Volkswagen emissions
scandal [4], where the emission control software deliberately per-
forms differently in the lab testing and driving conditions to bypass
the emission test without actually reducing the pollution generated
from the cars while driving. Similar undesirable nonconformity
exists in printers [5], where the software drivers deliberately work
differently in favor of certain cartridge brands. To prevent such soft-
ware doping [31], one needs to verify the conformance of a system
under different conditions/settings.

The conformance also applies to two models derived from two
systems operating under the same conditions, implying that they
are interchangeable for the application. For instance, there has been
recently significant interest in replacing precise but computation-
ally expensive controllers based on model predictive control (MPC)
with ones based on neural network (NN) for applications such as
lane-keeping systems in autonomous vehicles [29]. To migrate from
an MPC controller to an NN controller without significantly chang-
ing the responsiveness, we need to check the conformance of the
closed-loop system under the two controllers for their settling time,
especially considering the fragility of Al-based controllers. While
we focus on the conformance of two different systems operating
under the same conditions in our case studies, our approach also
applies to a system’s conformance under two conditions.

Since CPS, such as autonomous vehicles, are frequently subject to
randomness (e.g., system/network/environment noise), we propose


https://doi.org/10.1145/3450267.3450534
https://doi.org/10.1145/3450267.3450534

ICCPS °21, May 19-21, 2021, Nashville, TN, USA

. r Monotonically ! - Yes/No
Given ! : ! Statistical A
— 1 parametrized STL PR (probabilistically
Input !. formula | Verification correct)

_________

PUS M 2 Sample paths

Figure 1: Overview of our statistical conformance test.

a probabilistic notion of conformance for these systems. We use
the definition of probabilistic uncertain systems (PUSs) from [40]
to capture CPS dynamics. Roughly speaking, they are grey-box
probabilistic dynamical systems with unknown dynamics in known
state space. The PUSs capture the system nondeterminism as the
input and probabilism as the parameters. The input and parameters
can be time functions of general types, including real, integer, or
categorical/Boolean. Given the input and parameters’ value, a time-
dependent sample path of general types can be generated. The PUSs
subsume commonly used dynamical models such as continuous-
time Markov chains and hybrid I/O automata [15] with probabilistic
parameters (used to capture the Toyota Powertrain [33]).

We define the notion of conformance through a parameterized
signal temporal logic (STL) formula [3] as illustrated in Figure 1.
Specifically, we require that the satisfaction probabilities are approx-
imately equal for all values of the STL parameters. For example, for
the probabilistic conformance of two models M; and M of reach-
ing the same set D, one can consider the parameterized formula
O1o,.)D and require that for a given ¢ > 0, it holds that

VYt € [0, OO) |PI‘O-1~M1(0'1 '= Q[O,t]D)
- Pr02~M2(0'2 '= O[O,t]@)| <

here, 01 and o3 are two random signals from the models M; and
M, respectively, as illustrated in Figure 2. This implies that both
systems M; and My reach O with approximately equal probability
for any time horizon. Our notion of conformance only requires these
probabilities to be approximately equal instead of exactly equal,
since the former is usually sufficient in practice (more examples
are provided in Section 6).

Since the PUSs may have complex or even unknown dynam-
ics, we adopt a statistical verification approach, as it scales better
than model-based verification approaches and can handle unknown
dynamics [2, 19]. From the conformance definition, we need to
simultaneously handle the approximately equal satisfaction prob-
ability of infinitely many STL specifications since the parameters
of the parameterized STL formula can take infinitely many values;
this is very challenging since existing statistical verification meth-
ods can only handle a single (non-parametrized) temporal logic
formula [2, 20] or a hyper temporal logic formula [38, 40].

We show that statistically verifying conformance is feasible when
the STL formula is monotonically parameterized, i.e., the formula’s
satisfaction probability changes monotonically with the parameters.
Such a property holds for many cases as discussed in detail in
Section 3 and the case studies in Section 6. To the best of our
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Figure 2: Reachability probabilities for some set D v.s. time
horizon t. The two models conform (for reachability) if the
black line stays within the blue tube.

knowledge, this work is the first to enable statistical verification
for infinitely many formulas.

Due to monotonicity, the satisfaction probabilities over the val-
ues of its parameters on the two PUSs form two probability distri-
butions. Accordingly, the conformance of two PUSs requires the
two distributions to be approximately equal. To this end, we de-
velop a new statistical test to check the approximate equality of two
distributions with provable confidence levels. Our test is based on
the classic Kolmogorov-Smirnov (KS) test [10] and its multivariate
generalization [30] for checking the exact equality of two distribu-
tions. Based on this, we develop a statistical verification method
for the probabilistic (non)conformance of two PUSs for any desired
confidence level (lower than 1).

We apply the proposed statistical verification method to check
the probabilistic conformance for three case studies to show its
applicability. First, we study the probabilistic conformance of the
widely used full and simplified models of the Toyota powertrain
system [16, 33] for the startup time for their air to fuel ratio to
reach a working region. Our results show the nonconformity of
the two models, suggesting the simplified model may not capture
certain important aspects of the system. Second, we check the
probabilistic conformance of the settling time of an MPC-based lane-
keeping controller and several NN-based lane-keeping controllers
of different sizes for an autonomous car [26]. We show that NN-
based controllers conform to the MPC-based controller, as their size
increases; however, a small NN design may result in nonconformity.
It suggests that an MPC-based controller can be replaced with a
sufficiently-large NN-based controller to satisfyingly control the
settling time. Finally, we check the probabilistic conformance of
the maximal deviation of DC voltage between the full model and
a simplified model of a power grid system [27]. Our results show
that the two models do not probabilistically conform - i.e., the
simplified model again may not capture certain important aspects
of the system.

This paper is organized as follows. After preliminaries in Sec-
tion 2, in Section 3 we formalize the problem and our definition
of probabilistic conformance for a parameterized STL formula. We
present a new statistical test in Section 4 and the verification method
for the probabilistic conformance in Section 5. In Section 6, we ap-
ply our method to three real-world case-studies, before discussing
related work in Section 7, and concluding in Section 8.

Notation. We denote the sets of natural, real, and non-negative
real numbers by N, R, and R, respectively. We define Ro =
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Figure 3: Probabilistic Uncertain System (PUS).

R U {—o0,00}, and [n] = {1,...,n}, for n € N. The cardinality and
the power set of a set S are denoted by || and 25.

2 PROBLEM FORMULATION

We use a general system model for CPS called probabilistic uncertain
systems (PUSs) [40]. They capture continuous-time probabilistic
dynamics on a hybrid state-space of discrete and continuous val-
ues, as well as generalize common probabilistic models such as
continuous-time Markov chains (CTMC) and probabilistic hybrid
/0 automata [40]. Since we adopt a statistical approach, we mainly
view a PUS as a grey-box that generates random samples (Figure 3).

DEFINITION 1. A probabilistic uncertain system (PUS) is a tuple
M= (X) Xinit’ I, Da {D(t)}l‘dRzo’ 7-), where

o X =X X...XX, is the state space with each X; being either
R or a discrete set [nx,];

® Xinit € X is the initial state;

o I =11 X...X Ip, is the range of inputs with each I; being
either R or a discrete set [nyz,];

o D =D X...x Dy is the range of parameters with each D;
being either R or a discrete set [np,];

e {D(t)}ter,, is a random process on D (for a properly de-
fined probability space), defining the random change of the
parameter over time;

o7 : (Ryg = I)X (Ryg = D) - (Ryo — X) defines
the transition of the system — i.e., given the (time-dependent)
value of the input and parameter, the system deterministically
generates a path.

Given the value of the (time-dependent) input I : R59 — I, the
PUS can generate a random signal o(t) = 7 (I(t), D(t)), where the
randomness comes from the parameter D(t). We denote by o ~ M
when the signal o is randomly generated from the system M for
the given input I. We also write 0 ~ M if I is clear from the context.

There is no assumption on the dynamics of a PUS, such as
Markovian, causal, etc. Common probabilistic models such as the
discrete-time or continuous-time Markov chains [36], and proba-
bilistic hybrid I/O automata [35, 42] are subsumed by the notion of
PUS (see [40] for details).

ExaMmPpLE 1. A simple example of PUS is a bouncing ball with
random gravitational acceleration, as shown in Figure 4. Its state is the
height and velocity (x,v). For x > 0, the state evolves by x = 0,0 = g;
forx =0, it jumps by x — x,v > —v. The parameter g is randomly
drawn from a normal distribution N(go, o2) for some go, & > 0. The
initial state is (xo,0). The input set is empty.
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g ~ N(go,0%)

Figure 4: Stochastic bouncing ball.

Finally, note that although by Definition 1, a PUS has a unique
initial state, it allows for defining conformance of paths from dif-
ferent initial states X; and X3 of the PUS. This is done by adding a
new initial state X to the PUS, and model the transition from X
to Xj and X3 as part of the input.

Signal Temporal Logic. We use the signal temporal logic (STL) [24]
to capture the temporal specifications of interest for the random
signals of the PUS. STL can be viewed as the counterpart of lin-
ear temporal logic (LTL) in the real-time domain with real-valued
constraints. An STL formula is defined inductively by the syntax

= f>01-¢ lone | o Uy, o 1
where f : R" — R is a given function. To simplify further discus-
sion, we let t1, 2 € Roo, instead of taking values in nonnegative
rational numbers. We call f > 0 an atomic proposition and U[y, 1,
the “until” operator. Other temporal and logic operators are defined
as usual; for example,

o (false/true) F = ¢ A (—¢) and T = —F,
o (finally) 4 1,10 =T Us, 1, @5 and
o (always) Oy, 1,10 = ~(Oyy,1,]170)-
For a concrete signal o : Ryg — R” of the PUS, the satisfaction
relation for STL formulas is defined recursively by the semantics

cEf>0 iff f(a(0)) >0
okE-g iff o ¢
cEQLAP2 iff oF¢piando ke

o @1 Uy 1, 92 T there exists t € [t1, 2] such that
o) £ gy and forany 0 < t’ < 1,
it holds that o(®") E o1;

here, o(®) denotes the t-shift of the signal, defined by o0 (') =
o(t+1t’) for any ¢’ € Rxo.

We make the convention that a formula 1 U[y, 1, @2 is equiv-
alentto F,if tp < 1,1 < 0,0r tp < 0.

ExampLE 2. The following STL formula requires that if |x| > 0.5,
then within 0.6 time units |x| settles under the value 0.5 for the 1.5-
long time interval

0= D(|x| > 0.5 = 10,61 (D571l < 0.5)),

3 PROBABILISTIC CONFORMANCE

We focus on a class of conformance properties for CPS for an (in-
finite) set of STL formulas. Mathematically, we say that two PUSs
probabilistically conform if for any STL formula from the set, the
satisfaction probabilities are approximately equal for two random
signals drawn respectively from the two PUSs. This can be viewed
as a probabilistic generalization of [1, 9].
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DEFINITION 2 (CONFORMANCE). Let ® be an infinite set of STL
formulas. For two PUSs My and M3, and a given ¢ > 0, we say that
M and My c-approximately probabilistically conform for @ (for the
same given input), if for any STL formula ¢ € ®, it holds that

iPr(71~M1 (01 '= ¢) - Pr0'2~M2(02 '= ¢)| < c,
where o; ~ M; is a random path from the PUS M;, fori € {1, 2}.

In Definition 2, we only require the satisfaction probabilities to
be approximately equal for the STL formulas of interest instead of
exactly equal; the latter is usually unnecessary in applications (see
e.g. the case studies presented in Section 6). Besides, the confor-
mance from Definition 2 cannot be expressed by single formulas in
any common temporal logic since a parameterized formula effec-
tively captures an infinite number of STL formulas. For any fixed
values of the employed parameters, the property can be expressed
in HyperPSTL [40].

Depending on the choice of the class (i.e., set) of temporal proper-
ties @, different notions for the conformance of PUS are derived, in-
cluding probabilistic reach-set conformance and probabilistic trace
conformance. Commonly, an STL formula set ® can be derived by
parametrizing a single STL formula ¢ by [3]

@ ={¢y:d RN} %)

Effectively, ¢4 represents infinitely many STL formulas, as the
parameter d can take infinitely many values.
For example, the STL formula set

@ ={Cg1(0>a):aeR} 3)

is derived by parametrizing the threshold a. It contains an infinite

set of reachability specifications for the parametrized threshold a

within the fixed time-interval [0, 1]. The conformance of the two

PUSs Mj and M; for the set ®; means that, for any threshold a

the probability of reaching the threshold should be approximately

equal for two random signals respectively from M; and M.
Similarly, the STL formula set

Dy = {O[o’t](a >0):teR} (4)

is derived by parametrizing the time horizon ¢. It contains an infinite
set of reachability specifications for the fixed threshold 0, within
a parameterized time interval [0, ¢]. The conformance of the two
PUSs Mj and M for the set ®; means that the probability of
reaching the threshold 0 (i.e., > 0) within any time interval [0, ¢]
should be approximately equal for two random signals respectively
from M; and M.

Considering that the PUSs can have complex dynamics that may
be even unknown in practice, in this work we propose to statis-
tically verify the conformance of PUSs from Definition 2; such
method exhibits better scalability than the exhaustive approaches
and can handle unknown dynamics [2, 19]. There are infinitely
many STL formulas of interest in (2), so the proposed statistical
verification method should be able to handle an infinite set of STL
specifications. This is very challenging since all existing statistical
verification techniques can only handle single STL specifications
[2, 20]. To solve this, we focus on the conformance for monoton-
ically parameterized STL formulas, which are commonly used in
system analysis [3].
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Generally, the parametrized formula ¢4 (where d captures the
vector of parameters) is monotone if the satisfaction probability
on a model is preserved for the order of the parameters - i.e., the
satisfaction probability changes monotonically with the parame-
ter. While statistically verifying the probabilistic conformance for
an arbitrary STL formula set is very difficult, handling a mono-
tonically parameterized formula set can be done by exploiting the
formula’s monotonicity.

DEFINITION 3 (MONOTONICALLY PARAMETERIZED FORMULA). A
parameterized formula ¢4 withd € RK is monotone for a PUS M if
for any given path o from M andi € [K], and

o foranyd,d’ such thatd <; d’, it holds that o |= ¢q implies

[ 'Z (ﬁi’ OR
e foranyd,d’ such thatd <; d’, it holds that o | ¢ implies
o FE a4

here, d <; d’ denotes that the entries of d and d’ are equal except for
d; <d,.
Zi =2

Following Definition 3, the parameter alternation preserves the
parametrized STL formula’s monotonicity.

DEFINITION 4 (ALTERNATION). The function n(d) = d’ is called
an alternation, if for alli € [K], d] = d; ord] = —d;. The set of all
K-dimensional alternations in RK is denoted by Ilg.

From the previous definitions, the following directly holds.

LemMA 1. If ¢g is a monotonically parameterized STL formula,

then so is ¢ (q), where 7 is an alternation.!

4 STATISTICAL TEST FOR APPROXIMATE
EQUALITY OF DISTRIBUTIONS

Before introducing a statistical verification algorithm for probabilis-
tic conformance, we propose a new statistical test for the equiv-
alence of two (unknown) probability distributions, based on the
classic Kolmogorov-Smirnov test [10, 30]. We start from the scalar
case and then extend to the multidimensional case.

Consider two K-dimensional random vectors X = (Xi,..., Xk)
and Y = (Y1,..., Yx). For each K-dimensional alternation x € Ik,
we define

F™(a) =Prx (n(X)1 < 7(a@)1,...,71(X)k < n(a)k),
G™(a) = Pry (n(V)1 < n(@)1,...,7(V)k < n(a)),

where 7(X); is the ith entry of 7(X), and the probabilities Pry and
Pry are taken for the random vectors X and Y, respectively. If r is
the identity map, then F” and G” are respectively the cumulative
distribution functions (CDFs) of X and Y, which we denote by
F and G to simplify our notation. Otherwise, F” and G” are the
complimentary CDFs of X and Y.

To measure the difference between the probability distributions
of X and Y, let

T y/4
yxy = max ||F* - G"lw, (6)

- mellg
!The alternation of time horizon parameters in U (and other temporal operators)

follows the aforementioned convention that ¢; U| t1.tp] P2 18 equivalentto F,if t; < t;,
t; <0,0rt; <O0.
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with || - | standing for the Lo, function norm. If yx y = 0, then X
and Y have the same probability distributions.

The approximate equality of the probability distributions of X
and Y is formulated as the hypothesis testing problem

'7'{() YXY <c 7‘{1 YXY > c, (7)
where ¢ > 0 is the given parameter for approximate equality. The al-
ternation 7 in (6) is necessary since two different multidimensional

probability distributions may have the same CDFs but different
complimentary CDFs.

ASSUMPTION 1. Similar to previous work on statistical verifica-
tion [40, 41], we assume yx y # ¢, which ensures that as the number of
samples increases, the saﬁp?es will increasingly concentrate to support
either Hy or Hy by the central limit theorem. Therefore, a statistical
analysis based on the majority of the samples has increasing accuracy.
This assumption is weaker than the “indifference region” adopted in
other works on statistical verification [2, 20].

REMARK 1. The hypothesis testing problem (7) cannot be handled
by the classic Kolmogorov-Smirnov (KS) test [10] and its multivariate
generalization [30], since they can only check for the exact equality
of two probability distributions, i.e., the hypothesis testing problem

7‘{6 TYXY = 0 7‘{1, TYXY > 0. 8)

To solve problem (7), we build on the KS test and introduce a
new statistical test for any given confidence level « (i.e., the lowest
probability that the test’s assertion agrees with the truth in all

cases).? To facilitate presentation, we start from the scalar case and
then move to the vector case.

4.1 Scalar Random Variables

If X and Y are scalar,® then from (7), we have that yx y = ||F — Gl|o,
where F and G are the CDFs of X and Y, respectively.* Given two
sets of independent and identically distributed (i.i.d.) samples

xnl = (X(l), o ,X(n)), ylml = (y(l), L Y(m)),
drawn respectively from X and Y, the ECDFs of the samples are

1 )
Fytn (%) = - Z; 1(x% < x),

1 .
Gyim(y) = — 377 1D <),

where I(-) is the indicator function. Intuitively, the different yx y
can be statistically estimated by (as illustrated in Figure 5)

©

Oximl ytm) = IFxin) = Gytm lleo- (10)

When the numbers of samples n,m — oo, the ECDFs converges
to the CDFs: Fy[»] — F and Gy[m] — G,’ and thus, Sxinl ylml —
Yx.y by Glivenko-Cantelli theorem [37]. Therefore, for the hypoth-
esis testing problem (7), we propose the statistics assertion

Axm ylmly = {WO’ if Sxtn ytm) < ¢, (11)

Hi, if Sxin) ytm) > c.

2The confidence level « is minimum of the p-values of the two hypothesis. Accordingly,
we refer to 1 — « as the significance level, which is the maximal of the false positive
and the false negative rates.

3For this scalar case, to simplify our notation, we denote X and Y as X and Y.

“This does not hold in general for multidimensional random variables.

More precisely, this is convergence in distribution.
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Fyeim (x)

Figure 5: Illustration of the statistics §y(n] y(m)-

For random samples X" and Y["™!  the probability « that the
assertion (11) agrees with the correct answer to the hypothesis
testing problem (7) is called the confidence level. It depends on the
discrepancy between yx y and 8x(n| y(m), which is bounded by

dyinl yiml = |(Fxin) = F) = (Gytm) = G)lleo (12)

due to the triangle inequality

|5x|n|,y|m1 —yxy| < dxlnl ylm]- (13)

When the numbers of samples n, m — oo, the discrepancy dy(n] y(m)
— 0 with probability 1. However, the probability distribution of the

rescaled discrepancy dy(n) yim)ymn/(m + n) (for random samples
xInl ylmlyjs asymptotically invariant of n, m and is independent
of the CDFs F and G, as formally stated below.

LemMA 2 (SECTION 7.9 OF [10]). The CDF H(x) of the dyn) y(m]
ymn/(m+ n) from (12) obeys the Kolmogorov-Smirnov distribution

H(x)=1-2 ) (-1)/ e 5 1 - 272, (14)
i=1

Now, we derive the significance level (i.e., 1 — a, where « is the
confidence level ) of the assertion (11) when observing a value of
the test statistics §y(n] y|m) to be A. If A < ¢, the significance level
of (11) is the probability of observing a value of 8y (n] y(m (in any
other test) that is lower than A (i.e., more in favor of the hypothesis
Hp) under the likely-false hypothesis ;. It holds that®

1= = Pryin) yim (Sxinl yim <A | Hi)
= Pryinl yiml (yx,y = Oxinl ytm > yx,y — A | H1)
< Prycin yimi (dxtnl yim > vy — A | Hi) (15)
< Prx|n|,YIm] (dx[n]’Y[m] >c— /1) (16)

=1-H((c — A)ymn/(m+n)) (17)

where (15) follows from (13); (16) holds since yx y > ¢ under Hj;
and (17) follows from Lemma 2. Similarly, if A > ¢, the significance
level of (11) satisfies

1-a <1-H((A-c)ymn/(m+n)). (18)

Finally, combining (17) and (18), the confidence level of (11) satisfies

a > H(|A = c|[y/mn/(m + n)). (19)

Based on (19), for any desired confidence level a; < 1, our sta-
tistical test is deployed sequentially. It can return an assertion with
an actual confidence level of at least ay. Iteratively, the algorithm

®To simplify our notation, we also use Sy [n] ylm] to denote a random value of the

test statistics in any other test in computing the significance level.
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Algorithm 1 Proposed statistical test.

Require: Desired confidence ey > 0, ¢ € (0, 1), k1, k2 € N.
1: Sample sizesn,m «— 0, ¢ <« 0.
2: while a < a4 do
3 Draw ki, k2 new samples from X, Y, respectively.
4 ne—n+ki,me—m+k
5: Update 5X["],Y[’"] by (10).
6 Update a by (19).
7: end while
8: return A by (11).

Algorithm 2 Statistical verification for conformance.

Require: Desired confidence level o, threshold ¢ > 0

1: Sample sizes n,m < 0, @ < 0

2. while a < a4 do

3 Draw new samples from M;j, My and update n, m.

4 Update Fj7, G5, by (23) and compute &, by (24).
5 Update a by [11, 30].
6: end while
7: return A by (11).

draws k1 and k2 new samples from the two CDFs F and G, respec-
tively, and then computes the actual confidence level o from (19).
It terminates when a > g, and then returns the assertion by (11).
This is formally captured in Algorithm 1.

THEOREM 1. Algorithm 1 terminates with probability 1 and has
the confidence level ay.

Proor. Termination: As n,m — oo, we have 5X[n]’Y[m] —
Yx,y # ¢, —1ie., Sxn] ylm) converges to some value that is not ¢
with probability 1, so either H or H; holds. Therefore, Algorithm 1
terminates with probability 1.

Correctness: Let 7 be the step Algorithm 1 terminates and A be
“the assertion A from (11) is correct”, then Pr(A) = X; e Pr(A| 7 =
i)Pr(r = i). From (19), for any i € N, we have that Pr(A |7 =1i) >
ag. In addition, by Termination, we have that } ;o\ Pr(z = i) = 1,
Therefore, it holds that Pr(A) > ay. O

REMARK 2. Although the test statistics Sy (n) y(m) from (10) is also
used in the standard KS test [10], the implementation and thresholding
on Sxin) ylm) in (11) in our method fundamentally differs from the
KS test. Specifically, our statistical test increasingly draws samples
until reaching the desired confidence level (< 1) and the thresholding
on Sxin] yim) in (11) represents the similarity of the probability distri-
butions as given in (7). On the other hand, the KS test employs a fixed
number of samples and the thresholding on 8y (n) yim) is related to
the confidence level. Consequently, our method guarantees confidence
levels for both Hy and Hi in (7), while the KS test only guarantees
confidence level for H, and not H{, in (8).

4.2 Multidimensional Random Variables

Similarly to the scalar case, for random vectors X and Y, let X [n] =
(XM, ,xM)and Y] = (YD, Y(™) be two sets of iid.
samples from X and Y, respectively. Then, we can define the ECDF
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and the complimentary ECDFs from X "] by

F (@ = ;I(no_d”)l < m(@p,.., 7(X W)k < 7(a)k),

for each K-dimensional alternation 7 € IIx (given by Definition 4).
Similarly, we can define G;r[m] (@) from Y™

Following [11, 30], we note that generally ||F;[n] - G;[m] ||co are

not equal for all 7 € Ig. Thus, defining the test statistics by only

using the CDFs F}’;[n] and G;f[m] by Sxin1 ylm) = ||F)7<["] =Gyimlloo,

as in (10) is not enough. Instead, the test statistics should take all
the CDFs and complimentary CDFs by

5x[n],y[m] = ;rel%); ||F§[n] - G;[m] lloo- (20)

By [11, 30], the test statistics §x(n] y(m] satisfies Lemma 2 and
asymptotically obeys the Kolmogorov-Smirnov distribution (14).
Therefore, the statistical test (11) extends to the multidimensional
case by using dx(n] y(m) from (20). For K < 3, the confidence level
for (20) can be derived directly from the results of [11, 30]. For
K > 3, it can be computed by extending the method of [11, 30].

5 STATISTICAL VERIFICATION OF
PROBABILISTIC CONFORMANCE

Based on the statistical test introduced in Section 4, we now pro-
pose a statistical verification algorithm to check the probabilistic
conformance of two PUSs for a monotonically parametrized STL
formula (as formulated in Section 3). For a lucid presentation and
as with most other works (e.g., [2, 19]), we focus on bounded-time
properties; handling unbounded-time properties is more involving
and is an avenue for future work.

Following Definition 2, for a monotonically parametrized STL
formula ¢4 with d € RK and for each K-dimensional alternation
7 € Ik (from Definition 4), let

F™(d) = Prg, . pm, (01 F $r(a))s
G™(d) = Prg, M, (02 F $r(a))- (21)

By the monotonicity of ¢4 from Definition 3, for each for 7 € Ik,
the multivariate functions F” is the CDF or a complementary CDF
of the satisfaction probability of ¢ for the parameter d. The equality
in (21) is almost everywhere in Lebesgue measure, since distribution
functions F” (d) and G™(d) need to be right-continuous. The same
holds for G”.

From Definition 2, the PUSs M; and M3 conform with respect
to the monotonically parametrized formula ¢, if the CDFs and com-
plementary CDFs F7 (d) and G” (d) are approximately equal; i.e.,

Pry p, (01 E¢) —Prg, p, (02 E )| <c
if and only if

Yxy = max |[|[F* = G"|lw < c. (22)
=5 ek

On the other hand, this can be solved by our statistical test intro-
duced in Section 4.
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Specifically, for two sets of sample paths 0'1['1J = (0'1(1) . 0'1(") )

and O'Zm] = (02(1), ey az(m)) from the PUSs M; and Mp, respec-

tively, we define the empirical approximations of F(d) and G(d) by
1 n i
F@ =)0 10 dria).

Ga@ = — 3" 10" F fria) (23)

where 7 € IIg and I(-) is the indicator function.” Similarly to (20),
the test statistics

On,m = max ”Fr’zr - Grifz”‘xh (24)
rwellg

where 8y, is the Lo, norm, satisfies Lemma 2 and obeys the KS dis-
tribution from (14) (asymptotically for K > 2); hence, the statistical
test (11) applies. Since F and G}, are known multidimensional step
functions from the samples, ||F] — G/l is directly computable.

Algorithm 2 for checking probabilistic conformance terminates
with probability 1 and can achieve any desired confidence level
ag < 1. The proof follows from that of Theorem 1.

6 CASE STUDIES AND EVALUATION

To demonstrate the applicability of our statistical verification al-
gorithms, we evaluated them on three CPS benchmarks with com-
plex dynamics from a wide range of application domains: (1) Toy-
ota Powertrain, (2) Lane-Keeping Assistant (LKA) Controllers, and
(3) 100kW Grid-Connected Photovoltaic (PV) Array (due to space
constraints the results of the 3”9 case study are presented in the Ap-
pendix). We find the case study in Section 6.2 particularly important
since (LKA controllers), to the best of our knowledge, previously
there are few comparative studies between NN-based and conven-
tional techniques in cyber-physical and embedded systems.

The Toyota powertrain model is derived from [16]. The LKA is
implemented in MATLAB using the MPC, Deep Learning, and Rein-
forcement Learning Toolboxes [25]. The PV Array is implemented
using the Simscape Power Systems toolbox [28]. All implementa-
tions are available at [6].

Evaluations are performed on a laptop with Intel Xeon E-2176M
CPU @ 2.7GHz and 16 GB RAM. For each case study, we run Al-
gorithm 2 with different indifference parameter ¢ and desired con-
fidence level a4 (i.e., the probability for Algorithm 2 to return the
correct assertion is at least ary). We report the test statistics 8, m,
the number of samples, total algorithm execution time, and the
assertion A when the algorithm terminates.

6.1 Toyota Powertrain

We use the Simulink models for the Toyota Powertrain with a
four-mode embedded controller and 15 state variables from [16]. It
is challenging to show that complex embedded/CPS with hybrid
dynamics, such as the powertrain, satisfy strict performance re-
quirements. On the one hand, the available benchmark model must
capture a reasonable portion of behaviors of the real powertrain to
enable us to assess, evaluate, and verify the designs against require-
ments. On the other hand, the simulation time for a simpler model
that sufficiently conforms with the real system is significantly lower.

"In the rest of this paper, we use simplified notation with subscripts ( ), and ( ),
[n] m]

utilized to indicate the sets of sample paths o,

and o,
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Figure 6: Sample paths from the complex (solid blue) and
abstracted (dashed red) models for the A/F ratio deviation
percentage. The paths remain inside the desired working re-
gion (in green) with a significantly higher probability for the
abstracted model, illustrating that the distribution of the ar-
rival times to the desired working region is very different
for these two models.

In [16], two models of the Toyota Powertrain are presented. A
detailed but complex model contains the air-to-fuel (A/F) ratio con-
troller and an average model of the engine dynamics, such as the
throttle and intake manifold air dynamics. Due to the complex-
ity of this detailed model and limitations of existing verification
tools, in [16], a simpler abstract model as a hybrid I/O automaton
is also introduced to facilitate system analysis, including formal
verification.

Conformance. For the Toyota powertrain, the A/F ratio control
problem is of key interest. Hence, we study the conformance for the
A/F deviations ey for the detailed and abstract models for an RPM
of 1600 (the system input). When the nominal input RPM is subject
to Gaussian system noise N(0, 182), (samples of) the change of eA/F
over time for the two models are given in Figure 6. The conformance
requires that, under this system noise, the A/F deviations e4,f of
the detailed and abstract models enter some desired working region
(lea/r| < 0.05) in any time interval [0.22, 7] with approximately the
same probability; i.e., the STL specification g 95 71 (lea/r| < 0.05)
holds with approximately the same probability for any 7 between
the two models, as formally captured below®

VT 2 0. Pry, . m, (00 E Opo.22,7)(leasrl < 0.05))

(25)
X Praf~Mf(C7f E Olo.22,01(learl < 0.05)).

Here, the constant ¢ > 0, the approximate equality ~, means the
difference is less than c, the subscripts f and a stand for the com-
plex and abstracted models, respectively, e4/r is the percentage
deviation of A/F ratio, and 7 is the time-bound.

8More precisely, for any 7 > 0.22 from (25). Otherwise, the satisfaction probability is
trivially 0.
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Result Analysis. We analyzed (25) using Algorithm 2 with the
confidence level a € {0.95,0.99} and the conformance parameter
¢ €{0.2,0.15,0.10,0.05} (see Table 1). The results are derived with
relatively small numbers of samples for all confidence and indif-
ference parameters. The results indicate that the two employed
models do not conform for the requirement (25), although it is
claimed in [16] that the abstract model is a representative of the
detailed model. Starting from the same initial RPM values, the A/F
ratio in the complex model would take more time to reach the de-
sired working region than in most cases in the abstracted model.
This also agrees with Figure 6, as the A/F ratio of the abstracted
model would remain inside the desired area, while in the complex
model, this value exceeds the desired region in most of the cases.
Furthermore, from Table 1, the value of the test statistics 8y, is
almost 1 in all the cases, when Algorithm 2 terminates. This implies
that for the detailed and abstracted models, the distribution of the
startup time for their A/F ratio to reach the working region are
very different — this agrees with the algorithm assertion.

6.2 Replacing MPC with NN-based Controllers

The controller of the LKA system is commonly based on model
predictive control (MPC) or more recently neural networks (NN).
The conventional MPC-based controllers solve a constrained qua-
dratic programming optimization problem from the observed state
of a plant in an open-loop fashion. This approach is usually com-
putationally ineffective in realtime. Recently, NN-based controllers
are employed to imitate the control rules of the MPC-based con-
troller from samples to improve realtime computation efficiency.
In this case study, we check the conformance of an NN-based con-
troller and an MPC-based controller for the LKA system in MAT-
LAB/Simulink [25].

In the LKA system, the sensors measure the lateral deviation,
relative yaw angle between the center-line of a lane and the vehicle,
current lane curvature, and its derivative. The objective of the
controller is to keep the lateral error and relative yaw angle close
to zero. To dynamics of the vehicle is given by the three Degrees-
of-Freedom (DoF) bicycle model [12] as

V _ZCf-i‘-/ZCr —Vx _ Zcflf;lzcrlr Cf
Yl = mVx , MVx y m
[ ¢ ] chlf_zcrlr 2Cfl}+2Crlf l// +2 Cflf u
- Vi - LV, Iz
i1T
y=[vy 9]

Here, Vx is the longitudinal velocity, m is the total vehicle mass,
I, is the yaw moment of inertia of the vehicle, [ f and [, are the
longitudinal distance from the center of gravity to the front and
real tires, and C ' and C, are the cornering stiffness of the front
and rear tires, respectively. The system state consist of the lateral
velocity V;, and yaw angle rate i/, and the front steering angle u(t)
is the system input.

MPC. The MPC-based controller is derived from the MPC tool-
box in MATLAB. The values of the variables are set as follows:
Vi = 15m/s,m = 1575 kg, I, = 2875 m - N - s*, [y = 1.2 m,
I, =1.6m, Cf = 19000 N/rad, and C, = 33000 N/rad. The con-
troller output is confined within the interval [-7/3, /3] rad. The
predictive time horizon and control time horizon are set to hj, = 20
and h, = 20.
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c ag Onm Samples Time (sec.) A
0.40 0.99 1.00 3.9e+01 1.8e-02 F
0.40 095 1.00 1.9e+01 4.4e-03 F
0.25 099 1.00 2.5e+01  4.6e-03 F
0.25 095 1.00 1.3e+01 2.2e-03 F
0.10 0.99 1.00 1.8e+01 3.6e-03 F
0.10 095 1.00 9.0e+00  1.6e-03 F
0.05 0.99 1.00 1.6e+01 2.8e-03 F
0.05 095 1.00 8.0e+00 1.3e-03 F

Table 1: Statistical verification results of the conformance
property (25) and the test statistics ,,, upon Algorithm 2
termination for different values of conformance parameter
¢ and desired confidence level ;.

DNN Replacement. We train a NN controller to replace the MPC
controller, by sampling from the MPC based controller for randomly
generated states, last control action, and measured disturbances.
The samples are divided into the train and validation testing data,
and are used to train several NNs with similar structure, but dif-
ferent numbers of neurons per layer (30, 45, 60, and 300 neurons
per layer). All middle layers are fully connected with ReLU activa-
tion functions and the output layer is a fully-connected layer with
tanh activation function and a scalar layer. The maximal number
of epoch to stop the training is set to 30. The structure of the NNs
is shown in Figure 7.

Conformance. For the input of the same reference path of the
vehicle (given by the Matlab Toolbox), we expect that using the
NN controller the lateral deviation of the vehicle under random
values of the initial states should be similar to the output of the
MPC-based closed-loop system. Thus, we assign an upper bound
to the error of the lateral deviation and check when the designed
controller reaches this boundary. With fixed values of initial states,
we run the closed-loop system with two NNs and the reference MPC.
Then, we compare the time that the absolute value of the lateral
deviation falls below the desired value for the NN controller and
the MPC controller; this is formally captured by the STL formula
<lo,r)(leyl < y) monotonically parametrized by 7. Accordingly,
the conformance between the MPC-controlled and NN-controlled
LKA systems for this parametrized specification is

VT 2 0. Pro, g (01 0[0,TJ(|65N| <y)

(26)
~e Pro, Mype (02 E o1 (ley "< < 1)),

where the constants ¢,y > 0, the approximate equality ~, means
the difference is less than ¢, and ey is the lateral deviation of the
intended controller. The random signals o and o, are derived as fol-
lows. The initial conditions of the system such as the lateral velocity
Vy, yaw angle rate 1, lateral deviation ey, relative yaw angle ey, last
steering angle u, and the measured road yaw rate Vyp are drawn
randomly using the uniform distribution from intervals [-2, 2] m/s,
[-m/3, /3] rad/s, [-1,1]m, [-7/4, /4] rad, [-7/3, /3] rad, and
[-0.01,0.01], respectively. The minimum road reduce is 100 m.

Result Analysis. The results for applying Algorithm 2 with pa-
rameters @ € {0.95,0.99}, and ¢ € {0.40, 0.25,0.10, 0.05} are shown
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Figure 7: The employed structure for the NN controllers.
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Figure 8: The ECDFs of the settling time for the MPC and
NN-based controllers with with 30, 45, 60, and 3000 neurons
per layer (NN3p, NN4s5, NNgo, and NN3g9) from 200 samples.
The conformance is visually demonstrated by the closeness
of the ECDFs.

in Table 2 for NN controllers with 30 and 45 neurons per layer. As
can be seen, the NN controllers with 45 neurons per layer conforms
much better with the MPC controller than the NN controllers with
30 neurons per layer for the requirement (26). The results for 60
and 300 neurons per layer are similar to 45 neurons per layer (as
confirmed by Figure 8), so they are omitted due to the space limit.
All these results are achieved with relatively few samples (at most
a few thousand samples for each setup).

The results of Table 2 imply that increasing the size of the NN-
based controllers improves the conformance with the MPC con-
troller. To check this observation and confirm the results of Table 2,
we show in Figure 8 the ECDFs of the settling time for the MPC
controller and the NN controllers with 30, 45, 60, and 300 neu-
rons per layer; the conformance for the requirement (26) is visually
demonstrated by the closeness of the ECDFs. To derive the same
conclusion, each ECDF uses 200 samples, which is significantly
more than the samples required by Algorithm 2, as shown in Ta-
ble 2. As shown in Figure 8, increasing the number of neurons
beyond 45 does not lead to considerable change in the CDF of the
settling times for NN based controllers. Comparing to NN3gg, the
NNgo controller has better conformance with the MPC. The latter
implies that NN3gg controller has the over-fitting problem. For the
NN-based controllers of different sizes, the test statistics upon algo-
rithm termination is 5,':‘,,'\,‘,30 =0.98, 5,’:‘,,'\,‘{‘5 =0.31, 52%"“ =0.31, and
Shm™ = 0.35.

7 RELATED WORK

Conformance of CPS for different types of specifications of interest
is studied in [13, 18, 21, 23, 32, 34]. As in [1, 9], in this work, we focus
on a class of conformance properties for CPS that are specified by
temporal logic formulas. Our notion of conformance can be viewed
as the probabilistic extension of [1, 9], that is needed to allow for
capturing the conformance between a wide class of probabilistic
CPS (which we model as PUSs). Since reachability properties can
be in general captured by temporal logic formulas, our notion of
conformance is more general than the conformance for reachability
from [21, 32].

Existing works on conformance for temporal logic specifications
mainly focus on non-probabilistic models [1, 9, 13, 18, 21]. On the
other hand, in this work, we focus on a probabilistic notion of
conformance — the satisfaction probability of the specifications
of interest should be approximately equal. In [1, 9], conformance
builds a relation between two models such that if any STL formula
holds on one model, then the corresponding formula should au-
tomatically hold on the other model. Conceptually, our notion of
conformance is less stringent, as it only involves a given set of STL
formulas of interest. Furthermore, our notion of conformance is
conceptually more general than [21, 32], where the conformance is
only for reachability. Our notion of conformance can specify the
conformance of probabilistic reachability for two models.

Conformance is different from the simulation/bisimulation [7]
in two aspects. Conceptually, conformance focuses on the level of
functionality, and only captures the similarity between two models
for a set of specifications of interest. That is, the behavior of the two
models may be very different for other specifications (not of inter-
est). On the other hand, the simulation/bisimulation focuses on the
level of executions, and requires an execution-wise correspondence
between the two models. Also, the two concepts have slightly dif-
ferent domains of applications [1, 9, 18]. Conformance is commonly
only used for cyber-physical and embedded control systems, while
simulation/bisimulation may be used for both discrete models [7]
as well as cyber-physical and embedded control systems [17, 39].

To the best of our knowledge, this is the first work on statisti-
cally verifying the probabilistic conformance of CPS with complex
dynamics (formally captured as probabilistic uncertain systems
from Definition 1), while providing provable confidence levels (i.e.,
false positive/negative ratios). Existing model-based methods for
conformance, such as [1, 9, 18, 21] cannot directly handle such
systems with complex or even unknown dynamics in practice. On
the other hand, existing conformance testing methods for temporal
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c ag Onm Samples T(s) A H Onm  Samples T(s) A
0.40 0.99 0.98 4.3e+01 7.4e-03 F 0.36 1.0e+04 9.6e+00 T
0.40 0.95 1.00 1.9e+01 3.1e-03 F 0.36 3.6e+03  2.0e+00 T
0.25 0.99 1.00 2.5e+01 4.1e-03 F 0.37 9.5e+02  3.2e-01 F
0.25 0.95 1.00 1.3e+01 2.1e-03 F 0.42 2.5e+02  5.9e-02 F
0.10 0.99 1.00 1.8e+01 3.0e-03 F 0.36 2.1e+02  4.2e-02 F
0.10 0.95 1.00 9.0e+00 1.6e-03 F 0.35 1.2e+02  2.2e-02 F
0.05 0.99 1.00 1.6e+01 2.7e-03 F 0.38 1.3e+02  2.5e-02 F
0.05 095 1.00 8.0e+00 1.2e-03 F 0.36 7.3e+01  1.4e-02 F

Table 2: Statistical verification results for the conformance property (26) and the test statistics 5, ,, upon Algorithm 2 termina-
tion for different values of the conformance parameter ¢ and desired confidence level .

logic specifications [13, 32] or other specifications [23, 34] cannot
provide probabilistic guarantees like the presented method. There-
fore, those methods are not directly comparable with ours for the
case studies presented in Section 6.

8 CONCLUSION

In this paper, we proposed a new concept of probabilistic confor-
mance for CPS. This notion is based on approximately equal sat-
isfaction probabilities for a given (infinite) set of signal temporal
logic formulas. We introduced a verification algorithm for the prob-
abilistic conformance of grey-box CPS, modeled by probabilistic
uncertain systems. Our statistical verification algorithm is based on
a new statistical test that can check if two probability distributions
are equal for any desired confidence level (lower than 1). Finally,
we used our approach to verify (1) the nonconformity in the startup
time of the full and simplified models of the Toyota powertrain
system, (2) the approximate conformity in the settling time of the
model predictive control (MPC) based lane-keeping controller and
neural network (NN) based lane-keeping controllers of sufficient
sizes, and (3) the nonconformity in the maximal DC voltage de-
viation of the full and simplified model of a power grid system.
An avenue for future work is to support conformance verification
of systems for security/privacy policies that are hyperproperties.
Besides, there is a need to go beyond verification and develop tech-
niques to identify system behaviors that result in nonconformity.
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A APPENDIX
A.1 Power Plant Case-Study

In the final case-study, we compare the detailed and average models
of a 100kW array connected to a 25kV grid via a DC-DC boost con-
verter and a three-phase three-level Voltage Source Converter (VSC),
from the MATLAB Simscape Electrical Toolbox [27]. Both mod-
els include a Photovoltaic (PV) Array that delivers the maximum
power of 100 kW at 1000 W/m2 sun irradiance, a DC-DC boost con-
verter, 3-level 3-phase VSC, capacitor bank, three-phase coupling
transformer, and a given utility grid. The models use the Simulink
model of a boost converter to implement the Maximum Power Point
Tracking (MPPT). The MPPT optimizes the match between the solar
array (PV panels) and the utility grid. The models have differences
such as employed technique to implement MPPT, DC-DC, and VSC
converters’ structure [8].

The VSC converts the 500V DC link voltage to 260V AC and
keeps unity power factor. To this end, two control loops are em-
ployed: one control loop regulates DC link voltage to +250V (ex-
ternal controller) and the other control loop regulates active and
reactive grid currents (internal controller). The active current refer-
ence is the output of the DC voltage external controller. The latter
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Figure 9: The ECDFs for the maximum deviation of V. in
the detailed and average models for 100 samples. The two
distributions of the maximum errors for the models are no-
ticeably different.

c ag Onm Samples Time (sec.) A
040 0.99 1.00 3.9e+01 1.0e-02 F
0.40 095 1.00 1.9e+01 6.9e-03 F
0.25 0.99 1.00 2.5e+01 5.3e-03 F
0.25 095 1.00 1.3e+01 3.3e-03 F
0.10 0.99 1.00 1.8e+01 3.8e-03 F
0.10 095 1.00 9.0e+00 1.8e-03 F
0.05 0.99 094 1.8e+01 3.2e-03 F
0.05 0.95 1.00 8.0e+00 1.3e-03 F

Table 3: Statistical verification results of the conformance
property (27) and the test statistics J,;, upon Algorithm 2
termination, for different conformance parameter ¢ and de-
sired confidence level o,.

controller is a PI (proportional-integral) controller whose input is
the error of the DC voltage.

Conformance. We consider the deviation of the DC voltage e,q.,
when the sun irradiance and environment temperature are subject
to changes. For an arbitrary threshold y, we use the STL specifi-
cation O[g 52 (leggc| < y), which is monotonically parametrized
by y, to capture that e,y is always below y within the time inter-
val [0.5, 2] of interest. Accordingly, the conformance between the
detailed and average models for this parametrized specification is
captured by

Yy 2 0. Prg, pm,(0q F Opos21(evde, | <v))
~c PrO'a~Ma(Uﬂ '= D[O.S,Z](levdca| < }’)),

(27)

where the constant ¢ > 0, the approximate equality ~, means the
difference is less than c, and the detailed and average models are
denoted by d and a, respectively.

We applied Algorithm 2 with parameters & € {0.95,0.99} and
¢ € {0.001,0.005,0.01,0.05}. For both the models, we consider the
standard test conditions (initial temperature and irradiance are 25°
and 1000 W /m?, respectively) with the following scenario (i.e., the
input to the models):

(1) Att = 0.3s MPPT starts to regulate PV voltage.
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(2) In time interval [0.6,1.1]s, the sun irradiance linearly is requirement (27), although it is commonly believed that the aver-
ramped to a minimum value. Also, the environment temper- age model is generally a good approximation of the detailed model
ature start increasing to a maximum value, simultaneously. [27]. This result is achieved with a relatively small number of sam-

(3) In time interval [1.1, 1.2]s, the sun irradiance and environ- ples (at most a few dozen samples for each setup). The results for
ment temperature stay constant. The minimum value of the the considered specification reveals that two models do not have
irradiance is drawn randomly from a distribution N;, (650, 102) conformance for any value of c.
and the maximum temperature is 20 — 0.02 X N;, (650, 102). Finally, to confirm the results of Table 3, Figure 9 presents the

(4) In time interval [1.2, 1.7]s, the sun irradiance and tempera- ECDFs of the maximum deviation |ey, | of the detailed and average
ture are linearly restored back to 1000W /m? and 25°, respec- models; the discrepancy of the two ECDFs demonstrates the non-
tively; from then onward, remain constant. conformance of two models for the requirement (27). Each ECDF

uses 100 samples, which is significantly more than the samples

Result Analysis. Table 3 summarizes the results that demonstrate required by Algorithm 2, as shown by Table 3.

the nonconformance of the detailed and average models for the
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